JP4235704B2 - 量子干渉計測システム - Google Patents
量子干渉計測システム Download PDFInfo
- Publication number
- JP4235704B2 JP4235704B2 JP2003079916A JP2003079916A JP4235704B2 JP 4235704 B2 JP4235704 B2 JP 4235704B2 JP 2003079916 A JP2003079916 A JP 2003079916A JP 2003079916 A JP2003079916 A JP 2003079916A JP 4235704 B2 JP4235704 B2 JP 4235704B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- beam splitter
- control means
- phase
- light output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Description
【発明の属する技術分野】
本発明は、干渉測定装置に関し、より詳しくは、ケネディ方式を導入し、最適な測定系を実現した干渉測定装置に関する。
【0002】
【従来の技術】
干渉測定機器の感知精度には、プローブフィールドの量子力学的な性質による限界があることが知られている[A. S. Lane, et. al. Phys. Rev. A 47, 1667 (1993)、M. G. Paris, Phys. Let. A 225, 23 (1997)、G. M. D'Ariano, et. al. Phys. Rev. A 65, 062106 (2002)]。従来、この精度限界分析は、量子推定問題に関連して研究されてきた[A. S. Lane, et. al. Phys. Rev. A 47, 1667 (1993)]。最近、この問題はネイマン・ピアスンの基準に基づき、2値決定問題としても扱われている[M. G. Paris, Phys. Let. A 225, 23 (1997)、G. M. D'Ariano, et. al. Phys. Rev. A 65, 062106 (2002)]。この基準は、重力波のような低速の小さい摂動の検知問題にしばしば適用される。精度の限界は、最初のプローブの量子状態と摂動を受けたプローブの量子状態の間の識別能力により決まる。ここで、最初のプローブの量子状態と摂動を受けたプローブの量子状態状態を以下の記号で表す。
【0003】
【0004】
ネイマン・ピアスンの仮説検定[J. Neyman and E. Pearson, Philos. Trans. R. Soc. London, Ser. A 231, 289 (1933)]は、誤認警報の確率P01を固定して、検出確率P11を最大にする手段である。ただし、P11はその量子状態が摂動を受けたプローブとして正しく推定される確率、P01は最初のプローブが摂動を受けなかったにもかかわらず摂動を受けたプローブとして推定される確率である。
【0005】
ここで以下に示すユニタリー演算子により作られる小さい摂動、および純粋量子状態のプローブを考える。検出されるべき小さいパラメータのシフトはgで与えられる。
なお、ユニタリー演算子および純粋量子状態のプローブを以下のように表す。
【0006】
【0007】
この限定された系における最大検出確率は、以下の式(1)に示すとおりであると分析されている[C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)]。
【0008】
【0009】
この一般的な結果を適用して、最小の検出可能な摂動gMが得られている[M. G. Paris, Phys. Let. A 225, 23 (1997)]。摂動を検出するためのP11の最小しきい値は次式で与えられる。
【0010】
【0011】
そのため、式(1)と(2)から与えられたプローブの量子状態に対するgMの値を計算できる。これらの分析は、あるプローブの量子状態における最終的な精度限界の範囲を予測するものである。実用的な測定方式は、ある種のエンタングルされたプローブフィールドの場合だけについて報告されている[G. M. D'Ariano, et. al. Phys. Rev. A 65, 062106 (2002):(下記、非特許文献1)。]。しかしこれらの報告から、より広範な与えられたプローブの量子状態に対して実用的、かつ最適な干渉測定装置の設計方法については何の情報も得られない。
【0012】
コヒーレント状態{|α},|−α}}における2値位相シフト信号の平均誤り率を準最小にする検出手段として、ケネディ方式が提案されている[R. S. Kennedy, Research Laboratory of Electronics, MIT, Quarterly Progress Report No. 108, 219 (1973):(下記、非特許文献2)]。しかしながら、この方式を、干渉測定装置に用いるという発想はなかった。
【0013】
【非特許文献1】
G. M. D'Ariano, et. al. Phys. Rev. A 65, 062106 (2002)
【非特許文献2】
R. S. Kennedy, Research Laboratory of Electronics, MIT, Quarterly Pr ogress Report No. 108, 219 (1973)
【0014】
【発明が解決しようとする課題】
本発明は、測定精度が限界に近づくような干渉測定装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題の少なくともひとつは、以下の発明により解決される。
(1)本発明の第1の態様にかかる発明は、コヒーレント光を発生するためのレーザ光源(16)と、前記レーザ光源から出力されるコヒーレント光の半分の波長を有するポンプ光を発生する第2次高調波発生手段(17)と前記ポンプ光が入力される第1の光パラメトリック増幅器(23)と、前記レーザ光源から出力され、第1のビームスプリッターに入力される光(19)の位相を制御する第1の位相制御手段と(なお、第1の位相制御手段は、好ましくは第1のビームスプリッターに入力される2つの光の位相を同期するように光(19)の位相を制御して、光(30)を出力する。)、前記第1の光パラメトリック増幅器から出力される真空スクイーズド状態の光(21)と、前記第1の位相制御手段によって位相を制御された光(30)とが入力される第1のビームスプリッター(24)と、前記第 1 のビームスプリッターから出力され、第2のビームスプリッターに入力される光の位相を制御する第2の位相制御手段(34)と(なお、第2の位相制御手段は、好ましくは第2のビームスプリッターに入力される2つの光の位相を同期するように光(31)の位相を制御して、光(38)を出力する。)、前記第1のビームスプリッターから出力され測定対象物を通過した光と、前記第2の位相制御手段から出力された光(38)とが入力される第2のビームスプリッターと、前記第2高調波発生手段から出力された(レーザ光源から出力されるコヒーレント光の半分の波長を有する)ポンプ光の位相を制御する第3の位相制御手段と(この第3の位相制御手段により、好ましくは第2のビームスプリッターから出力される光と、レーザ光源から出力されるコヒーレント光の半分の波長を有するポンプ光の位相とが同期するように制御される。)、前記第2のビームスプリッターから出力される光と、前記第3の位相制御手段から出力される光とが入力される第2の光パラメトリック増幅器(28)と、前記第2の光パラメトリック増幅器から出力される光を検出する光検出手段(29)とを具備する干渉測定装置である。
(2)本発明の第2の態様にかかる干渉測定装置は、好ましくは、第1のビームスプリッターにより分割された一方の光の複素振幅をα、もう一方の光の複素振幅をβとし、第2のビームスプリッターの透過率をTとしたときに、次式を満たす。
【数2】
【0021】
すなわち、本発明の干渉測定装置は、いわゆるケネディ方式を導入したことにより、最適な測定系を実現したものである。
(3)本発明の第1の態様にかかる干渉測定装置は、好ましくは、前記光パラメトリック増幅器として、非線形結晶を用いる。
(4)本発明の第1の態様にかかる干渉測定装置は、好ましくは、前記非線形結晶が、KTP(KTiOPO4)結晶である。
(5)本発明の第1の態様にかかる干渉測定装置は、好ましくは、前記第1〜第3の位相制御手段の少なくともひとつ以上が、ミラーの位置及び方向のいずれか又は両方を制御するミラー制御手段である。
(6)本発明の第1の態様にかかる干渉測定装置のミラー制御手段としては、好ましくは圧電素子によってミラーの位置や方向を制御するものである。
【0022】
【発明の実施の形態】
本発明の干渉測定装置は、下記の変位演算子で表される演算をもたらす手段、および光検波手段を含み、いわゆるケネディ方式を採用するものである。
【0023】
【0024】
図1(a)に、本発明の実施態様である干渉測定装置の概略図を示す。この干渉測定機器には、上記の概念が適用されている。すなわち、プローブ光1が所定の摂動2を受けたのかどうかを、光検出手段3により検出する。なお、測定演算子のセットはPOVM(Positive Operator Valued Measure)によって、次の式(3)により与えられる。
【0025】
【0026】
ここで、次式の関係から、警報の確率P01は常にゼロである。
【0027】
【0028】
また、検出確率P11は次式で与えられる。
【0029】
【0030】
これらの確率を予想された限界の式(1)と比較すると、本発明の干渉測定装置は、警報確率がゼロの場合のネイマン・ピアスンの仮説検定に関する最適なPOVMを実現していることが分かる。すなわち、式(4)は式(1)のP11(P01=0)に等しい。従って、式(4)から得られた最小の検出可能な摂動gMは、ネイマン・ピアスンの規範により予想された最終的な限界に達していることがわかる。
【0031】
以下、本発明の好ましい実施態様を説明する。この実施形態の干渉測定装置は、コヒーレント光を光源として用いる系である。この実施態様では、以下の摂動演算子により与えられる小さい位相シフトを検出する。
【0032】
【0033】
この演算子は、干渉測定装置によって検出される位相シフトを表すのに最も一般的な表現である。
まず、プローブフィールドの量子状態として、コヒーレント状態|Ψ0〉=|α〉を考える。αを実数と仮定する。この仮定によって、一般性は失われない。このような系の概要図を、図1(b)に示す。この系では、コヒーレント状態のプローブビーム4がブラックボックス5に入射して、その中できわめて僅かな確率で位相シフトが発生する。検出側では、プローブフィールドは、透過率Tでビームスプリッター6を通過し、光検出器などの光検出手段7で検波されて、そのビームに含まれる光子数がゼロであるか、ゼロ以上の有限の個数であるかを識別する。ビームスプリッターの別のポートから、強い位置演算子|β〉8を入射してプローブフィールドに干渉させる。よく知られているように、T→1およびβ→∞の限界では、ビームスプリッターは以下の変位演算子として働く。
【0034】
【0035】
この際、変位を以下のように調整する。
【0036】
【数3】
ここで、α、βは、それぞれ|α〉、|β〉の複素振幅である。
【0037】
上記の調整は、ビームスプリッターの透過率T、光の複素振幅α、βを調整すればよい。ここで、干渉の確率P11およびP01は、次のように計算される。
【0038】
【0039】
【0040】
【0041】
ただし、〈n〉=|α|2はプローブフィールドの平均光子数である。
【0042】
この系は、例えば、図2に示すように、コヒーレント光を発生するレーザ光源9と、レーザ光源により出力されたコヒーレント光を分割する第1のビームスプリッター10と、測定対象物11と、第1のビームスプリッターにより分割された2つの光をあわせ出力する第2のビームスプリッター12と、第2のビームスプリッターにより出力された光を観測する光検出手段13とを含む干渉測定装置により達成できる。なお、干渉測定装置とは、測定対象物を含まない状態のものをも意味する。
【0043】
第1のビームスプリッターから出力された一方の光は、図2に示されるとおり測定対象物に入力される。そして、位相制御手段により、第2のビームスプリッターに入力される2つの光の位相を同期するように第1のビームスプリッターから出力された測定対象物を通過しない方の光の位相が、制御される。この位相制御手段は、具体的にはミラー14、15及びミラー14、又はミラー15のうち少なくとも一方に設けられたミラー制御手段により達成され、より詳しくはPZTなどの図示しない圧電素子を用いてミラーの位置や方向を制御するミラー制御手段により達成される。
【0044】
図2に示される干渉測定装置は、以下のように作用する。コヒーレント光を発生するレーザ光源により出力されたコヒーレント光は、第1のビームスプリッターにより分割される。分割された一方の光の状態が、|α〉であり、もう一方の光の状態が|β〉である。ビームスプリッターの種類などを制御することで、|α〉と|β〉の複素振幅の大きさを制御することができる。
【0045】
次に、第1のビームスプリッタ−により分割された一方の光|β〉の位相は、位相制御手段(14、15)により位相が制御される。すなわち、光|β〉の位相は、測定対象物11を経た光の位相と同期するように制御される。具体的な位相制御の手段としては、先に説明したとおりひ光|β〉の光通路に設けられたミラー、およびミラーの位置や方向を制御するミラー位置制御手段が挙げられ、より具体的にはPZT(ピエゾ圧電素子)を含むミラー位置制御手段などが挙げられる。
【0046】
第2のビームスプリッターでは、第1のビームスプリッタ−により分割された2つの光があわさり、この際、状態|α〉に、ビームスプリッターの演算効果である以下の変位演算子がかけられ、出力されることとなる。
【0047】
【0048】
この際に、ビームスプリッターの透過率Tや、第1のビームスプリッターによって分割される光の複素振幅などの状態|α〉や|β〉を、下記式を満たすように制御する。
【0049】
【数4】
ここで、α、βは、それぞれ|α〉、|β〉の複素振幅である。
【0050】
このようにすれば、上記のとおり、最適な精度をもった干渉測定装置を得ることができる。そして、第2のビームスプリッターにより出力された光は、光検出手段によって検出される。具体的な光検出器としてはAPD(アバランシェフォトダイオード)などが挙げられる。
【0051】
本発明の別の実施態様を図3に示す。図3において、16はレーザ光源を、17は第2高調波発生装置(非線形結晶など)を、18はレーザ光源からの光を、19は光を、20は第2高調波を、21はプローブ光を、22はポンプ光を、23は光パラメトリック増幅器(非線形結晶)を、24は第1ののビームスプリッターを、25は測定対象物を、26は第2のビームスプリッターを、27は(第2の光パラメトリック増幅器の)ポンプ光を、28は第2の光パラメトリック増幅器(非線形結晶など)を、29は光検出手段を、30は第1の位相制御手段により位相を制御され第1のビームスプリッターに入力される光を、31は光を、32はビームスプリッターを、33はミラーを、34は第1の位相制御手段を、35は第2の位相制御手段を、36は第3の位相制御手段を、37はミラーを、38は第2の位相制御手段により位相を制御され第2のビームスプリッターに入力される光を表す。この実施態様においては、第2高調波発生手段17によりレーザ光源16からの光の第2高調波20が生成する。
この実施形態は、プローブフィールドとして、スクイーズされた光に関するケネディ方式を用いている。このプローブフィールドは、[L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)]に記載されるように下記式によって定義される理想的スクイーズド状態である。
【0052】
【0053】
この実施態様における干渉測定装置は、例えばビームスプリッター24、25、光パラメトリック増幅器(非線形結晶・スクイーザ)23、28、レーザ光源16および光検出器29を含む。光パラメトリック増幅器としては、好ましくは非線形結晶を用いたものであり、非線形結晶としては、好ましくはKTiOPO4(KTP)結晶、βBBO(BaB2O4)結晶、RbTiOAsO4、5%MgO ドープLiNbO3 結晶が挙げられ、これらの中でもより好ましくはKTiOPO4(KTP)結晶である。
ここで、ビームスプリッター、スクイーザのもたらす演算子を以下のように表す。
【0054】
【0055】
上記の光パラメトリック演算子は、図3に示される光パラメトリック増幅器(OPA)により適切に実現される[C. Kim and P. Kumar, Phys. Rev. Let. 73, 1605 (1994)]。オーバーラップκは次の式で与えられる。
【0056】
【0057】
【0058】
【0059】
次に式(2)、(4)および(9)から、最小検出可能位相シフトは以下のとおり得られる。
【0060】
【0061】
ただし、上記の式(10)において、W(x)は、x=ωeωにおけるωの主解で定義される乗積対数関数であり、zは次式で与えられる。
【0062】
【0063】
パワー一定の拘束条件の下において、プローブフィールド中のコヒーレント成分とスクイージング成分の特性を比較できる。
【0064】
【0065】
図4(a)に与えられた〈n〉に関する最小検出可能位相シフトを、以下の場合についてプロットしたものを示す。
【0066】
【0067】
図4(a)では、スクイージングへのパワー投入の比率が増加すると、最小検出可能位相ずれが減少していく。〈n〉=10の場合について、次式で表される最小検出可能位相シフトのパワー分布の比率への依存性のプロットを図4(b)に示すが、ここから、ある一定の比率において検出可能位相シフト量は最小値を持っていることがわかる。
【0068】
【0069】
図5に、与えられた〈n〉に対して最適なパワー分配の比率をプロットしたものを示す。また、そのときに得られる最小検出可能位相シフトと、プローブに真空スクイーズド状態を用いた場合のそれの比較も示す。
【0070】
【0071】
ところで、プローブのパワーが全てスクイージングのために使われた場合、式(10)の最小検出可能位相シフトは次のように簡単になる。
【0072】
【0073】
〈n〉の大きい極限では、最小検出可能位相シフトは1/〈n〉に比例する。この特徴は[A. S. Lane, et. al. Phys. Rev. A 47, 1667 (1993),G. M. D'Ariano, et. al. Phys. Rev. A 65, 062106 (2002)]で記載されたものと類似している。しかし、実用的な面からみると、大きなコヒーレント成分は容易に発生できる。
【0074】
ところで、以下の仮定条件のもとでは、最小検出可能位相シフトは簡単に次式で与えられる。
【0075】
【0076】
【0077】
この式は、大きなコヒーレント振幅成分を持つスクイーズド状態において、スクイージングがどのように小さな位相シフトの検出精度の限界を向上させているかを示している。
【0078】
この実施態様を実現する系としては、図3に示されるように、コヒーレント光を発生するためのレーザ光源(16)と、前記レーザ光源から出力されるコヒーレント光の半分の波長を有するポンプ光を発生する第2次高調波発生手段(17)と、前記ポンプ光が入力される第1の光パラメトリック増幅器(23)と、前記レーザ光源から出力され、第1のビームスプリッターに入力される光(19)の位相を制御する第1の位相制御手段と、(なお、第1の位相制御手段は、第1のビームスプリッターに入力される2つの光の位相を同期するように光(19)の位相を制御して、光(30)を出力する。)前記第1の光パラメトリック増幅器から出力される真空スクイーズド状態の光(21)と、前記第1の位相制御手段によって位相を制御された光(30)とが入力される第1のビームスプリッター(24)と、前記第1のビームスプリッターから出力され、第2のビームスプリッターに入力される光の位相を制御する第2の位相制御手段(34)と(なお、第2の位相制御手段は、第2のビームスプリッターに入力される2つの光の位相を同期するように光(31)の位相を制御して、光(38)を出力する。)、前記第1のビームスプリッターから出力され測定対象物を通過した光と、前記第2の位相制御手段から出力された光(38)とが入力される第2のビームスプリッターと、前記第2高調波発生手段から出力されたレーザ光源から出力されるコヒーレント光の半分の波長を有するポンプ光の位相を制御する第3の位相制御手段と(この第3の位相制御手段により、第2のビームスプリッターから出力される光と、レーザ光源から出力されるコヒーレント光の半分の波長を有するポンプ光の位相とが同期するように制御される。)、前記第2のビームスプリッターから出力される光と、前記第3の位相制御手段から出力される光とが入力される第2の光パラメトリック増幅器(28)と、前記第2の光パラメトリック増幅器から出力される光を検出する光検出手段(29)とを具備する干渉測定装置が挙げられる。
【0079】
先に説明したとおり、この装置においては、2つの光パラメトリック増幅器が、それぞれスクイーズド演算子として機能し、2つのビームスプリッターが以下の演算子として機能する。
【0080】
【0081】
以下、この装置の作用を説明する。スクイーズド光光源から出力されるスクイーズド光と第1のポンプ光光源から出力されるポンプ光とが第1の光パラメトリック増幅器に入力される。すると、真空状態の光|0>に以下の演算子がかけられる。
【0082】
【0083】
光パラメトリック増幅器23から出力された光と、ポンプ光と同位相でスクイーズド光と同じ波長を有し、第1の位相制御手段により位相が同期された光30とが第1のビームスプリッター24に入力される。第1のビームスプリッター24により、光パラメトリック増幅器から出力された光は、以下の演算子がかけられた状態として出力される。
【0084】
【0085】
出力された光は、以下のような理想的なスクイーズド状態となって出力される。
【0086】
【0087】
第1のビームスプリッターから出力された光は、測定対象物25に入力される。そして、第1のビームスプリッター24から出力され、測定対象物を経た光は、第2のビームスプリッター26上で、ポンプ光と同位相でスクイーズド光と同じ波長を有し、第2の位相制御手段により位相が同期された光38と合わさる。この第2のビームスプリッター26により以下の演算子がかけられることとなる。
【0088】
【0089】
そして、第2のビームスプリッター26から出力された光と、第2のポンプ光27とが第2の光パラメトリック増幅器(非線形結晶)28に入力される。第2の光パラメトリック増幅器28は、光に以下の演算子をかけるように機能する。
【0090】
【0091】
第2の光パラメトリック増幅器から出力された光は、光検出手段29により検出される。このようにして、精度のよい干渉測定装置が得られることとなる。
【0092】
この実施態様は、2モードスクイーズド状態のプローブにも直接適用できるが、単一モードスクイーズド状態の適用の場合と比べて、その使用は利点がない。その理由は、干渉測定装置において、単一モードスクイーズド状態の代わりに、2モードスクイーズド状態によるエンタングルメントを使う利点は、技術的な位相変動に対する安定性であると考えられているが[G. M. D'Ariano, et. al. Phys. Rev. A 65, 062106 (2002)]、本発明の干渉測定装置では常に局発光との干渉を必要とするからである。しかし、本発明の干渉測定装置に必要なものは現在適用できる機器だけで、特に、現在利用可能な弱いスクイージングパワーの領域では、光検出器に対する制約がエンタングルメントを用いる方式より緩やかである。すなわち、エンタングルメント方式では、二つのモードの間の光子数の差を検出すると想定され[G. M. D'Ariano, et. al. Phys. Rev. A 65, 062106 (2002)]、検出器に関して光子数を識別する能力が要求されるが、本発明の干渉測定装置では、光子数がゼロまたは非ゼロであるかの識別能力を必要とするに過ぎない。この種の光検出は、現在の技術、たとえばガイガーモードで動作するアバランシェフォトダイオード(APD)などにより実現可能である。実際問題として、APDは量子効果ηと暗電流Idによりパラメータが決められ、後者は誤認警報の確率を高める大きい原因となり、また検出の確率を低下させる。現在市販されている最も良い装置の代表的な数値は、たとえばηが約80%、Idが毎秒50カウントである。
【0093】
【発明の効果】
本発明では、これまで通信理論の分野で研究されていたケネディ検出方式の概念を干渉測定装置に適用した。本発明の干渉測定装置により実現された最終的な精度は、理想的にはネイマン・ピアスンの仮説検定により予測される最終的な精度の限界に達する。
また本発明の干渉測定装置は、コヒーレント状態またはスクイーズ状態などさまざまな与えられたプローブソースに関して適用できる。本発明の干渉測定装置は、特に弱いプローブパワーしか使えない分野において、きわめて小さい信号を高い信頼度で検出できるため、さまざまな用途に応用できる。
【図面の簡単な説明】
【図1】 図1(a)は、ケネディタイプの干渉測定装置の概略図を示す。図1(b)は、干渉プローブフィールドの概要を表す。
【図2】 図2は、本発明の好ましいひとつの実施態様の概略図である。
【図3】 図3は、スクイーズプローブフィールドを用いたケネディタイプによる位相ずれ検出の概要を表す。
【図4】 図4は、最小検出可能位相ずれを表す図である。図4(a)は、全フォトン数〈n〉の場合のスクイーズパワーの比率を表し、図4(b)は、〈n〉=50の場合のスクイーズパワーの比率を表す。
【図5】 与えられた〈n〉に対して最適なパワー分配の比率をプロットしたもの。
【符号の説明】
1 プローブ光
2 摂動
3 光検出手段
4 プローブ光
5 ブラックボックス
6 ビームスプリッター
7 光検出手段
8 位置演算子|β〉
9 レーザ光源
10 第1のビームスプリッター
11 測定対象物
12 第2のビームスプリッター
13 光検出手段
14 ミラー
15 ミラー
16 レーザ光源
17 第2高調波発生手段
18 光
19 光
20 第2高調波
21 真空スクイーズド状態の光
22 ポンプ光
23 光パラメトリック増幅器(非線形結晶)
24 第1ののビームスプリッター
25 測定対象物
26 第2のビームスプリッター
27 ポンプ光
28 第2の光パラメトリック増幅器(非線形結晶)
29 光検出手段
30 光
31 光
32 ビームスプリッター
33 ミラー
34 第1の位相制御手段
35 第2の位相制御手段
36 第3の位相制御手段
37 ミラー
38 光
Claims (6)
- コヒーレント光を発生するためのレーザ光源と、
前記レーザ光源から出力されるコヒーレント光の半分の波長を有するポンプ光を発生する第2次高調波発生手段と、
前記ポンプ光が入力される第1の光パラメトリック増幅器と、
前記レーザ光源から出力され、第1のビームスプリッターに入力される光の位相を制御する第1の位相制御手段と、
前記第1の光パラメトリック増幅器から出力される真空スクイーズド状態の光と、前記第1の位相制御手段によって位相を制御された光とが入力される第1のビームスプリッターと、
前記第1のビームスプリッターから出力され、第2のビームスプリッターに入力される光の位相を制御する第2の位相制御手段と、
前記第1のビームスプリッターから出力され測定対象物を通過した光と、前記第2の位相制御手段から出力された光とが入力される第2のビームスプリッターと、
前記第2高調波発生手段から出力されたポンプ光の位相を制御する第3の位相制御手段と、
前記第2のビームスプリッターから出力される光と、前記第3の位相制御手段から出力される光とが入力される第2の光パラメトリック増幅器と、
前記第2の光パラメトリック増幅器から出力される光を検出する光検出手段とを具備する干渉測定装置。 - 前記光パラメトリック増幅器として、非線形結晶を用いる請求項1に記載の干渉測定装置。
- 前記非線形結晶が、KTP(KTiOPO4)結晶である請求項1に記載の干渉測定装置。
- 前記第1〜第3の位相制御手段の少なくともひとつ以上が、ミラーの位置及び方向のいずれか又は両方を制御するミラー制御手段である請求項1に記載の干渉測定装置。
- 前記ミラー制御手段が、圧電素子によってミラーの位置や方向を制御するものである請求項5に記載の干渉測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003079916A JP4235704B2 (ja) | 2003-03-24 | 2003-03-24 | 量子干渉計測システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003079916A JP4235704B2 (ja) | 2003-03-24 | 2003-03-24 | 量子干渉計測システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004286629A JP2004286629A (ja) | 2004-10-14 |
JP4235704B2 true JP4235704B2 (ja) | 2009-03-11 |
Family
ID=33293912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003079916A Expired - Lifetime JP4235704B2 (ja) | 2003-03-24 | 2003-03-24 | 量子干渉計測システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4235704B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5659048B2 (ja) * | 2011-03-02 | 2015-01-28 | 株式会社日立製作所 | 光検査方法及びその装置 |
CN104167659B (zh) * | 2014-09-05 | 2017-02-15 | 山西大学 | 一种调节泵浦光与单共振光学参量腔模式匹配的方法 |
KR101697822B1 (ko) * | 2014-10-29 | 2017-01-18 | 전남대학교산학협력단 | 고특성을 갖는 중첩된 광자 상태를 조건적으로 발생시키는 광자 상태 발생 장치 및 이에 적용되는 광자 상태 발생 방법 |
CN110631994B (zh) * | 2019-10-24 | 2022-03-11 | 上海复享光学股份有限公司 | 动量空间光学相位测量系统 |
CN112068045B (zh) * | 2020-09-02 | 2023-07-14 | 中国计量大学 | 一种非线性干涉型磁场传感器 |
CN115153453B (zh) * | 2022-09-06 | 2022-12-30 | 山西大学 | 一种量子增强的全光光声信号探测装置及方法 |
-
2003
- 2003-03-24 JP JP2003079916A patent/JP4235704B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004286629A (ja) | 2004-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Marcikic et al. | Time-bin entangled qubits for quantum communication created by femtosecond pulses | |
CN108801476B (zh) | 一种测量时变相位信号的光纤型自适应平衡零拍测量系统 | |
Thekkadath et al. | Measuring the joint spectral mode of photon pairs using intensity interferometry | |
CN106644103B (zh) | 一种直接判别混沌光场光子统计特性的系统及方法 | |
US7046366B2 (en) | Apparatus, method, and program for measuring optical characteristic using quantum interference, and recording medium for recording the program | |
JP4235704B2 (ja) | 量子干渉計測システム | |
Cao et al. | Optical lock-in camera for gravitational wave detectors | |
JPH08211132A (ja) | 電圧測定装置 | |
Münzberg et al. | Fast and efficient demultiplexing of single photons from a quantum dot with resonantly enhanced electro-optic modulators | |
CN116499575A (zh) | 一种电光调制器级联抑制干涉衰落的φ-otdr系统及其工作方法 | |
Volodarsky et al. | Ultrasound detection via low-noise pulse interferometry using a free-space Fabry-Pérot | |
JP4925139B2 (ja) | ディスパーション干渉計及び被測定物の物理量の計測方法 | |
JP4845131B2 (ja) | 量子効率測定方法および装置 | |
Golestani et al. | Electro-optic Fourier transform chronometry of pulsed quantum light | |
Masada | Two-mode squeezed light source for quantum illumination and quantum imaging II | |
Webb et al. | Homodyne measurement of the average photon number | |
Blakely | Quantum illumination with a parametrically amplified idler | |
U'ren et al. | Managing photons for quantum information processing | |
Cameron et al. | Ultrafast measurement of energy-time entanglement with an optical Kerr shutter | |
Wu et al. | Observation of two-photon interference with continuous variables by homodyne detection | |
JP2003270127A (ja) | 光振幅位相時間応答測定装置 | |
JPH11298073A (ja) | 光信号波形測定方法 | |
Wilken | A high-frequency squeezing comb-generation, detection & characterisation | |
Lenhard et al. | Lock-in detection of single photons after two-step frequency conversion | |
JP2012132704A (ja) | ピークパワーモニター装置、およびピークパワーのモニター方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060323 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060323 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4235704 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |