[go: up one dir, main page]

JP4239800B2 - Electrodeless discharge lamp lighting device - Google Patents

Electrodeless discharge lamp lighting device Download PDF

Info

Publication number
JP4239800B2
JP4239800B2 JP2003394662A JP2003394662A JP4239800B2 JP 4239800 B2 JP4239800 B2 JP 4239800B2 JP 2003394662 A JP2003394662 A JP 2003394662A JP 2003394662 A JP2003394662 A JP 2003394662A JP 4239800 B2 JP4239800 B2 JP 4239800B2
Authority
JP
Japan
Prior art keywords
voltage
frequency
temperature
discharge lamp
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003394662A
Other languages
Japanese (ja)
Other versions
JP2005158460A (en
Inventor
紳司 牧村
大志 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003394662A priority Critical patent/JP4239800B2/en
Publication of JP2005158460A publication Critical patent/JP2005158460A/en
Application granted granted Critical
Publication of JP4239800B2 publication Critical patent/JP4239800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

本発明は、無電極放電灯点灯装置に関するものである。   The present invention relates to an electrodeless discharge lamp lighting device.

従来、この種の無電極放電灯点灯装置(無電極放電灯装置)は、種々提案されまた市販されている。例えば、図21に示すような無電極放電灯点灯装置は、交流電源Vinからの電力供給を受けて直流電圧VDCを出力する直流電源Eと、直流電源Eからの電力供給を受けて高周波電圧Vcoilを出力するインバータ回路90と、インバータ回路90の出力に接続される誘導コイル91と、誘導コイル91に近接配置される無電極放電灯Lから構成される。   Conventionally, various types of electrodeless discharge lamp lighting devices (electrodeless discharge lamp devices) have been proposed and are commercially available. For example, an electrodeless discharge lamp lighting device as shown in FIG. 21 receives a power supply from an AC power supply Vin and outputs a DC voltage VDC, and a power supply from the DC power supply E receives a high-frequency voltage Vcoil. , An induction coil 91 connected to the output of the inverter circuit 90, and an electrodeless discharge lamp L disposed in proximity to the induction coil 91.

直流電源Eは整流用ダイオードブリッジ920とFET921、インダクタ922、ダイオード923、制御回路924及び平滑用コンデンサ925からなる昇圧チョッパ回路で構成され、インバータ回路90はFET90a,90b、インダクタ901、コンデンサ902,903から構成され、無電極放電灯Lは透明な球状のガラスバルブまたは内面に蛍光体が塗布された球状のガラスバルブ内に不活性ガス・金属蒸気等の放電ガス(例えば、水銀及び希ガス)が封入され、インバータ回路90は誘導コイル91に対して数十kHzから数百MHzの高周波電流を流すことにより、誘導コイル91に高周波電磁界を発生させて無電極放電灯Lに高周波電力を供給する。これに応じて、無電極放電灯L内に高周波プラズマ電流を発生させて紫外線もしくは可視光が発生する。   The DC power source E is composed of a boost chopper circuit composed of a rectifying diode bridge 920, an FET 921, an inductor 922, a diode 923, a control circuit 924, and a smoothing capacitor 925. The inverter circuit 90 includes FETs 90a and 90b, an inductor 901, capacitors 902 and 903. The electrodeless discharge lamp L has a transparent spherical glass bulb or a spherical glass bulb with an inner surface coated with a phosphor, and a discharge gas (for example, mercury and a rare gas) such as an inert gas or a metal vapor. The inverter circuit 90 energizes the induction coil 91 with a high frequency current of several tens of kHz to several hundreds of MHz, thereby generating a high frequency electromagnetic field in the induction coil 91 and supplying high frequency power to the electrodeless discharge lamp L. . In response to this, a high frequency plasma current is generated in the electrodeless discharge lamp L to generate ultraviolet rays or visible light.

またドライブ回路94は、制御電圧Vf(図示せず)に応じた周波数で、Hout−H-GND端子間、Lout−L-GND端子間にそれぞれFET90a,90bに対する略矩形波状の駆動信号を出力(両者の位相差は略180°)するものである。   Further, the drive circuit 94 outputs substantially rectangular wave drive signals to the FETs 90a and 90b between the Hout-H-GND terminals and between the Lout-L-GND terminals at a frequency corresponding to the control voltage Vf (not shown) ( The phase difference between them is approximately 180 °).

また、特許文献1には、以下の発明が開示されている。低圧ガスを封入したバルブにコイルを巻回して、該コイルに高周波発生装置の出力を供給するようにした放電灯装置において、周囲温度を検出する温度検知回路と、該温度検知回路の出力により動作して、上記コイルに供給する電流の大小または周波数を切り替える切替回路とを備えたものであり、低温時には予めコイルに放電を開始させない程度の電流を流して、コイル自体に発生するジュール熱により管内温度を上昇させた後、コイル電流を切り替えてランプを始動させるようにした点に特徴を有するものである。
特開昭62−163296号公報(第2頁−第3頁、及び、第1図)
Patent Document 1 discloses the following invention. In a discharge lamp device in which a coil is wound around a valve filled with low-pressure gas and the output of a high-frequency generator is supplied to the coil, a temperature detection circuit that detects the ambient temperature and an operation based on the output of the temperature detection circuit And a switching circuit that switches the magnitude or frequency of the current supplied to the coil. When the temperature is low, a current that does not cause the coil to start discharging is supplied in advance by Joule heat generated in the coil itself. It is characterized in that the lamp is started by switching the coil current after raising the temperature.
Japanese Patent Application Laid-Open No. Sho 62-163296 (pages 2 to 3 and FIG. 1)

しかしながら、上記従来の無電極放電灯点灯装置などは、以下のような問題があった。上記の方式で無電極放電灯Lの始動を行う場合、図7に示す点線のように、インバータ回路90の出力電圧の設定値Vsetは通常、周囲温度Taによらず一定であるが、無電極放電灯Lの始動電圧Vign、即ち点弧始動に必要な電圧は、低温時ほど高くなる傾向の曲線となる。即ち、無電極放電灯Lの場合、周囲温度Ta(例えば−20℃〜+60℃)に対する始動電圧Vignの温度係数は常に負となり、これは例えば有電極のFLランプとは異なる。FLランプの場合、温度係数は常に負とはならず、高温側で正となる特性を有する。このため無電極放電灯Lの場合、周囲温度Taが低温時では出力電圧設定値Vsetと始動電圧Vignの差が小さくなってしまい、例えば暗黒状態での始動時や、無電極放電灯L周囲の近接導体影響等により等価的に始動電圧Vignが増加する等があった場合、無電極放電灯Lの始動性が悪くなったり、最悪の場合は不点灯となる問題があった。一方、周囲温度Taが高温時では逆に出力電圧設定値Vsetと始動電圧Vignの差が必要以上に大きくなってしまい、構成する回路素子が熱ストレスにより破壊してしまうという問題があった。   However, the above conventional electrodeless discharge lamp lighting device has the following problems. When the electrodeless discharge lamp L is started by the above method, the set value Vset of the output voltage of the inverter circuit 90 is normally constant regardless of the ambient temperature Ta as shown by the dotted line in FIG. The starting voltage Vign of the discharge lamp L, that is, the voltage necessary for starting the ignition, becomes a curve that tends to increase as the temperature decreases. That is, in the case of the electrodeless discharge lamp L, the temperature coefficient of the starting voltage Vign with respect to the ambient temperature Ta (for example, −20 ° C. to + 60 ° C.) is always negative, which is different from, for example, an electroded FL lamp. In the case of the FL lamp, the temperature coefficient is not always negative but has a characteristic of being positive on the high temperature side. For this reason, in the case of the electrodeless discharge lamp L, when the ambient temperature Ta is low, the difference between the output voltage set value Vset and the starting voltage Vign becomes small. For example, when starting in a dark state or around the electrodeless discharge lamp L When the starting voltage Vign is equivalently increased due to the influence of the adjacent conductor, etc., there is a problem that the starting property of the electrodeless discharge lamp L is deteriorated or the lighting is not turned on in the worst case. On the other hand, when the ambient temperature Ta is high, there is a problem that the difference between the output voltage set value Vset and the starting voltage Vign becomes larger than necessary, and the constituent circuit elements are destroyed due to thermal stress.

また、無電極放電灯Lの始動時においては通常点灯時と比較してインバータ回路90にはより大きな出力電力が必要であり、図21に示す直流電源Eには負荷がかかるため出力電圧VDCはリップル等の電圧変動を生じ易い。従来の無電極放電灯点灯装置などにおいては、この出力電圧VDCの電圧変動の結果、出力電圧設定値Vsetも影響を受けて変動してしまい、その結果、出力電圧設定値Vsetが低下し始動性が悪化する等の問題もあった。   Further, when the electrodeless discharge lamp L is started, the inverter circuit 90 requires a larger output power than when it is normally lit, and the DC power source E shown in FIG. Voltage fluctuations such as ripples are likely to occur. In a conventional electrodeless discharge lamp lighting device or the like, as a result of the voltage fluctuation of the output voltage VDC, the output voltage set value Vset is also affected and fluctuates. As a result, the output voltage set value Vset is lowered and startability is increased. There were also problems such as worsening.

本発明は上述の点に鑑みて為されたものであり、その目的とするところは、周囲温度Taが低温時に始動性が悪化したり不点灯とならず、周囲温度Taが高温時に回路素子に対する熱ストレスが小さい無電極放電灯点灯装置を提供することにある。   The present invention has been made in view of the above-mentioned points. The object of the present invention is to prevent the startability from deteriorating or not lighting when the ambient temperature Ta is low, and to the circuit element when the ambient temperature Ta is high. The object is to provide an electrodeless discharge lamp lighting device with low thermal stress.

請求項1に記載の発明は、無電極放電灯に対して高周波磁界を発生させる誘導コイルと、直流電力を高周波電力に変換するスイッチング素子及び共振回路を含み当該高周波電力を前記誘導コイルに供給する電力変換回路と、制御電圧の大きさに従って前記スイッチング素子のオンオフの周波数を可変するための駆動信号を生成して当該スイッチング素子に出力する駆動回路と、周囲温度により出力が可変する温度検知部と、前記無電極放電灯の始動時に前記制御電圧の大きさを可変することによって前記駆動回路を制御して前記スイッチング素子のオンオフ周波数を可変させ前記高周波電圧の周波数を可変させて当該高周波電圧の大きさを可変させる電圧制御部とを備え、前記駆動回路は、コンデンサを有し当該コンデンサによる充放電動作を繰り返し行うことによって発振を行う発振部と、前記発振部からの出力電圧の周波数に応じて前記駆動信号の周波数を可変し当該駆動信号を前記スイッチング素子に出力する駆動部とを備え、前記発振部は、前記コンデンサの充電電圧であって前記充放電動作により得られる三角波状電圧と基準電圧とを比較し矩形波状電圧を前記駆動部に出力するオペアンプと、前記温度検知部とを有し、前記温度検知部は、温度変化に対して導通抵抗が変化する半導体素子で構成されるミラー回路であり、前記電圧制御部の制御電圧の大きさ及び前記半導体素子の導通抵抗の変化に応じて前記コンデンサへの充放電電流の大きさを可変し、前記オペアンプの出力によって当該コンデンサの充放電を切り替えて、当該コンデンサの充放電の周波数を可変することによって、前記無電極放電灯の始動時に前記温度検知部の出力を用いて前記周囲温度の低温時では高温時より前記高周波電圧を高くするように前記駆動信号の周波数を可変して当該高周波電圧の周波数を可変させることを特徴とする。 The invention described in claim 1 includes an induction coil that generates a high-frequency magnetic field for an electrodeless discharge lamp, a switching element that converts DC power into high-frequency power, and a resonance circuit, and supplies the high-frequency power to the induction coil. A power conversion circuit; a drive circuit that generates a drive signal for varying the on / off frequency of the switching element according to the magnitude of the control voltage and outputs the drive signal to the switching element; and a temperature detection unit whose output varies depending on the ambient temperature; The drive circuit is controlled by varying the magnitude of the control voltage when starting the electrodeless discharge lamp to vary the on / off frequency of the switching element, thereby varying the frequency of the high-frequency voltage. and a voltage control unit for varying the of the drive circuit, charging and discharging operations by the capacitor has a capacitor An oscillation unit that oscillates by repeatedly performing, and a drive unit that varies the frequency of the drive signal according to the frequency of the output voltage from the oscillation unit and outputs the drive signal to the switching element, Is a charge voltage of the capacitor, and compares the triangular wave voltage obtained by the charge / discharge operation with a reference voltage and outputs a rectangular wave voltage to the drive unit, and the temperature detection unit, The temperature detection unit is a mirror circuit composed of a semiconductor element whose conduction resistance changes with respect to a temperature change, and the capacitor according to the magnitude of the control voltage of the voltage control unit and the change of the conduction resistance of the semiconductor element The charging / discharging frequency of the capacitor is changed by changing the magnitude of the charging / discharging current to the capacitor and switching charging / discharging of the capacitor by the output of the operational amplifier. It allows the electrodeless discharge lamp of the at the time of low-temperature output using the ambient temperature of the temperature detecting unit varies the frequency of the drive signal so as to increase the high-frequency voltage from the high temperature at the time of starting and the high-frequency voltage It characterized the Turkey by varying the frequency of.

この構造では、電力変換回路から出力される高周波電力の電圧は周囲温度が低温時のほうが高温時より高くなるので、周囲温度が低温時では無電極放電灯の始動性を改善することができ、高温時では回路素子に対する熱ストレスを低減することができる。   In this structure, the voltage of the high-frequency power output from the power conversion circuit is higher when the ambient temperature is low than when the ambient temperature is low, so that the startability of the electrodeless discharge lamp can be improved when the ambient temperature is low, At high temperatures, thermal stress on the circuit elements can be reduced.

また、この構造では、半導体素子の温度特性から駆動信号を可変することができる。 In this structure, the drive signal can be varied from the temperature characteristics of the semiconductor element.

本発明によれば、周囲温度が低温時では無電極放電灯の始動性を改善することができ、高温時では回路素子に対する熱ストレスを低減することができる。   According to the present invention, the startability of the electrodeless discharge lamp can be improved when the ambient temperature is low, and the thermal stress on the circuit element can be reduced when the ambient temperature is high.

基本形態
先ず、基本形態の構成について図1〜図7を用いて説明する。基本形態の無電極放電灯点灯装置は、広い範囲の周囲温度Ta(例えば−20℃〜+60℃)において無電極放電灯Lを安定に始動及び点灯をするものであり、図1に示すように、直流電源Eと、インバータ回路1と、誘導コイル2と、ドライブ回路3と、電圧検出回路4と、温度検知部5と、電圧制御部6とを備える。
( Basic form )
First, the structure of a basic form is demonstrated using FIGS. The electrodeless discharge lamp lighting device of the basic form stably starts and lights the electrodeless discharge lamp L in a wide range of ambient temperature Ta (for example, −20 ° C. to + 60 ° C.), as shown in FIG. DC power source E, inverter circuit 1, induction coil 2, drive circuit 3, voltage detection circuit 4, temperature detection unit 5, and voltage control unit 6 are provided.

無電極放電灯Lは、透明な球状のガラスバルブまたは内面に蛍光体が塗布された球状のガラスバルブ内に不活性ガス・金属蒸気等の放電ガス(例えば、水銀及び希ガス)が封入されている。そして、誘導コイル2から供給される高周波電力により、無電極放電灯L内に高周波プラズマ電流を発生させて紫外線もしくは可視光が発生する。   The electrodeless discharge lamp L has a transparent spherical glass bulb or a spherical glass bulb with an inner surface coated with a phosphor, and a discharge gas (for example, mercury or a rare gas) such as inert gas or metal vapor is enclosed. Yes. Then, the high frequency power supplied from the induction coil 2 generates a high frequency plasma current in the electrodeless discharge lamp L to generate ultraviolet rays or visible light.

直流電源Eは、例えば商用電源などの交流電源Vinからの交流電力を直流電力に変換しインバータ回路1に供給する。直流電源Eは、例えば、交流電力を全波整流するダイオードブリッジ70と、FET71、インダクタ72、ダイオード73、制御回路74及び平滑用コンデンサ75からなる昇圧チョッパ回路で構成される。制御回路74はFET71のゲートに接続されている。なお、チョッパ回路には、昇圧型、降圧型、極性逆転型等があり、用途に応じて使い分けている。   The DC power source E converts AC power from an AC power source Vin such as a commercial power source into DC power and supplies it to the inverter circuit 1. The DC power source E is constituted by, for example, a step-up chopper circuit including a diode bridge 70 that full-wave rectifies AC power, an FET 71, an inductor 72, a diode 73, a control circuit 74, and a smoothing capacitor 75. The control circuit 74 is connected to the gate of the FET 71. Note that the chopper circuit includes a step-up type, a step-down type, a polarity reversal type, and the like, which are selectively used according to the application.

インバータ回路1は、直流電源Eから供給される直流電力を高周波電圧Vcoilに変換して出力する電力変換回路であり、誘導コイル2に対して、例えば、数十kHzから数百MHzの高周波電圧Vcoilを供給する。インバータ回路1は、2つのスイッチング素子10a,10b及び共振回路11を備える。   The inverter circuit 1 is a power conversion circuit that converts DC power supplied from the DC power source E into a high-frequency voltage Vcoil and outputs it. For example, a high-frequency voltage Vcoil of several tens to several hundreds of MHz is applied to the induction coil 2. Supply. The inverter circuit 1 includes two switching elements 10 a and 10 b and a resonance circuit 11.

スイッチング素子10a,10bは、例えばFETなどが用いられ、それぞれのスイッチング状態(オン及びオフ)を可変することにより高周波電圧Vcoilの動作周波数finvを周波数スイープさせる。   For example, FETs are used as the switching elements 10a and 10b, and the operation frequency finv of the high-frequency voltage Vcoil is swept by changing the switching state (ON and OFF).

共振回路11は、例えば、コイル110及びコンデンサ111,112で構成され、共振周波数の近傍で大きな高周波電圧Vcoilを出力する。また、無電極放電灯Lを負荷とする場合、点弧始動時はインダクタ負荷であるため有電極のFLランプ等、他の光源と比較して始動時に大きな電力を必要とする。従って安定した始動、点灯を行うためには共振回路11のQを高く設定する必要がある。   The resonance circuit 11 includes, for example, a coil 110 and capacitors 111 and 112, and outputs a large high-frequency voltage Vcoil near the resonance frequency. Further, when the electrodeless discharge lamp L is used as a load, since it is an inductor load at the start of ignition, a larger electric power is required at the start than other light sources such as an electroded FL lamp. Therefore, in order to perform stable starting and lighting, it is necessary to set the Q of the resonance circuit 11 high.

インバータ回路1より出力される高周波電圧Vcoilの動作周波数finvに対する変化を図2に示す。無電極放電灯Lの始動時には、動作周波数finvをfsからfeに周波数を下げ共振回路11の共振周波数に近づくように周波数スイープさせることにより、高周波電圧Vcoilは徐々に増加していき、この周波数スイープの間に無電極放電灯Lが点弧始動に最低限必要な電圧を超えるように設計されているため、fsからfeの間のある周波数で無電極放電灯Lが点灯する。点灯後、直ちに高周波電圧Vcoilは図2の点灯時側の曲線上に移動し低減する。   FIG. 2 shows the change of the high-frequency voltage Vcoil output from the inverter circuit 1 with respect to the operating frequency finv. At the time of starting the electrodeless discharge lamp L, the high frequency voltage Vcoil is gradually increased by decreasing the operating frequency finv from fs to fe and by sweeping the frequency so as to approach the resonance frequency of the resonance circuit 11, and this frequency sweep. Since the electrodeless discharge lamp L is designed to exceed the minimum voltage required for starting ignition during the period of time, the electrodeless discharge lamp L is lit at a certain frequency between fs and fe. Immediately after the lighting, the high-frequency voltage Vcoil moves on the lighting-side curve in FIG. 2 and decreases.

上記のような周波数スイープによる始動は、例えば、周囲温度Ta変化や無電極放電灯L周囲への金属筐体接近等、インバータ回路1の負荷インピーダンス変動要因があり高周波電圧Vcoilが大きく変化した場合であっても、負荷インピーダンス変動の影響を吸収可能であるため、無電極放電灯Lの安定始動及び点灯ができる。このような周波数スイープによる始動は、特に無電極放電灯負荷の場合に有効である。   The start by the frequency sweep as described above is, for example, when there is a load impedance fluctuation factor of the inverter circuit 1 such as a change in the ambient temperature Ta or a proximity of the metal housing around the electrodeless discharge lamp L, and the high frequency voltage Vcoil changes greatly. Even if it exists, since the influence of load impedance fluctuation | variation can be absorbed, the electrodeless discharge lamp L can be started stably and can be lit. Such a start by frequency sweep is particularly effective in the case of an electrodeless discharge lamp load.

誘導コイル2は、図1に示すように、インバータ回路1の出力側に接続され、インバータ回路1から高周波電圧Vcoilが供給される。これにより、誘導コイル2は、高周波電磁界を発生させて無電極放電灯Lに高周波電力を供給する。   As shown in FIG. 1, the induction coil 2 is connected to the output side of the inverter circuit 1, and the high frequency voltage Vcoil is supplied from the inverter circuit 1. Thereby, the induction coil 2 generates a high-frequency electromagnetic field and supplies high-frequency power to the electrodeless discharge lamp L.

ドライブ回路3は、電圧制御部6からの制御電圧Vfの大きさに応じて可変する周波数で、Hout−H-GND端子間、Lout−L-GND端子間にそれぞれスイッチング素子10a,10bに対する略矩形波状の駆動信号を出力する(両者の位相差は略180°)駆動回路である。このとき、図3に示すように、制御電圧Vfが大きいほど高周波電圧Vcoilの動作周波数finvが低くなるように駆動信号を出力する。   The drive circuit 3 has a frequency that varies according to the magnitude of the control voltage Vf from the voltage control unit 6, and is substantially rectangular with respect to the switching elements 10a and 10b between the Hout-H-GND terminals and between the Lout-L-GND terminals. This is a drive circuit that outputs a wavy drive signal (the phase difference between them is approximately 180 °). At this time, as shown in FIG. 3, the drive signal is output so that the higher the control voltage Vf, the lower the operating frequency finv of the high-frequency voltage Vcoil.

電圧検出回路4は、図1に示すように、例えば、抵抗40,41、ダイオード42,43及びコンデンサ44により構成される。電圧検出回路4は、インバータ回路1から出力される高周波電圧Vcoilを検出、整流及び平滑し、電圧制御部6に出力する。   As shown in FIG. 1, the voltage detection circuit 4 includes, for example, resistors 40 and 41, diodes 42 and 43, and a capacitor 44. The voltage detection circuit 4 detects, rectifies and smoothes the high-frequency voltage Vcoil output from the inverter circuit 1 and outputs it to the voltage control unit 6.

温度検知部5は、例えば、電圧制御部6内に設けられ、直流電源E1を電力源とし、インピーダンス素子であり温度検出用の感温素子である感温抵抗50、コンデンサ51からなる積分回路、コンデンサ51の電荷放電用スイッチ52、抵抗53等から構成され、周囲温度Taにより出力が可変する。温度検知部5では、電荷放電用スイッチ52がONからOFFに切り替わると、直流電源E1から電力供給を受け感温抵抗50を介してコンデンサ51を充電し、コンデンサ51の両端電圧VC1を後述するオペアンプ60の非反転入力端子に出力する。感温抵抗50は、周囲温度Taによりインピーダンス値が可変し、周囲温度Taによりその抵抗値を略リニアに可変させることができる。例えば松下電子部品(株)製のERAシリーズを用いれば+1000ppm/℃〜+4700ppm/℃の種々の正温度係数を選択可能である。このような部品を使用すれば、周囲温度Taと感温抵抗50(R1)の抵抗値との関係は、図4の実線のように正の傾きで略リニアに変化する。従って、コンデンサ51の両端電圧VC1は、高温になるほど小さく、低温になるほど大きくなるように変化する。   The temperature detection unit 5 is provided in, for example, the voltage control unit 6, uses the DC power supply E 1 as a power source, an impedance circuit 50 that is an impedance element and a temperature detection element for temperature detection, and an integration circuit including a capacitor 51, The capacitor 51 is composed of a charge discharge switch 52, a resistor 53, and the like, and its output varies depending on the ambient temperature Ta. In the temperature detection unit 5, when the charge discharge switch 52 is switched from ON to OFF, the capacitor 51 is charged through the temperature-sensitive resistor 50 by receiving power supply from the DC power source E1, and an operational amplifier (described later) uses the voltage VC1 across the capacitor 51. It outputs to 60 non-inverting input terminals. The temperature-sensitive resistor 50 has an impedance value that varies depending on the ambient temperature Ta, and the resistance value can be varied substantially linearly depending on the ambient temperature Ta. For example, if the ERA series manufactured by Matsushita Electronic Parts Co., Ltd. is used, various positive temperature coefficients of +1000 ppm / ° C. to +4700 ppm / ° C. can be selected. If such a component is used, the relationship between the ambient temperature Ta and the resistance value of the temperature-sensitive resistor 50 (R1) changes substantially linearly with a positive slope as shown by the solid line in FIG. Accordingly, the voltage VC1 across the capacitor 51 changes so as to decrease as the temperature increases and to increase as the temperature decreases.

電圧制御部6は、図1に示すように、例えばオペアンプ60、抵抗61,62からなり、電圧検出回路4の出力及び温度検知部5の出力から周囲温度Taが低温になるほど誘導コイル2の高周波電圧Vcoilが大きくなるように制御電圧Vfを可変する。電圧制御部6の動作原理について説明すると、温度検知部5内のコンデンサ51の両端電圧VC1をオペアンプ60の非反転入力端子に印加し、電圧検出回路4の出力を、抵抗61を介してオペアンプ60の反転入力端子に印加する。オペアンプ60は差動増幅動作を行い、制御電圧Vfをドライブ回路3に出力する。このとき、周囲温度Taと制御電圧Vfとの関係は、図5のように負の傾きで略リニアに変化する。また、オペアンプ60の差動増幅動作により、出力電圧設定値Vsetは、直流電圧VDC(図1参照)の電圧変動影響を受けずに一定とすることができる。 As shown in FIG. 1, the voltage control unit 6 includes, for example, an operational amplifier 60 and resistors 61 and 62. The higher the ambient temperature Ta from the output of the voltage detection circuit 4 and the output of the temperature detection unit 5, the higher the frequency of the induction coil 2. The control voltage Vf is varied so that the voltage Vcoil increases. The operation principle of the voltage control unit 6 will be described. The voltage VC1 across the capacitor 51 in the temperature detection unit 5 is applied to the non-inverting input terminal of the operational amplifier 60, and the output of the voltage detection circuit 4 is connected to the operational amplifier 60 via the resistor 61. Applied to the inverting input terminal . Op amp 60 performs the differential amplification, and outputs a control voltage Vf to the drive circuit 3. At this time, the relationship between the ambient temperature Ta and the control voltage Vf changes substantially linearly with a negative slope as shown in FIG. In addition, the differential amplification operation of the operational amplifier 60 allows the output voltage set value Vset to be constant without being affected by the voltage fluctuation of the DC voltage VDC (see FIG. 1).

次に、基本形態の動作について説明する。図6に周波数スイープによる始動動作の一例を示す。交流電源Vinが投入され、直流電源Eの直流電圧VDCが立ち上がると(t=t1)(図6(e)参照)、温度検知部5では感温抵抗50を介してコンデンサ51を充電しその両端電圧VC1が増加する(図6(d)参照)。コンデンサ51の両端電圧VC1に応じて電圧制御部6の制御電圧Vfが増加する(図6(c)参照)。制御電圧Vfが増加すると、高周波電圧Vcoilの動作周波数finvは徐々に低下するので(図3,図6(b)参照)、高周波電圧Vcoilは徐々に増加していく(図6(a)参照)。そして、周波数スイープ区間内のある動作周波数fm(t=t2)において、無電極放電灯Lが点灯し、その後、直ちに高周波電圧Vcoilは低減する。この時、電圧検出回路4の出力も低減するため、制御電圧Vfは再び増加傾向となり、コンデンサ51が満充電となり両端電圧VC1が一定値となるまで高周波電圧Vcoilは増加傾向となる(図6(a)(無電極放電灯Lあり)参照)。 Next, the operation of the basic form will be described. FIG. 6 shows an example of the start operation by frequency sweep. When the AC power source Vin is turned on and the DC voltage VDC of the DC power source E rises (t = t1) (see FIG. 6 (e)), the temperature detection unit 5 charges the capacitor 51 via the temperature sensitive resistor 50 and both ends thereof. The voltage VC1 increases (see FIG. 6 (d)). The control voltage Vf of the voltage control unit 6 increases according to the voltage VC1 across the capacitor 51 (see FIG. 6C). When the control voltage Vf increases, the operating frequency finv of the high-frequency voltage Vcoil gradually decreases (see FIGS. 3 and 6B), so the high-frequency voltage Vcoil gradually increases (see FIG. 6A). . Then, at a certain operating frequency fm (t = t2) in the frequency sweep section, the electrodeless discharge lamp L is turned on, and then the high-frequency voltage Vcoil decreases immediately. At this time, since the output of the voltage detection circuit 4 also decreases, the control voltage Vf tends to increase again, and the high-frequency voltage Vcoil tends to increase until the capacitor 51 is fully charged and the both-end voltage VC1 becomes a constant value (FIG. 6 ( a) (Refer to the electrodeless discharge lamp L)).

一方、無電極放電灯Lがない無負荷状態においてはオペアンプ60の差動増幅動作によりある設定電圧Vsetで一定となり(図6(a)(無電極放電灯Lなし)参照)、この設定電圧Vsetが誘導コイル2の高周波電圧Vcoilの上限値となる。従って、無電極放電灯Lのように、有電極のFLランプ等、他の光源と比較してインバータ回路1の共振回路11のQが高く設定されている場合であっても、高周波電圧Vcoilの立上り角度が緩和され、少しずつ高周波電圧Vcoilを上昇させていくことができるので、誘導コイル2に必要以上に大きな電圧が印加されることがなく、よりきめ細かく誘導コイル2に印加する高周波電圧Vcoilを制御することができる。   On the other hand, in the no-load state where there is no electrodeless discharge lamp L, the set voltage Vset becomes constant by a differential amplification operation of the operational amplifier 60 (see FIG. 6A (no electrodeless discharge lamp L)). Becomes the upper limit value of the high-frequency voltage Vcoil of the induction coil 2. Therefore, even if the Q of the resonance circuit 11 of the inverter circuit 1 is set higher than that of other light sources such as an electrodeless FL lamp as in the electrodeless discharge lamp L, the high-frequency voltage Vcoil Since the rising angle is relaxed and the high-frequency voltage Vcoil can be gradually increased, a voltage larger than necessary is not applied to the induction coil 2, and the high-frequency voltage Vcoil applied to the induction coil 2 is more finely applied. Can be controlled.

インバータ回路1の設定電圧Vsetは、図7のように、周囲温度Taに対して連続的に変化し、従来の場合(点線)と比較して、周囲温度Taが低温時では出力電圧設定値Vsetと始動電圧Vignの差はより大きくなり、周囲温度Taが高温時では出力電圧設定値Vsetと始動電圧Vignの差はより小さくなる。   The set voltage Vset of the inverter circuit 1 continuously changes with respect to the ambient temperature Ta as shown in FIG. 7, and when the ambient temperature Ta is lower than the conventional case (dotted line), the output voltage set value Vset is set. And the starting voltage Vign become larger, and when the ambient temperature Ta is high, the difference between the output voltage setting value Vset and the starting voltage Vign becomes smaller.

以上、基本形態によれば、周囲温度Taに対する特性がリニアであるとともに無電極放電灯Lの始動電圧Vignと同じ傾向であり、周囲温度Taが低温時の誘導コイル2の高周波電圧Vcoilは高温時より高くなるので、周囲温度Taが低温時では無電極放電灯Lの始動性を改善することができるとともに、高温時では回路素子に対する熱ストレスを低減することができる。そして、感温抵抗50の温度特性がリニアであるので、周囲温度Taに対する特性制御を容易にすることができる。 As described above, according to the basic form , the characteristic with respect to the ambient temperature Ta is linear and has the same tendency as the starting voltage Vign of the electrodeless discharge lamp L, and the high frequency voltage Vcoil of the induction coil 2 when the ambient temperature Ta is low is high. Since it becomes higher, the startability of the electrodeless discharge lamp L can be improved when the ambient temperature Ta is low, and the thermal stress on the circuit element can be reduced when the ambient temperature Ta is high. And since the temperature characteristic of the temperature sensitive resistor 50 is linear, characteristic control with respect to the ambient temperature Ta can be facilitated.

また、オペアンプ60の差動増幅動作により、出力電圧設定値Vsetは直流電圧VDCの電圧変動影響を受けず一定となり、出力電圧設定値Vsetの低下による始動性悪化も低減することができる。   Further, due to the differential amplification operation of the operational amplifier 60, the output voltage set value Vset becomes constant without being affected by the voltage fluctuation of the DC voltage VDC, and the startability deterioration due to the decrease of the output voltage set value Vset can also be reduced.

なお、基本形態の変形例として、感温素子は正温度係数であればサーミスタ等の部品を用いてもよい。このような構成であっても基本形態と同様の効果を得ることができる。 As a modification of the basic form , a component such as a thermistor may be used if the temperature sensitive element has a positive temperature coefficient. Even if it is such a structure, the effect similar to a basic form can be acquired.

また、基本形態の他の変形例として、温度検知部5は電圧制御部6の外部に設けてもよい。このような構成であっても基本形態と同様の効果を得ることができる。 As another modification of the basic form , the temperature detection unit 5 may be provided outside the voltage control unit 6. Even if it is such a structure, the effect similar to a basic form can be acquired.

参考例1
参考例1は、直流電源Eと、インバータ回路1と、誘導コイル2と、ドライブ回路3と、電圧検出回路4と、温度検知部5と、電圧制御部6とを備える点では基本形態と同様であるが、基本形態にはない以下に記載の特徴部分がある。図8に示すように、温度検知部5は、周囲温度Taを検出する温度検出回路54と、それぞれが異なるインピーダンス値を有する感温抵抗50及び抵抗55とを備え、その温度検出回路54の出力に応じてスイッチ56による感温抵抗50と抵抗55の切替え手段を有する。
( Reference Example 1 )
Reference Example 1 is the same as the basic configuration in that it includes a DC power supply E, an inverter circuit 1, an induction coil 2, a drive circuit 3, a voltage detection circuit 4, a temperature detection unit 5, and a voltage control unit 6. However, there are features described below that are not in the basic form . As shown in FIG. 8, the temperature detection unit 5 includes a temperature detection circuit 54 that detects the ambient temperature Ta, a temperature-sensitive resistor 50 and a resistor 55 that have different impedance values, and an output of the temperature detection circuit 54. Accordingly, a switch means for switching between the temperature sensitive resistor 50 and the resistor 55 by the switch 56 is provided.

スイッチ56は、周囲温度Taが予め設定された所定の温度Tc以上の時は抵抗55を、温度Tc以下の時は感温抵抗50を選択する。ここで、温度Tcは、図9に示すように、感温抵抗50の抵抗特性(R1a)と抵抗55の抵抗特性(R1b)が交わる温度若しくはその近傍とする。   The switch 56 selects the resistor 55 when the ambient temperature Ta is equal to or higher than a predetermined temperature Tc set in advance, and selects the temperature sensitive resistor 50 when the ambient temperature Ta is lower than the temperature Tc. Here, as shown in FIG. 9, the temperature Tc is set to a temperature at which the resistance characteristic (R1a) of the temperature-sensitive resistor 50 and the resistance characteristic (R1b) of the resistor 55 intersect or in the vicinity thereof.

次に、参考例1の動作について基本形態と異なる点を説明する。先ず、図8に示す温度検出回路54が周囲温度Taを検出し、その周囲温度Taが温度Tc以上の時はスイッチ56により抵抗55を、温度Tc以下の時は感温抵抗50を選択する。これにより制御電圧Vfは、図10の実線のように、温度Tc以上では略一定値であるのに対し、温度Tc以下では負の温度係数を有する。この結果、図11のように、従来の場合(点線)と比較して、周囲温度Taが低温時では出力電圧設定値Vsetと始動電圧Vignの差は大きくなる。 Next, the difference of the operation of Reference Example 1 from the basic mode will be described. First, the temperature detection circuit 54 shown in FIG. 8 detects the ambient temperature Ta, and when the ambient temperature Ta is equal to or higher than the temperature Tc, the switch 55 selects the resistor 55, and when the ambient temperature Ta is equal to or lower than the temperature Tc, the temperature sensitive resistor 50 is selected. As a result, the control voltage Vf has a substantially constant value above the temperature Tc as shown by the solid line in FIG. 10, but has a negative temperature coefficient below the temperature Tc. As a result, as shown in FIG. 11, the difference between the output voltage set value Vset and the starting voltage Vign is larger when the ambient temperature Ta is lower than in the conventional case (dotted line).

以上、参考例1によれば、周囲温度Taが低温時では出力電圧設定値Vsetと始動電圧Vignの差は大きくなるので、無電極放電灯Lの始動性を改善することができる。 As described above, according to Reference Example 1 , when the ambient temperature Ta is low, the difference between the output voltage set value Vset and the starting voltage Vign becomes large, so that the startability of the electrodeless discharge lamp L can be improved.

また、感温抵抗50及び抵抗55のそれぞれの抵抗特性で周囲温度Taに対する出力電圧設定値Vsetを制御することができるので、設計自由度を大きくすることができる。   Further, since the output voltage set value Vset with respect to the ambient temperature Ta can be controlled by the resistance characteristics of the temperature-sensitive resistor 50 and the resistor 55, the degree of freedom in design can be increased.

参考例2
参考例2は、直流電源Eと、インバータ回路1と、誘導コイル2と、ドライブ回路3と、電圧検出回路4と、温度検知部5と、電圧制御部6とを備える点では基本形態と同様であるが、基本形態にはない以下に記載の特徴部分がある。図12に示すように、温度検知部5は、周囲温度Taを検出する温度検出回路54と、それぞれが異なるインピーダンス値を有する抵抗57a,57bとを備え、その温度検出回路54の出力に応じてスイッチ59による抵抗57a,57bの切替え手段を有する。
( Reference Example 2 )
Reference Example 2 is the same as the basic configuration in that it includes a DC power supply E, an inverter circuit 1, an induction coil 2, a drive circuit 3, a voltage detection circuit 4, a temperature detection unit 5, and a voltage control unit 6. However, there are features described below that are not in the basic form . As shown in FIG. 12, the temperature detection unit 5 includes a temperature detection circuit 54 that detects the ambient temperature Ta, and resistors 57 a and 57 b that have different impedance values, and according to the output of the temperature detection circuit 54. A switch 59 is provided for switching the resistors 57a and 57b.

スイッチ59は、図13に示すように、周囲温度Taが予め設定された所定の温度Tc以上の時はスイッチ59により抵抗57bを、温度Tc以上の時は抵抗57aを選択する。ここで、抵抗57aの抵抗値をR2a、抵抗57bの抵抗値をR2bとすると、R2a<R2bの関係がある。   As shown in FIG. 13, the switch 59 selects the resistor 57b by the switch 59 when the ambient temperature Ta is equal to or higher than a predetermined temperature Tc, and selects the resistor 57a when the ambient temperature is higher than the temperature Tc. Here, if the resistance value of the resistor 57a is R2a and the resistance value of the resistor 57b is R2b, there is a relationship of R2a <R2b.

次に、本参考例の動作について基本形態と異なる点を説明する。先ず、図12に示す温度検出回路54が周囲温度Taを検出し、その周囲温度Taが温度Tc以上の時は抵抗57bを、温度Tc以下の時は抵抗57aを選択する。これにより、温度Tc以下の制御電圧Vfは、図14のように、温度Tc以上と比較して高くなる。この結果、インバータ回路1の出力電圧Vsetは、図15のように、周囲温度Taに対して段階的に変化し、周囲温度Taが低温時では出力電圧設定値Vsetと始動電圧Vignの差はより大きくなる。 Next, the difference between the operation of this reference example and the basic mode will be described. First, the temperature detection circuit 54 shown in FIG. 12 detects the ambient temperature Ta. When the ambient temperature Ta is equal to or higher than the temperature Tc, the resistor 57b is selected. When the ambient temperature Ta is equal to or lower than the temperature Tc, the resistor 57a is selected. As a result, the control voltage Vf below the temperature Tc is higher than the temperature Tc or higher, as shown in FIG. As a result, the output voltage Vset of the inverter circuit 1 changes stepwise with respect to the ambient temperature Ta as shown in FIG. 15, and when the ambient temperature Ta is low, the difference between the output voltage set value Vset and the starting voltage Vign is more growing.

以上、本参考例によれば、周囲温度Taが低温時では出力電圧設定値Vsetと始動電圧Vignの差は大きくなるので、無電極放電灯Lの始動性が改善することができる。 As described above, according to this reference example , when the ambient temperature Ta is low, the difference between the output voltage set value Vset and the starting voltage Vign becomes large, so that the startability of the electrodeless discharge lamp L can be improved.

また、抵抗57a,57bのそれぞれの抵抗値で周囲温度Taに対する出力電圧設定値Vsetを制御することができるので、設計自由度を大きくすることができる。   Further, since the output voltage set value Vset with respect to the ambient temperature Ta can be controlled by the resistance values of the resistors 57a and 57b, the degree of freedom in design can be increased.

なお、本参考例の変形例として、抵抗57bの抵抗値をさらに大きくしてもよい。このような構成にすると、周囲温度Taが高温時において、インバータ回路1の出力電圧Vsetをさらに低減し、出力電圧設定値Vsetと始動電圧Vignの差がより小さくなるので、回路素子に対する熱ストレスを低減することができる。 As a modification of this reference example , the resistance value of the resistor 57b may be further increased. With such a configuration, when the ambient temperature Ta is high, the output voltage Vset of the inverter circuit 1 is further reduced, and the difference between the output voltage setting value Vset and the starting voltage Vign becomes smaller, so that the thermal stress on the circuit elements is reduced. Can be reduced.

実施形態
本実施形態は、直流電源Eと、インバータ回路1と、誘導コイル2と、ドライブ回路3と、電圧検出回路4と、温度検知部5と、電圧制御部6とを備える点では基本形態と同様であるが、基本形態にはない以下に記載の特徴部分がある。図16に示すように、電圧制御部6では、感温抵抗50から通常の抵抗である抵抗58に変換され、ドライブ回路3はスイッチング素子10a,10bを駆動する駆動部30及び発振部31から構成される。また、電圧制御部6は、半導体素子の温度特性によるインピーダンス変化に応じて充放電回路の電流(以下「充放電電流」という。)を可変し、それにより、制御電圧Vfを変化させる。
( Embodiment )
This embodiment is the same as the basic embodiment in that it includes a DC power supply E, an inverter circuit 1, an induction coil 2, a drive circuit 3, a voltage detection circuit 4, a temperature detection unit 5, and a voltage control unit 6. However, there are features described below that are not in the basic form . As shown in FIG. 16, the voltage control unit 6 converts the temperature-sensitive resistor 50 into a resistor 58, which is a normal resistor, and the drive circuit 3 includes a drive unit 30 and an oscillation unit 31 that drive the switching elements 10a and 10b. Is done. The voltage control unit 6 varies the current of the charge / discharge circuit (hereinafter referred to as “charge / discharge current”) in accordance with the impedance change due to the temperature characteristics of the semiconductor element, thereby changing the control voltage Vf.

発振部31は、例えば、オペアンプ310、基準電圧Vref、抵抗311、コンデンサ312、温度検知部5としてミラー回路を構成するFET等の半導体素子で構成されるRC発振回路(充放電回路)であり、電圧制御部6の制御電圧Vfが発振部31の入力端に接続される。   The oscillating unit 31 is, for example, an RC oscillating circuit (charging / discharging circuit) composed of a semiconductor element such as an operational amplifier 310, a reference voltage Vref, a resistor 311, a capacitor 312, and a FET that constitutes a mirror circuit as the temperature detecting unit 5. The control voltage Vf of the voltage control unit 6 is connected to the input terminal of the oscillation unit 31.

発振部31は、コンデンサ312による充放電動作を繰り返し行うことにより発振を行う。それにより、オペアンプ310の非反転入力端子には、図17に示すように、ある周期Tの三角波状電圧が発生し、出力端子には矩形波状電圧が発生し、駆動部30に入力される。図16に示すように、抵抗311に流れる電流Ir、及び、発振部31から電圧制御部6に流れる電流Iswの和により発振部31の充放電電流の大きさは決定され、発振周期Tひいては動作周波数に影響を与える。 Oscillator 31 performs oscillation by repeating charge and discharge operation by the capacitor 312. As a result, as shown in FIG. 17, a triangular wave voltage having a certain period T is generated at the non-inverting input terminal of the operational amplifier 310, and a rectangular wave voltage is generated at the output terminal and input to the drive unit 30. As shown in FIG. 16, the magnitude of the charge / discharge current of the oscillating unit 31 is determined by the sum of the current Ir flowing through the resistor 311 and the current Isw flowing from the oscillating unit 31 to the voltage control unit 6, and the oscillation period T and thus the operation Affects frequency.

発振部31のFETは半導体素子であるため、そのドレイン−ソース間の導通抵抗Ronは温度特性を有し、高温になるほど導通抵抗Ronは小さくなる。即ち電圧制御部6の制御電圧Vfが一定であったとしても周囲温度Taにより発振部31の充放電電流の大きさが変化する。即ち、図18に示すように、周囲温度Taが高温になるほど充放電電流が増加して発振周期Tは減少し、逆に低温になるほど充放電電流が減少して発振周期Tは増加する。よって、発振部31のFETが温度検知部5として働いている。発振周期Tによりスイッチング素子10a,10bが駆動し、発振周期Tが高くなると高周波電圧Vcoilの動作周波数finvも高くなり、発振周期Tが低くなると動作周波数finvも低くなる。この時の周囲温度Taとインバータ回路1の出力電圧Vsetの関係を実測すると、図19のように出力電圧Vsetは負の温度係数(α≒−2000ppm/℃)となり、基本形態と同様の傾向を有し、無電極放電灯Lの始動電圧Vign特性とほぼ平行の関係になる。 Since the FET of the oscillating unit 31 is a semiconductor element, the conduction resistance Ron between the drain and the source has temperature characteristics, and the conduction resistance Ron decreases as the temperature increases. That is, even if the control voltage Vf of the voltage control unit 6 is constant, the magnitude of the charging / discharging current of the oscillation unit 31 varies depending on the ambient temperature Ta. That is, as shown in FIG. 18, the charging / discharging current increases and the oscillation period T decreases as the ambient temperature Ta increases, and conversely, the charging / discharging current decreases and the oscillation period T increases as the ambient temperature Ta decreases. Therefore, the FET of the oscillation unit 31 works as the temperature detection unit 5. The switching elements 10a and 10b are driven by the oscillation period T. When the oscillation period T is increased, the operating frequency finv of the high-frequency voltage Vcoil is increased, and when the oscillation period T is decreased, the operating frequency finv is also decreased. When actually measuring the relationship between the output voltage Vset of ambient temperature Ta and the inverter circuit 1 when the output voltage Vset is negative temperature coefficient (α ≒ -2000ppm / ℃) next as shown in FIG. 19, the same tendency as the basic form And has a substantially parallel relationship with the starting voltage Vign characteristic of the electrodeless discharge lamp L.

以上、本実施形態によれば、半導体素子の温度特性から駆動信号を可変することができ、周囲温度Taが低温時の誘導コイル2の高周波電圧Vcoilは高温時より高くなるので、周囲温度Taが低温時では無電極放電灯Lの始動性を改善することができるとともに、高温時では回路素子に対する熱ストレスを低減することができる。 As described above, according to the present embodiment , the drive signal can be varied from the temperature characteristics of the semiconductor element, and the high frequency voltage Vcoil of the induction coil 2 when the ambient temperature Ta is low is higher than that at the high temperature. The startability of the electrodeless discharge lamp L can be improved at low temperatures, and the thermal stress on the circuit elements can be reduced at high temperatures.

また、発振部31にミラー回路を形成することによって、発振部31から電圧制御部6への電流Iswにより、容易に発振部31の動作周波数を制御することができる。   In addition, by forming a mirror circuit in the oscillating unit 31, the operating frequency of the oscillating unit 31 can be easily controlled by the current Isw from the oscillating unit 31 to the voltage control unit 6.

なお、本実施形態の変形例として、発振部31は発振動作における充放電電流経路に半導体素子(FET,トランジスタ,ダイオード等)を有し、周囲温度Taが高いほど動作周波数が高くなる構成であれば他の構成でもよい。このような構成でも本実施形態と同様の効果を得ることができる。 As a modification of the present embodiment , the oscillating unit 31 has a semiconductor element (FET, transistor, diode, etc.) in the charging / discharging current path in the oscillating operation, and the operating frequency increases as the ambient temperature Ta increases. Other configurations are possible. Even with such a configuration, the same effect as in the present embodiment can be obtained.

また、本実施形態の他の変形例として、発振部31或いはドライブ回路3を集積回路(IC)上に作製してもよい。発振部31或いはドライブ回路3は低電力動作を行う回路であり、温度検知部5でもある発振部31のFETは集積回路上に同時にかつ容易に作製することができるので、温度検知部5の小型化及び低コスト化を実現することができる。 As another modification of the present embodiment , the oscillating unit 31 or the drive circuit 3 may be manufactured on an integrated circuit (IC). The oscillation unit 31 or the drive circuit 3 is a circuit that performs a low power operation, and the FET of the oscillation unit 31 that is also the temperature detection unit 5 can be simultaneously and easily fabricated on the integrated circuit. And cost reduction can be realized.

(参考例
参考例3は、直流電源Eと、インバータ回路1と、誘導コイル2と、ドライブ回路3と、電圧検出回路4と、温度検知部5と、電圧制御部6とを備える点では基本形態と同様であるが、基本形態にはない以下に記載の特徴部分がある。図20に示すように、電圧制御部6の制御電圧Vfは、直流電源Eの制御回路74(図1参照)に印加され、オペアンプ60の差動増幅動作により直流電源E(図1参照)の出力電圧VDC(図1参照)を、例えば、制御電圧Vfが小さいほど出力電圧VDCが大きくなるように制御する。出力電圧VDCが大きいほど、インバータ回路1で変換された高周波電圧Vcoilも大きくなる。
(Reference Example 3 )
Reference Example 3 is the same as the basic configuration in that it includes a DC power source E, an inverter circuit 1, an induction coil 2, a drive circuit 3, a voltage detection circuit 4, a temperature detection unit 5, and a voltage control unit 6. However, there are features described below that are not in the basic form . As shown in FIG. 20, the control voltage Vf of the voltage control unit 6 is applied to the control circuit 74 (see FIG. 1) of the DC power supply E, and the differential power supply operation of the operational amplifier 60 causes the DC power supply E (see FIG. 1). For example, the output voltage VDC (see FIG. 1) is controlled so that the output voltage VDC increases as the control voltage Vf decreases. The higher the output voltage VDC, the higher the high frequency voltage Vcoil converted by the inverter circuit 1.

以上、本参考例によれば、周囲温度Taが低温時の誘導コイル2の高周波電圧Vcoilは高温時より高くなるので、周囲温度Taが低温時では無電極放電灯Lの始動性を改善することができるとともに、高温時では回路素子に対する熱ストレスを低減することができる。また、高周波電圧Vcoilの動作周波数finvは一定であるので、雑音対策を容易にすることができる。 As described above, according to this reference example , the high frequency voltage Vcoil of the induction coil 2 when the ambient temperature Ta is low is higher than that when the ambient temperature Ta is low. Therefore, the startability of the electrodeless discharge lamp L is improved when the ambient temperature Ta is low. In addition, the thermal stress on the circuit element can be reduced at high temperatures. Further, since the operating frequency finv of the high-frequency voltage Vcoil is constant, noise countermeasures can be facilitated.

基本形態の無電極放電灯点灯装置の回路図である。It is a circuit diagram of the electrodeless discharge lamp lighting device of a basic form . 同上の動作周波数finvと高周波電圧Vcoilとの関係を示す図である。It is a figure which shows the relationship between the operating frequency finv same as the above, and the high frequency voltage Vcoil. 同上の制御電圧Vfと動作周波数finvとの関係を示す図である。It is a figure which shows the relationship between the control voltage Vf same as the above, and the operating frequency finv. 同上の周囲温度Taと感温抵抗R1の抵抗値との関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and resistance value of the temperature sensitive resistance R1. 同上の周囲温度Taと制御電圧Vfとの関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and control voltage Vf. 同上の始動時の様子を示す図である。It is a figure which shows a mode at the time of starting same as the above. 同上の周囲温度Taと高周波電圧Vcoilとの関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and the high frequency voltage Vcoil. 参考例1の無電極放電灯点灯装置における温度検知部及び電圧制御部の回路図である。It is a circuit diagram of the temperature detection part in the electrodeless discharge lamp lighting device of the reference example 1 , and a voltage control part. 同上の周囲温度Taと感温抵抗又は抵抗の抵抗値との関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and temperature-sensitive resistance or the resistance value of resistance. 同上の周囲温度Taと制御電圧Vfとの関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and control voltage Vf. 同上の周囲温度Taと高周波電圧Vcoilとの関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and the high frequency voltage Vcoil. 参考例2の無電極放電灯点灯装置における温度検知部及び電圧制御部の回路図である。It is a circuit diagram of the temperature detection part in the electrodeless discharge lamp lighting device of the reference example 2 , and a voltage control part. 同上の周囲温度Taと抵抗の抵抗値との関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and the resistance value of resistance. 同上の周囲温度Taと制御電圧Vfとの関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and control voltage Vf. 同上の周囲温度と高周波電圧Vcoilとの関係を示す図である。It is a figure which shows the relationship between ambient temperature same as the above, and the high frequency voltage Vcoil. 本発明による実施形態の無電極放電灯点灯装置の回路図である。It is a circuit diagram of the electrodeless discharge lamp lighting device of an embodiment by the present invention. オペアンプの非反転入力端子の入力波形を示す図である。It is a figure which shows the input waveform of the non-inverting input terminal of an operational amplifier. 同上の周囲温度Taと発振周期Tとの関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and the oscillation period T. FIG. 同上の周囲温度Taと高周波電圧Vcoilとの関係を示す図である。It is a figure which shows the relationship between ambient temperature Ta same as the above, and the high frequency voltage Vcoil. 参考例の無電極放電灯点灯装置における温度検知部及び電圧制御部の回路図である。It is a circuit diagram of the temperature detection part in the electrodeless discharge lamp lighting device of the reference example 3 , and a voltage control part. 従来例の回路図である。It is a circuit diagram of a conventional example.

符号の説明Explanation of symbols

1 インバータ回路
10a,10b スイッチング素子
3 ドライブ回路
4 電圧検出回路
5 温度検知部
6 電圧制御部
DESCRIPTION OF SYMBOLS 1 Inverter circuit 10a, 10b Switching element 3 Drive circuit 4 Voltage detection circuit 5 Temperature detection part 6 Voltage control part

Claims (1)

無電極放電灯に対して高周波磁界を発生させる誘導コイルと、
直流電力を高周波電力に変換するスイッチング素子及び共振回路を含み当該高周波電力を前記誘導コイルに供給する電力変換回路と、
制御電圧の大きさに従って前記スイッチング素子のオンオフの周波数を可変するための駆動信号を生成して当該スイッチング素子に出力する駆動回路と、
周囲温度により出力が可変する温度検知部と、
前記無電極放電灯の始動時に前記制御電圧の大きさを可変することによって前記駆動回路を制御して前記スイッチング素子のオンオフ周波数を可変させ前記高周波電圧の周波数を可変させて当該高周波電圧の大きさを可変させる電圧制御部とを備え、
前記駆動回路は、コンデンサを有し当該コンデンサによる充放電動作を繰り返し行うことによって発振を行う発振部と、前記発振部からの出力電圧の周波数に応じて前記駆動信号の周波数を可変し当該駆動信号を前記スイッチング素子に出力する駆動部とを備え、
前記発振部は、前記コンデンサの充電電圧であって前記充放電動作により得られる三角波状電圧と基準電圧とを比較し矩形波状電圧を前記駆動部に出力するオペアンプと、前記温度検知部とを有し、
前記温度検知部は、温度変化に対して導通抵抗が変化する半導体素子で構成されるミラー回路であり、前記電圧制御部の制御電圧の大きさ及び前記半導体素子の導通抵抗の変化に応じて前記コンデンサへの充放電電流の大きさを可変し、前記オペアンプの出力によって当該コンデンサの充放電を切り替えて、当該コンデンサの充放電の周波数を可変することによって、前記無電極放電灯の始動時に前記温度検知部の出力を用いて前記周囲温度の低温時では高温時より前記高周波電圧を高くするように前記駆動信号の周波数を可変して当該高周波電圧の周波数を可変させ
とを特徴とする無電極放電灯点灯装置
An induction coil that generates a high-frequency magnetic field for an electrodeless discharge lamp;
A power conversion circuit including a switching element and a resonance circuit for converting DC power into high-frequency power and supplying the high-frequency power to the induction coil;
A drive circuit that generates a drive signal for varying the on / off frequency of the switching element according to the magnitude of the control voltage and outputs the drive signal to the switching element;
A temperature detector whose output varies depending on the ambient temperature;
When the electrodeless discharge lamp is started, the magnitude of the control voltage is varied to control the drive circuit to vary the on / off frequency of the switching element, thereby varying the frequency of the high-frequency voltage, and thereby the magnitude of the high-frequency voltage. And a voltage control unit for varying
The drive circuit has a capacitor and oscillates by repeatedly performing a charge / discharge operation by the capacitor, and varies the frequency of the drive signal in accordance with the frequency of the output voltage from the oscillator. A drive unit that outputs to the switching element,
The oscillating unit includes an operational amplifier that compares a triangular wave voltage that is a charging voltage of the capacitor and is obtained by the charge / discharge operation with a reference voltage and outputs a rectangular wave voltage to the driving unit, and the temperature detection unit. And
The temperature detection unit is a mirror circuit composed of a semiconductor element whose conduction resistance changes with respect to a temperature change, and the temperature detection unit according to a magnitude of a control voltage of the voltage control unit and a change in conduction resistance of the semiconductor element. The temperature of the electrodeless discharge lamp is started by varying the charge / discharge current to the capacitor, changing the charge / discharge frequency of the capacitor by switching the charge / discharge of the capacitor according to the output of the operational amplifier. wherein Ru is varied the frequency of the high-frequency voltage by varying the frequency of the drive signal so as to increase the high-frequency voltage from the high temperature than at low temperature ambient temperature using an output of the detecting unit
An electrodeless discharge lamp lighting device comprising a call.
JP2003394662A 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device Expired - Fee Related JP4239800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394662A JP4239800B2 (en) 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394662A JP4239800B2 (en) 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2005158460A JP2005158460A (en) 2005-06-16
JP4239800B2 true JP4239800B2 (en) 2009-03-18

Family

ID=34720664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394662A Expired - Fee Related JP4239800B2 (en) 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4239800B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697114B2 (en) * 2006-09-29 2011-06-08 パナソニック電工株式会社 Electrodeless discharge lamp lighting device and its lighting fixture

Also Published As

Publication number Publication date
JP2005158460A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US6184631B1 (en) Piezoelectric inverter
US5381076A (en) Metal halide electronic ballast
JP3063645B2 (en) Drive circuit for piezoelectric transformer
JPH1052068A (en) Driving circuit for piezoelectric transformer
US6377000B2 (en) Electronic ballast for gas discharge lamp
US7365498B2 (en) Electrodeless discharge lamp lighting device and luminaire
CN100574078C (en) power supply
JP4239800B2 (en) Electrodeless discharge lamp lighting device
CN101766060B (en) Discharge lamp electronic ballast
JP2004039336A (en) Piezoelectric inverter for cold-cathode tube
JP2004171852A (en) High frequency heating device
KR101099852B1 (en) Discharge lamp lighting device and lighting fixture
JP4186788B2 (en) Electrodeless discharge lamp lighting device
JP4697114B2 (en) Electrodeless discharge lamp lighting device and its lighting fixture
JP4337705B2 (en) Electrodeless discharge lamp lighting device and lighting fixture
JP4966122B2 (en) Discharge lamp lighting device and lighting fixture
JP3029422B2 (en) Power supply
JP2010055833A (en) Electrodeless discharge lamp lighting device, and lighting fixture using the same
JPH06243985A (en) Discharge lamp lighting device
JP4709638B2 (en) Light bulb shaped fluorescent lamp
JPH10222114A (en) Power source device for inverter type sign lamp
JP2009176679A (en) Discharge lamp lighting device, and luminaire
JPH0521160A (en) El lighting circuit
JP2009176682A (en) Discharge lamp lighting device, and luminaire
JPH06338396A (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees