[go: up one dir, main page]

JP4235741B2 - Volatile organic compound, NOX or SOX reducing agent, and method for producing the reducing agent - Google Patents

Volatile organic compound, NOX or SOX reducing agent, and method for producing the reducing agent Download PDF

Info

Publication number
JP4235741B2
JP4235741B2 JP2002296444A JP2002296444A JP4235741B2 JP 4235741 B2 JP4235741 B2 JP 4235741B2 JP 2002296444 A JP2002296444 A JP 2002296444A JP 2002296444 A JP2002296444 A JP 2002296444A JP 4235741 B2 JP4235741 B2 JP 4235741B2
Authority
JP
Japan
Prior art keywords
reducing agent
volatile organic
formula
nox
sox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002296444A
Other languages
Japanese (ja)
Other versions
JP2004130195A (en
Inventor
武 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOO CORPORATION
Original Assignee
YOO CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOO CORPORATION filed Critical YOO CORPORATION
Priority to JP2002296444A priority Critical patent/JP4235741B2/en
Publication of JP2004130195A publication Critical patent/JP2004130195A/en
Application granted granted Critical
Publication of JP4235741B2 publication Critical patent/JP4235741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気中の揮発性有機化合物、NOXまたはSOXを低減する低減剤、及びその製造方法に関する。
【0002】
【従来の技術】
シックハウス症候群の原因となる室内のホルムアルデヒドなどの揮発性有機化合物を低減するための化合物としては、酸化チタンが一般的に用いられていた(特許文献1参照)。
【0003】
しかしながら、一般に、酸化チタンを基材の上に担持させるために、シリコーン系バインダー、有機質バインダーなどのバインダーが必要とされ、膜表面に均一に酸化チタンを担持しなければ活性が低く、かつ、酸化チタンの触媒効果によるバインダーの損傷が生じ、また、洗濯によって容易に脱落しやすいという問題がある。
【0004】
また、酸化チタンは、光(紫外線)の照射なしでは活性効果を発揮せず、したがって、暗室では効果を発揮しない。これを解決する手段として、酸化チタンに、暗室でも効果を示す銀や金を併用するという方法があるが、環境問題や人体への影響が懸念されている。
【0005】
【特許文献1】
特開2000−210374号公報
【0006】
【発明が解決しようとする課題】
本発明は、環境にやさしく人体に影響を与えない空気中の揮発性有機化合物、NOXまたはSOXを低減するための低減剤及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、空気中の揮発性有機化合物、NOXおよびSOXからなる群から選ばれる少なくとも1種の化合物を低減させる低減剤であって、
式(1):Ti(OH)(PO(HPO(HPO(OR)
で表わされるリン酸チタニウム系化合物またはその縮合体に、さらにケイ酸ナトリウムを配合してなる低減剤にかかわる。式(1)中、Rは炭素数1〜4のアルキル基、xは1〜3の整数、yは0または1、zは0または1の整数、lは0〜2の整数およびmは0または1であり、y+z+l≠0、x+3y+2z+l+m=4を満たす。
【0008】
本発明は、空気中の揮発性有機化合物、NOXおよびSOXからなる群から選ばれる少なくとも1種の化合物を低減させる低減剤の製造方法であって、
四塩化チタンを、水もしくは炭素数1〜4のアルコール、または、それらの混合溶液と反応させたのち、さらにリン酸と反応させて得られる化合物に、ケイ酸ナトリウムを配合してなる低減剤の製造方法にかかわる。
【0009】
本発明の低減剤は、空気中の揮発性有機化合物、とりわけ、ホルムアルデヒド、トルエン、キシレン、エチルベンゼンまたはスチレンを低減するために、とくに有効である。
【0010】
本発明の低減剤は、バインダーを必要とすることなく、適用対象、たとえば、壁、天井、床などに塗布できる点で、とくに有効である。
【0011】
本発明の低減剤は、光照射なしで、すなわち、夜間の暗闇のなかでも、空気中の揮発性有機化合物、NOXおよびSOXを低減することができる点で、とくに有効である。
【0012】
【発明の実施の形態】
本発明においては、空気中の揮発性有機化合物、NOXおよびSOXからなる群から選ばれる少なくとも1種の化合物を低減させる低減剤の有効成分として、式(1)で表わされるリン酸チタニウム系化合物またはその縮合物を用いる。
【0013】
式(1):Ti(OH)(PO(HPO(HPO(OR)
式(1)中、Rは炭素数1〜4のアルキル基、xは1〜3の整数、yは0または1、zは0または1、lは0〜の整数およびmは0または1であり、y+z+l≠0、x+3y+2z+l+m=4を満たす。
【0014】
Rの炭素数が多いほうが、揮発性有機化合物、NOXおよびSOXの低減効果は、高くなる傾向があるが、多すぎると、溶液の粘度が高く、製膜したときの膜厚が厚くなるため、製膜したときの皮膜が剥離しやすくなる傾向がある。Rは、とりわけエチル基またはイソプロピル基であることが好ましい。
【0015】
式(1)で表わされるリン酸チタニウム系化合物としては、たとえば、Ti(OH)(HPO(OR)、Ti(OH)(PO)、Ti(OH)(HPO)(OR)、Ti(OH)(HPO)(OR)、Ti(OH)(HPO)(HPO)、Ti(OH)(HPO、Ti(OH)(HPO )などがある。
【0016】
式(1)で表わされるリン酸チタニウム系化合物またはその縮合物は、たとえば以下の製造方法によって得られる。すなわち、最初に、四塩化チタンを水もしくはアルコール、または、それらの混合溶液と反応させる。使用するアルコールのアルキル基が、得られるリン酸チタニウム系化合物を表わす式(1)中のRに対応する。アルコールとしては、炭素数1〜4のアルコールを使用することができる。炭素数1〜4のアルコールとしては、メタノール、エタノール、イソプロピルアルコールを例示することができる。
【0017】
【化1】

Figure 0004235741
【0018】
混合溶液とする場合、その組成は、とくに制限はないが、体積比で、水が30〜70%であることが好ましく、より好ましくは上限で60%、下限で40%である。また、アルコールが30〜70%であることが好ましく、より好ましくは上限で60%、下限で40%である。
【0019】
四塩化チタンの添加量は、体積比で、前記水もしくはアルコール、または、それらの混合溶液100部に対して、0.01〜30部であることが好ましく、上限で20部、とくには15部、下限で5部であることがより好ましい。
【0020】
四塩化チタンと水およびアルコールとの反応温度は、とくに制限はなく、常温、たとえば5〜35℃であればよい。水もしくはアルコール、または、それらの混合溶液と四塩化チタンを混合する際の相対湿度は、10〜80%、とくには20〜60%であることが好ましい。相対湿度が80%をこえると、四塩化チタンの黄色粉末が多く生じ、その粒径が大きくなり、活性が低下する傾向がある。10%未満では白色粉末が生じ、膜硬度、持続性に問題が生じる傾向がある。通常、反応終了時の反応溶液のpHは、約1となる。
【0021】
つぎに、得られた反応溶液をリン酸と反応させることにより、前記リン酸チタニウム系化合物を得ることができる。このとき、溶媒として、水またはエタノールなどの炭素数1〜4のアルコールを用いることができる。また、水とアルコールの混合溶媒としてもよい。
【0022】
【化2】
Figure 0004235741
【0023】
前記反応溶液は、必要に応じて、水またはアルコールなどの溶媒で希釈することにより、リン酸を加えたときに白濁することを防止することができる。たとえば、10〜500倍の範囲で希釈することが好ましい。10倍未満では、リン酸を加えたときに白濁する場合がある。白濁液は、低減剤としての活性効果は高いが、使用対象製品が変色したり、表面に白色粉末が現出したり、膜硬度が下がり剥離、脱落が生じ持続性に難点があるので、ろ過するか沈殿させて上水を使用する必要があり、製造工程が増える。上限で200倍、下限で20倍に希釈することがより好ましく、とくには100倍程度が好ましい。
【0024】
リン酸の添加量は、体積比で、前記反応溶液100部に対して、8〜500部であることが好ましい。500部をこえると溶液が白濁する傾向がある。450部以下、とくには400部以下であることが好ましい。
【0025】
反応終了時の反応溶液のpHは、通常3〜4であるが、水酸化ナトリウムなどを加えて、たとえばpH6〜7に調節しても、揮発性有機化合物、NOXおよびSOXを低減する活性は変わらないので、使用対象製品によって酸性または中性で使用することができる。
【0026】
反応生成物は、そのまま、または、水で希釈して溶液状態または分散液状態で、空気中の揮発性有機化合物、NOXまたはSOXの低減剤として使用することができる。
【0027】
リン酸チタニウム系化合物にケイ酸ナトリウムを添加することにより、揮発性有機化合物、NOXおよびSOXの低減剤としての効果を向上させることができる。ケイ酸ナトリウムの添加量は、体積比で、前記反応生成物(リン酸チタニウム系化合物)100部に対して、たとえば、0.5〜20部、好ましくは1〜10部とすることができる。ケイ酸ナトリウムの添加量が多すぎる場合には、塗布後に白い斑点が生じて白化現象が生じやすくなり、したがって、塗布面がガラスなどの場合には、透過性が失われる傾向があり、また、低減剤が剥離しやすくなる傾向がある。
【0028】
揮発性有機化合物としては、たとえば、沸点が、50〜260℃、とりわけ100〜240℃の有機化合物があり、具体的には、ホルムアルデヒド、トルエン、キシレン、エチルベンゼン、スチレン、トリクロロエチレン、ジクロルエタン、イソプロピルアルコールおよびメチルエチルケトンを例示することができる。
【0029】
本発明の低減剤を、溶液状態または分散液状態で使用する場合は、適用対象に噴霧または塗布する方法、適用対象を浸漬する方法などにより、付着させることにより、低減剤として作用させることができる。このとき、乾燥したときの厚さが0.05〜0.5μmとなるように噴霧または塗布することが好ましい。膜厚が0.05μm未満では低減剤としての効果が小さく、0.5μmをこえると剥離が生じやすい。
【0030】
本発明の低減剤は、建物の壁、天井および床のほか、インテリア用品および寝装品などにも適用することができる。
【0031】
インテリア用品としては、カーテン、ブラインド、カーペット類、およびこれらの生地、いす張り地、テーブルクロス、マット類、トイレタリー用品(便座カバーなど)、カーシートカバーなどがあげられる。
【0032】
寝装品としては、毛布、ベッドスプレッド、敷布、タオルケット、寝装カバー、布団側地、中綿およびこれらの生地などがあげられる。
【0033】
本発明の低減剤は、そのほかにも、金属製品、ガラス製品、プラスチック製品などに用いることもできる。
【0034】
本発明の低減剤は、従来の銀や金を使用した低減剤とは異なり、環境にやさしく、また人体に影響をおよぼさずに、生活環境に存在する揮発性有機化合物、NOXおよびSOXを、激減させることができる。さらに、本発明の低減剤は、バインダーを使用しなくても塗膜の耐久性が高い。
【0035】
【実施例】
以下に実施例に基づいて本発明を具体的に説明するが、本発明はこれらのみに制限されるものではない。
【0036】
低減剤(試料溶液)Aの製造
体積比で、イソプロピルアルコール45部と精製水45部の混合液に、攪拌しながら四塩化チタン10部を混合した。体積比で、得られた混合物200部に対して85%のリン酸水溶液5部を加えた。得られたリン酸チタニウム系化合物は、Ti(OH)x(PO4y(HPO4z(H2PO4l(OCH(CH32mまたはこれが縮合した組成であると推定される。得られたリン酸チタニウム系化合物を試料溶液Aとした。
【0037】
リン酸チタニウム系化合物のX線回折試験
製造したリン酸チタニウム系化合物を15時間自然乾燥させたもの、さらに700℃で1時間焼成したものについて、X線回折試験を行なった。マックスサイエンス社製超強力X線回折試験装置 MXP18を用いて、測定条件は、回転対陰極:銅、電圧:40kV、電流:200mA、スリット:発散スリット1°−散乱スリット1°−受光スリット0.3mm、走査範囲:2θ(回折角)=5〜70°、走査速度:4°/分とした。
【0038】
焼成前後のX線回折図を、図1および図2に示す。また、図1および図2中のピークナンバーに対応する2θ(回折角)、d(面間隔)、I(回折強度)、I/Io(最強回折線の強度を1000としたときの回折線の強度)、FWHM(半値幅)を、表1および表2に示す。図1に示す焼成前の化合物の回折図には強いピークは認められず、この化合物は非結晶体であることがわかる。焼成することによって、図2のように多くのピークが現れ、焼成後の化合物は結晶化していることがわかる。これらのピークの位置と強度比は、Ti4623の化合物のデータ(JCPDSカード39−4)とよく一致した。したがって、焼成した化合物はTi4623と考えられる。このことから、リン酸チタニウム系化合物のTiとPの比率は約2:3と考えられる。
【0039】
【表1】
Figure 0004235741
【0040】
【表2】
Figure 0004235741
【0041】
リン酸チタニウム系化合物のエネルギー分散型X線分析
Ti(OH)x(PO4y(HPO4z(H2PO4l(OCH(CH32mまたはこれが縮合したリン酸チタニウム系化合物の組成を推定することを目的として、焼成したリン酸チタニウム系化合物について、エネルギー分散型X線分析を行なった。日本電子株式会社製の走査型電子顕微鏡JSM−5800LVCを用い、測定条件は、加速電圧:25.0kV、取り出し角度:35.00°、経過時間:186.46秒、有効時間:180.00秒とした。その結果、Ti、P、Oのピークが検出され、TiとPの比率は、X線回折測定の結果を支持する値となった。また、Clは検出感度以下であり、焼成によりほとんどが揮散したものと考えられる。
【0042】
参考例
ウレタンフォーム(塗布面:40mm×30mm)に、約30cm離れたところから、試料溶液Aを水で5倍に希釈した溶液を噴霧して20cc/mの割合で塗布し、温度20℃、湿度65%の暗室において、以下の試験を行なった。
【0043】
5Lのテドラーバッグに空気2Lおよびホルムアルデヒド水溶液0.5mLを注入したのち密封し、24時間以上静置して、ホルムアルデヒドガスを調製した。別に用意した5Lのテドラーバッグに空気2Lおよび試料溶液Aで処理した前記のウレタンフォームを入れ、調製したホルムアルデヒドガス3mLを注入したのち、密閉した。2時間後、テドラーバッグ内の空気100mLを純水に吸収させたのち、MBTH試薬(セントラル科学社製)を加えて反応させ、反応溶液の630nmにおける吸光度から検量線によりホルムアルデヒド濃度を求めた。ホルムアルデヒドの初期濃度およびウレタンフォームをテドラーバッグに入れてから2時間後のホルムアルデヒド濃度を測定し、測定値より分解率(低減率)を求めた。結果を表3に示す。
【0044】
参考例2〜7
ウレタンフォームを表3に示す材料に変えた以外は、参考例1と同様にして実験を行なった。結果を表3に示す。
【0045】
【表3】
Figure 0004235741
【0046】
低減剤(試料溶液)Bの製造
体積比で、低減剤(試料溶液)A35部に対してケイ酸ナトリウム1部を添加して、試料溶液Bとした。
【0047】
実施例8〜13
延べ床面積110m2の4LDKの新築一戸建て(3階建て)の和室(実施例8)、洗面所(実施例9)、リビング・キッチン(実施例10)、洋間1(実施例11)、洋間2(実施例12)および洋間3(実施例13)の壁、床および天井に、試料溶液Bを噴霧して25cc/m2の割合で塗布した。塗布前、塗布の24時間後および48時間後に、各室の空気中のホルムアルデヒド濃度を測定した。塗布前および塗布の48時間後は、全窓を開放して5分間換気を行なったのちに、完全に密閉して1時間30分間経過後にホルムアルデヒド濃度を測定した。塗布の24時間後は、全窓を開放して5分間換気を行なったのちに、完全に密閉して1時間30分間経過後(翌日(1))および2時間30分間経過後(翌日(2))にホルムアルデヒド濃度を測定した。測定時の温度および湿度ならびに測定結果を表4に示す。
【0048】
比較例1
新築一戸建ての洋間の壁、床および天井に、試料溶液Bを噴霧して塗布することなく、実施例8〜13と同様に、空気中のホルムアルデヒド濃度を測定した。結果を表4に示す。
【0049】
【表4】
Figure 0004235741
【0050】
実施例14
新築一戸建ての洋間の壁、床および天井に、実施例8〜13と同様に、試料溶液Bを噴霧して10cc/m2の割合で塗布し、空気中のホルムアルデヒド濃度を測定した。塗布前および塗布の24時間後に、全窓を開放して30分間換気を行なったのちに、完全に密閉して5時間経過後にホルムアルデヒド濃度を測定した。塗布前のホルムアルデヒド濃度は0.07ppm、塗布の24時間後のホルムアルデヒド濃度は0.03ppmであった。
【0051】
実施例15
試料溶液の塗布割合を25cc/m2としたほかは、実施例14と同様にした。塗布の24時間後のホルムアルデヒド濃度は0.01ppmであった。また、採取器具として、アドバンストケミカルセンサー(株)製トルエン、キシレン、エチルベンゼンおよびスチレン用測定バッジOV−09を使用し、分析装置としてヒューレットパッカード社製ガスクロマトグラフ6890を使用して、トルエン、キシレン、エチルベンゼンおよびスチレンの濃度を測定した。厚生労働省の指針値は、トルエン濃度が0.07ppm以下、キシレン濃度が0.02ppm以下、エチルベンゼン濃度が0.88ppm、スチレン濃度が0.05ppmであるところ、塗布の24時間後のトルエン濃度、キシレン濃度、エチルベンゼン濃度およびスチレン濃度は、いずれも0.01ppm未満と、指針値を大幅に下回る値を示し、極めて良好であった。
【0052】
実施例16
枕用のウレタン生地(10cm×20cm)に、約30cm離れたところから、試料溶液Bを水で5倍に希釈した溶液を噴霧して20cc/m2の割合で塗布し、温度20℃、湿度65%の室内において、以下の試験を行なった。
【0053】
5Lのテドラーバッグに空気2Lおよび硫化水素0.5mLを注入したのち密封し、24時間以上静置して、硫化水素ガスを調製した。別に用意した5Lのテドラーバッグに空気2Lおよび試料溶液Bで処理した前記のウレタン生地を入れ、調製した硫化水素ガス3mLを注入したのち、密閉した。2時間後、テドラーバッグ内の空気100mLを純水に吸収させたのち、北川式検知管により硫化水素濃度を求めた。硫化水素の初期濃度およびウレタン生地をテドラーバッグに入れてから2時間後の硫化水素濃度を測定した結果を表5に示す。
【0054】
比較例2
テドラーバッグ内にウレタン生地を入れずに、実施例16と同様に実験し、硫化水素濃度を測定した。結果を表5に示す。
【0055】
実施例17
枕用のウレタン生地(10cm×20cm)に、約30cm離れたところから、試料溶液Bを水で5倍に希釈した溶液を噴霧して20cc/m2の割合で塗布し、温度20℃、湿度65%の室内において、以下の試験を行なった。
【0056】
5Lのテドラーバッグに空気2Lおよびアセトアルデヒド水溶液0.5mLを注入したのち密封し、24時間以上静置して、アセトアルデヒドガスを調製した。別に用意した5Lのテドラーバッグに空気2Lおよび試料溶液Bで処理した前記のウレタン生地を入れ、調製したアセトアルデヒドガス3mLを注入したのち、密閉した。2時間後、テドラーバッグ内の空気100mLを純水に吸収させたのち、北川式検知管によりアセトアルデヒド濃度を求めた。アセトアルデヒドの初期濃度およびウレタン生地をテドラーバッグに入れてから2時間後のアセトアルデヒド濃度を測定した結果を表5に示す。
【0057】
比較例3
テドラーバッグ内にウレタン生地を入れずに、実施例17と同様に実験し、アセトアルデヒド濃度を測定した。結果を表5に示す。
【0058】
実施例18
枕用のウレタン生地(10cm×20cm)に、約30cm離れたところから、試料溶液Bを水で5倍に希釈した溶液を噴霧して20cc/m2の割合で塗布し、温度20℃、湿度65%の室内において、以下の試験を行なった。
【0059】
5Lのテドラーバッグに空気2Lおよびホルムアルデヒド水溶液0.5mLを注入したのち密封し、24時間以上静置して、ホルムアルデヒドガスを調製した。別に用意した5Lのテドラーバッグに空気2Lおよび試料溶液Bで処理した前記のウレタン生地を入れ、調製したホルムアルデヒドガス3mLを注入したのち、密閉した。2時間後、テドラーバッグ内の空気100mLを純水に吸収させたのち、北川式検知管によりホルムアルデヒド濃度を求めた。ホルムアルデヒドの初期濃度およびウレタン生地をテドラーバッグに入れてから2時間後のホルムアルデヒド濃度を測定した結果を表5に示す。
【0060】
比較例4
テドラーバッグ内にウレタン生地を入れずに、実施例18と同様に実験し、ホルムアルデヒド濃度を測定した。結果を表5に示す。
【0061】
【表5】
Figure 0004235741
【0062】
実施例19
枕用のウレタン生地の代わりに壁紙(10cm×20cm)を使用した以外は、実施例18と同様にして実験を行なった。ホルムアルデヒドの初期濃度は15.0ppmであり、壁紙をテドラーバッグに入れてから2時間後には1.4ppmとなった。
【0063】
実施例20
枕用のウレタン生地の代わりに壁紙(EE-53000 サンタフェ F/07 BE)(10cm×20cm)を使用した以外は、実施例18と同様にして実験を行なった。ホルムアルデヒドの初期濃度は15.0ppmであり、壁紙をテドラーバッグに入れてから2時間後には0.6ppmとなった。
【0064】
実施例21
リン酸チタニウム系加工剤含浸生地(15cm×20cm)に、約30cm離れたところから、試料溶液Bを水で5倍に希釈した溶液を噴霧して20cc/m2の割合で塗布し、温度20℃、湿度65%、紫外線強度(塗布面)1mW/cm2の室内において、以下の試験を行なった。
【0065】
5Lのテドラーバッグに、初期濃度が20.0ppmとなるように調製したNOXガスおよび試料溶液Bで処理した前記のリン酸チタニウム系加工剤含浸生地を入れ、密閉した。2時間後、テドラーバッグ内の空気100mLを純水に吸収させたのち、北川式検知管により求めたNOX濃度は4.9ppmであった。
【0066】
比較例5
テドラーバッグ内にリン酸チタニウム系加工剤含浸生地を入れずに、実施例21と同様に実験し、NOX濃度を測定したところ、20.0ppmであった。
【0067】
実施例22
リン酸チタニウム系加工剤含浸生地(15cm×20cm)に、約30cm離れたところから、試料溶液Bを水で5倍に希釈した溶液を噴霧して20cc/m2の割合で塗布し、温度20℃、湿度65%、紫外線強度(塗布面)1mW/cm2の室内において、以下の試験を行なった。
【0068】
5Lのテドラーバッグに、初期濃度が20.0ppmとなるように調製したSOXガスおよび試料溶液Bで処理した前記のリン酸チタニウム系加工剤含浸生地を入れ、密閉した。2時間後、テドラーバッグ内の空気100mLを純水に吸収させたのち、北川式検知管により求めたSOX濃度は0.5ppm未満であった。
【0069】
比較例6
テドラーバッグ内にリン酸チタニウム系加工剤含浸生地を入れずに、実施例22と同様に実験し、SOX濃度を測定したところ、20.0ppmであった。
【0070】
【発明の効果】
本発明の低減剤は、従来のように銀や金を使用していないので、環境にやさしく、人体に影響がない。さらに、本発明の低減剤を壁、天井または床にスプレーで吹き付けるなどの簡単な作業で、室内の揮発性有機化合物、NOXおよびSOXを低減させることができる。本発明の低減剤は、バインダーを必要としないで強固に基材に固定されているため、塗膜が剥がれにくく、効果が維持される。さらに、光の照射を必要とせず、夜間の暗闇でも効果を発揮することができる。
【図面の簡単な説明】
【図1】実施例で用いたリン酸チタニウム系化合物のX線回折図である。
【図2】実施例で用いたリン酸チタニウム系化合物の焼成後のX線回折図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reducing agent for reducing volatile organic compounds, NOX or SOX in air , and a method for producing the same .
[0002]
[Prior art]
Titanium oxide has generally been used as a compound for reducing volatile organic compounds such as formaldehyde in the room that cause sick house syndrome (see Patent Document 1).
[0003]
However, in general, in order to support titanium oxide on the substrate, a binder such as a silicone binder or an organic binder is required. If titanium oxide is not uniformly supported on the film surface, the activity is low, and oxidation is not possible. There is a problem that the binder is damaged due to the catalytic effect of titanium, and that it is easily removed by washing.
[0004]
Titanium oxide does not exhibit an active effect without irradiation with light (ultraviolet rays), and therefore does not exhibit an effect in a dark room. As a means for solving this, there is a method of using silver and gold, which are effective in a dark room, in combination with titanium oxide, but there are concerns about environmental problems and influence on the human body.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-210374
[Problems to be solved by the invention]
An object of the present invention is to provide a reducing agent for reducing volatile organic compounds, NOX or SOX in the air that is environmentally friendly and does not affect the human body, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention is a reducing agent for reducing at least one compound selected from the group consisting of volatile organic compounds, NOX and SOX in the air,
Formula (1): Ti (OH) x (PO 4 ) y (HPO 4 ) z (H 2 PO 4 ) l (OR) m
In the titanium phosphate compound or a condensate thereof represented, according to further reducing agent obtained by blending a sodium silicate. In formula (1), R is an alkyl group having 1 to 4 carbon atoms, x is an integer of 1 to 3 , y is 0 or 1, z is an integer of 0 or 1 , l is an integer of 0 to 2 , and m is 0. Or it is 1 and y + z + l ≠ 0 and x + 3y + 2z + l + m = 4 are satisfied.
[0008]
The present invention is a method for producing a reducing agent for reducing at least one compound selected from the group consisting of volatile organic compounds, NOX and SOX in the air,
Four titanium chloride, water or an alcohol having 1 to 4 carbon atoms, or, and the mixture was reacted with a mixture solution thereof, further compounds obtained by reacting with phosphoric acid, reducing agent obtained by blending a sodium silicate Involved in the manufacturing method .
[0009]
The reducing agent of the present invention is particularly effective for reducing volatile organic compounds in the air, especially formaldehyde, toluene, xylene, ethylbenzene or styrene.
[0010]
The reducing agent of the present invention is particularly effective in that it can be applied to an application object, for example, a wall, a ceiling, a floor, etc. without requiring a binder.
[0011]
The reducing agent of the present invention is particularly effective in that it can reduce volatile organic compounds, NOX and SOX in the air without light irradiation, that is, in the darkness at night.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as an active ingredient of a reducing agent that reduces at least one compound selected from the group consisting of volatile organic compounds, NOX and SOX in the air, a titanium phosphate compound represented by the formula (1) or The condensate is used.
[0013]
Formula (1): Ti (OH) x (PO 4 ) y (HPO 4 ) z (H 2 PO 4 ) l (OR) m
In formula (1), R is an alkyl group having 1 to 4 carbon atoms, x is an integer of 1 to 3 , y is 0 or 1, z is 0 or 1 , l is an integer of 0 to 2 , and m is 0 or 1. And y + z + l ≠ 0 and x + 3y + 2z + l + m = 4 are satisfied.
[0014]
When the carbon number of R is larger, the reduction effect of volatile organic compounds, NOX and SOX tends to be higher, but if too much, the viscosity of the solution is high, and the film thickness when the film is formed becomes thick. When the film is formed, the film tends to be easily peeled off. R is particularly preferably an ethyl group or an isopropyl group.
[0015]
Examples of the titanium phosphate compound represented by the formula (1) include Ti (OH) (H 2 PO 4 ) 2 (OR), Ti (OH) (PO 4 ), Ti (OH) 2 (H 2 PO 4 ) (OR), Ti (OH) (HPO 4 ) (OR), Ti (OH) (HPO 4 ) (H 2 PO 4 ), Ti (OH) 2 (H 2 PO 4 ) 2 , Ti (OH) 3 (H 2 PO 4), etc. is.
[0016]
The titanium phosphate compound represented by the formula (1) or a condensate thereof can be obtained, for example, by the following production method. That is, first, titanium tetrachloride is reacted with water or alcohol or a mixed solution thereof. The alkyl group of the alcohol used corresponds to R in the formula (1) representing the resulting titanium phosphate compound. As the alcohol, an alcohol having 1 to 4 carbon atoms can be used. Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, and isopropyl alcohol.
[0017]
[Chemical 1]
Figure 0004235741
[0018]
The composition of the mixed solution is not particularly limited, but is preferably 30 to 70% water by volume, more preferably 60% at the upper limit and 40% at the lower limit. Further, the alcohol content is preferably 30 to 70%, more preferably 60% at the upper limit and 40% at the lower limit.
[0019]
The amount of titanium tetrachloride added is preferably 0.01 to 30 parts by volume with respect to 100 parts of the water or alcohol or a mixed solution thereof, and the upper limit is 20 parts, particularly 15 parts. The lower limit is more preferably 5 parts.
[0020]
The reaction temperature of titanium tetrachloride with water and alcohol is not particularly limited, and may be room temperature, for example, 5 to 35 ° C. The relative humidity at the time of mixing water or alcohol, or a mixed solution thereof and titanium tetrachloride is preferably 10 to 80%, particularly preferably 20 to 60%. When the relative humidity exceeds 80%, a large amount of yellow powder of titanium tetrachloride is generated, the particle size becomes large, and the activity tends to decrease. If it is less than 10%, a white powder is produced, and there is a tendency that film hardness and sustainability are problematic. Usually, the pH of the reaction solution at the end of the reaction is about 1.
[0021]
Next, the titanium phosphate compound can be obtained by reacting the resulting reaction solution with phosphoric acid. At this time, an alcohol having 1 to 4 carbon atoms such as water or ethanol can be used as the solvent. Moreover, it is good also as a mixed solvent of water and alcohol.
[0022]
[Chemical formula 2]
Figure 0004235741
[0023]
If necessary, the reaction solution can be diluted with a solvent such as water or alcohol to prevent clouding when phosphoric acid is added. For example, it is preferable to dilute in the range of 10 to 500 times. If it is less than 10 times, it may become cloudy when phosphoric acid is added. The white turbid liquid has a high activity effect as a reducing agent. However, it is difficult to maintain because the product to be used is discolored, the white powder appears on the surface, the film hardness is reduced, peeling and falling off, and it is difficult to maintain. It is necessary to settle and use clean water, which increases the manufacturing process. It is more preferable to dilute 200 times at the upper limit and 20 times at the lower limit, particularly about 100 times.
[0024]
The addition amount of phosphoric acid is preferably 8 to 500 parts by volume with respect to 100 parts of the reaction solution. If it exceeds 500 parts, the solution tends to become cloudy. It is preferably 450 parts or less, particularly 400 parts or less.
[0025]
The pH of the reaction solution at the end of the reaction is usually 3 to 4. However, even if sodium hydroxide or the like is added to adjust the pH to 6 to 7, for example, the activity of reducing volatile organic compounds, NOX and SOX is changed. Since it is not, it can be used in an acidic or neutral state depending on the product to be used.
[0026]
The reaction product can be used as a reducing agent for volatile organic compounds, NOX or SOX in the air as it is or diluted with water in a solution state or a dispersion state.
[0027]
By adding sodium silicate to the titanium phosphate-based compound, the effect as a reducing agent for volatile organic compounds, NOX and SOX can be improved. The amount of sodium silicate added can be, for example, 0.5 to 20 parts, preferably 1 to 10 parts, by volume, with respect to 100 parts of the reaction product (titanium phosphate compound). When the amount of sodium silicate added is too large, white spots are generated after application, and whitening phenomenon is likely to occur.Therefore, when the application surface is glass or the like, the permeability tends to be lost, There exists a tendency for a reducing agent to peel easily.
[0028]
Examples of the volatile organic compound include organic compounds having a boiling point of 50 to 260 ° C., particularly 100 to 240 ° C., specifically, formaldehyde, toluene, xylene, ethylbenzene, styrene, trichloroethylene, dichloroethane, isopropyl alcohol, and the like. An example is methyl ethyl ketone.
[0029]
When the reducing agent of the present invention is used in a solution state or a dispersion state, it can act as a reducing agent by adhering by a method of spraying or applying to an application target, a method of immersing the application target, or the like. . At this time, it is preferable to spray or apply such that the thickness when dried is 0.05 to 0.5 μm. If the film thickness is less than 0.05 μm, the effect as a reducing agent is small, and if it exceeds 0.5 μm, peeling tends to occur.
[0030]
The reducing agent of the present invention can be applied not only to building walls, ceilings and floors, but also to interior goods and bedding.
[0031]
Examples of interior goods include curtains, blinds, carpets, and their fabrics, chair upholstery, table cloths, mats, toiletry goods (such as toilet seat covers), and car seat covers.
[0032]
Examples of the bedding include blankets, bed spreads, mattresses, towels, bedding covers, futon sides, batting, and their fabrics.
[0033]
In addition, the reducing agent of the present invention can be used for metal products, glass products, plastic products and the like.
[0034]
The reducing agent of the present invention is different from the reducing agent using conventional silver and gold, is environmentally friendly and does not affect the human body, and does not affect volatile organic compounds, NOX and SOX present in the living environment. , Can be drastically reduced. Furthermore, the reducing agent of the present invention has high durability of the coating film without using a binder.
[0035]
【Example】
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these.
[0036]
Production of reducing agent (sample solution) A In a volume ratio, 10 parts of titanium tetrachloride was mixed in a mixed solution of 45 parts of isopropyl alcohol and 45 parts of purified water while stirring. By volume, 5 parts of 85% aqueous phosphoric acid solution was added to 200 parts of the resulting mixture. The resulting titanium phosphate compound, Ti (OH) x (PO 4) y (HPO 4) z (H 2 PO 4) l (OCH (CH 3) 2) m or estimated that this is the composition condensed Is done. The obtained titanium phosphate compound was used as sample solution A.
[0037]
X-ray diffraction test of titanium phosphate-based compound An X-ray diffraction test was performed on the manufactured titanium phosphate-based compound that was naturally dried for 15 hours and further calcined at 700C for 1 hour. Using an ultra-high-power X-ray diffraction test apparatus MXP 18 manufactured by Max Science, the measurement conditions were: rotating cathode: copper, voltage: 40 kV, current: 200 mA, slit: divergence slit 1 °-scattering slit 1 °-light receiving slit 0 0.3 mm, scanning range: 2θ (diffraction angle) = 5 to 70 °, scanning speed: 4 ° / min.
[0038]
X-ray diffraction diagrams before and after firing are shown in FIGS. Also, 2θ (diffraction angle), d (surface spacing), I (diffraction intensity), I / Io (the intensity of the strongest diffraction line when the intensity of the strongest diffraction line is 1000, corresponding to the peak numbers in FIGS. Strength) and FWHM (full width at half maximum) are shown in Tables 1 and 2. In the diffraction pattern of the compound before firing shown in FIG. 1, no strong peak is observed, indicating that this compound is an amorphous substance. By firing, many peaks appear as shown in FIG. 2, and it can be seen that the compound after firing is crystallized. The positions and intensity ratios of these peaks agreed well with the data of the Ti 4 P 6 O 23 compound (JCPDS card 39-4). Therefore, the fired compound is considered to be Ti 4 P 6 O 23 . From this, the ratio of Ti and P of the titanium phosphate compound is considered to be about 2: 3.
[0039]
[Table 1]
Figure 0004235741
[0040]
[Table 2]
Figure 0004235741
[0041]
Energy dispersive X-ray analysis of titanium phosphate compounds Ti (OH) x (PO 4 ) y (HPO 4 ) z (H 2 PO 4 ) l (OCH (CH 3 ) 2 ) m or titanium phosphate condensed with this For the purpose of estimating the composition of the system compound, energy dispersive X-ray analysis was performed on the fired titanium phosphate compound. A scanning electron microscope JSM-5800LVC manufactured by JEOL Ltd. was used, and measurement conditions were acceleration voltage: 25.0 kV, take-off angle: 35.00 °, elapsed time: 186.46 seconds, effective time: 180.00 seconds. It was. As a result, Ti, P, and O peaks were detected, and the ratio of Ti and P was a value that supported the results of X-ray diffraction measurement. Moreover, Cl is below detection sensitivity, and it is thought that most was volatilized by baking.
[0042]
Reference example 1
A solution obtained by diluting sample solution A five times with water is sprayed onto urethane foam (coating surface: 40 mm × 30 mm) from about 30 cm away and applied at a rate of 20 cc / m 2 , temperature 20 ° C., humidity The following tests were performed in a 65% dark room.
[0043]
After injecting 2 L of air and 0.5 mL of formaldehyde aqueous solution into a 5 L Tedlar bag, it was sealed and allowed to stand for 24 hours or more to prepare formaldehyde gas. The urethane foam treated with 2 L of air and sample solution A was placed in a 5 L Tedlar bag prepared separately, and 3 mL of the prepared formaldehyde gas was injected, and then sealed. Two hours later, 100 mL of air in the Tedlar bag was absorbed in pure water, and then MBTH reagent (manufactured by Central Science Co., Ltd.) was added for reaction. The formaldehyde concentration was determined from the absorbance at 630 nm of the reaction solution using a calibration curve. The initial formaldehyde concentration and the formaldehyde concentration 2 hours after placing the urethane foam in the tedlar bag were measured, and the decomposition rate (reduction rate) was determined from the measured values. The results are shown in Table 3.
[0044]
Reference Examples 2-7
The experiment was performed in the same manner as in Reference Example 1 except that the urethane foam was changed to the material shown in Table 3. The results are shown in Table 3.
[0045]
[Table 3]
Figure 0004235741
[0046]
Production of reducing agent (sample solution) B By volume ratio, 1 part of sodium silicate was added to 35 parts of reducing agent (sample solution) A to obtain sample solution B.
[0047]
Examples 8-13
4LDK new single-family house (3 stories) with a total floor area of 110m 2 (Example 8), washroom (Example 9), living kitchen (Example 10), Western-style room 1 (Example 11), Western-style room 2 Sample solution B was sprayed and applied at a rate of 25 cc / m 2 to the walls, floors and ceilings of (Example 12) and Western 3 (Example 13). Before application, 24 hours and 48 hours after application, the formaldehyde concentration in the air in each chamber was measured. Before application and 48 hours after application, all windows were opened and ventilated for 5 minutes. After complete sealing, the formaldehyde concentration was measured after 1 hour and 30 minutes. After 24 hours of application, all windows were opened and ventilated for 5 minutes, then completely sealed and after 1 hour 30 minutes (next day (1)) and after 2 hours 30 minutes (next day (2 )), The formaldehyde concentration was measured. Table 4 shows the temperature and humidity during the measurement, and the measurement results.
[0048]
Comparative Example 1
The formaldehyde concentration in the air was measured in the same manner as in Examples 8 to 13 without spraying and applying the sample solution B to the walls, floors, and ceilings of the newly constructed detached house. The results are shown in Table 4.
[0049]
[Table 4]
Figure 0004235741
[0050]
Example 14
The sample solution B was sprayed and applied at a rate of 10 cc / m 2 on the walls, floors and ceilings of the newly-built detached house in the same manner as in Examples 8 to 13, and the formaldehyde concentration in the air was measured. Before application and 24 hours after application, all windows were opened and ventilated for 30 minutes. After complete sealing, the formaldehyde concentration was measured after 5 hours. The formaldehyde concentration before coating was 0.07 ppm, and the formaldehyde concentration 24 hours after coating was 0.03 ppm.
[0051]
Example 15
The same procedure as in Example 14 was conducted, except that the coating rate of the sample solution was 25 cc / m 2 . The formaldehyde concentration 24 hours after application was 0.01 ppm. In addition, toluene, xylene, ethylbenzene and styrene measurement badges OV-09 manufactured by Advanced Chemical Sensor Co., Ltd. are used as collection instruments, and a gas chromatograph 6890 manufactured by Hewlett-Packard Company is used as an analyzer, and toluene, xylene and ethylbenzene are used. And the concentration of styrene was measured. The guideline values of the Ministry of Health, Labor and Welfare are that the toluene concentration is 0.07 ppm or less, the xylene concentration is 0.02 ppm or less, the ethylbenzene concentration is 0.88 ppm, and the styrene concentration is 0.05 ppm. Concentration, ethylbenzene concentration, and styrene concentration were all very good, showing less than 0.01 ppm, much below the guideline value.
[0052]
Example 16
Sprayed a solution obtained by diluting sample solution B with water 5 times on a urethane fabric (10 cm × 20 cm) for pillows at a rate of 20 cc / m 2 from a distance of about 30 cm, temperature 20 ° C., humidity The following tests were conducted in a 65% room.
[0053]
After injecting 2 L of air and 0.5 mL of hydrogen sulfide into a 5 L Tedlar bag, it was sealed and allowed to stand for 24 hours or more to prepare hydrogen sulfide gas. The urethane fabric treated with 2 L of air and sample solution B was placed in a separately prepared 5 L Tedlar bag, and 3 mL of the prepared hydrogen sulfide gas was injected and sealed. Two hours later, 100 mL of air in the Tedlar bag was absorbed into pure water, and then the hydrogen sulfide concentration was determined using a Kitagawa type detector tube. Table 5 shows the results of measuring the initial concentration of hydrogen sulfide and the hydrogen sulfide concentration 2 hours after the urethane cloth was placed in the Tedlar bag.
[0054]
Comparative Example 2
An experiment was carried out in the same manner as in Example 16 without putting the urethane fabric in the Tedlar bag, and the hydrogen sulfide concentration was measured. The results are shown in Table 5.
[0055]
Example 17
Sprayed a solution obtained by diluting sample solution B with water 5 times on a urethane fabric (10 cm × 20 cm) for pillows at a rate of 20 cc / m 2 from a distance of about 30 cm, temperature 20 ° C., humidity The following tests were conducted in a 65% room.
[0056]
After injecting 2 L of air and 0.5 mL of acetaldehyde aqueous solution into a 5 L Tedlar bag, it was sealed and allowed to stand for 24 hours or more to prepare acetaldehyde gas. The urethane fabric treated with 2 L of air and sample solution B was placed in a 5 L Tedlar bag prepared separately, and 3 mL of the prepared acetaldehyde gas was injected, followed by sealing. After 2 hours, 100 mL of air in the Tedlar bag was absorbed into pure water, and then the acetaldehyde concentration was determined using a Kitagawa type detector tube. Table 5 shows the results of measuring the initial concentration of acetaldehyde and the concentration of acetaldehyde 2 hours after the urethane cloth was put in the Tedlar bag.
[0057]
Comparative Example 3
An experiment was carried out in the same manner as in Example 17 without putting urethane cloth in the Tedlar bag, and the acetaldehyde concentration was measured. The results are shown in Table 5.
[0058]
Example 18
Sprayed a solution obtained by diluting sample solution B with water 5 times on a urethane fabric (10 cm × 20 cm) for pillows at a rate of 20 cc / m 2 from a distance of about 30 cm, temperature 20 ° C., humidity The following tests were conducted in a 65% room.
[0059]
After injecting 2 L of air and 0.5 mL of formaldehyde aqueous solution into a 5 L Tedlar bag, it was sealed and allowed to stand for 24 hours or more to prepare formaldehyde gas. The urethane dough treated with 2 L of air and sample solution B was placed in a separately prepared 5 L Tedlar bag, and 3 mL of the prepared formaldehyde gas was injected and sealed. Two hours later, 100 mL of air in the Tedlar bag was absorbed in pure water, and then the formaldehyde concentration was determined using a Kitagawa-type detector tube. Table 5 shows the results of measurement of the initial formaldehyde concentration and the formaldehyde concentration after 2 hours from placing the urethane fabric in the tedlar bag.
[0060]
Comparative Example 4
An experiment was carried out in the same manner as in Example 18 without using urethane cloth in the Tedlar bag, and the formaldehyde concentration was measured. The results are shown in Table 5.
[0061]
[Table 5]
Figure 0004235741
[0062]
Example 19
The experiment was performed in the same manner as in Example 18 except that wallpaper (10 cm × 20 cm) was used instead of the urethane fabric for pillows. The initial concentration of formaldehyde was 15.0 ppm, which was 1.4 ppm 2 hours after the wallpaper was placed in the Tedlar bag.
[0063]
Example 20
The experiment was performed in the same manner as in Example 18 except that wallpaper (EE-53000 Santa Fe F / 07 BE) (10 cm × 20 cm) was used instead of the urethane fabric for pillows. The initial concentration of formaldehyde was 15.0 ppm, which was 0.6 ppm 2 hours after the wallpaper was placed in the Tedlar bag.
[0064]
Example 21
A solution obtained by diluting the sample solution B five times with water is sprayed on a titanium phosphate processing agent-impregnated fabric (15 cm × 20 cm) and applied at a rate of 20 cc / m 2. The following tests were carried out in a room with a temperature of 65 ° C., a humidity of 65% and an ultraviolet intensity (application surface) of 1 mW / cm 2 .
[0065]
The above-mentioned titanium phosphate processing agent-impregnated dough treated with NOX gas and sample solution B prepared to have an initial concentration of 20.0 ppm was placed in a 5 L Tedlar bag and sealed. Two hours later, after 100 mL of air in the Tedlar bag was absorbed into pure water, the NOX concentration determined by the Kitagawa type detection tube was 4.9 ppm.
[0066]
Comparative Example 5
The experiment was conducted in the same manner as in Example 21 without putting the titanium phosphate-based processing agent-impregnated dough into the Tedlar bag, and the NOX concentration was measured and found to be 20.0 ppm.
[0067]
Example 22
A solution obtained by diluting sample solution B five times with water is sprayed on a titanium phosphate processing agent-impregnated dough (15 cm × 20 cm) and applied at a rate of 20 cc / m 2. The following tests were carried out in a room with a temperature of 65 ° C., a humidity of 65% and an ultraviolet intensity (application surface) of 1 mW / cm 2 .
[0068]
A 5 L Tedlar bag was filled with the above-mentioned titanium phosphate-based processing agent-impregnated dough treated with SOX gas and sample solution B prepared to have an initial concentration of 20.0 ppm, and sealed. After 2 hours, 100 mL of air in the Tedlar bag was absorbed into pure water, and then the SOX concentration determined by the Kitagawa type detection tube was less than 0.5 ppm.
[0069]
Comparative Example 6
An experiment was conducted in the same manner as in Example 22 without putting the titanium phosphate processing agent-impregnated dough into the Tedlar bag, and the SOX concentration was measured and found to be 20.0 ppm.
[0070]
【The invention's effect】
Since the reducing agent of the present invention does not use silver or gold as in the prior art, it is environmentally friendly and does not affect the human body. Furthermore, volatile organic compounds, NOX and SOX in the room can be reduced by a simple operation such as spraying the reducing agent of the present invention on a wall, ceiling or floor. Since the reducing agent of the present invention is firmly fixed to the substrate without requiring a binder, the coating film is hardly peeled off and the effect is maintained. Furthermore, no light irradiation is required, and the effect can be exhibited even in the dark at night.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a titanium phosphate compound used in Examples.
FIG. 2 is an X-ray diffraction pattern after firing of a titanium phosphate compound used in Examples.

Claims (6)

空気中の揮発性有機化合物、NOXおよびSOXからなる群から選ばれる少なくとも1種の化合物を低減させる低減剤であって、式(1):
Ti(OH)(PO(HPO(HPO(OR)
(式(1)中、Rは炭素数1〜4のアルキル基、xは1〜3の整数、yは0または1、zは0または1、lは0〜の整数およびmは0または1であり、y+z+l≠0、x+3y+2z+l+m=4を満たす。)
で表わされるリン酸チタニウム系化合物またはその縮合体100部に、さらに体積比で0.5〜20部のケイ酸ナトリウムを配合してなる低減剤。
A reducing agent for reducing at least one compound selected from the group consisting of volatile organic compounds, NOX and SOX in the air, wherein the formula (1):
Ti (OH) x (PO 4 ) y (HPO 4) z (H 2 PO 4) l (OR) m
(In the formula (1), R is an alkyl group having 1 to 4 carbon atoms, x is an integer of 1 to 3 , y is 0 or 1, z is 0 or 1 , l is an integer of 0 to 2 , and m is 0 or 1 and y + z + l ≠ 0 and x + 3y + 2z + l + m = 4 is satisfied.)
A reducing agent prepared by further blending 0.5 to 20 parts by weight of sodium silicate in a volume ratio with 100 parts of the titanium phosphate compound represented by
揮発性有機化合物が、ホルムアルデヒド、トルエン、キシレン、エチルベンゼンまたはスチレンである請求項記載の低減剤。Volatile organic compounds, formaldehyde, toluene, xylene, reducing agent according to claim 1 which is ethyl benzene or styrene. バインダーを必要としない請求項1または2記載の低減剤。The reducing agent according to claim 1 or 2 , which does not require a binder. 光照射なしで活性効果を有する請求項1、2、または3記載の低減剤。The reducing agent according to claim 1, 2 or 3, which has an active effect without light irradiation. 空気中の揮発性有機化合物、NOXおよびSOXからなる群から選ばれる少なくとも1種の化合物を低減させる低減剤の製造方法であって、四塩化チタンを、水もしくは炭素数1〜4のアルコール、または、それらの混合溶液と反応させたのち、さらにリン酸と反応させて式(1)で表わされるリン酸チタニウム系化合物またはその縮合体を調製し、
式(1):Ti(OH) (PO (HPO (H PO (OR)
(式(1)中、Rは炭素数1〜4のアルキル基、xは1〜3の整数、yは0または1、zは0または1、lは0〜2の整数およびmは0または1であり、y+z+l≠0、x+3y+2z+l+m=4を満たす。)
この式(1)の化合物100部に、体積比で0.5〜20部のケイ酸ナトリウムを配合してなる低減剤の製造方法
A method for producing a reducing agent for reducing at least one compound selected from the group consisting of volatile organic compounds, NOX and SOX in air, wherein titanium tetrachloride is added to water or an alcohol having 1 to 4 carbon atoms, or , After reacting with the mixed solution thereof, further reacting with phosphoric acid to prepare a titanium phosphate compound represented by the formula (1) or a condensate thereof,
Formula (1): Ti (OH) x (PO 4 ) y (HPO 4 ) z (H 2 PO 4 ) l (OR) m
(In the formula (1), R is an alkyl group having 1 to 4 carbon atoms, x is an integer of 1 to 3, y is 0 or 1, z is 0 or 1, l is an integer of 0 to 2, and m is 0 or 1 and y + z + l ≠ 0 and x + 3y + 2z + l + m = 4 is satisfied.)
The manufacturing method of the reducing agent formed by mix | blending 0.5-20 parts sodium silicate by a volume ratio with 100 parts of compounds of this Formula (1) .
揮発性有機化合物が、ホルムアルデヒド、トルエン、キシレン、エチルベンゼンまたはスチレンである請求項5記載の低減剤の製造方法。The method for producing a reducing agent according to claim 5, wherein the volatile organic compound is formaldehyde, toluene, xylene, ethylbenzene or styrene.
JP2002296444A 2002-10-09 2002-10-09 Volatile organic compound, NOX or SOX reducing agent, and method for producing the reducing agent Expired - Lifetime JP4235741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296444A JP4235741B2 (en) 2002-10-09 2002-10-09 Volatile organic compound, NOX or SOX reducing agent, and method for producing the reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296444A JP4235741B2 (en) 2002-10-09 2002-10-09 Volatile organic compound, NOX or SOX reducing agent, and method for producing the reducing agent

Publications (2)

Publication Number Publication Date
JP2004130195A JP2004130195A (en) 2004-04-30
JP4235741B2 true JP4235741B2 (en) 2009-03-11

Family

ID=32286438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296444A Expired - Lifetime JP4235741B2 (en) 2002-10-09 2002-10-09 Volatile organic compound, NOX or SOX reducing agent, and method for producing the reducing agent

Country Status (1)

Country Link
JP (1) JP4235741B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350234A (en) * 2004-06-11 2005-12-22 Toshiba Elevator Co Ltd Method of deodorizing inside elevator car
JP4533993B2 (en) * 2004-08-17 2010-09-01 独立行政法人産業技術総合研究所 Oxygenated organic compound adsorbent
JP4077495B1 (en) * 2006-11-10 2008-04-16 ゆかコラボレーション株式会社 Method for producing titanium oxide particle dispersion
JP4817326B2 (en) * 2007-05-30 2011-11-16 国立大学法人 千葉大学 Amorphous phosphoric acid-titanium oxide oxidation catalyst
JP5606437B2 (en) * 2009-06-02 2014-10-15 賢次郎 牧野 Novel titanic acid monomer and polymer thereof, and production method and use thereof
JPWO2015087694A1 (en) * 2013-12-11 2017-03-16 健一 牧野 Redox potential generator using alkoxytitanic acid / phosphoric acid compound

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104491A (en) * 1976-03-01 1977-09-01 Nippon Shokubai Kagaku Kogyo Co Ltd Nox removal catalyst
JPH01176453A (en) * 1987-12-28 1989-07-12 Babcock Hitachi Kk Catalyst for removing nitrogen oxide and its production
JP3505305B2 (en) * 1994-12-26 2004-03-08 日本エンバイロケミカルズ株式会社 Catalyst composition and deodorizing method using the same
JPH11290696A (en) * 1998-04-07 1999-10-26 Sumitomo Chem Co Ltd Photocatalytic substrate
JP2000140079A (en) * 1998-11-04 2000-05-23 Toagosei Co Ltd Deodorizing agent
JP3978636B2 (en) * 1999-04-16 2007-09-19 テイカ株式会社 Coating composition for photocatalyst film formation
JP3749641B2 (en) * 1999-11-11 2006-03-01 株式会社日本触媒 Photocatalyst powder and method for producing photocatalyst film
JP2001210374A (en) * 2000-01-25 2001-08-03 Kyocera Corp Solid electrolyte battery
JP2001276194A (en) * 2000-03-30 2001-10-09 Toto Ltd Deodorizing catalyst material
JP2001278626A (en) * 2000-03-31 2001-10-10 Sumitomo Chem Co Ltd Method for producing titanium oxide

Also Published As

Publication number Publication date
JP2004130195A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US7635659B2 (en) Photocatalytic apatite composition as well as production method and article thereof
KR102704673B1 (en) Antiviral agents, coating compositions, resin compositions and antiviral products
WO2007088879A1 (en) Deodorants and deodorized articles
JP3956973B2 (en) Deodorant with excellent water resistance
JP4235741B2 (en) Volatile organic compound, NOX or SOX reducing agent, and method for producing the reducing agent
US11590479B2 (en) Interior material having surface layer having visible light-responsive photocatalytic activity, and method for manufacturing same
KR102162532B1 (en) Photocatalysis composite and method for preparing the same
JPWO2004053254A1 (en) Interior building materials, interior building panels, and interior wallpaper
JPWO2016199756A1 (en) Ketone-based gas adsorbent, gas adsorbent composition, and deodorized processed product
JP3846369B2 (en) Pasty deodorant and deodorant product produced using the deodorant
JPWO2006046611A1 (en) Deodorant and deodorant product
JP2002308712A (en) Antimicrobial agent, deodorant and antifungal agent and antimicrobial, deodorant or antifungal method
JP2004262941A (en) Deodorant / antibacterial / mold-proof coating composition
JP3746327B2 (en) Deodorant precursor material and method for producing the same
JP4119964B2 (en) Deodorant manufacturing method
JP3598349B2 (en) Manufacturing method of composite ceramic material
JP4647334B2 (en) Photocatalytic liquid composition
JP6049175B2 (en) Interior using deodorant functional fabric and deodorant functional fabric
JP4119963B2 (en) Deodorant manufacturing method
JP2003334453A (en) Interior materials with photocatalyst
JP6966776B2 (en) Adsorbent composition, method for producing adsorptive composition, molded article and building material
KR100983189B1 (en) Solution Manufacture Methods for Exclusion of Sick House Syndrome
JPH09316435A (en) Aerosol composition and soil-and odor-proofing treatment using the same
KR100552324B1 (en) Wall coating material composition for finishing using Pojoran and its manufacturing method
WO2017043359A1 (en) Spray deodorant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4235741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term