[go: up one dir, main page]

JP4220947B2 - Communication structure between combustor transition and turbine inlet - Google Patents

Communication structure between combustor transition and turbine inlet Download PDF

Info

Publication number
JP4220947B2
JP4220947B2 JP2004235703A JP2004235703A JP4220947B2 JP 4220947 B2 JP4220947 B2 JP 4220947B2 JP 2004235703 A JP2004235703 A JP 2004235703A JP 2004235703 A JP2004235703 A JP 2004235703A JP 4220947 B2 JP4220947 B2 JP 4220947B2
Authority
JP
Japan
Prior art keywords
stationary blade
turbine
stage stationary
combustor tail
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004235703A
Other languages
Japanese (ja)
Other versions
JP2006052910A (en
Inventor
康朗 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004235703A priority Critical patent/JP4220947B2/en
Publication of JP2006052910A publication Critical patent/JP2006052910A/en
Application granted granted Critical
Publication of JP4220947B2 publication Critical patent/JP4220947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、ガスタービンにおける燃焼器尾筒とタービン入口との連通構造に関する。   The present invention relates to a communication structure between a combustor transition and a turbine inlet in a gas turbine.

一般に、ガスタービンは、空気圧縮機(以下「圧縮機」と記すことがある)、燃焼器、及びタービンを主な構成要素とし、互いに回転軸で直結された圧縮機とタービンの間に燃焼器が配設されてなり、作動流体となる空気が回転軸の回転により圧縮機に吸入されて圧縮され、その圧縮空気が燃焼器に導入されて燃料とともに燃焼し、その高温高圧の燃焼ガスがタービンに吐出されてタービンとともに回転軸を回転駆動させる。このようなガスタービンは、回転軸の前端に発電機等を接続することでその駆動源として活用される(特許文献1参照)。   In general, a gas turbine includes an air compressor (hereinafter sometimes referred to as a “compressor”), a combustor, and a turbine as main components, and the combustor is disposed between the compressor and the turbine that are directly connected to each other through a rotating shaft. The air serving as the working fluid is sucked into the compressor by the rotation of the rotating shaft and compressed, the compressed air is introduced into the combustor and burned together with the fuel, and the high-temperature and high-pressure combustion gas is converted into the turbine. The rotary shaft is driven to rotate together with the turbine. Such a gas turbine is utilized as a drive source by connecting a generator or the like to the front end of the rotating shaft (see Patent Document 1).

特開2001−107703号公報JP 2001-107703 A

ところで、ガスタービンにおける燃焼器は複数個存在し、燃焼器からの高温ガスは尾筒からタービン1段静翼に流入する。タービン入口に対して尾筒は燃焼器と同数存在し隣接する尾筒間には構造部(所定の厚さを有した尾筒側壁部)が存在するため、その後方でタービン側にはウェークフロー(伴流又は後流)が生じる。このため、タービン入口の流れには周方向に分布が形成される。   By the way, there are a plurality of combustors in the gas turbine, and the high temperature gas from the combustor flows from the tail cylinder into the turbine first stage stationary blade. Since there are as many combustors as the combustor with respect to the turbine inlet and there is a structural part (tail pipe side wall part having a predetermined thickness) between adjacent ones, the wake flow is on the turbine side behind it. (Wake or wake) occurs. For this reason, a distribution is formed in the circumferential direction in the flow at the turbine inlet.

ところが、現状では燃焼器尾筒と静翼の位置関係は適当に決められるか、もしくは、特許文献1に開示されているように、燃焼器出口の温度分布を考慮してタービン1段静翼の熱の流入を減らすように設定されている。そのため、燃焼器尾筒(ウェークフロー)と1段静翼の相対位置如何によっては、タービン効率を低下させるという不具合があった。   However, at present, the positional relationship between the combustor tail and the stationary blade is appropriately determined, or as disclosed in Patent Document 1, the temperature distribution of the turbine first stage stationary blade is considered in consideration of the temperature distribution at the combustor outlet. It is set to reduce inflow. Therefore, there is a problem that the turbine efficiency is lowered depending on the relative positions of the combustor tail (wake flow) and the first stage stationary blade.

本発明は、前述した状況に鑑みてなされたもので、燃焼器尾筒と1段静翼の相対位置関係の最適化を図ってタービン効率の向上が図れる燃焼器尾筒とタービン入口との連通構造を提供することを目的とする。   The present invention has been made in view of the above-mentioned situation, and has a communication structure between a combustor tail cylinder and a turbine inlet that can improve the turbine efficiency by optimizing the relative positional relationship between the combustor tail cylinder and the first stage stationary vane. The purpose is to provide.

斯かる目的を達成するための本発明に係る燃焼器尾筒とタービン入口との連通構造は、回転軸周りに複数配設された燃焼器内で圧縮機からの圧縮空気にて燃料を燃焼させ、これにより発生した燃焼ガスを、各燃焼器尾筒よりタービン入口に流入させ、タービン内における燃焼ガス通路部の周方向に複数配設された静翼および動翼からなる複数のタービン段落を順次通過させることで動力を発生するガスタービンにおいて、前記隣接する燃焼器尾筒間で形成されるウェークフローを前記1段静翼の前縁寄りの圧力面側に流入させるように燃焼器尾筒とタービン入口とを連通接続したことを特徴とする。   In order to achieve such an object, a communication structure between a combustor transition and a turbine inlet according to the present invention is configured to burn fuel with compressed air from a compressor in a plurality of combustors arranged around a rotation axis. The combustion gas generated thereby flows into the turbine inlet from each combustor tail tube, and a plurality of turbine stages including a plurality of stationary blades and moving blades arranged in the circumferential direction of the combustion gas passage portion in the turbine are sequentially provided. In a gas turbine that generates power by passing through, a combustor tail and a turbine inlet so that a wake flow formed between the adjacent combustor tails flows into a pressure surface side near the front edge of the first stage stationary blade. It is characterized by being connected in communication.

また、前記ウェークフローを、1段静翼の前縁から同1段静翼の1/4ピッチの範囲内に流入させることを特徴とする。   Further, the wake flow is caused to flow from a leading edge of the first stage stationary blade into a range of a quarter pitch of the first stage stationary blade.

また、前記1段静翼の前縁位置を高さ方向で周方向に分布をつけないで前記ウェークフローと1段静翼の相対位置関係を保持したことを特徴とする。   In addition, the relative position relationship between the wake flow and the first stage stationary blade is maintained without distributing the front edge position of the first stage stationary blade in the circumferential direction in the height direction.

また、前記1段静翼の前縁位置に合わせて前記尾筒側面の周方向位置を分布させ前記ウェークフローと1段静翼の相対位置関係を保持したことを特徴とする。   Further, the circumferential position of the side surface of the transition piece is distributed in accordance with the position of the leading edge of the first stage stationary blade, and the relative positional relationship between the wake flow and the first stage stationary blade is maintained.

本発明の構成によれば、ウェークフローの剪断による吹降しと1段静翼の循環による吹上が相殺しインシデンスが減少するので、1段静翼の前縁寄りの負圧面側流速が低下してタービン効率が向上されると共に、燃焼器尾筒間からのシール空気による一段静翼の圧力面の冷却効果が得られる。   According to the configuration of the present invention, the downflow due to shearing of the wake flow and the updraft due to the circulation of the first stage stationary blade cancel each other, and the incidence is reduced. In addition to the improvement, the cooling effect of the pressure surface of the first stage stationary blade by the seal air from between the combustor transitions can be obtained.

以下、本発明に係る燃焼器尾筒とタービン入口との連通構造を実施例により図面を用いて詳細に説明する。   Hereinafter, a communication structure between a combustor transition piece and a turbine inlet according to the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の実施例1を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図、図2はガスタービンの要部概略構成図、図3は燃焼器尾筒(ウェークフロー)と1段静翼との相対位置による作用の比較説明図、図4は性能、冷却の観点から好ましい燃焼器尾筒と1段静翼の相対位置を示すグラフ、図5は燃焼器尾筒と1段静翼の相対位置と効率の関係を解析したグラフである。   FIG. 1 is a schematic diagram showing a relative positional relationship between a combustor tail cylinder and a first stage stationary blade showing Embodiment 1 of the present invention, FIG. 2 is a schematic configuration diagram of a main part of a gas turbine, and FIG. 3 is a combustor tail cylinder (wake flow). FIG. 4 is a graph showing the relative positions of the combustor tail cylinder and the first stage stationary blade, which are preferable from the viewpoint of performance and cooling, and FIG. 5 is a graph showing the relative positions of the combustor tail cylinder and the first stage stationary blade. It is the graph which analyzed the relationship between a relative position and efficiency.

図2に示すように、ガスタービンは、図示しない主軸(回転軸)の周りに燃焼器1が複数(例えば16個)配設される。各燃焼器1においては、燃焼器内筒2に臨設された燃料ノズル3から噴射された燃料Fと、空気圧縮機(以下単に圧縮機という)4から吐出され燃焼器内筒2上流側に導入された圧縮空気PAとが混合され、次いで燃焼器内筒2の下流側もしくは燃焼器尾筒5の上流側の燃焼域で燃焼させ、高温・高圧の燃焼ガスCGとしてタービン6に導入する。タービン6では、この燃焼ガスCGを静翼7及び動翼8からなる複数のタービン段落を順次通過・膨張させることで動力を発生させ、圧縮機4を駆動すると共に余剰の駆動力を外部へ出力するようにしている。   As shown in FIG. 2, in the gas turbine, a plurality of (eg, 16) combustors 1 are disposed around a main shaft (rotating shaft) (not shown). In each combustor 1, the fuel F injected from the fuel nozzle 3 provided adjacent to the combustor inner cylinder 2 and the air compressor (hereinafter simply referred to as a compressor) 4 are discharged and introduced upstream of the combustor inner cylinder 2. The compressed air PA thus mixed is mixed and then burned in the combustion region downstream of the combustor inner cylinder 2 or upstream of the combustor tail cylinder 5 and introduced into the turbine 6 as high-temperature and high-pressure combustion gas CG. In the turbine 6, the combustion gas CG is sequentially passed through and expanded through a plurality of turbine stages including the stationary blades 7 and the moving blades 8 to generate power, drive the compressor 4 and output an excessive driving force to the outside. Like to do.

また、燃焼器内筒2に導入される圧縮空気PAと燃料Fとの比率(空燃比)はガスタービンの運転状態(すなわち投入される燃料量)に応じて最適な値となるよう制御する必要があるが、この目的のため圧縮空気PAの全部を燃焼器1の燃焼域へ導入せず、一部をバイパスさせて車室9から燃焼器尾筒5へ流入させる構成としている。このために設けられるのがバイパス弁10であり、圧縮空気PAの一部が、車室9内に設けたバイパス管11の開口部から燃焼器尾筒5内に流入・供給される。   Further, it is necessary to control the ratio (air-fuel ratio) between the compressed air PA and the fuel F introduced into the combustor inner cylinder 2 so as to be an optimum value according to the operating state of the gas turbine (that is, the amount of injected fuel). However, for this purpose, the entire compressed air PA is not introduced into the combustion region of the combustor 1, but a part thereof is bypassed and flows into the combustor tail cylinder 5 from the passenger compartment 9. For this purpose, a bypass valve 10 is provided, and a part of the compressed air PA flows into and supplied to the combustor tail cylinder 5 from the opening of the bypass pipe 11 provided in the vehicle compartment 9.

そして、本実施例では、図1に示すように、隣接する燃焼器尾筒5間で形成されるウェークフロー12を1段静翼7の前縁7c寄りの圧力面7a側に流入させるように燃焼器尾筒5とタービン6入口とを連通接続している。即ち、図4にも示すように、θ/θ尾筒が例えば1段静翼7の前縁7cから同1段静翼の1/4ピッチの範囲内(図4中の破線領域内)に流入させるようになっている。   In this embodiment, as shown in FIG. 1, the combustor is configured such that the wake flow 12 formed between the adjacent combustor tail cylinders 5 flows into the pressure surface 7 a side near the front edge 7 c of the first stage stationary blade 7. The transition piece 5 and the inlet of the turbine 6 are connected in communication. That is, as shown in FIG. 4, the θ / θ tail cylinder flows from the front edge 7 c of the first stage stationary blade 7 into a range of ¼ pitch of the first stage stationary blade (in the broken line region in FIG. 4). It has become.

このようにして、ウェークフロー12と1段静翼7との相対位置を設定することにより、タービン効率(1段効率)が向上されると共に、燃焼器尾筒5間からのシール空気による冷却作用で1段静翼7の表面最高温度が下がることから、1段静翼7の圧力面7aの冷却空気量を減少させることができる(図4参照)。   Thus, by setting the relative position between the wake flow 12 and the first stage stationary blade 7, the turbine efficiency (first stage efficiency) is improved and the cooling action by the seal air from between the combustor tail cylinders 5 is 1. Since the surface maximum temperature of the stage vane 7 is lowered, the amount of cooling air on the pressure surface 7a of the stage 1 vane 7 can be reduced (see FIG. 4).

上記タービン効率の向上は、図5に示すように、本発明者等の解析結果により確認されている。これは、図3に示すように、ウェークフロー12の剪断による吹降しと1段静翼7の循環による吹上が相殺しインシデンス(迎え角)が減少するので、1段静翼7の前縁7c寄りの負圧面7b側流速が低下してタービン効率が向上されると考えられる。   The improvement in the turbine efficiency is confirmed by the analysis results of the present inventors as shown in FIG. This is because, as shown in FIG. 3, the blow-down due to the shear of the wake flow 12 and the blow-up due to the circulation of the first-stage stationary blade 7 cancel each other, and the incidence (attack angle) is reduced. It is considered that the pressure efficiency on the pressure surface 7b side is lowered and the turbine efficiency is improved.

逆に、現状の実機相当では、ウェークフロー12が1段静翼7の前縁7cから負圧面7b側に流入するような相対位置になっていることから、ウェークフロー12の剪断による吹上と1段静翼7の循環による吹上でインシデンス(迎え角)が増加し、1段静翼7の前縁7c寄りの負圧面7b側流速が高まることからタービン効率が低下すると考えられる。   On the contrary, in the current actual machine equivalent, the wake flow 12 is in a relative position so as to flow from the front edge 7c of the first stage stationary blade 7 to the suction surface 7b side. Incidence (attack angle) is increased by blowing up by the circulation of the air and the flow velocity on the suction surface 7b side of the first stage stationary blade 7 near the front edge 7c is increased, so that it is considered that the turbine efficiency is lowered.

図6は本発明の実施例2を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。   FIG. 6 is a schematic diagram showing the relative positional relationship between the combustor tail cylinder and the first stage stationary blade in the second embodiment of the present invention.

これは、実施例1における燃焼器尾筒5の側壁を可及的に肉薄に形成してウェークフロー12自体の発生を抑制して燃焼器尾筒5での圧力損失を低減するようにした例であり、より一層のタービン効率の向上が図れる。   This is an example in which the side wall of the combustor tail cylinder 5 in the first embodiment is formed as thin as possible to suppress the generation of the wake flow 12 itself and the pressure loss in the combustor tail cylinder 5 is reduced. Therefore, the turbine efficiency can be further improved.

図7は本発明の実施例3を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。   FIG. 7 is a schematic diagram showing the relative positional relationship between the combustor tail cylinder and the first stage stationary blade in the third embodiment of the present invention.

これは、実施例1における燃焼器尾筒5の側壁における出口側を可及的に肉薄に形成してウェークフロー12自体の発生を抑制して燃焼器尾筒5での圧力損失を低減するようにした例であり、より一層のタービン効率の向上が図れる。   This is to reduce the pressure loss in the combustor tail cylinder 5 by forming the outlet side of the side wall of the combustor tail cylinder 5 in the first embodiment as thin as possible to suppress the generation of the wake flow 12 itself. In this example, the turbine efficiency can be further improved.

図8は本発明の実施例4を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。   FIG. 8 is a schematic diagram showing a relative positional relationship between the combustor tail cylinder and the first stage stationary blade in the fourth embodiment of the present invention.

これは、実施例1における燃焼器尾筒5と1段静翼7との間隔Lを可及的に近づけてウェークフロー12自体の発生を抑制して燃焼器尾筒5での圧力損失を低減するようにした例であり、より一層のタービン効率の向上が図れる。   This is to reduce the pressure loss in the combustor tail cylinder 5 by suppressing the generation of the wake flow 12 itself by reducing the distance L between the combustor tail cylinder 5 and the first stage stationary blade 7 in the first embodiment as much as possible. In this example, the turbine efficiency can be further improved.

図9は本発明の実施例5を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。尚、図9は燃焼ガス流れの下流側から燃焼器尾筒を見た図である。   FIG. 9 is a schematic diagram showing a relative positional relationship between the combustor tail cylinder and the first stage stationary blade in the fifth embodiment of the present invention. FIG. 9 is a view of the combustor tail tube viewed from the downstream side of the combustion gas flow.

これは、実施例1における1段静翼7の前縁7c位置を高さ方向で周方向に分布をつけないで実施例1におけるウェークフロー12と1段静翼7の相対位置関係を保持した例であり、より一層のタービン効率の向上が図れる。   This is an example in which the relative position relationship between the wake flow 12 and the first stage stationary blade 7 in the first embodiment is maintained without providing the distribution of the front edge 7c position of the first stage stationary blade 7 in the first embodiment in the circumferential direction in the height direction. The turbine efficiency can be further improved.

図10は本発明の実施例6を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。尚、図10は燃焼ガス流れの下流側から燃焼器尾筒を見た図である。   FIG. 10 is a schematic diagram showing the relative positional relationship between the combustor tail cylinder and the first stage stationary blade in the sixth embodiment of the present invention. FIG. 10 is a view of the combustor tail tube seen from the downstream side of the combustion gas flow.

これは、実施例1における1段静翼7の前縁7c位置に合わせて燃焼器尾筒5側面(側壁)の周方向位置を分布させて実施例1におけるウェークフロー12と1段静翼7の相対位置関係を保持した例であり、より一層のタービン効率の向上が図れる。   This is because the circumferential position of the side surface (side wall) of the combustor tail cylinder 5 is distributed according to the position of the leading edge 7c of the first stage stationary blade 7 in the first embodiment, and the relative positional relationship between the wake flow 12 and the first stage stationary blade 7 in the first embodiment. In this example, the turbine efficiency can be further improved.

図11は本発明の実施例7を示す燃焼器尾筒と1段静翼及び2段静翼との相対位置関係を示す模式図である。   FIG. 11 is a schematic diagram showing a relative positional relationship between a combustor tail cylinder, a first stage stationary blade, and a second stage stationary blade, showing Embodiment 7 of the present invention.

これは、実施例1において、1段静翼7と2段静翼7の静翼枚数が一致もしくは比が整数となる場合に、燃焼器尾筒5間と1段静翼7からの一体になったウェークフロー12を、実施例1におけるウェークフロー12と1段静翼7の相対位置関係と同様の相対位置関係を保持して、2段静翼7に流入させるようにした例であり、2段効率を高めてより一層の効率向上が図れる。   In the first embodiment, when the number of stationary blades of the first stage stationary blade 7 and the second stage stationary blade 7 is equal or the ratio is an integer, the wake flow 12 integrated between the combustor tail cylinder 5 and the first stage stationary blade 7 is obtained. This is an example in which the relative positional relationship similar to the relative positional relationship between the wake flow 12 and the first stage stationary blade 7 in the first embodiment is maintained, and the two-stage stationary blade 7 is caused to flow into the second stage. Improvement can be achieved.

図12は本発明の実施例8を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。尚、図12は燃焼ガス流れの下流側から燃焼器尾筒を見た図である。   FIG. 12 is a schematic diagram showing a relative positional relationship between the combustor tail cylinder and the first stage stationary blade in the eighth embodiment of the present invention. FIG. 12 is a view of the combustor tail tube viewed from the downstream side of the combustion gas flow.

これは、実施例5における静翼7のハブ側とチップ側で静翼7の周方向位置を変更して、エンドウォールへの2次流れ低減による圧力損失の低減と、2段静翼7でのクロッキングによる性能向上幅の増加を図った例であり、より一層のタービン効率の向上が図れる。   This is because the circumferential position of the stationary blade 7 is changed between the hub side and the tip side of the stationary blade 7 in the fifth embodiment, the pressure loss is reduced by reducing the secondary flow to the end wall, and the two-stage stationary blade 7 is closed. This is an example in which the performance improvement width is increased by locking, and the turbine efficiency can be further improved.

図13は本発明の実施例9を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。尚、図13は燃焼ガス流路を側面から見た図である。   FIG. 13 is a schematic diagram showing a relative positional relationship between a combustor tail cylinder and a first stage stationary blade, showing Embodiment 9 of the present invention. FIG. 13 is a side view of the combustion gas passage.

これは、実施例5における静翼7のハブ側とチップ側で静翼7の軸方向位置を変更して(図中面取り部7d参照)、エンドウォールへの2次流れ低減による圧力損失の低減と、2段静翼7でのクロッキングによる性能向上幅の増加を図った例であり、より一層のタービン効率の向上が図れる。   This is because the axial position of the stationary blade 7 is changed between the hub side and the tip side of the stationary blade 7 in Embodiment 5 (see the chamfered portion 7d in the figure), and the pressure loss is reduced by reducing the secondary flow to the end wall. This is an example in which the performance improvement width is increased by clocking at the two-stage stationary blade 7, and further improvement in turbine efficiency can be achieved.

本発明の実施例1を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 1 of this invention. ガスタービンの要部概略構成図である。It is a principal part schematic block diagram of a gas turbine. 燃焼器尾筒と1段静翼との相対位置による作用の比較説明図である。It is comparison explanatory drawing of the effect | action by the relative position of a combustor tail cylinder and a 1st stage stationary blade. 性能、冷却の観点から好ましい燃焼器尾筒と1段静翼の相対位置を示すグラフである。It is a graph which shows the relative position of a combustor tail cylinder and a 1st stage stationary blade preferable from a viewpoint of performance and cooling. 燃焼器尾筒と1段静翼の相対位置と効率の関係を解析したグラフである。It is the graph which analyzed the relationship between the relative position of a combustor tail cylinder and a 1st stage stationary blade, and efficiency. 本発明の実施例2を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 2 of this invention. 本発明の実施例3を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 3 of this invention. 本発明の実施例4を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 4 of this invention. 本発明の実施例5を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 5 of this invention. 本発明の実施例6を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 6 of this invention. 本発明の実施例7を示す燃焼器尾筒と1段静翼及び2段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder which shows Example 7 of this invention, a 1st stage stationary blade, and a 2nd stage stationary blade. 本発明の実施例8を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 8 of this invention. 本発明の実施例9を示す燃焼器尾筒と1段静翼との相対位置関係を示す模式図である。It is a schematic diagram which shows the relative positional relationship of the combustor tail cylinder and the 1st stage stationary blade which show Example 9 of this invention.

符号の説明Explanation of symbols

1 燃焼器
2 燃焼器内筒
3 燃料ノズル
4 空気圧縮機
5 燃焼器尾筒
6 タービン
7 静翼
7a 圧力面
7b 負圧面
7c 翼前縁
7d 面取り部
8 動翼
9 車室
10 バイパス弁
11 バイパス管
12 ウェークフロー
DESCRIPTION OF SYMBOLS 1 Combustor 2 Combustor inner cylinder 3 Fuel nozzle 4 Air compressor 5 Combustor tail cylinder 6 Turbine 7 Stator blade 7a Pressure surface 7b Negative pressure surface 7c Blade front edge 7d Chamfer 8 Rotor 9 Car compartment 10 Bypass valve 11 Bypass pipe 12 Wake flow

Claims (4)

回転軸周りに複数配設された燃焼器内で圧縮機からの圧縮空気にて燃料を燃焼させ、これにより発生した燃焼ガスを、各燃焼器尾筒よりタービン入口に流入させ、タービン内における燃焼ガス通路部の周方向に複数配設された静翼および動翼からなる複数のタービン段落を順次通過させることで動力を発生するガスタービンにおいて、前記隣接する燃焼器尾筒間で形成されるウェークフローを前記1段静翼の前縁寄りの圧力面側に流入させるように燃焼器尾筒とタービン入口とを連通接続したことを特徴とする燃焼器尾筒とタービン入口との連通構造。   Fuel is combusted with compressed air from a compressor in a plurality of combustors arranged around the rotating shaft, and the combustion gas generated thereby flows into the turbine inlet from each combustor tail tube and burns in the turbine. Wake formed between adjacent combustor tail tubes in a gas turbine that generates power by sequentially passing a plurality of turbine stages including a plurality of stationary blades and moving blades arranged in a circumferential direction of a gas passage portion A communication structure between a combustor tail cylinder and a turbine inlet, wherein the combustor tail cylinder and the turbine inlet are connected so as to allow the flow to flow into the pressure surface side near the front edge of the first stage stationary blade. 前記ウェークフローを、1段静翼の前縁から同1段静翼の1/4ピッチの範囲内に流入させることを特徴とする請求項1記載の燃焼器尾筒とタービン入口との連通構造。   2. A communication structure between a combustor tail cylinder and a turbine inlet according to claim 1, wherein the wake flow is caused to flow from a leading edge of the first stage stationary blade into a range of a quarter pitch of the first stage stationary blade. 前記1段静翼の前縁位置を高さ方向で周方向に分布をつけないで前記ウェークフローと1段静翼の相対位置関係を保持したことを特徴とする請求項1又は2記載の燃焼器尾筒とタービン入口との連通構造。   3. The combustor tail cylinder according to claim 1, wherein a relative positional relationship between the wake flow and the first stage stationary blade is maintained without distributing a front edge position of the first stage stationary blade in a circumferential direction in a height direction. Communication structure with turbine inlet. 前記1段静翼の前縁位置に合わせて前記尾筒側面の周方向位置を分布させ前記ウェークフローと1段静翼の相対位置関係を保持したことを特徴とする請求項1又は2記載の燃焼器尾筒とタービン入口との連通構造。   The combustor tail cylinder according to claim 1 or 2, wherein a circumferential position of the side surface of the tail cylinder is distributed in accordance with a front edge position of the first stage stator blade to maintain a relative positional relationship between the wake flow and the first stage stator blade. Communication structure between turbine and turbine inlet.
JP2004235703A 2004-08-13 2004-08-13 Communication structure between combustor transition and turbine inlet Expired - Lifetime JP4220947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235703A JP4220947B2 (en) 2004-08-13 2004-08-13 Communication structure between combustor transition and turbine inlet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235703A JP4220947B2 (en) 2004-08-13 2004-08-13 Communication structure between combustor transition and turbine inlet

Publications (2)

Publication Number Publication Date
JP2006052910A JP2006052910A (en) 2006-02-23
JP4220947B2 true JP4220947B2 (en) 2009-02-04

Family

ID=36030504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235703A Expired - Lifetime JP4220947B2 (en) 2004-08-13 2004-08-13 Communication structure between combustor transition and turbine inlet

Country Status (1)

Country Link
JP (1) JP4220947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797511A (en) * 2011-05-24 2012-11-28 通用电气公司 System and method for flow control in gas turbine engine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197650A (en) * 2008-02-20 2009-09-03 Mitsubishi Heavy Ind Ltd Gas turbine
US8087253B2 (en) * 2008-11-20 2012-01-03 General Electric Company Methods, apparatus and systems concerning the circumferential clocking of turbine airfoils in relation to combustor cans and the flow of cooling air through the turbine hot gas flowpath
JP5180807B2 (en) 2008-12-24 2013-04-10 三菱重工業株式会社 1st-stage stationary blade cooling structure and gas turbine
JP5479058B2 (en) * 2009-12-07 2014-04-23 三菱重工業株式会社 Communication structure between combustor and turbine section, and gas turbine
US8684684B2 (en) * 2010-08-31 2014-04-01 General Electric Company Turbine assembly with end-wall-contoured airfoils and preferenttial clocking
JP5848074B2 (en) * 2011-09-16 2016-01-27 三菱日立パワーシステムズ株式会社 Gas turbine, tail cylinder and combustor
US11118465B2 (en) 2014-08-19 2021-09-14 Mitsubishi Power, Ltd. Gas turbine combustor transition piece including inclined surface at downstream end portions for reducing pressure fluctuations
CN112682110B (en) * 2020-12-30 2024-12-10 西安陕鼓动力股份有限公司 Two-stage gas turbine, stationary blade and moving blade for gas turbine
CN112682112B (en) * 2020-12-30 2024-12-10 西安陕鼓动力股份有限公司 Two-stage gas turbine, stationary blade and moving blade used for the two-stage gas turbine
CN112682111B (en) * 2020-12-30 2024-12-10 西安陕鼓动力股份有限公司 A two-stage gas turbine, stationary blades and moving blades
CN117366628B (en) * 2023-10-10 2024-09-20 中国航发燃气轮机有限公司 Tube-separating type combustion chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797511A (en) * 2011-05-24 2012-11-28 通用电气公司 System and method for flow control in gas turbine engine

Also Published As

Publication number Publication date
JP2006052910A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
CN101858230B (en) Methods, systems and/or apparatus relating to seals for turbine engines
JP5518597B2 (en) Turbine engine system and apparatus, and turbine engine seal
WO2010038505A1 (en) Connecting structure for combustor, combustor tail pipe, method of designing combustor tail pipe, and gas turbine
US10815789B2 (en) Impingement holes for a turbine engine component
JP2007138938A (en) Method and device for cooling component of combustion turbine engine
US9175565B2 (en) Systems and apparatus relating to seals for turbine engines
US11015453B2 (en) Engine component with non-diffusing section
JP4220947B2 (en) Communication structure between combustor transition and turbine inlet
CN106715838B (en) expansion turbine and turbocharger
CN103459804A (en) Process for cooling the turbine stage and gas turbine having a cooled turbine stage
JP2009197650A (en) Gas turbine
JP2017141825A (en) Airfoil for gas turbine engine
US20210239004A1 (en) Airfoil with cooling hole
US10329941B2 (en) Impingement manifold
WO2018155635A1 (en) Turbine moving blade and gas turbine
CN106537043B (en) Gas turbine
JP2014013037A (en) Turbine exhaust diffuser
KR102295046B1 (en) Stator structure and gas turbine having the same
US20200271005A1 (en) Stator vane and rotating machine
WO2018128609A1 (en) Seal assembly between a hot gas path and a rotor disc cavity
JP5173720B2 (en) Combustor connection structure and gas turbine
JP6934350B2 (en) gas turbine
US11629601B2 (en) Turbomachine rotor blade with a cooling circuit having an offset rib
EP2126367B1 (en) Turbogas system multistage compressor
WO2022201932A1 (en) Turbine and gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4220947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term