[go: up one dir, main page]

JP4228898B2 - Construction method of underground cavity - Google Patents

Construction method of underground cavity Download PDF

Info

Publication number
JP4228898B2
JP4228898B2 JP2003405346A JP2003405346A JP4228898B2 JP 4228898 B2 JP4228898 B2 JP 4228898B2 JP 2003405346 A JP2003405346 A JP 2003405346A JP 2003405346 A JP2003405346 A JP 2003405346A JP 4228898 B2 JP4228898 B2 JP 4228898B2
Authority
JP
Japan
Prior art keywords
tunnel
underground
construction method
underground cavity
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003405346A
Other languages
Japanese (ja)
Other versions
JP2005163427A (en
Inventor
好信 居相
洋一 守屋
賢治 秋好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003405346A priority Critical patent/JP4228898B2/en
Publication of JP2005163427A publication Critical patent/JP2005163427A/en
Application granted granted Critical
Publication of JP4228898B2 publication Critical patent/JP4228898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

この発明は、地下空洞の構築工法に関し、特に、地下30m以下の大深度に鉄道,道路用などのトンネルや大空洞などの地下空洞を構築する工法に関するものである。   The present invention relates to a construction method for underground cavities, and particularly to a construction method for constructing underground cavities such as tunnels and large cavities for railways and roads at a depth of 30 m or less underground.

首都圏などの都市部において、地下30m以下の大深度に鉄道,道路用などのトンネルや大空洞などの地下空洞を構築する場合に、最も大きな問題となるのは、地質条件である。   In urban areas such as the Tokyo metropolitan area, the most serious problem is the construction of underground cavities such as tunnels and large cavities for railways and roads at a depth of 30 m or less.

すなわち、地域差があるものの、例えば、東京都では、GL−30m程度までは、沖積,洪積砂層であり、地下水位が高く、強度は、殆ど期待できない地層である。   That is, although there are regional differences, for example, in Tokyo, up to about GL-30m, alluvial and diluvial sand layers are high, groundwater levels are high, and strength is hardly expected.

それ以深は、第三紀の未固結砂層,N値が50前後の土丹層である場合が多い。このような土丹層にトンネルなどの地下空洞を構築する場合、地下鉄トンネルの構築などにより広く採用されているシールド工法により、このような地下空洞を構築することが考えられるが、シールド工法の場合には、工費が高くなるという欠点がある。   Deeper than that, there are many cases of Tertiary unconsolidated sand layer, Dotan Formation with N value around 50. When constructing an underground cavity such as a tunnel in such a Dotan Formation, it is conceivable to construct such an underground cavity by a shield method widely used for constructing a subway tunnel, etc. Has the disadvantage of high construction costs.

一方、山岳トンネル工法(NATM)により、地下空洞を構築する場合には、シールド工法よりも安価に構築することができるが、このような工法により地下空洞を構築する際には、以下に説明する課題があった。   On the other hand, when an underground cavity is constructed by the mountain tunnel construction method (NATM), it can be constructed at a lower cost than the shield construction method. However, when an underground cavity is constructed by such a construction method, it will be described below. There was a problem.

すなわち、山岳トンネル工法で地下空洞を構築する場合には、空洞掘削に伴う地下水位の低下や、応力開放に伴う地山の変形が、周辺環境に及ぼす影響が懸念される。   In other words, when an underground cavity is constructed by the mountain tunnel construction method, there is a concern about the influence of the lowering of the groundwater level due to the excavation of the cavity and the deformation of the natural ground due to the stress release on the surrounding environment.

また、このような工法で地下空洞を構築する際には、止水注入や、長尺先受け,地山改良などの補助工法が必要となり、工費,工期がともに増大する要因となるだけでなく、前述したリスクを完全に解消することが困難であった。   In addition, when constructing an underground cavity with such a construction method, auxiliary construction methods such as water stop injection, long tip receiving, and natural ground improvement are required, which not only causes an increase in both construction cost and construction period. It was difficult to completely eliminate the aforementioned risks.

このような技術的な課題を解決すべく、本出願人は、周辺環境に及ぼす影響を可及的に低減しつつ、補助工法の採用規模を低減することができる大深度地下空洞の構築工法を開発して、特願2002−293169号で出願している。
しかしながら、この出願にかかる構築工法には、以下に説明する課題があった。
In order to solve such technical problems, the present applicant has developed a construction method for deep underground cavities that can reduce the scale of the auxiliary construction method while reducing the impact on the surrounding environment as much as possible. It has been developed and applied for in Japanese Patent Application No. 2002-293169.
However, the construction method according to this application has the following problems.

すなわち、先の出願にかかる構築工法では、構築しようとする地下空洞の側部に沿って、地上から止水性を備えた連続壁を対向するように形成した後に、連続壁間を掘削して、掘削された掘削壁面に沿って支保工を設置して、所定形状の地下空洞とするので、周辺環境への影響や補助工法の規模の低減が可能になるものの、地上から連続壁を形成するので、地表面周辺に既設構造物,主要交通施設,文化財など移築することが困難な構造物が存在している場合には、連続壁の構築ができないという問題があった。   That is, in the construction method according to the previous application, along the side of the underground cavity to be constructed, after forming the continuous walls with water-stopping from the ground to face each other, excavate between the continuous walls, Since a support work is installed along the excavated wall surface to create an underground cavity with a predetermined shape, the impact on the surrounding environment and the scale of the auxiliary method can be reduced, but a continuous wall is formed from the ground. When there are structures that are difficult to relocate, such as existing structures, major transportation facilities, and cultural properties around the ground surface, there is a problem that continuous walls cannot be constructed.

本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、地表側の構造物に影響を受けることなく施工することができる地下空洞の構築工法を提供することにある。   The present invention has been made in view of such conventional problems, and the object of the present invention is a construction method of an underground cavity that can be constructed without being affected by the structure on the ground surface side. It is to provide.

上記目的を達成するために、本発明は、地下30m以下の大深度に鉄道,道路用などのトンネルや大空洞などの地下空洞を構築する工法において、構築しようとする前記地下空洞の側部上方延長線上の地中にシールドトンネルを構築し、前記シールドトンネル内から止水性を備えた連続壁を対向するように所定深度まで形成した後に、前記連続壁間を掘削して、掘削された掘削壁面に沿って支保工を設置して、所定形状の地下空洞とする構築工法であって、前記連続壁は、H型鋼などの芯材を挿入したソイルセメント柱体などの柱列壁から構成され、前記芯材は、前記地下空洞が構築される地盤中の地下水位よりも上端が深くなるように挿入するIn order to achieve the above object, the present invention provides a method for constructing underground cavities such as tunnels and large cavities for railways and roads at a depth of 30 m or less below the side of the underground cavities to be constructed. After constructing a shield tunnel in the ground on the extension line and forming a continuous wall with water-stopping property from the inside of the shield tunnel to a predetermined depth so as to face each other, excavating between the continuous walls and excavating A construction method in which a support is installed along a wall surface to form an underground cavity having a predetermined shape, and the continuous wall is composed of a column wall such as a soil cement column having a core material such as H-shaped steel inserted therein. The core material is inserted so that the upper end is deeper than the groundwater level in the ground where the underground cavity is constructed .

このように構成した地下空洞の構築工法によれば、構築しようとする地下空洞の側部上方延長線の地中にシールドトンネルを構築し、シールドトンネル内から止水性を備えた連続壁を対向するように所定深度まで形成した後に、連続壁間を掘削して、掘削された掘削壁面に沿って支保工を設置して、所定形状の地下空洞とするので、連続壁の外側の地下水は、連続壁で遮断されて、内部を掘削する際に影響を及ぼさないし、地下水位の低下も発生しない。   According to the construction method of the underground cavities constructed in this way, a shield tunnel is constructed in the ground of the side upper extension line of the underground cavity to be constructed, and a continuous wall with waterstop is opposed from the inside of the shield tunnel. After forming to a predetermined depth as described above, excavating between the continuous walls and installing a support along the excavated wall surface to form an underground cavity of a predetermined shape, the groundwater outside the continuous wall is continuous It is blocked by the wall and does not affect the excavation of the interior, nor does it cause a drop in groundwater level.

また、連続壁間を掘削した際の応力開放の影響は、連続壁間に留まり、周辺環境に及ぼす影響も極めて限定した範囲になり、補助工法を採用する場合も、規模を大幅に縮小することができる。   In addition, the effect of stress release when excavating between continuous walls stays between the continuous walls and the effect on the surrounding environment is also extremely limited. Even when the auxiliary method is adopted, the scale should be greatly reduced. Can do.

さらに、連続壁は、構築しようとする地下空洞の側部上方延長線の地中にシールドトンネルを構築し、シールドトンネル内から所定深度まで形成するので、地表側の構造物などに何ら影響を及ぼさず、また、地表側の構造物に影響を受けることなく形成することができる。   In addition, the continuous wall is constructed from the inside of the shield tunnel to a predetermined depth in the ground of the upper extension line of the side of the underground cavity to be constructed, so it has no influence on the structure on the surface side. In addition, it can be formed without being affected by the structure on the ground surface side.

前記連続壁間を掘削する際には、掘削断面の上部側に、フォアポーリングなどの先受け工を設けることができる。   When excavating between the continuous walls, a leading work such as fore poling can be provided on the upper side of the excavation cross section.

前記連続壁は、先端が前記地下空洞の構築深度よりも以深になるように形成することができる。   The continuous wall can be formed such that the tip is deeper than the construction depth of the underground cavity.

前記地下空洞は、鉄道,道路用などのトンネルであって、前記柱列連続壁を構築しようとするトンネルの側部に沿って対向形成し、前記柱列連続壁間を天井部がアーチ状になるように掘削して、掘削された壁面にアーチ形状の上半支保工を設置して、前記柱列連続壁が前記トンネルの側壁となるようにすることができる。   The underground cavities are tunnels for railways, roads, and the like, and are formed to face each other along the side of the tunnel in which the column row continuous wall is to be constructed, and the ceiling portion is arched between the column row continuous walls. The arch-shaped upper half supporting work is installed on the excavated wall surface so that the columnar row continuous wall becomes the side wall of the tunnel.

前記上半支保工は、その両端を前記柱列連続壁の芯材に係止固定することができる。   The upper half support can be locked and fixed at both ends thereof to the core material of the columnar continuous wall.

本発明にかかる地下空洞の構築工法によれば、地表側の構造物などに何ら影響を及ぼさず、また、地表側の構造物に影響を受けることなく、周辺環境に及ぼす影響を可及的に低減しつつ、補助工法の採用規模を低減することができる。   According to the construction method of an underground cavity according to the present invention, the influence on the surrounding environment is made as much as possible without affecting the structure on the surface side and without being affected by the structure on the surface side. While reducing, the adoption scale of an auxiliary construction method can be reduced.

以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1から図6は、本発明にかかる大深度地下空洞の構築工法の一実施例を示している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. 1 to 6 show an embodiment of a construction method for a deep underground cavity according to the present invention.

これらの図に示した実施例は、本発明を鉄道ないしは道路用の地下トンネル10を構築する場合に適用した例であり、地下トンネル10は、地下約40m以下の大深度に構築される。   The embodiments shown in these drawings are examples in which the present invention is applied to the construction of an underground tunnel 10 for railways or roads. The underground tunnel 10 is constructed at a large depth of about 40 m or less underground.

本実施例の場合、地下トンネル10を構築する地盤は、図1に示すように、地表側に沖積,洪積砂層Aが比較的厚く堆積し、その下に第三紀層Bがあって、この第三紀層Bの下に土丹層Cがあり、この土丹層Cに地下トンネル10が構築される。   In the case of the present embodiment, as shown in FIG. 1, the ground for constructing the underground tunnel 10 has an alluvial and diluvial sand layer A deposited relatively thick on the surface side, and a Tertiary layer B below it. Under the Tertiary layer B, there is a Dotan layer C, and an underground tunnel 10 is constructed in the Dotan layer C.

地下トンネル10を構築する際には、まず、図2,3に示すように、シールドトンネル11が構築される。シールドトンネル11は、図示省略の立坑から発進されたシールド掘進機により、セグメント11aを環状に組立てることにより形成される。   When constructing the underground tunnel 10, first, the shield tunnel 11 is constructed as shown in FIGS. The shield tunnel 11 is formed by assembling the segments 11a in an annular shape by a shield machine started from a vertical shaft (not shown).

このシールドトンネル11は、構築しようとする地下トンネル10(地下空洞)の両側部の上方延長線上に、円形断面のトンネル中心Oが位置するようにして、所定の間隔を隔てて一対形成される。   A pair of shield tunnels 11 are formed at a predetermined interval so that the tunnel center O having a circular cross section is positioned on the upper extension line on both sides of the underground tunnel 10 (underground cavity) to be constructed.

一対のシールドトンネル11は、本実施例の場合には、地表側に沖積,洪積砂層Aに位置するようにして、ほぼ同じ深度で、ほぼ平行になるように構築され、シールドトンネル11間の間隔は、地下トンネル10の幅とほぼ同じ長さになっている。各シールドトンネル11は、構築しようとする地下トンネル10の延長線と同じ長さに形成される。   In the case of the present embodiment, the pair of shield tunnels 11 are constructed so as to be located in the alluvial and diluvial sand layer A on the ground surface side and substantially parallel at the same depth, and between the shield tunnels 11. The interval is almost the same length as the width of the underground tunnel 10. Each shield tunnel 11 is formed to have the same length as the extension line of the underground tunnel 10 to be constructed.

以上のようなシールドトンネル11が構築されると、その内部側から止水性の連続壁12が形成される。連続壁12を構築する際には、各シールドトンネル11のインバート部のセグメント11aを除去し、地盤を掘削することにより、連続壁12がシールドトンネル11の延長方向に沿って、その全長に亘って構築される。   When the shield tunnel 11 as described above is constructed, a water-stopping continuous wall 12 is formed from the inside thereof. When the continuous wall 12 is constructed, the inverted segment 11a of each shield tunnel 11 is removed and the ground is excavated so that the continuous wall 12 extends along the extending direction of the shield tunnel 11 over its entire length. Built.

連続壁12は、構築しようとする地下トンネル10の側部に沿って、一対が所定の間隔を隔てて、対向するように形成される。本実施例の場合、連続壁12は、円柱形状のソイルセメント柱体14を、横方向に連結形成した柱列壁から構成されている。ソイルセメント柱体14は、現地盤を混合攪拌しながら、セメントミルクなどの固結剤を注入して、固化させたものであって、その内部には、H型鋼などの芯材16が挿入されている。   The continuous walls 12 are formed so that a pair of the continuous walls 12 face each other at a predetermined interval along the side portion of the underground tunnel 10 to be constructed. In the case of the present embodiment, the continuous wall 12 is composed of a columnar wall in which columnar soil cement columns 14 are connected and formed in the horizontal direction. The soil cement column 14 is obtained by injecting a solidifying agent such as cement milk while mixing and stirring the local board, and a core material 16 such as H-shaped steel is inserted therein. ing.

ソイルセメント柱体14は、横方向で、円形断面の端部同士が相互にオーバーラップするように形成され、固結剤を固化させることにより止水性の連続壁12が形成される。なお、このような柱体14を形成するための掘削機械などは、シールドトンネル11の直径内に収まるものが用いられる。   The soil cement pillar 14 is formed so that the ends of the circular cross section overlap each other in the lateral direction, and the water-stopping continuous wall 12 is formed by solidifying the solidifying agent. As the excavating machine or the like for forming such a column 14, a machine that fits within the diameter of the shield tunnel 11 is used.

本実施例の場合、連続壁12は、先端が地下トンネル10の構築深度Lよりも深い深度まで到達するように形成され、芯材16は、その下端から上方に延設され、上端が地下水位WLよりも深い位置になるように挿入設置されている。   In the case of the present embodiment, the continuous wall 12 is formed so that the tip reaches a depth deeper than the construction depth L of the underground tunnel 10, and the core material 16 extends upward from the lower end, and the upper end is the groundwater level. It is inserted and installed so as to be deeper than WL.

このような位置に芯材16を挿入設置しておくと、以下の効果がある。すなわち、地下トンネル10の構築後に、連続壁12の前後で地下水の流通性を確保する必要がある場合には、連続壁12の止水性を喪失させる必要がある。   If the core material 16 is inserted and installed at such a position, the following effects are obtained. That is, after the construction of the underground tunnel 10, when it is necessary to ensure the flowability of the groundwater before and after the continuous wall 12, it is necessary to lose the water stoppage of the continuous wall 12.

この場合に、芯材16の上端が地下水位WLより深くしておくと、例えば、連続壁12のソイルセメント柱体14を破壊して、止水性を喪失させる際などに、この作業が容易に行えることになる。   In this case, if the upper end of the core material 16 is made deeper than the groundwater level WL, for example, when the soil cement pillar 14 of the continuous wall 12 is destroyed and the water stoppage is lost, this work is easily performed. You can do it.

以上のような連続壁12の形成が終了すると、次に、連続壁12間の掘削が行われる。この掘削は、例えば、予め所定の個所に、地下トンネル10の構築深度に達する立坑を設け、立坑内から地下トンネル10の構築予定個所の掘削を行うようにする。   When the formation of the continuous wall 12 as described above is completed, excavation between the continuous walls 12 is performed. In this excavation, for example, a shaft that reaches the construction depth of the underground tunnel 10 is provided in advance at a predetermined location, and the construction site of the underground tunnel 10 is excavated from within the shaft.

本実施例では、地下トンネル10の掘削に先立って、図4に示すように、フォアポーリング18の打設が行われる。なお、図1ないしは4に示した状態は、シールドトンネル11の構築個所までは、通常のNATM工法によりトンネルが構築されているものとする。   In the present embodiment, prior to excavation of the underground tunnel 10, as shown in FIG. In the state shown in FIGS. 1 to 4, it is assumed that the tunnel is constructed by the normal NATM construction method up to the construction site of the shield tunnel 11.

フォアポーリング18は、地下トンネル10の天井部のアーチ形状に沿って、トンネル断面方向に所定の間隔を隔てて、切羽の前方に所定の長さが突出するように設定される。   The fore-poling 18 is set so that a predetermined length protrudes ahead of the face along the arch shape of the ceiling portion of the underground tunnel 10 with a predetermined interval in the tunnel cross-sectional direction.

フォアポーリング18の打設が終了すると、次に、地下トンネル10の断面空間の掘削が行われるが、本実施例では、この際に、まず、トンネルの上半掘削20が実施される。   When the forepoling 18 is finished, next, excavation of the cross-sectional space of the underground tunnel 10 is performed. In this embodiment, first, the upper half excavation 20 of the tunnel is performed.

上半掘削20は、構築する地下トンネル10の概略半円部分の上部側だけを先行掘削するものであり、上半掘削20が行われた後には、連続壁12の削り出しが行われる。   The upper half excavation 20 is for excavating only the upper side of the substantially semicircular portion of the underground tunnel 10 to be constructed. After the upper half excavation 20 is performed, the continuous wall 12 is cut out.

この削り出しは、図6に示すように、ソイルセメント柱体14の側面を削って、連続壁12の芯材16を露出させて、ブラケット22を、芯材16の側面に溶接により固設するために行う作業であり、ブラケット22は、後述する上半支保工24を支持するための台として用いられる。   In this cutting, as shown in FIG. 6, the side surface of the soil cement column 14 is scraped to expose the core material 16 of the continuous wall 12, and the bracket 22 is fixed to the side surface of the core material 16 by welding. For this purpose, the bracket 22 is used as a base for supporting an upper half support 24 described later.

本実施例の場合、図6に示すように、連続壁12の芯材16の配置ピッチと、ブラケット22、すなわち、上半支保工24の配置ピッチとが異なっているので、芯材16は、その全部が露出されず、対向する必要な個所だけが削り出され、削りだされた芯材16に対して、対向する位置に一対ずつのブラケット22が固設される。   In the case of the present embodiment, as shown in FIG. 6, the arrangement pitch of the core material 16 of the continuous wall 12 is different from the arrangement pitch of the bracket 22, that is, the upper half support 24. All of them are not exposed, only the necessary portions facing each other are cut out, and a pair of brackets 22 are fixedly provided at the facing positions with respect to the shaved core material 16.

この場合、連続壁12の削り出し作業と同時進行、ないしは、この作業の後に、上半掘削20により掘削された壁面にアーチ状の上半支保工24が設置される。上半支保工24は、鋼材をアーチ状に湾曲形成したものであって、本実施例では、上半掘削20の形状に合わせて、略半円状に形成されている。   In this case, the arch-shaped upper half support 24 is installed on the wall surface excavated by the upper half excavation 20 at the same time as the cutting work of the continuous wall 12 or after this work. The upper half support 24 is formed by bending a steel material in an arch shape, and is formed in a substantially semicircular shape in accordance with the shape of the upper half excavation 20 in this embodiment.

掘削壁面に沿って設置された上半支保工24の両端は、ブラケット22に溶接などにより係止固設され、これにより上半支保工24は、ブラケット22を介して、連続壁12の芯材16に支持される。   Both ends of the upper half support 24 installed along the excavation wall surface are fixedly secured to the bracket 22 by welding or the like, whereby the upper half support 24 is connected to the core 22 of the continuous wall 12 via the bracket 22. 16 is supported.

上半支保工24の設置が終了すると、図5に示すように、上半掘削20により掘削された壁面に吹き付けコンクリート層26を形成して、上半支保工24を地山に密着させる。   When the installation of the upper half supporter 24 is completed, as shown in FIG. 5, a sprayed concrete layer 26 is formed on the wall surface excavated by the upper half excavation 20, and the upper half supporter 24 is brought into close contact with the natural ground.

次に、図4に示すように、ブラケット22が設けられた部分から下の連続壁12を露出させるようにして下半掘削28を行うと、1サイクルの作業が終了し、以後は、上記工程を順次繰り返すことにより、所定の長さの地下トンネル10が構築される。   Next, as shown in FIG. 4, when the lower half excavation 28 is performed so that the lower continuous wall 12 is exposed from the portion where the bracket 22 is provided, one cycle of work is completed. Are sequentially repeated to construct the underground tunnel 10 having a predetermined length.

さて、以上のように構成された大深度地下空洞の構築工法によれば、構築しようとする地下トンネル(地下空洞)10の側部上方延長線の地中にシールドトンネル11を構築し、シールドトンネル11内から止水性を備えた連続壁12を対向するように所定深度まで形成した後に、連続壁12間を掘削して、掘削された掘削壁12面に沿って支保工24を設置して、所定形状の地下空洞とするので、連続壁12の外側の地下水は、連続壁12で遮断されて、内部を掘削する際に影響を及ぼさないし、地下水位の低下も発生しない。   Now, according to the construction method of the deep underground cavity constructed as described above, the shield tunnel 11 is constructed in the ground on the side upper extension line of the underground tunnel (underground cavity) 10 to be constructed. 11, after forming the continuous wall 12 with water-stopping to a predetermined depth so as to face each other, excavate between the continuous walls 12 and install the support 24 along the excavated wall 12 surface, Since the underground cavity has a predetermined shape, the groundwater outside the continuous wall 12 is blocked by the continuous wall 12 and does not affect the excavation of the inside, and the groundwater level does not decrease.

また、連続壁12間を掘削した際の応力開放の影響は、連続壁12間に留まり、周辺環境に及ぼす影響も極めて限定した範囲になり、補助工法、例えば、フォアポーリング18を採用する場合も、規模を大幅に縮小することができ、従来の工法に比べて、安価に、より安全に、周辺環境を乱すことなく、施工することが可能になる。   In addition, the effect of stress release when excavating between the continuous walls 12 remains in the range between the continuous walls 12 and the influence on the surrounding environment is also extremely limited. In some cases, for example, a forepoling method 18 is employed. The scale can be greatly reduced, and the construction can be carried out at a lower cost, more safely and without disturbing the surrounding environment as compared with the conventional construction method.

さらに、連続壁12は、構築しようとする地下空洞の側部上方延長線の地中にシールドトンネル11を構築し、シールドトンネル11内から所定深度まで形成するので、地表側の構造物などに何ら影響を及ぼさず、また、地表側の構造物に影響を受けることなく形成することができる。   Furthermore, since the continuous wall 12 constructs the shield tunnel 11 in the ground of the side upper extension line of the underground cavity to be constructed and forms it from the inside of the shield tunnel 11 to a predetermined depth, there is nothing on the structure on the ground surface side. It can be formed without affecting the structure on the surface side.

また、本実施例の場合には、連続壁12内には、H型鋼などの芯材16が挿入設置されているので、連続壁12にかかる側圧が大きい場合には、芯材16が土留め材として機能し、側圧に効果的に対抗することができる。   In the case of the present embodiment, since the core material 16 such as H-shaped steel is inserted and installed in the continuous wall 12, when the side pressure applied to the continuous wall 12 is large, the core material 16 is earthed. It functions as a material and can effectively counter lateral pressure.

また、本実施例では、地下空洞は、鉄道,道路用などのトンネル10であって、柱列連続壁12を構築しようとするトンネル10の側部に沿って対向形成し、柱列連続壁12間を天井部がアーチ状になるように掘削(上半掘削20)して、掘削された壁面にアーチ形状の上半支保工24を設置して、柱列連続壁12がトンネル10の側壁となるように構築している。   Further, in this embodiment, the underground cavity is a tunnel 10 for railways, roads, etc., and is formed opposite to the side of the tunnel 10 where the column row continuous wall 12 is to be constructed. Excavation is performed so that the ceiling portion is arched (upper half excavation 20), and an arch-shaped upper half supporting work 24 is installed on the excavated wall surface. It is built to be.

このような構成によれば、地下トンネル10の側壁が連続壁12で兼用され、連続壁12は、地下トンネル10の上下方向に延設されているので、トンネル10の変形に対する安定性が非常に大きくなる。   According to such a configuration, the side wall of the underground tunnel 10 is also used as the continuous wall 12, and the continuous wall 12 extends in the vertical direction of the underground tunnel 10, so that the stability against deformation of the tunnel 10 is very high. growing.

また、本実施例では、アーチ形状の上半支保工24は、ブラケット22を介して、連続壁12の芯材16で支持しているので、トンネル10の沈下が大きい場合には、これを芯材16で受けることができるとともに、上半支保工24に加わるトンネル10の上載荷重も芯材16で受けることができ、補助工法の規模をさらに一層小さくすることができる。   Further, in the present embodiment, the arch-shaped upper half support 24 is supported by the core material 16 of the continuous wall 12 via the bracket 22. In addition to being able to be received by the material 16, the loading load of the tunnel 10 applied to the upper half support work 24 can also be received by the core material 16, and the scale of the auxiliary method can be further reduced.

さらに、本発明の工法は、トンネルの標準断面の施工だけでなく、例えば、鉄道の駅部や拡幅部などの大規模空洞の施工において、採用することができる工法であり、このような個所に採用すると、より一層効果が発揮される。   Furthermore, the construction method of the present invention is a construction method that can be employed not only in the construction of a standard section of a tunnel but also in construction of a large-scale cavity such as a railway station part or a widened part. When adopted, the effect is further exhibited.

本発明にかかる地下空洞の構築工法によれば、特に、地表側の構造物に影響を及ぼさないので、都市部の住宅密集地の大深度にトンネルなどの空洞を構築する際に有効に活用することができる。   According to the construction method of an underground cavity according to the present invention, since it does not affect the structure on the ground surface side, it is effectively utilized when constructing a cavity such as a tunnel at a large depth in a densely populated residential area in an urban area. be able to.

本発明にかかる地下空洞の構築工法の一実施例を示す施工完了状態の断面説明図である。It is sectional explanatory drawing of the construction completion state which shows one Example of the construction method of the underground cavity concerning this invention. 本発明にかかる地下空洞の構築工法の初期工程の断面である。It is a cross section of the initial process of the construction method of the underground cavity concerning this invention. 図1の平面説明図である。FIG. 2 is an explanatory plan view of FIG. 1. 図2に引き続いて行われる工程の断面説明図である。FIG. 3 is an explanatory cross-sectional view of a process performed subsequent to FIG. 2. 図4の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 図5の要部断面説明図である。FIG. 6 is an explanatory cross-sectional view of a main part of FIG. 5.

符号の説明Explanation of symbols

10 地下トンネル
11 シールドトンネル
12 連続壁
14 ソイルセメント柱体
16 芯材
18 フォアポーリング
20 上半掘削
22 ブラケット
24 上半支保工
26 吹き付けコンクリート層
28 下半掘削
DESCRIPTION OF SYMBOLS 10 Underground tunnel 11 Shield tunnel 12 Continuous wall 14 Soil cement pillar 16 Core material 18 Fore poling 20 Upper half excavation 22 Bracket 24 Upper half support 26 Sprayed concrete layer 28 Lower half excavation

Claims (5)

地下30m以下の大深度に鉄道,道路用などのトンネルや大空洞などの地下空洞を構築する工法において、
構築しようとする前記地下空洞の側部上方延長線上の地中にシールドトンネルを構築し、前記シールドトンネル内から止水性を備えた連続壁を対向するように所定深度まで形成した後に、前記連続壁間を掘削して、掘削された掘削壁面に沿って支保工を設置して、所定形状の地下空洞とする構築工法であって、
前記連続壁は、H型鋼などの芯材を挿入したソイルセメント柱体などの柱列壁から構成され、
前記芯材は、前記地下空洞が構築される地盤中の地下水位よりも上端が深くなるように挿入することを特徴とする地下空洞の構築工法。
In the construction method of building underground cavities such as tunnels and large cavities for railways, roads, etc. at a depth of 30m or less underground,
After constructing a shield tunnel in the ground on the side upper extension line of the underground cavity to be constructed and forming a continuous wall with water-stopping from the inside of the shield tunnel to a predetermined depth, the continuous tunnel It is a construction method that excavates between walls and installs a support along the excavated wall surface to make an underground cavity of a predetermined shape ,
The continuous wall is composed of a column wall such as a soil cement column having a core material such as H-shaped steel inserted therein,
The construction method of the underground cavity, wherein the core material is inserted so that the upper end is deeper than the groundwater level in the ground where the underground cavity is constructed.
前記連続壁間を掘削する際に、掘削断面の上部側に、フォアポーリングなどの先受け工を設けることを特徴とする請求項1記載の地下空洞の構築工法。 2. The construction method of an underground cavity according to claim 1, wherein when excavating between the continuous walls, a receiving work such as fore poling is provided on the upper side of the excavation cross section. 前記連続壁は、先端が前記地下空洞の構築深度よりも以深になるように形成することを特徴とする請求項1または2記載の地下空洞の構築工法。 3. The underground cavity construction method according to claim 1 or 2, wherein the continuous wall is formed so that a tip thereof is deeper than a construction depth of the underground cavity. 前記地下空洞は、鉄道,道路用などのトンネルであって、The underground cavity is a tunnel for railways, roads, etc.
前記柱列連続壁を構築しようとするトンネルの側部に沿って対向形成し、前記柱列連続壁間を天井部がアーチ状になるように掘削して、掘削された壁面にアーチ形状の上半支保工を設置して、前記柱列連続壁が前記トンネルの側壁となるようにすることを特徴とする請求項1〜3のいずれか1項記載の地下空洞の構築工法。The columnar continuous walls are formed to face each other along the side of the tunnel to be constructed, and the columnar continuous walls are excavated so that the ceiling portion has an arch shape. The construction method of an underground cavity according to any one of claims 1 to 3, wherein a semi-supporting work is installed so that the columnar row continuous wall becomes a side wall of the tunnel.
前記上半支保工は、その両端を前記柱列連続壁の芯材に係止固定することを特徴とする請求項4記載の地下空洞の構築工法。5. The construction method of an underground cavity according to claim 4, wherein the upper half support is engaged and fixed at both ends thereof to the core material of the pillar row continuous wall.
JP2003405346A 2003-12-04 2003-12-04 Construction method of underground cavity Expired - Fee Related JP4228898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405346A JP4228898B2 (en) 2003-12-04 2003-12-04 Construction method of underground cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405346A JP4228898B2 (en) 2003-12-04 2003-12-04 Construction method of underground cavity

Publications (2)

Publication Number Publication Date
JP2005163427A JP2005163427A (en) 2005-06-23
JP4228898B2 true JP4228898B2 (en) 2009-02-25

Family

ID=34728035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405346A Expired - Fee Related JP4228898B2 (en) 2003-12-04 2003-12-04 Construction method of underground cavity

Country Status (1)

Country Link
JP (1) JP4228898B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162265A (en) * 2005-12-12 2007-06-28 Kumagai Gumi Co Ltd Tunnel construction method
KR101091081B1 (en) * 2011-07-11 2011-12-09 주식회사 성우사면 Bidirectional tunnel excavation method and bidirectional tunnel formed by the method
JP6143084B2 (en) * 2013-06-10 2017-06-07 清水建設株式会社 Overloading countermeasures for deep tunnels
CN110331982B (en) * 2019-07-08 2023-09-26 中铁第四勘察设计院集团有限公司 Shield tunnel protection device and method for penetrating through sand coating on karst region
CN111894623B (en) * 2020-08-26 2024-07-16 中铁第五勘察设计院集团有限公司 Co-building structure and construction method for street crossing channel and underground section tunnel
CN114352285B (en) * 2021-11-30 2024-07-02 国能包头能源有限责任公司李家壕煤矿 Construction method of large-section reverse well construction chamber

Also Published As

Publication number Publication date
JP2005163427A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
KR100914158B1 (en) Plain wall-mounted wall blocking method
KR102113291B1 (en) Soil retaining wall using phc pile and construction method thererof
CN104652418A (en) Continuous wall underground pipeline position construction method
KR20070075506A (en) Construction method of underground structure using packed steel pipe loop and concrete wall
JP6543176B2 (en) Building method
CN109736884A (en) Disposal structure next to tunnel underground river water inrush and construction method thereof
JP4228898B2 (en) Construction method of underground cavity
KR100947627B1 (en) Reinforced grouting structure of tunnel and tunnel construction method using same
CN111101956A (en) Secondary starting method for shield in single-hole single-line underground excavation tunnel
KR100898969B1 (en) Tunnel excavation method using sheet pile and tunnel structure
CN110130361A (en) A foundation pit support structure and construction method for protecting subway tunnel structures
KR100509707B1 (en) None open cut tunnelling of arch type with hume pipe and con'c rib
CN111778992A (en) Construction method for crossing U-shaped channel section of old city building group area
JP2004124615A (en) Construction method of great-depth underground cavity
CN110486062A (en) A kind of method of mechanical tunneling multilayer multispan underground engineering in weak soil
JP7451337B2 (en) Tunnel renewal method and structure
KR101234270B1 (en) Method for non excavated excavating construction using steel pipe and steel pipe with hole
CN212202085U (en) Close-adhesion type open-and-underground excavation combined subway station structure
JP2007046343A (en) Liquefaction preventive construction method of ground just under existing building
KR101649210B1 (en) Steel pipe wall temporary construction
KR101524302B1 (en) Construction method for underground structure without temporary structure
CN104594909B (en) A kind of construction method of installation of the back device of ultra-long tube curtain
CN211081922U (en) Grouting anchoring structure for karst stratum tunnel secondary lining renovation construction
CN111677025B (en) Underground passage repairing method
KR200331521Y1 (en) None open cut tunnelling of arch type with with hume pipe and con'c rib

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees