[go: up one dir, main page]

JP4242079B2 - Positive electrode active material for lithium secondary battery and method for producing the same - Google Patents

Positive electrode active material for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP4242079B2
JP4242079B2 JP2001013860A JP2001013860A JP4242079B2 JP 4242079 B2 JP4242079 B2 JP 4242079B2 JP 2001013860 A JP2001013860 A JP 2001013860A JP 2001013860 A JP2001013860 A JP 2001013860A JP 4242079 B2 JP4242079 B2 JP 4242079B2
Authority
JP
Japan
Prior art keywords
chemical formula
active material
positive electrode
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001013860A
Other languages
Japanese (ja)
Other versions
JP2001250556A (en
Inventor
鎬 眞 權
誠 均 張
ヨウン−ウク クウォン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2001250556A publication Critical patent/JP2001250556A/en
Application granted granted Critical
Publication of JP4242079B2 publication Critical patent/JP4242079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Complex oxides containing manganese and at least one other metal element
    • C01G45/1221Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Complex oxides containing manganese and at least one other metal element
    • C01G45/1221Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
    • C01G45/1242Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof of the type (Mn2O4)-, e.g. LiMn2O4 or Li(MxMn2-x)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Complex oxides containing cobalt and at least one other metal element
    • C01G51/42Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池用正極活物質及びその製造方法に関し、詳しくは簡単な工程で優れた寿命特性を示す正極活物質を製造することができるリチウム二次電池用正極活物質の製造方法に関する。
【0002】
【従来の技術】
リチウム二次電池は可逆的にリチウムイオンの挿入及び脱離が可能な物質を正極及び負極として用い、前記正極と負極の間に有機電解液またはポリマー電解液を充填して製造し、リチウムイオンが正極及び負極で挿入/脱離される時の酸化、還元反応によって電気エネルギーを生成する。
【0003】
リチウム二次電池の負極活物質としてはリチウム金属が用いられてきたが、リチウム金属を用いる場合デンドライト(dendrite)の形成による電池短絡によって爆発する危険性があるため、リチウム金属の代わりに非晶質炭素または結晶質炭素などの炭素系物質に代替されている。
【0004】
正極活物質としてはカルコゲナイド(chalcogenide)化合物が用いられており、その例としてLiCoO、LiMn、LiNiO、LiNi - Co(0<x<1)、LiMnOなどの複合金属酸化物が研究されている。前記正極活物質中のLiMn、LiMnOなどのMn-系正極活物質は合成しやすく、値段が比較的安く、環境に対する汚染も少ないので魅力のある物質ではあるが、容量が小さいという短所をもっている。また、LiNiOは前述した正極活物質の中で最も値段が安く、最も高い放電容量の電池特性を示しているが合成し難い短所を有している。さらに、LiCoOは良好な電気伝導度と高い電池電圧そして優れた電極特性を示し、現在Sony社等で商業化され市販されている代表的な正極活物質であるが、高価であるという問題点がある。
【0005】
一般的に前記複合金属酸化物は原料酸化物等の混合物を固状反応させて合成される。固状反応とは固体状態の原料粉末を混合した後、焼成してボールミルする工程を数回反復して目的とする化合物を製造する方法である。例えば、Sony社ではLiCoO活物質をCo(OH)またはCoなどの酸化物を用いて800〜900℃で数十時間熱処理した後、粉砕、粒度分別等の過程を経て製造している。また、松下では2段階連続焼結工程を用いて、第1段階では400〜580℃でLiOHとNi酸化物とCo酸化物を反応させて1次的に初期酸化物を形成し、第2段階では800℃で数十時間熱処理して完全な結晶性物質を合成している。また、LiMn活物質もLiOHとMnOなどのような金属酸化物を用いて詳述した固状反応によって合成されている。
【0006】
【発明が解決しようとする課題】
しかし、前記従来の複合金属酸化物を製造する方法は複雑な段階を経て、多くの設備と時間を必要とするという短所がある。また既存の複合金属酸化物による合成法は合成温度が比較的高く、反応物の粒子の大きさが比較的に大きく生成され、活物質粒子の形状(Morphology)や表面特性(表面積、気孔の大きさ)などの物理的性質を調節するのが難しい。
【0007】
活物質の物理的性質は電池の電気化学的特性に大きな影響を及ぼす重要な要因で、電池の特性を極大化するためにはこれら活物質が有する物理的性質を任意に調節できなければならない。つまり、電池の特性は、合成した活物質である複合金属酸化物の物理的性質によって相当な影響を受けるが、固状法によって高い温度で合成された複合金属酸化物の活物質は、初期出発物質の性質によってだけ左右されるために、物理的性質を変化させるのが非常に難しい。従って、最終合成された複合金属酸化物活物質粉末の物理的性質を変化させようとする方法及び研究が非常に活発に進行している。
【0008】
特に、良好な電気伝導度と高い電池電圧及び優れた電極特性を見せるLiCoOは、Coなどの高価な酸化物を使用して800〜900℃程度の高温で数十時間熱処理を行い合成しているために価格が非常に高いという問題点を抱えている。
【0009】
本発明は前述した問題点を解決するためのものであって、本発明の目的は簡単な工程で正極活物質を製造することができるリチウム二次電池用正極活物質の製造方法を提供することにある。
【0010】
本発明の他の目的は、経済的に正極活物質を製造することができるリチウム二次電池用正極活物質の製造方法を提供することにある。
【0011】
本発明の他の目的は、優れた寿命特性を示すリチウム二次電池用正極活物質を提供することにある。
【0012】
【課題を解決するための手段】
詳述した目的を達成するために、本発明はリチウム塩及び金属塩をKOH若しくはNaOHの水溶液上、またはKOH若しくはNaOHの有機溶液上で還流反応させることによるリチウム二次電池用正極活物質の製造方法を提供する。
【0013】
本発明はまた、球形または類似球形の形状を有していて、10nm乃至10μmの粒度を有し、0.1乃至5m2/gの表面積を有するリチウム二次電池用正極活物質を提供する。本発明の正極活物質は下記の化学式1乃至14から選択される化合物である。
[化学式1]
LixMnA2
[化学式2]
LixMnO2-zAz
[化学式3]
LixMn1-yyA2
[化学式4]
LixMn1-yyO2-zAz
[化学式5]
LixMn2O4
[化学式6]
LixMn2O4-zAz
[化学式7]
LixMn2-yyA4
[化学式8]
LixBA2
[化学式9]
LixBO2-zAz
[化学式10]
LixB1-yM yA2
[化学式11]
LixNi1-yCoyA2
[化学式12]
LixNi1-yCoyO2-zAz
[化学式13]
LixNi1-y-zCoyM zA2
[化学式14]
Lix'Ni1-y'Mny'z'Aα
(前記式において、0.95≦x≦1.1、0.01≦y≦0.1、0.01≦z≦0.5、0.95≦x´≦1、0.01≦y´≦0.5、0.01≦z´≦0.1、0.01≦α≦0.5であり、 M´はAl、Cr、Mn、Fe、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタノイド金属のうちの少なくとも一つ以上の金属であり、MはAl、Cr、Co、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタナイド金属のうちの一つ以上の金属であり、AはO、F、S及びPからなる群より選択され、BはNiまたはCoである。)
【0014】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
【0015】
本発明はリチウム二次電池用正極活物質で良好な電気伝導度と高い電池電圧及び優れた電極特性を見せるが、価格が高いために使用するのが難しかったコバルト系正極活物質を簡単な工程を用いて経済的に製造することができる製造方法に関する。
【0016】
また、本発明の製造方法は、コバルト系正極活物質だけでなく、マンガン系、ニッケル系、ニッケルコバルト系正極活物質にも適用することができる。
【0017】
本発明の製造方法は、リチウム塩と金属塩を、KOH若しくはNaOHの水溶液上、またはKOH若しくはNaOHの有機溶液上で還流反応させた後、還流反応物を乾燥して下記の化学式1乃至14の化合物を製造する。つまり、本発明は熱処理工程を実施する必要なく単に還流反応だけで結晶性化合物を製造することができる。
【0018】
本発明で利用した還流法(reflux)とは一般的に反応物を反応容器に投入した後、温度を増加させて反応物から揮発性溶媒を揮発させ、この揮発した溶媒を冷却してその一部を再び前記反応容器に戻す方法をいう。つまり、この方法は溶液状態で反復して蒸発⇔凝縮過程を経て粒子を生成、成長させて化合物を製造する方法である。この方法は主に、有機化合物の合成に用いられる方法である。
【0019】
本発明で還流反応は50乃至500℃、好ましくは50乃至200℃で12時間乃至96時間実施する。反応温度が50℃未満になれば低い反応エネルギーによって反応が進行しない問題点があり、500℃を超過する場合には反応装置製作上の問題点がある。また、反応時間が12時間未満である場合には反応が完結しない問題点があり、96時間の間反応させれば十分である、それ以上反応させる必要はない。
【0020】
前記リチウム塩としてはリチウムナイトレート、リチウムアセテートまたはリチウムヒドロキシドを使用することができ、前記金属塩としてはマンガン塩、コバルト塩、ニッケル塩またはこれらの混合物を用いることができる。前記マンガン塩としては、マンガンアセテートまたはマンガンジオキシドを用いることができ、前記コバルト塩としては、コバルトヒドロキシド、コバルトナイトレートまたはコバルトカーボネートを、前記ニッケル塩としては、ニッケルヒドロキシド、ニッケルナイトレートまたはニッケルアセテートを用いることができる。また、マンガンフルオライドまたはリチウムフルオライドのようなフルオライド塩、またはマンガンスルファイドまたはリチウムスルファイドのようなスルファイド塩、またはHPOのようなフォスフォロース塩をさらに用いることもできる。前記リチウム塩、マンガン塩、コバルト塩、ニッケル塩、フルオライド塩、スルファイド塩またはフォスフォロース塩は一般的にリチウム二次電池に用いられるものであり、本発明は前記化合物に限られるわけではない。
【0021】
前記溶液としては、KOH若しくはNaOHの塩基性化合物を水に溶解して製造された塩基性水溶液、またはKOH若しくはNaOHを有機溶媒に溶解して製造した有機溶液を用いることができる。前記有機溶媒としては、メタノール、エタノールまたはプロパノールのようなアルコール、エーテルまたはアセトンを用いることができるが、これに限られるわけではない。
【0022】
前記KOHまたはNaOHの塩基性水溶液は、pH7乃至14、好ましくはpH10乃至14の塩基を用いるのが好ましい。水溶液のpHが7未満である場合には反応が進まない問題点がある。
[化学式1]LiMnA
[化学式2]LiMnO2−z
[化学式3]LiMn1−yM’
[化学式4]LiMn1−yM’2−z
[化学式5]LiMn
[化学式6]LiMn4−z
[化学式7]LiMn2−yM’
[化学式8]LiBA
[化学式9]LiBO2−z
[化学式10]Li1−yM”
[化学式11]LiNi1−yCo
[化学式12]LiNi1−yCo2−z
[化学式13]LiNi1−y−zCoM”
[化学式14]Lix’Ni1−y’Mny’M’z’α
(前記式において、0.95≦x≦1.1、0.01≦y≦0.1、0.01≦z≦0.5、0.95≦x’≦1、0.01≦y’≦0.5、0.01≦z’≦0.1、0.01≦α≦0.5であり、M’はAl、Cr、Mn、Fe、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタノイド金属のうちの少なくとも一つ以上の金属であり、M”はAl、Cr、Co、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタナイド金属のうちの一つ以上の金属であり、AはO、F、S及びPからなる群より選択され、BはNiまたはCoである。)
【0023】
以下、本発明の製造方法を添付した図面を参照して説明する。図1に示したように、還流装置のメスフラスコ(volumetric flask)などの容器3にリチウム塩と金属塩及びKOH若しくはNaOHの塩基性水溶液、またはKOH若しくはNaOHの有機溶液からなる溶液を入れる。
【0024】
次に、ホットプレート1を用いて温度計5で測定して温度が50乃至500℃、好ましくは50乃至200℃になるまで増加させた後、その温度で12時間乃至96時間攪拌しながら還流反応させる。この時、リチウム塩、金属塩及びKOH若しくはNaOHの塩基性水溶液、またはKOH若しくはNaOHの有機溶液からなる溶液の混合物で、還流工程を連続的に経てシード(seed)を通じて前記化学式1乃至14の結晶性化合物が製造される。反応が完結した後、得られた溶液をろ過して80乃至150℃で10乃至15時間乾燥して下記の化学式1乃至14の化合物粉末を製造する。
【0025】
詳述した還流方法で製造された正極活物質はその形状が球形または類似球形を有して、10nm乃至10μmの粒径を有し、0.1乃至5m2/gの表面積を有する。このように、本発明の正極活物質は球形または類似球形を有することによって、極板の製造時に充填密度を増加させることができる。正極活物質の粒径が10nmより小さければ電池の安全性(safetyまたはthermalstability)に問題点があり、10μmより大きければ反応性(kinetics)に問題点がある。また、正極活物質の表面積が0.1m2/gより小さければ電池の安全性(safetyまたはthermal stability)に問題点があり、5m2/gより大きければ反応性(kinetics)に問題点がある。
【0026】
以下、本発明の好ましい実施例及び比較例を記載する。しかし、下記の実施例は本発明の好ましい一実施例だけであり、本発明が下記の実施例に限られるわけではない。
【0027】
(実施例1)
出発物質としてLiOHとCo(OH)及びKOH水溶液を還流装置のメスフラスコ(volumetric flask)に入れた後、ホットプレートの温度を180℃まで増加させた。この温度で、前記混合物を24時間攪拌して還流反応させた。反応が終わった後、得られた溶液をろ過して得た粉末を100℃で12時間乾燥して最終LiCoO正極活物質粉末を合成した。
【0028】
(実施例2)
還流反応を200℃で実施したことを除いては前記実施例1と同一の方法で実施した。
【0029】
(実施例3)
還流反応を130℃で実施したことを除いては前記実施例1と同一の方法で実施した。
【0030】
(実施例4)
還流反応を100℃で実施したことを除いては前記実施例1と同一の方法で実施した。
【0031】
(比較例1)
LiCoO(Nippon Chem C-5(平均粒度が5μm))粉末を正極活物質として使用した。
【0032】
前記実施例1乃至2及び比較例1のSEM(Scanning Electron−ic Microscopy)を図2、図3及び図4に各々示した。図2乃至図4に示したように実施例1乃至2の方法で製造された活物質はその大きさが1μm以下の微粒子が多数かたまって約1μmの大きさで粒子が形成されたのに反し、比較例1の活物質は平均5μmの単一粒子で形成されていることが分かる。また、実施例1乃至2の活物質の形状が比較例1の活物質より球形に近い類似球形であることが分かる。
【0033】
また、前記実施例1乃至3の方法で製造された活物質のXRDパターンを図5に(b)、(a)及び(c)で示し、比較例1の活物質のXRDパターンを図6に示した。図5に示したように、実施例1乃至3の方法で製造された活物質のXRDパターンが図6と類似しているような結果になったので、実施例1乃至3の方法で製造された活物質はLiCoOの構造を有することが分かる。
【0034】
同時に、前記実施例2の方法で製造された活物質と比較例1の活物質を用いてリチウム二次電池を製造した。活物質と導電剤及びバインダーを94:3:3の重量比で混合した後、この混合物にN-メチルピロリドンを添加して正極活物質スラリーを製造した。この正極活物質スラリーをAlフォイルにキャスティングして正極を製造し、リチウム対極を使用してリチウム二次コイン電池を製造した。電解液としては1M LiPFが溶解されたエチレンカーボネートとジメチルカーボネートの混合物(1:1体積比)を使用した。
【0035】
製造された実施例2及び比較例1の活物質を利用した電池の充放電特性及び寿命特性を測定してその結果を図7及び図8に示した。充放電電位は4.3V-2.75Vで電気化学的特性を評価し、寿命特性は0.1Cで1回、0.2Cで3回、0.5Cで10回、最後に1Cで86回を連続的に充放電を実施して測定した。図7に示したように、充電特性は比較例1の活物質を利用した電池と類似しているが、放電特性は多少落ちることが分かる。しかし、図8に示したように、実施例2の活物質を利用した電池は1C高率充放電条件で86回サイクル後、約50mAh/gの容量減少を示したが、比較例1の活物質を利用した電池は120mAh/gの容量減少を示したことが分かる。従って、実施例2の活物質を利用した電池が比較例1の活物質を利用した電池に比べて寿命特性が優れていることが分かる。
【0036】
【発明の効果】
詳述したように、本発明の還流法を用いて製造された正極活物質は充放電寿命の特性が優れている。
【図面の簡単な説明】
【図1】本発明で利用した還流装置を示した断面図である。
【図2】本発明の一実施例によって製造された正極活物質のSEM写真である。
【図3】本発明の他の実施例によって製造された正極活物質のSEM写真である。
【図4】比較例の正極活物質のSEM写真である。
【図5】本発明の実施例によって製造された正極活物質のXRDパターンを示したグラフである。
【図6】比較例の正極活物質のXRDパターンを示したグラフである。
【図7】本発明の実施例の正極活物質を用いて製造された電池の充放電特性を示したグラフである。
【図8】本発明の実施例及び比較例の正極活物質を用いて製造された電池の寿命特性を示したグラフである。
【符号の説明】
1 容器
3 ホットプレート
5 温度計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for a lithium secondary battery and a method for producing the same, and more particularly to a method for producing a positive electrode active material for a lithium secondary battery capable of producing a positive electrode active material exhibiting excellent life characteristics by a simple process. .
[0002]
[Prior art]
A lithium secondary battery is manufactured by using a material capable of reversibly inserting and removing lithium ions as a positive electrode and a negative electrode, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode. Electric energy is generated by oxidation and reduction reactions when inserted / desorbed at the positive and negative electrodes.
[0003]
Lithium metal has been used as the negative electrode active material for lithium secondary batteries, but when lithium metal is used, there is a risk of explosion due to battery short circuit due to the formation of dendrites. It has been replaced by carbonaceous materials such as carbon or crystalline carbon.
[0004]
As the positive electrode active material is a chalcogenide (chalcogenide) compound is used, examples thereof LiCoO 2, LiMn 2 O 4, LiNiO 2, LiNi 1 - x Co x O 2 (0 <x <1), such as LiMnO 2 Composite metal oxides have been studied. Mn-based positive electrode active materials such as LiMn 2 O 4 and LiMnO 2 in the positive electrode active material are easy to synthesize, are relatively inexpensive, and are less attractive to the environment. Has disadvantages. In addition, LiNiO 2 has the disadvantage that it is the cheapest among the positive electrode active materials described above, and shows the battery characteristics of the highest discharge capacity, but is difficult to synthesize. Furthermore, LiCoO 2 is a typical positive electrode active material that is commercially available and commercially available from Sony, etc., although it exhibits good electrical conductivity, high battery voltage, and excellent electrode characteristics, but it is expensive. There is.
[0005]
Generally, the composite metal oxide is synthesized by solid reaction of a mixture of raw material oxides. The solid reaction is a method of producing a target compound by mixing a raw material powder in a solid state and then firing and ball milling several times. For example, Sony has heat-treated Li x CoO 2 active material using an oxide such as Co (OH) 2 or Co 3 O 4 at 800 to 900 ° C. for several tens of hours, followed by pulverization and particle size separation. Manufacture. In Matsushita, a two-stage continuous sintering process is used. In the first stage, LiOH, Ni oxide, and Co oxide are reacted at 400 to 580 ° C. to form an initial oxide, and the second stage. Then, a complete crystalline material is synthesized by heat treatment at 800 ° C. for several tens of hours. The LiMn 2 O 4 active material is also synthesized by the solid reaction described in detail using a metal oxide such as LiOH and MnO 2 .
[0006]
[Problems to be solved by the invention]
However, the conventional method for producing a composite metal oxide has a disadvantage in that it requires a lot of equipment and time through complicated steps. In addition, the synthesis method using the existing composite metal oxide has a relatively high synthesis temperature, and the size of the reactant particles is relatively large, and the shape of the active material particles (Morphology) and surface characteristics (surface area, pore size) It is difficult to adjust physical properties such as
[0007]
The physical properties of the active material are important factors that greatly affect the electrochemical characteristics of the battery. In order to maximize the characteristics of the battery, it is necessary to be able to arbitrarily adjust the physical properties of these active materials. In other words, the characteristics of the battery are significantly affected by the physical properties of the composite metal oxide that is the synthesized active material, but the active material of the composite metal oxide synthesized at a high temperature by the solid state method is the initial starting material. It is very difficult to change the physical properties because it depends only on the properties of the material. Therefore, a method and research for changing the physical properties of the final composite metal oxide active material powder are actively progressing.
[0008]
In particular, LiCoO 2 that exhibits good electrical conductivity, high battery voltage, and excellent electrode characteristics is heat-treated at a high temperature of about 800 to 900 ° C. for several tens of hours using an expensive oxide such as Co 3 O 4. The problem is that the price is very high due to the synthesis.
[0009]
The present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a method for producing a positive electrode active material for a lithium secondary battery, which can produce a positive electrode active material by a simple process. It is in.
[0010]
Another object of the present invention is to provide a method for producing a positive electrode active material for a lithium secondary battery capable of economically producing a positive electrode active material.
[0011]
Another object of the present invention is to provide a positive electrode active material for a lithium secondary battery that exhibits excellent life characteristics.
[0012]
[Means for Solving the Problems]
In order to achieve the object described in detail, the present invention provides a positive electrode active material for a lithium secondary battery by refluxing a lithium salt and a metal salt on an aqueous solution of KOH or NaOH or an organic solution of KOH or NaOH. Provide a method.
[0013]
The present invention also provides a positive electrode active material for a lithium secondary battery having a spherical or similar spherical shape, a particle size of 10 nm to 10 μm, and a surface area of 0.1 to 5 m 2 / g. The positive electrode active material of the present invention is a compound selected from the following chemical formulas 1 to 14.
[Chemical formula 1]
Li x MnA 2
[Chemical formula 2]
Li x MnO 2-z A z
[Chemical formula 3]
Li x Mn 1-yy A 2
[Chemical formula 4]
Li x Mn 1-y M'y O 2-z A z
[Chemical formula 5]
Li x Mn 2 O 4
[Chemical formula 6]
Li x Mn 2 O 4-z A z
[Chemical formula 7]
Li x Mn 2-yy A 4
[Chemical formula 8]
Li x BA 2
[Chemical formula 9]
Li x BO 2-z A z
[Chemical formula 10]
Li x B 1-y M y A 2
[Chemical formula 11]
Li x Ni 1-y Co y A 2
[Chemical formula 12]
Li x Ni 1-y Co y O 2-z A z
[Chemical formula 13]
Li x Ni 1-yz Co y M z A 2
[Chemical formula 14]
Li x ' Ni 1-y' Mn y 'z' A α
(In the above formula, 0.95 ≦ x ≦ 1.1, 0.01 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.5, 0.95 ≦ x ′ ≦ 1, 0.01 ≦ y ′ ≦ 0.5, 0.01 ≦ z ′ ≦ 0.1, 0.01 ≦ α ≦ 0.5, M ′ is made of Al, Cr, Mn, Fe, Mg, La, Ce, Sr and V A transition metal selected from the group or at least one metal of a lanthanoid metal, and M〃 is a transition metal selected from the group consisting of Al, Cr, Co, Mg, La, Ce, Sr and V, or (One or more of the lanthanide metals, A is selected from the group consisting of O, F, S and P, and B is Ni or Co.)
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0015]
The present invention is a positive electrode active material for a lithium secondary battery, which exhibits good electrical conductivity, high battery voltage and excellent electrode characteristics, but is a simple process for a cobalt-based positive electrode active material that is difficult to use due to its high price. The present invention relates to a production method that can be produced economically using
[0016]
The production method of the present invention can be applied not only to a cobalt-based positive electrode active material but also to a manganese-based, nickel-based, or nickel-cobalt-based positive electrode active material.
[0017]
Production method of the present invention, a lithium salt and a metal salt, an aqueous solution of KOH or NaOH, or KOH or NaOH was refluxed reacted on organic solution, refluxing the reaction was dried in Formula 1 through 14 below A compound is produced. That is, according to the present invention, a crystalline compound can be produced simply by a reflux reaction without the need for performing a heat treatment step.
[0018]
In general, the reflux method used in the present invention is a method in which a reactant is introduced into a reaction vessel, and then the temperature is increased to volatilize a volatile solvent from the reactant. A method of returning the part to the reaction vessel again. In other words, this method is a method for producing a compound by repeatedly generating and growing particles through an evaporation and condensation process in a solution state. This method is mainly used for the synthesis of organic compounds.
[0019]
In the present invention, the reflux reaction is carried out at 50 to 500 ° C., preferably 50 to 200 ° C. for 12 hours to 96 hours. If the reaction temperature is less than 50 ° C., there is a problem that the reaction does not proceed due to low reaction energy, and if it exceeds 500 ° C., there is a problem in manufacturing the reaction apparatus. In addition, when the reaction time is less than 12 hours, there is a problem that the reaction is not completed. It is sufficient to react for 96 hours, and it is not necessary to react further.
[0020]
Lithium nitrate, lithium acetate or lithium hydroxide can be used as the lithium salt, and manganese salt, cobalt salt, nickel salt or a mixture thereof can be used as the metal salt. As the manganese salt, manganese acetate or manganese dioxide can be used, as the cobalt salt, cobalt hydroxide, cobalt nitrate or cobalt carbonate, and as the nickel salt, nickel hydroxide, nickel nitrate or Nickel acetate can be used. Further, a fluoride salt such as manganese fluoride or lithium fluoride, or a sulfide salt such as manganese sulfide or lithium sulfide, or a phosfollows salt such as H 3 PO 4 may be further used. The lithium salt, manganese salt, cobalt salt, nickel salt, fluoride salt, sulfide salt or phosphorous salt is generally used for lithium secondary batteries, and the present invention is not limited to the above compound.
[0021]
As the solution, a basic aqueous solution prepared by dissolving a basic compound of KOH or NaOH in water , or an organic solution prepared by dissolving KOH or NaOH in an organic solvent can be used. As the organic solvent, alcohol such as methanol, ethanol or propanol, ether or acetone can be used, but the organic solvent is not limited thereto.
[0022]
The basic aqueous solution of KOH or NaOH preferably uses a base having a pH of 7 to 14, preferably a pH of 10 to 14. When the pH of the aqueous solution is less than 7, there is a problem that the reaction does not proceed.
[Chemical Formula 1] Li x MnA 2
[Chemical Formula 2] Li x MnO 2-z A z
[Chemical Formula 3] Li x Mn 1-y M ′ y A 2
[Chemical Formula 4] Li x Mn 1-y M 'y O 2-z A z
[Chemical Formula 5] Li x Mn 2 O 4
[Chemical Formula 6] Li x Mn 2 O 4-z A z
[Chemical Formula 7] Li x Mn 2-y M ′ y A 4
[Chemical Formula 8] Li x BA 2
[Chemical Formula 9] Li x BO 2-z A z
[Chemical Formula 10] Li x B 1-y M ″ y A 2
[Chemical Formula 11] Li x Ni 1-y Co y A 2
[Chemical Formula 12] Li x Ni 1-y Co y O 2 -z A z
[Formula 13] Li x Ni 1-yz Co y M ″ z A 2
[Chemical Formula 14] Li x ′ Ni 1-y ′ Mn y ′ M ′ z ′ A α
(In the above formula, 0.95 ≦ x ≦ 1.1, 0.01 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.5, 0.95 ≦ x ′ ≦ 1, 0.01 ≦ y ′. ≦ 0.5, 0.01 ≦ z ′ ≦ 0.1, 0.01 ≦ α ≦ 0.5, and M ′ is made of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, and V. A transition metal selected from the group or at least one of lanthanoid metals, and M ″ is a transition metal selected from the group consisting of Al, Cr, Co, Mg, La, Ce, Sr and V, or (One or more of the lanthanide metals, A is selected from the group consisting of O, F, S and P, and B is Ni or Co.)
[0023]
Hereinafter, a manufacturing method of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, a volumetric flask (volumetric Flask) of the recirculation device lithium salt and a metal salt in a container 3 such as, and a basic aqueous solution of KOH or NaOH or add KOH or solution comprising an organic solution of NaOH,.
[0024]
Next, the temperature is increased to 50 to 500 ° C., preferably 50 to 200 ° C., measured with the thermometer 5 using the hot plate 1, and then refluxed while stirring at that temperature for 12 to 96 hours. Let At this time, a mixture of a lithium salt, a metal salt , and a basic aqueous solution of KOH or NaOH, or an organic solution of KOH or NaOH, and continuously passing through a reflux process, the seeds of Formulas 1 to 14 are passed through a seed. A crystalline compound is produced. After the reaction is completed, the obtained solution is filtered and dried at 80 to 150 ° C. for 10 to 15 hours to produce compound powders of the following chemical formulas 1 to 14.
[0025]
The positive electrode active material manufactured by the reflux method described in detail has a spherical shape or a similar spherical shape, a particle size of 10 nm to 10 μm, and a surface area of 0.1 to 5 m 2 / g. Thus, the positive electrode active material of the present invention has a spherical shape or a similar spherical shape, so that the packing density can be increased during the production of the electrode plate. If the particle size of the positive electrode active material is smaller than 10 nm, there is a problem in battery safety (safety or thermal stability), and if it is larger than 10 μm, there is a problem in reactivity (kinetics). In addition, if the surface area of the positive electrode active material is smaller than 0.1 m 2 / g, there is a problem in battery safety (safety or thermal stability), and if it is larger than 5 m 2 / g, there is a problem in reactivity (kinetics). .
[0026]
Hereinafter, preferred examples and comparative examples of the present invention will be described. However, the following embodiment is only a preferred embodiment of the present invention, and the present invention is not limited to the following embodiment.
[0027]
(Example 1)
LiOH, Co (OH) 2 and an aqueous KOH solution as starting materials were placed in a reflux flask volumetric flask, and then the temperature of the hot plate was increased to 180 ° C. At this temperature, the mixture was stirred for 24 hours to reflux. After the reaction was completed, the powder obtained by filtering the obtained solution was dried at 100 ° C. for 12 hours to synthesize the final LiCoO 2 positive electrode active material powder.
[0028]
(Example 2)
The reaction was performed in the same manner as in Example 1 except that the reflux reaction was performed at 200 ° C.
[0029]
Example 3
The reaction was performed in the same manner as in Example 1 except that the reflux reaction was performed at 130 ° C.
[0030]
Example 4
The reaction was performed in the same manner as in Example 1 except that the reflux reaction was performed at 100 ° C.
[0031]
(Comparative Example 1)
LiCoO 2 (Nippon Chem C-5 (average particle size is 5 μm)) powder was used as the positive electrode active material.
[0032]
The SEM (Scanning Electron-ic Microscopy) of Examples 1 and 2 and Comparative Example 1 are shown in FIGS. 2, 3 and 4, respectively. As shown in FIGS. 2 to 4, the active material produced by the methods of Examples 1 and 2 is contrary to the fact that a large number of fine particles having a size of 1 μm or less are collected to form particles having a size of about 1 μm. It can be seen that the active material of Comparative Example 1 is formed of single particles having an average of 5 μm. Moreover, it turns out that the shape of the active material of Examples 1 or 2 is a similar spherical shape closer to the spherical shape than the active material of Comparative Example 1.
[0033]
In addition, the XRD patterns of the active material manufactured by the methods of Examples 1 to 3 are shown in FIGS. 5B, 5A, and 5C, and the XRD pattern of the active material of Comparative Example 1 is shown in FIG. Indicated. As shown in FIG. 5, since the XRD pattern of the active material manufactured by the method of Examples 1 to 3 was similar to that of FIG. 6, it was manufactured by the method of Examples 1 to 3. It can be seen that the active material has a structure of LiCoO 2 .
[0034]
At the same time, a lithium secondary battery was manufactured using the active material manufactured by the method of Example 2 and the active material of Comparative Example 1. The active material, the conductive agent, and the binder were mixed at a weight ratio of 94: 3: 3, and N-methylpyrrolidone was added to the mixture to prepare a positive electrode active material slurry. The positive electrode active material slurry was cast on an Al foil to produce a positive electrode, and a lithium secondary coin battery was produced using a lithium counter electrode. As the electrolytic solution, a mixture (1: 1 volume ratio) of ethylene carbonate and dimethyl carbonate in which 1M LiPF 6 was dissolved was used.
[0035]
The charge / discharge characteristics and life characteristics of the batteries using the active materials of Example 2 and Comparative Example 1 manufactured were measured, and the results are shown in FIGS. The electrochemical characteristics were evaluated at a charge / discharge potential of 4.3V-2.75V. Life characteristics were 1 time at 0.1C, 3 times at 0.2C, 10 times at 0.5C, and finally 86 times at 1C. Was measured by continuously charging and discharging. As shown in FIG. 7, the charging characteristics are similar to those of the battery using the active material of Comparative Example 1, but it can be seen that the discharging characteristics are somewhat deteriorated. However, as shown in FIG. 8, the battery using the active material of Example 2 showed a capacity decrease of about 50 mAh / g after 86 cycles under 1C high rate charge / discharge conditions. It can be seen that the battery using the material showed a capacity reduction of 120 mAh / g. Therefore, it can be seen that the battery using the active material of Example 2 has better life characteristics than the battery using the active material of Comparative Example 1.
[0036]
【The invention's effect】
As described in detail, the positive electrode active material produced using the reflux method of the present invention has excellent charge / discharge life characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a reflux apparatus used in the present invention.
FIG. 2 is a SEM photograph of a positive electrode active material manufactured according to an embodiment of the present invention.
FIG. 3 is a SEM photograph of a positive electrode active material manufactured according to another example of the present invention.
FIG. 4 is an SEM photograph of a positive electrode active material of a comparative example.
FIG. 5 is a graph showing an XRD pattern of a positive electrode active material manufactured according to an embodiment of the present invention.
FIG. 6 is a graph showing an XRD pattern of a positive electrode active material of a comparative example.
FIG. 7 is a graph showing charge / discharge characteristics of a battery manufactured using a positive electrode active material according to an example of the present invention.
FIG. 8 is a graph showing life characteristics of batteries manufactured using positive electrode active materials of Examples and Comparative Examples of the present invention.
[Explanation of symbols]
1 container 3 hot plate 5 thermometer

Claims (6)

リチウム塩及び金属塩をKOH若しくはNaOHの塩基性水溶液上、またはKOH若しくはNaOHの有機溶液上で還流反応させることによりリチウム二次電池用正極活物質を製造することを特徴とする、リチウム二次電池用正極活物質の製造方法。Characterized by producing a positive active material for a rechargeable lithium battery by refluxing the reaction of a lithium salt and a metal salt on a basic aqueous solution of KOH or NaOH, or KOH or on an organic solution of NaOH, lithium secondary batteries For producing a positive electrode active material for use. 前記正極活物質は下記の化学式1乃至14の化合物から選択される、請求項1に記載のリチウム二次電池用正極活物質の製造方法。
[化学式1]LiMnA
[化学式2]LiMnO2−z
[化学式3]LiMn1−yM’
[化学式4]LiMn1−yM’2−z
[化学式5]LiMn
[化学式6]LiMn4−z
[化学式7]LiMn2−yM’
[化学式8]LiBA
[化学式9]LiBO2−z
[化学式10]Li1−yM”
[化学式11]LiNi1−yCo
[化学式12]LiNi1−yCo2−z
[化学式13]LiNi1−y−zCoM”
[化学式14]Lix’Ni1−y’Mny’M’z’α
(前記式において、0.95≦x≦1.1、0.01≦y≦0.1、0.01≦z≦0.5、0.95≦x’≦1、0.01≦y’≦0.5、0.01≦z’≦0.1、0.01≦α≦0.5であり、M’はAl、Cr、Mn、Fe、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタノイド金属のうちの少なくとも一つ以上の金属であり、M”はAl、Cr、Co、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタナイド金属のうちの一つ以上の金属であり、AはO、F、S及びPからなる群より選択され、BはNiまたはCoである。)
2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the positive electrode active material is selected from compounds represented by chemical formulas 1 to 14 below.
[Chemical Formula 1] Li x MnA 2
[Chemical Formula 2] Li x MnO 2-z A z
[Chemical Formula 3] Li x Mn 1-y M ′ y A 2
[Chemical Formula 4] Li x Mn 1-y M 'y O 2-z A z
[Chemical Formula 5] Li x Mn 2 O 4
[Chemical Formula 6] Li x Mn 2 O 4-z A z
[Chemical Formula 7] Li x Mn 2-y M ′ y A 4
[Chemical Formula 8] Li x BA 2
[Chemical Formula 9] Li x BO 2-z A z
[Chemical Formula 10] Li x B 1-y M ″ y A 2
[Chemical Formula 11] Li x Ni 1-y Co y A 2
[Chemical Formula 12] Li x Ni 1-y Co y O 2 -z A z
[Formula 13] Li x Ni 1-yz Co y M ″ z A 2
[Chemical Formula 14] Li x ′ Ni 1-y ′ Mn y ′ M ′ z ′ A α
(In the above formula, 0.95 ≦ x ≦ 1.1, 0.01 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.5, 0.95 ≦ x ′ ≦ 1, 0.01 ≦ y ′. ≦ 0.5, 0.01 ≦ z ′ ≦ 0.1, 0.01 ≦ α ≦ 0.5, and M ′ is made of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, and V. A transition metal selected from the group or at least one of lanthanoid metals, and M ″ is a transition metal selected from the group consisting of Al, Cr, Co, Mg, La, Ce, Sr, and V, or (One or more of the lanthanide metals, A is selected from the group consisting of O, F, S and P, and B is Ni or Co.)
前記還流反応は100乃至500℃の温度で12乃至96時間実施する、請求項1に記載のリチウム二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the reflux reaction is performed at a temperature of 100 to 500 ° C. for 12 to 96 hours. 前記塩基性水溶液のpHは7乃至14である、請求項1に記載のリチウム二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the pH of the basic aqueous solution is 7 to 14. 請求項 1 に記載の製造方法によって製造された、下記の化学式1乃至14の化合物から選択され、球形または類似球形の形状を有し、10nm乃至μm未満の粒度を有し、0.1乃至5m/gの表面積を有するリチウム二次電池用正極活物質。
[化学式1]LiMnA
[化学式2]LiMnO2−z
[化学式3]LiMn1−yM’
[化学式4]LiMn1−yM’2−z
[化学式5]LiMn
[化学式6]LiMn4−z
[化学式7]LiMn2−yM’
[化学式8]LiBA
[化学式9]LiBO2−z
[化学式10]Li1−yM”
[化学式11]LiNi1−yCo
[化学式12]LiNi1−yCo2−z
[化学式13]LiNi1−y−zCoM”
[化学式14]Lix’Ni1−y’Mny’M’z’α
(前記式において、0.95≦x≦1.1、0.01≦y≦0.1、0.01≦z≦0.5、0.95≦x’≦1、0.01≦y’≦0.5、0.01≦z’≦0.1、0.01≦α≦0.5であり、M’はAl、Cr、Mn、Fe、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタノイド金属のうちの少なくとも一つ以上の金属であり、M”はAl、Cr、Co、Mg、La、Ce、Sr及びVからなる群より選択される遷移金属またはランタナイド金属のうちの一つ以上の金属であり、AはO、F、S及びPからなる群より選択され、BはNiまたはCoである。)
A compound selected from the following formulas 1 to 14 produced by the production method according to claim 1 , having a spherical or similar spherical shape, a particle size of 10 nm to less than 1 μm, 0.1 to A positive electrode active material for a lithium secondary battery having a surface area of 5 m 2 / g.
[Chemical Formula 1] Li x MnA 2
[Chemical Formula 2] Li x MnO 2-z A z
[Chemical Formula 3] Li x Mn 1-y M ′ y A 2
[Chemical Formula 4] Li x Mn 1-y M 'y O 2-z A z
[Chemical Formula 5] Li x Mn 2 O 4
[Chemical Formula 6] Li x Mn 2 O 4-z A z
[Chemical Formula 7] Li x Mn 2-y M ′ y A 4
[Chemical Formula 8] Li x BA 2
[Chemical Formula 9] Li x BO 2-z A z
[Chemical Formula 10] Li x B 1-y M ″ y A 2
[Chemical Formula 11] Li x Ni 1-y Co y A 2
[Chemical Formula 12] Li x Ni 1-y Co y O 2 -z A z
[Formula 13] Li x Ni 1-yz Co y M ″ z A 2
[Chemical Formula 14] Li x ′ Ni 1-y ′ Mn y ′ M ′ z ′ A α
(In the above formula, 0.95 ≦ x ≦ 1.1, 0.01 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.5, 0.95 ≦ x ′ ≦ 1, 0.01 ≦ y ′. ≦ 0.5, 0.01 ≦ z ′ ≦ 0.1, 0.01 ≦ α ≦ 0.5, and M ′ is made of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, and V. A transition metal selected from the group or at least one of lanthanoid metals, and M ″ is a transition metal selected from the group consisting of Al, Cr, Co, Mg, La, Ce, Sr, and V, or (One or more of the lanthanide metals, A is selected from the group consisting of O, F, S and P, and B is Ni or Co.)
前記正極活物質はリチウム塩及び金属塩をKOH若しくはNaOHの塩基性水溶液上、またはKOH若しくはNaOHの有機溶液上で還流反応させる段階で製造されたものである、請求項5に記載のリチウム二次電池用正極活物質。The positive active material are those prepared in step of refluxing the reaction of a lithium salt and a metal salt on a basic aqueous solution of KOH or NaOH, or on an organic solution of KOH or NaOH, lithium secondary according to claim 5 Positive electrode active material for batteries.
JP2001013860A 2000-01-26 2001-01-22 Positive electrode active material for lithium secondary battery and method for producing the same Expired - Lifetime JP4242079B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2000-3548 2000-01-26
KR1020000003548A KR100326445B1 (en) 2000-01-26 2000-01-26 Positive active material for lithium secondary battery and method of preparing same

Publications (2)

Publication Number Publication Date
JP2001250556A JP2001250556A (en) 2001-09-14
JP4242079B2 true JP4242079B2 (en) 2009-03-18

Family

ID=19641413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013860A Expired - Lifetime JP4242079B2 (en) 2000-01-26 2001-01-22 Positive electrode active material for lithium secondary battery and method for producing the same

Country Status (3)

Country Link
US (1) US6589695B2 (en)
JP (1) JP4242079B2 (en)
KR (1) KR100326445B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872491B2 (en) * 2001-01-23 2005-03-29 Kabushiki Kaisha Toshiba Positive electrode active material and lithium ion secondary battery
KR100906929B1 (en) * 2002-08-06 2009-07-10 삼성코닝정밀유리 주식회사 Method for producing crystalline metal oxide
US7033555B2 (en) * 2003-05-06 2006-04-25 Inco Limited Low temperature lithiation of mixed hydroxides
JP4089526B2 (en) * 2003-06-26 2008-05-28 トヨタ自動車株式会社 Positive electrode active material, method for producing the same, and battery
US7238619B2 (en) * 2005-07-06 2007-07-03 United Microelectronics Corp. Method for eliminating bridging defect in via first dual damascene process
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US7939201B2 (en) * 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8323832B2 (en) * 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
EP2629353A1 (en) * 2012-02-17 2013-08-21 Belenos Clean Power Holding AG Non-aqueous secondary battery having a blended cathode active material
JP6133720B2 (en) * 2013-07-24 2017-05-24 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961950A (en) * 1993-05-14 1999-10-05 Nec Moli Energy (Canada) Limited Method for preparing solid solution materials such as lithium manganese oxide
JPH07240200A (en) * 1994-02-28 1995-09-12 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP3451763B2 (en) 1994-11-29 2003-09-29 ソニー株式会社 Manufacturing method of positive electrode active material
US6090506A (en) * 1996-08-02 2000-07-18 Fuji Photo Film Co. Ltd. Nonaqueous secondary battery
JPH10316431A (en) * 1997-05-14 1998-12-02 Fuji Chem Ind Co Ltd Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery

Also Published As

Publication number Publication date
KR100326445B1 (en) 2002-02-28
US20010016284A1 (en) 2001-08-23
KR20010076428A (en) 2001-08-16
JP2001250556A (en) 2001-09-14
US6589695B2 (en) 2003-07-08

Similar Documents

Publication Publication Date Title
JP4756715B2 (en) Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
US7384706B2 (en) Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP4031939B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR100752703B1 (en) Cathode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using same
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5076448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2012176471A1 (en) Lithium-containing complex oxide powder and method for producing same
CN100464447C (en) Method for preparing lithium composite oxide used as positive electrode active material for lithium secondary battery
JPH11307094A (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP2009218217A (en) Positive active material for lithium secondary battery and its manufacturing method
CN101208269A (en) Lithium-containing composite oxide and manufacturing method thereof
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP4833058B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2008198363A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP4242079B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
US6361755B1 (en) Low temperature synthesis of Li4Mn5O12 cathodes for lithium batteries
JP2008257902A (en) Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2013012336A (en) Secondary battery and charging method of the same
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR100528455B1 (en) Method for preparing high performance cathode active materials for lithium secondary batteries and lithium secondary batteries comprising the same
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4246283B2 (en) Lithium-containing composite metal oxide, its production method and use
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
KR100668050B1 (en) Manganese Composite Oxide, Lithium Secondary Battery Spinel Type Cathode Active Material Using the Same and Method for Manufacturing the Same
KR100363073B1 (en) Method for the preparation of anode manganese oxides as for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4242079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term