[go: up one dir, main page]

JP4232314B2 - Laminate production method - Google Patents

Laminate production method Download PDF

Info

Publication number
JP4232314B2
JP4232314B2 JP2000087889A JP2000087889A JP4232314B2 JP 4232314 B2 JP4232314 B2 JP 4232314B2 JP 2000087889 A JP2000087889 A JP 2000087889A JP 2000087889 A JP2000087889 A JP 2000087889A JP 4232314 B2 JP4232314 B2 JP 4232314B2
Authority
JP
Japan
Prior art keywords
epoxy resin
woven fabric
prepreg
glass
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000087889A
Other languages
Japanese (ja)
Other versions
JP2001269953A (en
Inventor
英樹 北野
宙 早井
隆久 飯田
恭史 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000087889A priority Critical patent/JP4232314B2/en
Publication of JP2001269953A publication Critical patent/JP2001269953A/en
Application granted granted Critical
Publication of JP4232314B2 publication Critical patent/JP4232314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンポジット積層板の製造方法に関し、ガラス織布とガラス不織布との複合プリプレグを連続的に製造することができ、従って製造工程を短縮することができ、効率のよいコンポジット積層板の製造方法を提供するものである。
【0002】
【従来の技術】
印刷回路基板として、ガラス不織布を中間層基材としガラス織布を表面層基材とし、エポキシ樹脂を含浸させ加熱加圧成形したコンポジット積層板は、従来、ガラス不織布に中間層樹脂を含浸させ乾燥したプリプレグとガラス織布にエポキシ樹脂を含浸させ乾燥したプリプレグをそれぞれ別個に製造し、加熱加圧成形時に重ね合わせて製造されている。
最近、コンポジット積層板の製造において、環境への負荷を小さくする目的から、溶剤使用量の削減、熱エネルギーの低減のために、ガラス織布に溶剤量の少ない樹脂ワニスを塗布し、次いで、溶剤量の少ないペースト状の中間層樹脂を塗布し、さらに、ガラス織布を被せ、溶剤量の少ない樹脂ワニスを塗布し加熱乾燥してプリプレグを作製し、加熱加圧成形してコンポジット積層板を製造することが検討されている。しかし、このような製造方法においては、プリプレグ作製時、加熱乾燥後に中間層樹脂の気泡が残る傾向にあり、この気泡の除去が困難であるという問題があった。プリプレグ中に気泡が残存すると、積層板は、電気絶縁性、耐熱性が低下することとなる。
【0003】
【発明が解決しようとする課題】
このような中間層樹脂層の気泡を低減する方法として、プリプレグ作製時の乾燥する時間を増加させる方法が検討されているが、積層板としての特性に問題ない程度まで乾燥すると、加熱加圧成形後に銅箔とプリプレグの密着性が低下する傾向があった。
かかる問題を解決するために種々検討した結果、ガラス織布の片面側からエポキシ樹脂を塗布し、エポキシ樹脂塗布面にガラス不織布を重ね合わせたのち、ガラス不織布の上から中間層樹脂を塗布し、ガラス織布を被せ、さらに、ガラス不織布に接しない側のガラス織布にエポキシ樹脂を含浸させてプリプレグを作製する方法では、乾燥が不十分でなくても、中間層樹脂に含まれる気泡を低減することができ、加熱加圧成形後に銅箔とプリプレグの密着性を低下させることがない。本発明は、コンポジット積層板の製造方法において、ガラス織布とガラス不織布との複合プリプレグを連続的に製造することにより製造工程を短縮し、かつ銅箔とプリプレグの密着性が低下することなく、乾燥後の中間層樹脂に含まれる気泡を低減することにより、電気絶縁性、耐熱性の良好なコンポジット積層板を効率よく製造することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、ガラス織布の片面側からエポキシ樹脂(a)を塗布し、このエポキシ樹脂塗布面にガラス不織布を重ね合わせ、ガラス不織布の上から中間層エポキシ樹脂(b)を塗布して、さらに、ガラス織布を被せ、ガラス不織布に接しない側からエポキシ樹脂を含浸させてプリプレグを作製し、加熱加圧成形するコンポジット積層板の製造方法、に関するものである。
【0005】
本発明において、プリプレグを得るまでの工程の一例(概略)を図1に示す。
巻き出し装置から巻き出されたガラス織布1の上面にエポキシ樹脂(a)2をワニス状態でコーター3により所定量塗布し、その上面よりガラス不織布4を重ね合わせた後、乾燥装置5を通し溶剤を加熱蒸発させる。加熱乾燥条件は、120〜180℃、1〜5分間程度である。その後、中間層エポキシ樹脂(b)6をコーター7により所定厚み塗布する。コーター7としては、コンマロールコーター、ナイフコーター、ダイスコーター、リバースコーター等がある。中間層樹脂(b)は多量の無機充填材を含有している。充填材の分離を防止し、塗布後に樹脂組成物がガラス不織布中に良好に保持されるために、ワニス粘度を高粘度のペースト状にすることが好ましい。このときの使用される塗布方式は、高粘度材料を塗布できる方式、例えばコンマロールコーター、ナイフコーターが好ましい。従って、中間層樹脂(b)を高粘度のペースト状にすることにより、溶剤使用量は削減され、その後の加熱乾燥に要するエネルギーも少なくなる。その後、中間層エポキシ樹脂(b)6の上にに巻き出し装置から巻き出されたガラス織布10を重ね合わせる。
【0006】
ガラス織布10を重ね合わせる工程の前又は後で、下面のガラス織布1にエポキシ樹脂(c)8を塗布する。この塗布は通常ロールコーター9により行われるが、これに限定されるものではない。更には、ガラス織布10を重ね合わせる工程に次いで、ガラス織布10の上面からエポキシ樹脂(c)をコーター(12)により塗布する。
その後、乾燥装置13を通して加熱乾燥することにより、ガラス織布にガラス不織布が重ね合わされたエポキシ樹脂含浸プリプレグ15を得る。加熱乾燥条件は、120〜180℃、1〜5分間程度である。その後、このプリプレグをカッター14により所定長さに切断する。あるいは、切断しないで連続成形に供することも可能である。
【0007】
【発明の実施の形態】
本発明において、はじめにガラス織布の片面側から塗布されるエポキシ樹脂(a)は、通常の積層板に使用されるエポキシ樹脂であればよく、特に限定されない。エポキシ樹脂(a)は、ワニスとして塗布されるが、固形分は35〜85%が好ましい。チキソ性を付与し樹脂をガラス織布内に十分保持するために微粒子無機充填材をエポキシ樹脂100重量部に対して1〜5重量部配合することが好ましい。1重量部より少ないと微粒子充填材配合の効果が少なく、5重量部より多いとガラス織布への含浸性が低下するようになる。ここで塗布するエポキシ樹脂(a)の量はガラス織布100重量部に対して50〜150重量部が好ましい。50重量部より少ないと中間層樹脂あるいはガラス不織布との密着性が低下し、種々の特性が低下する。150重量部より多いと樹脂分が過剰となり、積層板の熱時特性が低下するようになる。
次いで、ガラス不織布を重ね合わせ、加熱乾燥した後、ガラス不織布の上から中間層エポキシ樹脂(b)を塗布する。ガラス不織布は、通常単位面積当たりの重量25〜150g/m2 のものが使用される。中間層樹脂(b)に使用されるエポキシ樹脂は特に限定されない。中間層樹脂(b)には、熱膨張率の低減、寸法安定性の向上等のために、無機充填材をエポキシ樹脂100重量部に対して80〜150重量部配合したものが好ましい。80重量部未満では前記特性の改善が不十分であり、150重量部を越えると成形性が低下し、熱時特性も低下するようになる。無機充填材としは、水酸化アルミニウム、炭酸カルシウム、クレー、タルク、シリカ等であり、特に限定されない。中間層樹脂(b)の固形分は、通常、65〜95重量%(無機充填材も固形分として計算)で使用可能であり、好ましくは80〜95重量%であり、ペースト状である。充填材含有中間層樹脂(b)の塗布量はガラス不織布100重量部に対して150〜1500重量部が好ましい。150重量部より少ないと熱時特性の低下、プリプレグ間の密着性の低下が生じるようになり、1500重量部より多いと成形性が低下し、熱時特性も低下するようになる。中間層樹脂を塗布した後、ガラス織布を重ね合わる。
【0008】
本発明において、中間層エポキシ樹脂(b)を塗布し、その上面にガラス織布を重ね合わせた後、両面のガラス織布にそれぞれ前記エポキシ樹脂(a)と同様の組成を有するエポキシ樹脂(c)を塗布することが、コンポジット積層板の表面層に樹脂が十分に存在して銅箔との密着性や耐熱性を向上させるために好ましい。エポキシ樹脂(c)の量はガラス織布100重量部に対して20〜100重量部が好ましい。20重量部より少ないと上記効果が小さく、100重量部より多いと樹脂量が多すぎて成形性の低下や寸法安定性の低下等を生じるようになる。
次いで、加熱乾燥してプリプレグを得る。ここで、加熱乾燥条件は140〜180度で1〜5分である。
得られたプリプレグを加熱加圧成形することによりコンポジット積層板が得られる。成形は、通常のコンポジット積層板の成形と同様である。このようにして得られたコンポジット積層板は、銅箔とプリプレグの密着性が低下することなく、乾燥後、プリプレグの中間層樹脂に含まれる気泡を低減することができので、電気絶縁性、耐熱性の良好なものである。
【0009】
【実施例】
以下、本発明について、実施例及び比較例により、具体的に説明する。
ガラス織布(180g/m2 )に塗布するエポキシ樹脂(a),(c)として、ビスフェノ−ルA型エポキシ樹脂としてエピクロン850(エポキシ当量190、大日本インキ(株)製)、臭素化ビスフェノ−ルA型エポキシ樹脂としてGX153(エポキシ当量400、大日本インキ(株)製)、テトラブロムビスフェノ−ルA、ノボラック樹脂としてPR−51470(住友デュレズ(株)製)、硬化促進剤として2−エチル−4−メチルイミダゾ−ルを使用し、無機フィラーとして微粒子シリカ(シオノギ製薬(株)製、カ−プレックス#67)を用い、表1に示した割合にて配合した。溶剤としてアセトンを使用し、固形分70重量%とした。
また、カラス不織布(100g/m2 )に含浸する中間層樹脂(b)として、ビスフェノ−ルA型エポキシ樹脂としてエピクロン850(エポキシ当量190、大日本インキ(株)製)、臭素化ビスフェノ−ルA型エポキシ樹脂としてGX153(エポキシ当量400、大日本インキ化学(株)製)、クレゾ−ルノボラック型エポキシ樹脂として、エピコ−ト180S75(エポキシ当量210、油化シェルエポキシ(株)製)、ノボラック樹脂としてPR−51470(住友デュレズ(株)製)、硬化促進剤として2−エチル−4−メチルイミダゾ−ルを使用し、無機フィラーとして水酸化アルミニウム(住友化学(株)製、CL−310)を用い、表1に示した割合にて配合した。溶剤としてアセトンを使用し、固形分80重量%とした。
【0010】
実施例では、前記エポキシ樹脂(a)をガラス織布に、ガラス織布100重量部に対して100重量部塗布し、その上からガラス不織布を重ね合わせ乾燥した。さらに、その上から中間層樹脂(b)をガラス不織布100重量部に対して1000重量部塗布した。次いで、ガラス織布を重ね合わせ、両面のガラス織布にそれぞれエポキシ樹脂(c)をガラス織布100重量部に対して50重量部塗布し、加熱乾燥してプリプレグと得た。このプリプレグの両表面に銅箔を重ね、加熱加圧成形してコンポジット積層板を得た。
比較例では、前記エポキシ樹脂をガラス織布に塗布し、その上から中間層樹脂を塗布し、さらに、その上からガラス不織布を重ね合わせた。次いでガラス織布の側からエポキシ樹脂(c)を塗布し、加熱乾燥してプリプレグと得た。このプリプレグ2枚をガラス不織布側を内側にして重ね合わせ、さらに、両表面に銅箔を重ね、加熱加圧成形してコンポジット積層板を得た。
なお、樹脂の塗布量はすべて固形分換算であり、実施例と比較例とは同じ量である。
【0011】
【表1】

Figure 0004232314
【0012】
プリプレグ及び成形されたコンポジット積層板について、特性を評価し、表2に示す特性を得た。
【表2】
Figure 0004232314
【0013】
(評価方法)
1.プリプレグの含有気泡量
プリプレグを切断し研磨した断面2×2mmを電子顕微鏡(SEM)写真を撮る。その断面写真について0.2mm格子板を用い、気泡を有する部分の格子面積を測定する。断面における気泡含有部分の格子面積の占める割合を計算し、プリプレグの含有気泡量とする。
○:プリプレグの含有気泡量が30%未満(a)、又は50%未満(b)である。
×:プリプレグの含有気泡量が30%以上(a)、又は50%以上(b)である。
2.電気絶縁性 常態での体積抵抗率をJIS C 6481により測定した。
3.層間密着性 100×100mmの試験片を250℃の雰囲気中にて30分処理後した後、層間ふくれ又は剥離の発生の有無を目視にて観察した。
【0014】
【発明の効果】
本発明の製造方法は、過剰な乾燥を行うことなく、プリプレグの中間層樹脂に含まれる気泡を低減することができるので、銅箔とプリプレグの密着性が低下することなく、電気絶縁性や耐熱性を良好に維持しつつコンポジット積層板を効率良く製造することができ、その工業的価値は極めて大なるものである。
【図面の簡単な説明】
【図1】 本発明において、プリプレグを製造するまでの工程(一例)の概略図である。
【符号の説明】
1 ガラス織布
2 エポキシ樹脂
3 コーター
4 ガラス不織布
5 乾燥装置
6 中間層エポキシ樹脂
7 コーター
8 エポキシ樹脂
9 ロールコーター
10 ガラス織布
11 エポキシ樹脂
12 コーター
13 乾燥装置
14 カッター
15 プリプレグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a composite laminate, which can continuously produce a composite prepreg of a glass woven fabric and a glass nonwoven fabric, thus shortening the production process and producing an efficient composite laminate. A method is provided.
[0002]
[Prior art]
As a printed circuit board, a composite laminate made of glass nonwoven fabric as an intermediate layer base material and glass woven fabric as a surface layer base material, impregnated with epoxy resin and heat-press molded, has been conventionally impregnated with glass nonwoven fabric and dried with intermediate layer resin. The prepreg and the glass woven fabric impregnated with epoxy resin and dried are separately manufactured, and are manufactured by superposing them at the time of heating and pressing.
Recently, in the manufacture of composite laminates, a resin varnish with a small amount of solvent was applied to a glass woven fabric in order to reduce the amount of solvent used and heat energy for the purpose of reducing the burden on the environment. Apply a small amount of paste-like intermediate layer resin, cover with a glass woven cloth, apply a resin varnish with a small amount of solvent, heat and dry to produce a prepreg, and heat and pressure mold to produce a composite laminate To be considered. However, such a manufacturing method has a problem in that bubbles in the intermediate layer resin tend to remain after heat drying during prepreg production, and it is difficult to remove the bubbles. If air bubbles remain in the prepreg, the laminated board will have poor electrical insulation and heat resistance.
[0003]
[Problems to be solved by the invention]
As a method of reducing the bubbles in the intermediate layer resin layer, a method of increasing the drying time at the time of prepreg production has been studied. Later, the adhesion between the copper foil and the prepreg tended to decrease.
As a result of various studies to solve such a problem, after applying an epoxy resin from one side of the glass woven fabric, after overlaying the glass nonwoven fabric on the epoxy resin coated surface, the intermediate layer resin is applied from above the glass nonwoven fabric, The method of covering the glass woven fabric and impregnating the glass woven fabric on the side that is not in contact with the glass nonwoven fabric with the epoxy resin to reduce the bubbles contained in the intermediate layer resin, even if the drying is not sufficient. The adhesiveness between the copper foil and the prepreg is not lowered after the heat and pressure molding. In the method for producing a composite laminate, the present invention shortens the production process by continuously producing a composite prepreg of a glass woven fabric and a glass nonwoven fabric, and without reducing the adhesion between the copper foil and the prepreg, An object is to efficiently produce a composite laminate having good electrical insulation and heat resistance by reducing bubbles contained in the intermediate layer resin after drying.
[0004]
[Means for Solving the Problems]
In the present invention, an epoxy resin (a) is applied from one side of a glass woven fabric, a glass nonwoven fabric is superimposed on the epoxy resin coated surface, an intermediate layer epoxy resin (b) is applied from above the glass nonwoven fabric, Further, the present invention relates to a method for producing a composite laminate in which a glass woven fabric is covered and a prepreg is produced by impregnating an epoxy resin from the side not in contact with the glass nonwoven fabric, followed by heat and pressure molding.
[0005]
In the present invention, an example (outline) of steps to obtain a prepreg is shown in FIG.
A predetermined amount of epoxy resin (a) 2 is applied to the upper surface of the glass woven fabric 1 unwound from the unwinding device by the coater 3 in the varnish state, and the glass nonwoven fabric 4 is superposed on the upper surface, and then passed through the drying device 5. The solvent is evaporated by heating. The heating and drying conditions are 120 to 180 ° C. and about 1 to 5 minutes. Thereafter, the intermediate layer epoxy resin (b) 6 is applied by a coater 7 to a predetermined thickness. Examples of the coater 7 include a comma roll coater, a knife coater, a die coater, and a reverse coater. The intermediate layer resin (b) contains a large amount of an inorganic filler. In order to prevent separation of the filler and to keep the resin composition well in the glass nonwoven fabric after application, it is preferable to make the varnish viscosity into a high-viscosity paste. The application method used at this time is preferably a method capable of applying a high-viscosity material, such as a comma roll coater or a knife coater. Therefore, by using the intermediate layer resin (b) in the form of a high-viscosity paste, the amount of solvent used is reduced, and the energy required for subsequent heating and drying is also reduced. Thereafter, the glass woven fabric 10 unwound from the unwinding device is superimposed on the intermediate layer epoxy resin (b) 6.
[0006]
Before or after the step of overlaying the glass woven fabric 10, the epoxy resin (c) 8 is applied to the glass woven fabric 1 on the lower surface. This application is usually performed by the roll coater 9, but is not limited thereto. Further, following the step of superposing the glass woven fabric 10, an epoxy resin (c) is applied from the upper surface of the glass woven fabric 10 by the coater (12).
Then, the epoxy resin impregnation prepreg 15 in which the glass nonwoven fabric is superimposed on the glass woven fabric is obtained by heating and drying through the drying device 13. The heating and drying conditions are 120 to 180 ° C. and about 1 to 5 minutes. Thereafter, the prepreg is cut into a predetermined length by the cutter 14. Or it is also possible to use for continuous shaping | molding, without cut | disconnecting.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, the epoxy resin (a) apply | coated from the single side | surface side of a glass woven fabric first should just be an epoxy resin used for a normal laminated board, and is not specifically limited. The epoxy resin (a) is applied as a varnish, but the solid content is preferably 35 to 85%. In order to impart thixotropy and sufficiently retain the resin in the glass woven fabric, it is preferable to blend 1 to 5 parts by weight of the fine inorganic filler with respect to 100 parts by weight of the epoxy resin. When the amount is less than 1 part by weight, the effect of blending the fine particle filler is small. When the amount is more than 5 parts by weight, the impregnation property to the glass woven fabric is lowered. The amount of the epoxy resin (a) applied here is preferably 50 to 150 parts by weight with respect to 100 parts by weight of the glass woven fabric. If it is less than 50 parts by weight, the adhesion with the intermediate layer resin or the glass nonwoven fabric is lowered, and various properties are lowered. When the amount is more than 150 parts by weight, the resin content becomes excessive, and the thermal characteristics of the laminate are deteriorated.
Next, the glass nonwoven fabrics are superposed and heated and dried, and then the intermediate layer epoxy resin (b) is applied from above the glass nonwoven fabric. A glass nonwoven fabric having a weight per unit area of 25 to 150 g / m 2 is usually used. The epoxy resin used for the intermediate layer resin (b) is not particularly limited. The intermediate layer resin (b) preferably contains 80 to 150 parts by weight of an inorganic filler with respect to 100 parts by weight of the epoxy resin in order to reduce the coefficient of thermal expansion and improve the dimensional stability. If the amount is less than 80 parts by weight, the improvement of the properties is insufficient, and if the amount exceeds 150 parts by weight, the moldability is lowered and the hot properties are also lowered. Examples of the inorganic filler include aluminum hydroxide, calcium carbonate, clay, talc, and silica, and are not particularly limited. The solid content of the intermediate layer resin (b) is usually 65 to 95% by weight (the inorganic filler is also calculated as the solid content), preferably 80 to 95% by weight, and is in a paste form. The coating amount of the filler-containing intermediate layer resin (b) is preferably 150 to 1500 parts by weight with respect to 100 parts by weight of the glass nonwoven fabric. When the amount is less than 150 parts by weight, the thermal characteristics are deteriorated and the adhesion between the prepregs is lowered. When the amount is more than 1500 parts by weight, the moldability is lowered and the thermal characteristics are also lowered. After applying the intermediate layer resin, the glass woven fabric is overlaid.
[0008]
In the present invention, an intermediate layer epoxy resin (b) is applied, a glass woven fabric is superposed on the upper surface, and then an epoxy resin (c) having the same composition as that of the epoxy resin (a) is formed on both glass woven fabrics. ) Is preferably applied because the resin is sufficiently present on the surface layer of the composite laminate to improve the adhesion to the copper foil and the heat resistance. The amount of the epoxy resin (c) is preferably 20 to 100 parts by weight with respect to 100 parts by weight of the glass woven fabric. When the amount is less than 20 parts by weight, the above effect is small. When the amount is more than 100 parts by weight, the amount of the resin is too large, resulting in a decrease in moldability and a decrease in dimensional stability.
Subsequently, it heat-drys and obtains a prepreg. Here, the heating and drying conditions are 140 to 180 degrees and 1 to 5 minutes.
A composite laminate is obtained by heat-pressing the obtained prepreg. The molding is the same as the molding of a normal composite laminate. The composite laminate obtained in this way can reduce bubbles contained in the intermediate resin of the prepreg after drying without lowering the adhesion between the copper foil and the prepreg. It has good properties.
[0009]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
As epoxy resins (a) and (c) applied to glass woven fabric (180 g / m 2 ), Epicron 850 (epoxy equivalent 190, manufactured by Dainippon Ink Co., Ltd.), brominated bisphenol as bisphenol A type epoxy resin GX153 (epoxy equivalent 400, manufactured by Dainippon Ink Co., Ltd.), tetrabromobisphenol A, PR-51470 (manufactured by Sumitomo Durez Co., Ltd.) as a novolak resin, and 2 as a curing accelerator -Ethyl-4-methylimidazole was used, and fine particle silica (Shionogi Pharmaceutical Co., Ltd., Carplex # 67) was used as the inorganic filler, and blended in the proportions shown in Table 1. Acetone was used as a solvent to a solid content of 70% by weight.
Further, as an intermediate layer resin (b) impregnated into a crow non-woven fabric (100 g / m 2 ), Epicron 850 (epoxy equivalent 190, manufactured by Dainippon Ink Co., Ltd.) as a bisphenol A type epoxy resin, brominated bisphenol GX153 (epoxy equivalent 400, manufactured by Dainippon Ink & Chemicals, Inc.) as type A epoxy resin, Epicoat 180S75 (epoxy equivalent 210, manufactured by Yuka Shell Epoxy Co., Ltd.), novolac resin as cresol novolac type epoxy resin PR-51470 (manufactured by Sumitomo Durez Co., Ltd.), 2-ethyl-4-methylimidazole as the curing accelerator, and aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., CL-310) as the inorganic filler. Used and blended in the proportions shown in Table 1. Acetone was used as the solvent, and the solid content was 80% by weight.
[0010]
In the examples, 100 parts by weight of the epoxy resin (a) was applied to a glass woven fabric with respect to 100 parts by weight of the glass woven fabric, and the glass nonwoven fabric was laminated and dried thereon. Furthermore, 1000 weight part of intermediate | middle layer resin (b) was apply | coated with respect to 100 weight part of glass nonwoven fabric from the top. Next, the glass woven fabric was overlapped, and 50 parts by weight of the epoxy resin (c) was applied to 100 parts by weight of the glass woven fabric on both sides of the glass woven fabric, followed by drying by heating to obtain a prepreg. Copper foil was laminated on both surfaces of this prepreg, and heat-press molding was performed to obtain a composite laminate.
In the comparative example, the epoxy resin was applied to a glass woven fabric, an intermediate layer resin was applied from above, and a glass nonwoven fabric was further stacked thereon. Next, the epoxy resin (c) was applied from the glass woven fabric side and dried by heating to obtain a prepreg. Two prepregs were overlapped with the glass nonwoven fabric side inside, and copper foil was overlapped on both surfaces, followed by heat and pressure molding to obtain a composite laminate.
In addition, all application quantity of resin is conversion of solid content, and an Example and a comparative example are the same quantity.
[0011]
[Table 1]
Figure 0004232314
[0012]
The properties of the prepreg and the molded composite laminate were evaluated, and the properties shown in Table 2 were obtained.
[Table 2]
Figure 0004232314
[0013]
(Evaluation methods)
1. The amount of bubbles contained in the prepreg An electron microscope (SEM) photograph is taken of a 2 × 2 mm cross section obtained by cutting and polishing the prepreg. Using a 0.2 mm grid plate for the cross-sectional photograph, the grid area of the part having bubbles is measured. The ratio of the area of the bubble-containing portion in the cross section to the lattice area is calculated as the amount of bubbles contained in the prepreg.
○: The amount of bubbles contained in the prepreg is less than 30% (a) or less than 50% (b).
X: The amount of bubbles contained in the prepreg is 30% or more (a), or 50% or more (b).
2. Electrical insulation Volume resistivity in a normal state was measured according to JIS C 6481.
3. Interlayer adhesion After treating a 100 × 100 mm test piece in an atmosphere at 250 ° C. for 30 minutes, the presence or absence of occurrence of interlayer swelling or peeling was visually observed.
[0014]
【The invention's effect】
The production method of the present invention can reduce bubbles contained in the intermediate resin of the prepreg without excessive drying, so that the electrical insulating property and heat resistance can be reduced without lowering the adhesion between the copper foil and the prepreg. The composite laminate can be efficiently produced while maintaining good properties, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a schematic view of a process (one example) until a prepreg is manufactured in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass woven fabric 2 Epoxy resin 3 Coater 4 Glass nonwoven fabric 5 Drying device 6 Intermediate layer epoxy resin 7 Coater 8 Epoxy resin 9 Roll coater 10 Glass woven fabric 11 Epoxy resin 12 Coater 13 Drying device 14 Cutter 15 Prepreg

Claims (3)

ガラス織布の片面側からエポキシ樹脂(a)を塗布し、このエポキシ樹脂塗布面にガラス不織布を重ね合わせ、さらに、ガラス不織布の上から中間層エポキシ樹脂(b)を塗布し、さらに、ガラス織布を被してプリプレグを作製し、加熱加圧成形するコンポジット積層板製造方法。An epoxy resin (a) is applied from one side of the glass woven fabric, a glass nonwoven fabric is overlaid on the epoxy resin coated surface, an intermediate layer epoxy resin (b) is applied on the glass nonwoven fabric, and a glass woven fabric is further applied. A method for producing a composite laminate, in which a prepreg is produced by covering a cloth and then heated and pressed. 中間層エポキシ樹脂(b)を塗布したのち、ガラス不織布に接しない側からガラス織布にエポキシ樹脂(c)を含浸させてプリプレグを作製することを特徴とする請求項1記載のコンポジット積層板製造方法。The composite laminate production according to claim 1, wherein after the intermediate layer epoxy resin (b) is applied, the glass woven fabric is impregnated with the epoxy resin (c) from the side not in contact with the glass nonwoven fabric to produce a prepreg. Method. 中間層エポキシ樹脂(b)において、充填材の量がエポキシ樹脂(硬化剤を含む)100重量部に対して50〜150重量部である請求項1又は2記載のコンポジット積層板の製造方法。The method for producing a composite laminate according to claim 1 or 2, wherein in the intermediate layer epoxy resin (b), the amount of the filler is 50 to 150 parts by weight with respect to 100 parts by weight of the epoxy resin (including the curing agent).
JP2000087889A 2000-03-28 2000-03-28 Laminate production method Expired - Fee Related JP4232314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087889A JP4232314B2 (en) 2000-03-28 2000-03-28 Laminate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087889A JP4232314B2 (en) 2000-03-28 2000-03-28 Laminate production method

Publications (2)

Publication Number Publication Date
JP2001269953A JP2001269953A (en) 2001-10-02
JP4232314B2 true JP4232314B2 (en) 2009-03-04

Family

ID=18603836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087889A Expired - Fee Related JP4232314B2 (en) 2000-03-28 2000-03-28 Laminate production method

Country Status (1)

Country Link
JP (1) JP4232314B2 (en)

Also Published As

Publication number Publication date
JP2001269953A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP3119577B2 (en) Laminated board
JP3844109B2 (en) Laminate manufacturing method
JP3011867B2 (en) Manufacturing method of laminated board
JP4784011B2 (en) Laminate production method
JP4232314B2 (en) Laminate production method
JP2003236868A (en) Method for manufacturing composite laminate
JP3998914B2 (en) Laminate production method
JP4238492B2 (en) Laminate production method
JP2002225056A (en) Method for producing composite laminated plate
JP2001269955A (en) Manufacturing method of laminated board
JP4311006B2 (en) Laminate production method
JP4168736B2 (en) Insulating sheet with metal foil and multilayer wiring board for manufacturing multilayer wiring board
JP4206548B2 (en) Laminate production method
JP3129652B2 (en) Manufacturing method of laminated board
JP2003171482A (en) Method for producing composite laminated board
JP4078818B2 (en) Multilayer circuit board manufacturing method
JP3011871B2 (en) Manufacturing method of laminated board
JP3343722B2 (en) Method for producing composite prepreg and laminate
JP3207332B2 (en) Manufacturing method of laminated board
JPH10337785A (en) Manufacture of laminate
JP3354346B2 (en) Manufacturing method of laminated board
JPH09254331A (en) Laminated sheet
JPH04215492A (en) Manufacture of laminated board for printed circuit
JP4273553B2 (en) Laminate production method
TW567139B (en) Composite laminated sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees