JP4229669B2 - Method for measuring temperature characteristics of piezoelectric element plate - Google Patents
Method for measuring temperature characteristics of piezoelectric element plate Download PDFInfo
- Publication number
- JP4229669B2 JP4229669B2 JP2002286199A JP2002286199A JP4229669B2 JP 4229669 B2 JP4229669 B2 JP 4229669B2 JP 2002286199 A JP2002286199 A JP 2002286199A JP 2002286199 A JP2002286199 A JP 2002286199A JP 4229669 B2 JP4229669 B2 JP 4229669B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric element
- plate
- element plate
- crystal
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、圧電素板の形態における発振周波数の周囲温度変化に対する周波数特性を測定するための測定方法に関する。
【0002】
【従来の技術】
圧電素板の代表として水晶材料を用いた物は、天然または人工水晶の結晶から切り取った水晶片として、水晶振動子や水晶共振子のように水晶板の主面に電極を形成した発振素子ではなく、いわゆる圧電素板(業界ではブランクと呼ぶ)の形態のことを言う。
【0003】
この圧電(水晶)素板の主面に電極を形成し、気密封止した後で発振素子として、水晶振動子あるいは水晶共振子としての各種特性評価を行うことが一般的な加工工程、製造工程での流れである。
【0004】
このように水晶振動子の形態にして各種特性を評価することで、極めて正確で安定度が高い水晶振動子を得ることができ、この水晶振動子と半導体素子(ICやトランジスタ)とを組み合わせることで発振器を構成することができる。水晶振動子や水晶発振器は、測定器や送信機をはじめ昨今のブロードバンド関連部品やIT(情報技術)関連部品として多用化されている。
【0005】
また、水晶材料の温度特性に関しては、一般に水晶素板主面の切断角度と相関関係があり水晶振動子、水晶発振器の周波数温度特性を一定の範囲に抑え込むため水晶素板は、その加工中にX線回折法により切断角度を測定し一定の角度偏差内に抑え込む手法が取られている。
【0006】
なお、出願人は、本願明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を本件の出願時までに発見するに至らなかった。
【0007】
【特許文献1】
特開平06−140860号公報
【特許文献2】
特開平09−214270号公報
【0008】
【発明が解決しようとする課題】
上述のように、水晶振動子の温度特性の測定については、圧電(水晶)素板に電極や保持部を付加した状態の水晶振動子の形態にして測定をすることから、保持部の影響を受けることも考えられ、周波数特性の変化が保持状態によるもの(保持により圧電素板に加わるストレスが変化する)の正確な測定も難しい現状にある。
【0009】
このため、水晶振動子の良品検査などにおける評価については、水晶振動子を加工する初期の段階における品質測定の可否が大変重要であると言われていおり、そこで、初期の段階である水晶材料(圧電素板)の状態での温度特性が重要視されてくる。
【0010】
ここで、X線回折法による水晶素板の切断角度測定は、その精度を上げるため真空吸着等の方法で水晶素板を保持し行なう必要がある。しかしながら水晶素板が非常に薄い場合には、真空吸着等で素板を変形させるため精度良く測定が出来ない問題があった。また同時に水晶素板が非常に小型になった場合にも保持が困難となり精度良く測定が出来ないと言う問題があった。
【0011】
また、X線回折法は、また切断角度を測定しているだけであり必要な温度特性を測定しているものではないため切断角度が一定範囲内であっても実際に発振させた場合には寄生振動等の影響で望む温度特性が得られないという課題もあった。
【0012】
そこで本発明は、電極板の間に圧電素板を挟持させて該圧電素板の周波数を測定する周波数測定であって、該圧電素板のままで該電極板に加熱と冷却手段を設けることにより温度を変化させ、周波数を測定しながら温度特性を確認することを特徴とする圧電素板の温度特性測定方法である。要するに前述の発振素子のように圧電素子の主面に電極板を形成し、水晶振動子あるいは水晶共振子の形態に加工する以前での、圧電素板の温度特性を測定する方法である。
【0013】
温度特性をするためには、電極板の間に圧電素板を挟持させた状態で温度を強制的に変化させる必要があるが、本発明ではこの温度変化を実現するために、電極板に設けた加熱と冷却手段としてペルチェ素子を配置することにより実現したものである。
【0014】
従って本発明では、水晶振動子を加工する初期の段階である圧電(水晶)素板の時点における温度特性の確認を実現することにより課題を解決するものである。
そして更には、圧電(水晶)素板に電極や保持部を付加した状態の水晶振動子の形態にして測定をすることが無いために、保持部(保持により圧電素板に加わるストレスが変化が無い)の影響を受けず、周波数の正確な特性測定を可能にできる。
【0015】
従って本願発明により、X線回折法による水晶素板の切断角度測定手法を改善し、測定時の真空吸着等による素板の変形や、水晶素板が非常に小型になった場合の保持による影響など、圧電素板(水晶素板)の状態での温度特性の測定手法を改善することができる。
【0016】
【発明の実施の形態】
以下、添付図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。
図1は本発明の圧電素板2の温度特性測定方法の概念を示した図である。
図1に示すように電極1板の間に圧電素板2を挟持させて、挟持した圧電素板2の周波数を測定する周波数測定系で、圧電素板2自体の温度特性を確認しながら周波数測定を行うための測定系を示したものである。
【0017】
圧電素板2としては一例としてATカット板の水晶材料で、挟持する電極1としては銅材などの金属を用いたものである。図2に示すように、電極1となる金属に挟まれた圧電素板2は、図2に示すように下電極上に圧電素板2が載っており、その上に任意の隙間をあけて、上電極が配置されている。
【0018】
電極1はそれぞれネットワークアナライザーに接続され、圧電素板2自体の特性が測定できる。これらの測定系により、圧電素板2を励振させ、同時に圧電素板2に対し温度変化を加えることで、圧電素板2単体での温度特性を測定することができる。ここで、周波数の測定については、一例としてネットワークアナライザーとコンピュータの組合せなどにより行うものである。
【0019】
また本発明では、挟持する圧電素板2に対し温度変化を加えるために、ペルチェ素子を用いたことを特徴とする。ペルチェ素子とは、p形およびn形半導体の熱伝素子を並列に配置して、電気的に直列に接続して電流を流すと、ペルチェ効果によって、それぞれの面において吸熱と放熱を起こすことができる素子である。このペルチェ素子の吸熱と放熱の動作については、図3に簡単な概念図を示す。
【0020】
図3に示すのは、ペルチェ効果の概念図である。p形およびn形半導体を図示するように熱伝素子を並列に配置して、電気的に直列に接続しその両端に低電圧(数ボルト〜数十ボルト)の電流を流すことによって、片面からもう片面へと熱を移動させる半導体で構成される。要するに片面が冷たくなり吸熱効果を持ち、もう片面が厚くなる放熱効果を持つことになる。この吸熱と放熱の効果を持つペルチェ素子を電極1部に配置することで、簡単に圧電素板2に対し温度変化を加えることができる。
【0021】
上述の圧電素板2の温度特性測定系により、水晶振動子を加工する初期の段階である圧電(水晶)素板の状態における温度特性の確認を実現することができる。
なお、本実施例では圧電素板2を個々の単位で測定する形態で説明しているが、電極を複数個配置することにより、一度に複数個の圧電素板2の測定を行うことができ、測定時間の作業効率を改善できることは言うまでもない。
また、ペルチェ素子により電極部分の温度を変化することを特徴とするが、電極板の間に圧電素板2を挟持させる部分を、補助的に恒温槽など外部の温度雰囲気環境と併用して測定を行っても同様の効果を得ることができる。
【0022】
なお、本願発明の特徴は、圧電素板の状態で温度特性を計るものであり、実施例としては、圧電素板を挟むように電極板を配置して説明するが、特に図示はしないが、圧電素板と電極間に隙間(ギャップ)を設けた測定方法であっても同様の効果を奏することができる。また、本実施例はペルチェ素子を上下の電極の両方に配置しているが、いずれか一方の電極に配置し温度制御を行っても構わない。
【0023】
【発明の効果】
本発明により、圧電素板としての温度特性評価を確認できることから、圧電素板に電極を形成した発振素子、水晶振動子、水晶共振子あるいは水晶発振器の形態にする前の、発振素子としての温度特性評価を確実に行うことにより、製造工程における品質確認作業を低減することができる。また、製造工程や加工工程に圧電素板を投入する絶対量に対し、良品として得られる水晶振動子の取り数を増やすことにより、水晶振動子の総合品質を向上し安定した良品の水晶振動子を製造工程に供給することができる。
【図面の簡単な説明】
【図1】本発明の測定方法の概念図である。
【図2】本発明の電極構造の1実施例を示す電極部の断面図である。
【図3】ペルチェ効果を説明する概念図である。
【符号の説明】
1 電極
2 圧電素板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a measurement method for measuring a frequency characteristic with respect to an ambient temperature change of an oscillation frequency in the form of a piezoelectric element plate.
[0002]
[Prior art]
As a typical piezoelectric element plate, a crystal material is used as an oscillation element in which electrodes are formed on the main surface of a crystal plate, such as a crystal resonator or crystal resonator, as a crystal piece cut from a natural or artificial crystal. Rather, it refers to a so-called piezoelectric element plate (called a blank in the industry).
[0003]
It is a general processing and manufacturing process to perform various characteristics evaluation as a crystal resonator or crystal resonator as an oscillation element after forming electrodes on the main surface of this piezoelectric (quartz) base plate and hermetically sealing This is the flow.
[0004]
By evaluating various characteristics in the form of a crystal resonator in this way, it is possible to obtain an extremely accurate and highly stable crystal resonator, and combining this crystal resonator with a semiconductor element (IC or transistor) The oscillator can be configured with. Crystal resonators and crystal oscillators are widely used as broadband parts and IT (information technology) related parts such as measuring instruments and transmitters.
[0005]
In addition, the temperature characteristics of quartz materials generally have a correlation with the cutting angle of the main surface of the quartz base plate, and the quartz crystal plate is controlled during processing to keep the frequency temperature characteristics of the quartz crystal and crystal oscillator within a certain range. A technique is adopted in which the cutting angle is measured by an X-ray diffraction method and is suppressed within a certain angular deviation.
[0006]
The applicant has not found any prior art documents related to the present invention by the time of filing of the present application other than the prior art documents specified by the prior art document information described in the present specification.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 06-140860 [Patent Document 2]
Japanese Patent Laid-Open No. 09-214270
[Problems to be solved by the invention]
As described above, the temperature characteristics of the crystal unit are measured in the form of a crystal unit with an electrode and a holding unit added to a piezoelectric (quartz) base plate, and the influence of the holding unit is thus affected. However, it is difficult to accurately measure the change in frequency characteristics due to the holding state (the stress applied to the piezoelectric element plate changes due to holding).
[0009]
For this reason, it is said that quality evaluation at the initial stage of processing a crystal unit is very important for evaluation of non-defective products of crystal units. The temperature characteristic in the state of the piezoelectric element plate is regarded as important.
[0010]
Here, it is necessary to measure the cutting angle of the quartz base plate by the X-ray diffraction method by holding the quartz base plate by a method such as vacuum suction in order to increase the accuracy. However, when the quartz base plate is very thin, the base plate is deformed by vacuum suction or the like, so that there is a problem that measurement cannot be performed with high accuracy. At the same time, there is a problem that even when the quartz base plate becomes very small, it is difficult to hold and the measurement cannot be performed with high accuracy.
[0011]
In addition, the X-ray diffraction method only measures the cutting angle and does not measure the necessary temperature characteristics, so when the oscillation is actually oscillated even if the cutting angle is within a certain range. There was also a problem that desired temperature characteristics could not be obtained due to the influence of parasitic vibration or the like.
[0012]
Therefore, the present invention is a frequency measurement in which a piezoelectric element plate is sandwiched between electrode plates and the frequency of the piezoelectric element plate is measured, and the temperature is obtained by providing heating and cooling means on the electrode plate as it is. This is a method for measuring the temperature characteristics of a piezoelectric element plate, wherein the temperature characteristics are confirmed while measuring the frequency. In short, this is a method of measuring the temperature characteristics of the piezoelectric element plate before forming an electrode plate on the main surface of the piezoelectric element like the above-described oscillation element and processing it into the form of a crystal resonator or a crystal resonator.
[0013]
In order to achieve temperature characteristics, it is necessary to forcibly change the temperature with the piezoelectric element plate sandwiched between the electrode plates. In the present invention, in order to realize this temperature change, heating provided to the electrode plate is required. And a Peltier element as a cooling means.
[0014]
Therefore, the present invention solves the problem by realizing confirmation of temperature characteristics at the time of the piezoelectric (quartz) element plate, which is the initial stage of processing the crystal resonator.
Furthermore, since there is no measurement in the form of a crystal resonator in which an electrode or a holding portion is added to a piezoelectric (quartz) base plate, the stress applied to the piezoelectric base plate due to the holding is changed. It is possible to measure the frequency characteristics accurately.
[0015]
Therefore, according to the present invention, the method of measuring the cutting angle of the quartz base plate by the X-ray diffraction method is improved, the deformation of the base plate due to vacuum suction or the like at the time of measurement, and the effect of holding when the quartz base plate becomes very small Thus, it is possible to improve the temperature characteristic measurement technique in the state of the piezoelectric element plate (crystal element plate).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. In each figure, the same numerals indicate the same objects.
FIG. 1 is a view showing the concept of the temperature characteristic measuring method of the piezoelectric element plate 2 of the present invention.
As shown in FIG. 1, a frequency measurement system that sandwiches a piezoelectric element plate 2 between electrode plates and measures the frequency of the sandwiched piezoelectric element plate 2 and measures the frequency while checking the temperature characteristics of the piezoelectric element plate 2 itself. The measurement system for performing is shown.
[0017]
As an example, the piezoelectric element plate 2 is a crystal material of an AT cut plate, and the sandwiched electrode 1 is a metal such as a copper material. As shown in FIG. 2, the piezoelectric element plate 2 sandwiched between the metal to be the electrodes 1 has the piezoelectric element plate 2 mounted on the lower electrode as shown in FIG. The upper electrode is arranged.
[0018]
Each electrode 1 is connected to a network analyzer, and the characteristics of the piezoelectric element plate 2 itself can be measured. The temperature characteristics of the piezoelectric element 2 itself can be measured by exciting the piezoelectric element 2 with these measurement systems and simultaneously applying a temperature change to the piezoelectric element 2. Here, the frequency measurement is performed by a combination of a network analyzer and a computer as an example.
[0019]
Further, the present invention is characterized in that a Peltier element is used to apply a temperature change to the sandwiched piezoelectric element plate 2. Peltier elements are p-type and n-type semiconductor heat transfer elements arranged in parallel and electrically connected in series to cause current to flow, causing heat absorption and heat dissipation on each surface due to the Peltier effect. It is a possible element. The operation of heat absorption and heat dissipation of this Peltier element is shown in a simple conceptual diagram in FIG.
[0020]
FIG. 3 is a conceptual diagram of the Peltier effect. As shown in the figure, p-type and n-type semiconductors are arranged in parallel, electrically connected in series, and a low voltage (several volts to several tens of volts) is applied to both ends thereof, so that one side can be used. Consists of a semiconductor that transfers heat to the other side. In short, one side becomes cold and has an endothermic effect, and the other side becomes thicker and has a heat dissipation effect. A temperature change can be easily applied to the piezoelectric element plate 2 by arranging the Peltier element having the effect of heat absorption and heat dissipation in the electrode 1 part.
[0021]
By the temperature characteristic measurement system of the piezoelectric element plate 2 described above, confirmation of the temperature characteristic in the state of the piezoelectric (quartz) element plate, which is the initial stage of processing the crystal resonator, can be realized.
In the present embodiment, the piezoelectric element plate 2 is measured in an individual unit. However, a plurality of piezoelectric element plates 2 can be measured at a time by arranging a plurality of electrodes. Needless to say, the working efficiency of the measurement time can be improved.
In addition, the temperature of the electrode part is changed by the Peltier element, but the part where the piezoelectric element plate 2 is sandwiched between the electrode plates is supplementarily used in combination with an external temperature atmosphere environment such as a thermostatic bath. However, the same effect can be obtained.
[0022]
The feature of the present invention is that the temperature characteristic is measured in the state of the piezoelectric element plate, and as an example, the electrode plate is arranged so as to sandwich the piezoelectric element plate, but not particularly illustrated, The same effect can be obtained even with a measurement method in which a gap (gap) is provided between the piezoelectric element plate and the electrode. In this embodiment, the Peltier elements are arranged on both the upper and lower electrodes, but the temperature control may be performed by arranging them on either one of the electrodes.
[0023]
【The invention's effect】
According to the present invention, since the temperature characteristic evaluation as a piezoelectric element plate can be confirmed, the temperature as an oscillation element before forming an oscillation element, a crystal resonator, a crystal resonator, or a crystal oscillator in which an electrode is formed on the piezoelectric element plate. By performing the characteristic evaluation reliably, the quality confirmation work in the manufacturing process can be reduced. In addition, by increasing the number of crystal units that can be obtained as non-defective products compared to the absolute amount of piezoelectric element plates used in manufacturing and processing processes, the overall quality of crystal units can be improved and stable crystal units. Can be supplied to the manufacturing process.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a measurement method of the present invention.
FIG. 2 is a cross-sectional view of an electrode portion showing an embodiment of the electrode structure of the present invention.
FIG. 3 is a conceptual diagram illustrating the Peltier effect.
[Explanation of symbols]
1 Electrode 2 Piezoelectric element plate
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002286199A JP4229669B2 (en) | 2002-09-30 | 2002-09-30 | Method for measuring temperature characteristics of piezoelectric element plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002286199A JP4229669B2 (en) | 2002-09-30 | 2002-09-30 | Method for measuring temperature characteristics of piezoelectric element plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004128592A JP2004128592A (en) | 2004-04-22 |
JP4229669B2 true JP4229669B2 (en) | 2009-02-25 |
Family
ID=32279313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002286199A Expired - Fee Related JP4229669B2 (en) | 2002-09-30 | 2002-09-30 | Method for measuring temperature characteristics of piezoelectric element plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4229669B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7495607B2 (en) * | 2020-05-21 | 2024-06-05 | 富士通株式会社 | Balanced disk resonator, dielectric characteristic measuring method and dielectric characteristic measuring system |
-
2002
- 2002-09-30 JP JP2002286199A patent/JP4229669B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004128592A (en) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6879924B2 (en) | Method and apparatus for monitoring integrated circuit fabrication | |
Choi et al. | Thermometry of AlGaN/GaN HEMTs using multispectral raman features | |
US5200714A (en) | Crystal oscillator with quartz vibrator having temperature detecting faculty, quartz vibrator for use therein, and method of measuring temperature using quartz vibrator | |
CN102769443B (en) | Piezoelectric vibrating piece, piezoelectric device comprising piezoelectric vibrating piece, and method for manufacturing piezoelectric device | |
US11509283B2 (en) | Resonance device | |
JP4229669B2 (en) | Method for measuring temperature characteristics of piezoelectric element plate | |
Kim et al. | Oven-based thermally tunable aluminum nitride microresonators | |
JP2007288518A (en) | Frequency adjusting method of piezoelectric vibrator and frequency adjusting device of piezoelectric vibrator | |
US20070068265A1 (en) | Pressure sensor | |
JP4534482B2 (en) | Quartz crystal selection method, crystal vibrating piece and crystal device manufacturing method | |
KR101629520B1 (en) | Manufacturing method of glass-sealed package, and glass substrate | |
Spassov et al. | Short-and long-term stability of resonant quartz temperature sensors | |
JP4704822B2 (en) | Crystal unit electrode structure | |
Lee et al. | Electrostatic-tuning of hermetically encapsulated composite resonator | |
US7428851B2 (en) | Sensor arrays based on electronic oscillators | |
Schulz et al. | Electromechanical properties of housed piezoelectric CTGS resonators at high temperatures–Modeling of housing influence | |
Clement et al. | Frequency response of AlN-based solidly mounted resonators under mechanical stress | |
JP4532212B2 (en) | Inspection method for piezoelectric / electrostrictive device set | |
JP5326219B2 (en) | Method for measuring frequency of piezoelectric vibration element | |
US6772491B2 (en) | Manufacturing method for ceramic oscillator | |
CN115580260A (en) | A thermostatically controlled micromechanical resonator, its thermostatically controlled method, and its preparation method | |
JP2007043549A (en) | Frequency adjustment method of piezo-electric oscillating element and frequency adjustment device of piezo-electric oscillating element | |
JP2002026674A (en) | Method for manufacturing quartz vibrator | |
CN118776646A (en) | Quartz crystal microbalance for measuring wafer and its wafer temperature | |
JP2004309452A (en) | Inspection device and inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |