[go: up one dir, main page]

JP4219550B2 - Polishing method and polishing apparatus - Google Patents

Polishing method and polishing apparatus Download PDF

Info

Publication number
JP4219550B2
JP4219550B2 JP2000394464A JP2000394464A JP4219550B2 JP 4219550 B2 JP4219550 B2 JP 4219550B2 JP 2000394464 A JP2000394464 A JP 2000394464A JP 2000394464 A JP2000394464 A JP 2000394464A JP 4219550 B2 JP4219550 B2 JP 4219550B2
Authority
JP
Japan
Prior art keywords
polishing
workpiece
pressure
tool
removal amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000394464A
Other languages
Japanese (ja)
Other versions
JP2002192462A (en
Inventor
明弘 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000394464A priority Critical patent/JP4219550B2/en
Publication of JP2002192462A publication Critical patent/JP2002192462A/en
Application granted granted Critical
Publication of JP4219550B2 publication Critical patent/JP4219550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば自由曲面を有する光学素子などの複雑な曲面を有する各種部品やプラスチック成形金型等を高精度に、かつ均一に研磨するの研磨方法及び研磨装置に関するものである。
【0002】
【従来の技術】
例えば自由曲面を有する光学素子などを作製するプラスチック成形金型等の自由曲面を形成するために、自由曲面を研磨工具により倣わせながら研磨している。この研磨装置は、図10に示すように、X−Yテーブル2にセットされた被加工物1の加工面に研磨工具3を定圧機構部5により一定の押付け圧力で押し付け、X−Yテーブル2のX軸駆動モータ10とY軸駆動モータ12を駆動して被加工物1をX軸方向とY軸方向に移動しながら加工面を一定の研磨除去量で研磨する。この研磨工具3を加工面に押し付ける定圧機構部5はエアシリンダ16とレギュレータ28により一定の圧力を発生し続ける方式が多く利用されている。
【0003】
このような研磨加工において、研磨除去量はプレストンの経験則といわれる下記(1)式により得られることが知られている。
【0004】
【数1】

Figure 0004219550
【0005】
(1)式において、H(x)はx座標における研磨除去量、kは被加工物や研磨工具などによる係数、v(x,t)は加工面と研磨工具の相対速度、p(x,t)は研磨圧力、t1は工具滞留時間を示す。研磨工具回転速度をV、被加工物の送り速度をfvとすると、加工面と研磨工具の相対速度v=(V+fv)で表すことができる。
【0006】
上記プレストンの経験則により研磨除去量を制御するためには、送り速度による滞留時間の制御、もしくは研磨圧力と研磨工具回転数のいずれか、又は全てを制御する必要がある。従来の研磨加工法では研磨圧力と研磨工具回転数を一定に保ち、送り速度を変化させることにより目的の研磨除去量を得る方法が採用されて実用化されている。また、特開平9−323252号公報に示された曲面研磨方法は、目的の研磨除去量に対して研磨圧力又は研磨工具回転数に重み付けを行い、研磨面の任意の位置で研磨除去量を制御するようにしている。また、研磨加工点の姿勢を制御し、法線方向を常に一定に保つことにより高精度の加工を実現する用にしている。特開平7−68456号公報に示された研磨方法は、同一個所を研磨する研磨回数により研磨除去量を制御するようにしている。
【0007】
倣い研磨方法では、定圧機構が特定の周波数以上の変動には追従しない特性を利用することにより、細かい誤差成分であるところの面荒さを除去するようにしている。一方、前記従来の倣い研磨方法は、図11の制御回路図に示すように、研磨除去量指令値に定圧機構部5による研磨圧力をフィードバックして制御出力を得るようにしており、定圧機構部5中のエアシリンダ16が研磨工具3と共に摺動するため、定圧機構部5の応答特性が研磨結果に影響することが知られている。この従来の研磨方法で使用しているエアシリンダ16とレギュレータ28を用いて構成した定圧機構部5に接続された研磨工具3は、図12に示すように、1Hz以下の周波数の変動に追従する。例えば送り速度1mm/secで、図13(a),(b)に示すように、理想面29に対してうねり30を持つ被加工物1の加工面を研磨した場合、(c)に示すように、研磨工具3は1mm以上の波長のうねり30に追従してしまう。より高精度の加工を行うためには、より長い波長を持つうねり成分を除去する必要がある。しかしながら従来の定圧機構部による研磨圧力がうねり成分に追従してしまい、倣い研磨によりうねり成分を除去することは困難であるという短所があった。
【0008】
この発明はかかる短所を改善し、平均的な研磨除去量を一定に保ちつつ、特定の周波数帯域のうねり成分を除去し、理想面への追従などを精度良く行い、精密な研磨を実現することができる研磨方法及び研磨装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
この発明に係る研磨方法は、研磨工具を回転させて加工面に押し当て、被加工物を研磨方向に送ることによって研磨を行う研磨方法において、測定した研磨圧力と被加工物の送り速度とにより研磨除去量を算出し、算出した研磨除去量により研磨除去量指令値を補正し、補正した研磨除去量指令値をフィードバックして研磨圧力目標値を補正し、補正した研磨圧力目標値に測定した研磨圧力をフィードバックして送り速度の変化に対して研磨量が一定になるように制御することを特徴とする。
【0011】
また、被加工物の送り速度を、理想面に対する加工面のうねりの波長に応じて変化させ、送り速度の変化に対して研磨量が一定になるように研磨圧力と研磨工具回転数のいづれか又は両方を制御することが望ましい。
【0012】
さらに、被加工物の加工面の状態を測定し、加工面の状態に対応して送り速度を変化させると良い。
【0014】
この発明に係る研磨装置は、被加工物をセットして被加工物の送り速度を可変するX−Yテーブルを駆動するテーブル駆動部と、研磨工具を装着して回転する研磨工具駆動部と、研磨工具駆動部に装着した研磨工具を被加工物に一定の研磨圧力で押し付ける定圧機構部及び制御部とを有する研磨装置において、上記制御部は、上記定圧機構部で測定した研磨圧力と上記テーブル駆動部から出力する被加工物の送り速度とにより研磨除去量を算出し、算出した研磨除去量により研磨除去量指令値を補正し、補正した研磨除去量指令値をフィードバックして研磨圧力目標値を補正し、補正した研磨圧力目標値に上記定圧機構部で測定した研磨圧力をフィードバックして送り速度の変化に対して研磨量が一定になるように制御することを特徴とする。
【0016】
【発明の実施の形態】
この発明の研磨装置は、被加工物をセットして被加工物の送り速度を可変するX−Yテーブルと、研磨工具を装着して回転する研磨工具駆動部と、研磨工具駆動部に装着した研磨工具を被加工物に一定の研磨圧力で押し付ける定圧機構部とを有する。X−Yテーブルはテーブル制御装置により制御され、研磨工具駆動部は研磨工具回転制御計算機により制御されて研磨工具の回転数を可変し、定圧機構部は研磨圧力制御計算機により制御されて研磨工具に加える研磨圧力を可変する。このテーブル制御装置と研磨工具回転数制御計算機及び研磨圧力制御計算機は研磨手順を記憶した制御用計算機に接続されている。
【0017】
この研磨装置で精密な研磨をするときに問題となる定圧機構部と研磨工具の応答性は、研磨工具が接触する研磨加工点の変動に影響される。また、研磨加工点の変動の周波数は、変動量と送り速度によって制御することができる。そこで制御用計算機は、被加工物の送り速度を研磨面の任意の研磨加工点で変化させ、かつ研磨圧力を、送り速度の変動に対して研磨量を一定に保つ条件になるよう制御する。
【0018】
【実施例】
図1はこの発明の一実施例の研磨装置の構成図である。図に示すように、研磨装置は、被加工物1をセットするX−Yテーブル2と、研磨工具3を装着する研磨工具駆動部4と、研磨工具駆動部4に装着した研磨工具3を被加工物1に一定の押付け圧力で押し付ける定圧機構部5と、X−Yテーブル2の駆動を制御するテーブル制御装置6と、研磨工具3の回転数を制御する研磨工具回転制御計算機7及び定圧機構部5の駆動を制御する研磨圧力制御計算機8を有する。X−YテーブルのX軸テーブル9にはエンコーダーを有するX軸駆動モータ10を有し、Y軸テーブル11にはエンコーダーを有するY軸駆動モータ12を有する。研磨工具駆動部4は、図2のブロック図に示すように、研磨工具回転制御計算機7に接続されたモータアンプ13と駆動モータ14を有する。定圧機構部5は電圧レギュレータ15に接続されたエアシリンダ16と、エアシリンダ16のピストンロッドに取り付けられ研磨工具駆動部4に連結された力センサ17を有する。テーブル制御装置6と研磨工具回転数制御計算機7及び研磨圧力制御計算機8は、図2のブロック図に示すように、研磨手順を記憶した制御用計算機18に接続されている。
【0019】
この研磨装置でX−Yテーブル2にセットされた被加工物1の加工面を研磨するとき、定圧機構部5の電圧レギュレータ15によって発生するエア圧をエアシリンダ16に加え、エアシリンダ16により研磨工具3を被加工物の加工面に押し付けながら、研磨工具駆動部4のモーターアンプ13とモーター14によって研磨工具3を回転させて研磨する。この研磨工具3を加工面に押し付ける研磨圧力を発生する電圧レギュレータ15は研磨工具駆動部4に連結された力センサ17の読取値を指令値に追従させるようフィードバック制御されている。研磨工具3を回転させる研磨工具駆動部4は研磨工具回転数制御計算機7によって制御され、モーターアンプ18への電圧入力によって研磨工具3の回転数がオープンループ制御される。また、被加工物1の送り速度、すなわちX−Yテーブル2の移動量は、研磨手順を記憶した制御計算機18からの出力によりテーブル制御装置6で制御される。
【0020】
上記のように構成した研磨装置で被加工物1の加工面を精密に研磨する場合、定圧機構部5と研磨工具3の応答性は、研磨工具3が接触する研磨加工点の変動に影響される。また、研磨加工点の変動の周波数は、研磨加工点の変動量と送り速度によって制御することができる。そこで研磨装置で被加工物1を研磨するときに、被加工物1の送り速度を加工面の任意の研磨加工点で変化させる。この被加工物1の送り速度のみを変動させた場合、研磨除去量にむらが生じる。この送り速度の変動量をプレストンの経験則にしたがい補正し、研磨量を一定に保つように、研磨圧力と研磨工具回転数のいずれか又は全てを重み付けて制御する。
ることにより、目的の研磨除去量を得る。
【0021】
例えば被加工物1の送り速度を加工面の任意の研磨加工点で変化させながら、図3の制御回路図に示すように、研磨圧力の指示出力は、力センサ17の読取値に加えて送り速度の計測値をフィードバックし、プレストンの経験則に従って目標の研磨除去量を得るようダブルループ制御する。この送り速度の計測値と研磨圧力の径時変化を図4に示す。図4に示すように、被加工物1に加えられる研磨圧力の応答特性を大幅に改善することができる。
【0022】
また、送り速度と研磨圧力及び研磨工具回転数をそれぞれ独立したテーブル制御装置6と研磨圧力制御計算機8及び研磨工具回転数制御計算機7で制御することにより、信頼性のある制御を高速に行うことができる。さらに、研磨手順を記憶した制御計算機18から送り速度と研磨圧力及び研磨工具回転数の指令値を出力し、テーブル制御装置6と研磨圧力制御計算機8及び研磨工具回転数制御計算機7に指示することにより、制御出力の同期を確実にとることができる。
【0023】
また、図5(b)に示すように、理想面に対してうねり20を持つ加工面を加工するときに、送り速度を、(a)に示すように、うねり20の波長が長い部分では速くし、うねり20の波長が短い部分では遅くなるように制御し、この送り速度に対して一定の条件を満たすように研磨圧力若しくは研磨工具回転数を制御する。このように理想面に対する加工面のうねり20の波長に応じて送り速度を制御することにより、図5(c)に示すように、研磨工具3と定圧機構部5が倣い加工において追従しないよう研磨工具3のうねり成分21の周波数を制御することができ、被加工物1の加工面の傾きや曲率あるいはうねりの形状に適した送り速度で研磨加工を行えるとともに研磨除去量を任意に制御することができる。
【0024】
このように理想面に対する加工面のうねり20の波長に応じて送り速度を制御するときに、図6に示すように、非接触表面形状センサ22で研磨加工前の被加工物1の加工面の状態をインプロセスで測定して制御計算機18に入力する。制御計算機18は測定された被加工物1の加工面と理想面との誤差を計算して除去すべきうねりの波長を推定し、各研磨加工点における送り速度を計画する。また、理想面よりの誤差から各研磨加工点における研磨除去量を計画する。この計画された送り速度にしたがってX−Yテーブル2の送り量を制御して被加工物1を送りながら、計画された研磨除去量を得るように研磨圧力を制御することにより、被加工物1の加工面のうねりの形状に適した送り速度で研磨加工を行うことができる。
【0025】
また、被加工物1の加工面が、図7(a)に示すように凸面23になっている場合、凸面23の頂点では、研磨工具3の摺動方向が反転するため、従来の倣い研磨方法では凸面23の頂点近傍で圧力特性が変化し、定圧で研磨できずに加工面を損ねてしまう。そこで図7(b)に示すように、凸面23の頂点近傍では送り速度を低速にし、(c)に示すように、研磨圧力を送り速度に応じて高くして研磨することにより、理想面に対して研磨工具3を確実に追従させることができる。
【0026】
このように研磨加工点の位置に対応して送り速度を変化させることにより、研磨工具3と定圧機構部5の応答特性に適した値に調整することができる。さらに、送り速度の変動に対して研磨圧力及び研磨工具回転数のいずれか又は全てをプレストンの経験則にしたがって重みづけすることにより、研磨除去量を一定に保つことができる。
【0027】
上記実施例は、送り速度と研磨圧力及び研磨工具回転数をそれぞれ独立したテーブル制御装置6と研磨圧力制御計算機8及び研磨工具回転数制御計算機7で制御する場合について説明したが、図8の構成図に示すように、X−Yテーブル2のX軸モータ10とY軸モータ12と、定圧機構部5のモーターアンプ13及び研磨工具駆動部4をアナログI/Oユニット24を介して制御計算機18に接続し、X−Yテーブル2と定圧機構部5及び研磨工具駆動部4を制御計算機18に記憶されたソフトウェアによってフィードバック演算処理して、送り速度と研磨圧力及び研磨工具回転数を制御するようにしても良い。このように1台の制御計算機18で送り速度と研磨圧力及び研磨工具回転数を制御することにより、容易に同期をとることができる。
【0028】
上記実施例はX−Yテーブル2と定圧機構部5及び研磨工具駆動部4を制御計算機18に接続するためにアナログI/Oユニット24を設けた場合について説明したが、図9の構成図に示すように、制御計算機18にモーションコントロールボード25とアナログ入出力ボード26及びデジタル信号処理ボード27を組み込む。そしてモーションコントロールボード25でX−Yテーブル2を駆動するX軸駆動モータ10とY軸駆動モータ12を制御し、デジタル信号処理ボード27で定圧機構部5の電圧レギュレータ15への出力と力センサ17の入力値をフィードバック演算処理し、アナログ入出力ボード26により研磨工具回転数の指示値を出力するようにしても良い。このようにして各入出力を制御計算機18に記憶されたソフトウェアから指示若しくは参照することができ、同期をとった制御が容易に実現することができる。
【0029】
上記各実施例は被加工物1の送り速度の変化に応じて研磨圧力を可変した場合について説明したが、被加工物1の送り速度の変化に応じて研磨圧力と研磨工具回転数のいづれか又は両方を可変するようにしても良い。
【0030】
【発明の効果】
この発明は以上説明したように、測定した研磨圧力と被加工物の送り速度とにより研磨除去量を算出し、算出した研磨除去量により研磨除去量指令値を補正し、補正した研磨除去量指令値をフィードバックして研磨圧力目標値を補正し、補正した研磨圧力目標値に測定した研磨圧力をフィードバックして送り速度の変化に対して研磨量が一定になるように制御するから、被加工物に加えられる研磨圧力の応答特性を大幅に改善することができ、加工面の傾きや曲率やうねりの形状に適した送り速度で研磨加工を行えるとともに、研磨除去量を任意に制御することができる。
【0032】
さらに、被加工物の送り速度を、理想面に対する加工面のうねりの波長に応じて変化させ、送り速度の変化に対して研磨量が一定になるように研磨圧力と研磨工具回転数のいづれか又は両方を制御することにより、研磨工具と定圧機構部が倣い加工において追従しないように、うねりの周波数を制御でき研磨精度を向上させることができる。
【0033】
また、加工物の加工面の状態を測定し、加工面の状態に対応して送り速度を変化させることにより、事前のプログラミングの手間を軽減することができるとともに、研磨精度を向上させることができる。
【図面の簡単な説明】
【図1】この発明の実施例の構成図である。
【図2】上記実施例の制御部の構成を示すブロック図である。
【図3】上記実施例の制御回路図である。
【図4】上記実施例における送り速度と研磨圧力の変動特性図である。
【図5】うねり成分に対する送り速度の変化特性図である。
【図6】加工面のうねり成分の測定を示す配置図である。
【図7】凸面からなる加工面を研磨するときの送り速度と研磨圧力の変化特性図である。
【図8】第2の実施例の構成図である。
【図9】第3の実施例の構成図である。
【図10】従来例の構成図である。
【図11】従来例の制御回路図である。
【図12】従来例の研磨工具の周波数応答特性図である。
【図13】従来例でうねりを有する加工面を研磨するときの状態を示す説明図である。
【符号の説明】
1;被加工物、2;X−Yテーブル、3;研磨工具、4;研磨工具駆動部、
5;定圧機構部、6;テーブル制御装置、7;研磨工具回転制御計算機、
8;研磨圧力制御計算機、9;X軸テーブル、10;X軸駆動モータ、
11;Y軸テーブル、12;Y軸駆動モータ、13;モータアンプ、
14;駆動モータ、15;電圧レギュレータ、16;エアシリンダ、
17;力センサ、18;制御用計算機。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing method and a polishing apparatus for polishing various parts having a complicated curved surface, such as an optical element having a free curved surface, a plastic mold, and the like with high accuracy and uniformity.
[0002]
[Prior art]
For example, in order to form a free-form surface such as a plastic mold for producing an optical element having a free-form surface, the free-form surface is polished while following the polishing tool. As shown in FIG. 10, the polishing apparatus presses the polishing tool 3 against the processing surface of the workpiece 1 set on the XY table 2 with a constant pressing pressure by the constant pressure mechanism unit 5. The X-axis drive motor 10 and the Y-axis drive motor 12 are driven to move the workpiece 1 in the X-axis direction and the Y-axis direction, and the processed surface is polished with a constant polishing removal amount. As the constant pressure mechanism 5 that presses the polishing tool 3 against the processing surface, a method of continuously generating a constant pressure by the air cylinder 16 and the regulator 28 is often used.
[0003]
In such a polishing process, it is known that the polishing removal amount can be obtained by the following equation (1), which is called Preston's rule of thumb.
[0004]
[Expression 1]
Figure 0004219550
[0005]
In equation (1), H (x) is the amount of polishing removal at the x coordinate, k is a coefficient depending on the workpiece or polishing tool, v (x, t) is the relative speed between the processing surface and the polishing tool, and p (x, t) shows the polishing pressure, and t1 shows the tool residence time. When the polishing tool rotation speed is V and the workpiece feed speed is fv, it can be expressed as a relative speed v = (V + fv) between the processing surface and the polishing tool.
[0006]
In order to control the polishing removal amount based on the above-mentioned Preston rule of thumb, it is necessary to control the dwell time based on the feed rate, or either or all of the polishing pressure and the polishing tool rotation speed. In the conventional polishing method, a method of obtaining a target polishing removal amount by keeping the polishing pressure and the number of revolutions of the polishing tool constant and changing the feed rate is put into practical use. Also, the curved surface polishing method disclosed in Japanese Patent Application Laid-Open No. 9-323252 weights the polishing pressure or the number of revolutions of the polishing tool with respect to the target polishing removal amount, and controls the polishing removal amount at an arbitrary position on the polishing surface. Like to do. In addition, the position of the polishing point is controlled, and the normal direction is always kept constant to achieve high-precision machining. In the polishing method disclosed in Japanese Patent Application Laid-Open No. 7-68456, the removal amount of polishing is controlled by the number of polishings for polishing the same portion.
[0007]
In the profile polishing method, the surface roughness, which is a fine error component, is removed by utilizing the characteristic that the constant pressure mechanism does not follow fluctuations of a specific frequency or higher. On the other hand, in the conventional copying polishing method, as shown in the control circuit diagram of FIG. 11, the polishing pressure from the constant pressure mechanism unit 5 is fed back to the polishing removal amount command value to obtain a control output. It is known that the response characteristic of the constant pressure mechanism unit 5 affects the polishing result because the air cylinder 16 in FIG. As shown in FIG. 12, the polishing tool 3 connected to the constant pressure mechanism 5 configured by using the air cylinder 16 and the regulator 28 used in this conventional polishing method follows a frequency fluctuation of 1 Hz or less. . For example, when the processing surface of the workpiece 1 having the undulation 30 with respect to the ideal surface 29 is polished at a feed rate of 1 mm / sec as shown in FIGS. 13A and 13B, as shown in FIG. In addition, the polishing tool 3 follows the undulation 30 having a wavelength of 1 mm or more. In order to perform processing with higher accuracy, it is necessary to remove a swell component having a longer wavelength. However, there is a disadvantage that the polishing pressure by the conventional constant pressure mechanism portion follows the waviness component, and it is difficult to remove the waviness component by copying polishing.
[0008]
The present invention improves such disadvantages, removes waviness components in a specific frequency band while keeping the average polishing removal amount constant, and accurately follows the ideal surface to achieve precise polishing. It is an object of the present invention to provide a polishing method and a polishing apparatus capable of performing the above.
[0009]
[Means for Solving the Problems]
The polishing method according to the present invention is a polishing method in which polishing is performed by rotating a polishing tool and pressing it against a processing surface, and feeding the workpiece in the polishing direction. The polishing method is based on the measured polishing pressure and the workpiece feed rate. The polishing removal amount was calculated, the polishing removal amount command value was corrected by the calculated polishing removal amount, the corrected polishing removal amount command value was fed back to correct the polishing pressure target value, and the corrected polishing pressure target value was measured. The polishing pressure is fed back to control the polishing amount to be constant with respect to the change in feed rate.
[0011]
Further, the feed speed of the workpiece is changed according to the wavelength of the waviness of the processed surface with respect to the ideal surface, and either the polishing pressure or the polishing tool rotational speed is set so that the polishing amount becomes constant with respect to the change of the feed speed, or It is desirable to control both.
[0012]
Furthermore, it is preferable to measure the state of the processed surface of the workpiece and change the feed rate in accordance with the state of the processed surface.
[0014]
A polishing apparatus according to the present invention includes a table driving unit that drives an XY table that sets a workpiece and varies a feed speed of the workpiece, a polishing tool driving unit that rotates by mounting a polishing tool, In a polishing apparatus having a constant pressure mechanism unit and a control unit for pressing a polishing tool mounted on a polishing tool driving unit against a workpiece with a constant polishing pressure, the control unit includes the polishing pressure measured by the constant pressure mechanism unit and the table. The polishing removal amount is calculated based on the workpiece feed rate output from the drive unit, the polishing removal amount command value is corrected by the calculated polishing removal amount, and the corrected polishing removal amount command value is fed back to obtain the polishing pressure target value. The polishing pressure measured by the constant pressure mechanism unit is fed back to the corrected polishing pressure target value, and the polishing amount is controlled to be constant with respect to the change in the feed rate.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The polishing apparatus according to the present invention is mounted on an XY table that sets a workpiece and varies the feed rate of the workpiece, an abrasive tool driving unit that rotates by mounting an abrasive tool, and an abrasive tool driving unit. A constant pressure mechanism that presses the polishing tool against the workpiece with a constant polishing pressure. The XY table is controlled by a table controller, the polishing tool drive unit is controlled by a polishing tool rotation control computer to vary the rotation speed of the polishing tool, and the constant pressure mechanism unit is controlled by the polishing pressure control computer to be used as a polishing tool. The polishing pressure to be applied is varied. The table control device, the polishing tool rotation speed control computer, and the polishing pressure control computer are connected to a control computer that stores a polishing procedure.
[0017]
The responsiveness between the constant pressure mechanism and the polishing tool, which is a problem when performing precise polishing with this polishing apparatus, is affected by fluctuations in the polishing processing point where the polishing tool comes into contact. Further, the frequency of fluctuation of the polishing processing point can be controlled by the fluctuation amount and the feed rate. Therefore, the control computer changes the feed speed of the workpiece at any polishing point on the polishing surface, and controls the polishing pressure so that the polishing amount is kept constant against fluctuations in the feed speed.
[0018]
【Example】
FIG. 1 is a block diagram of a polishing apparatus according to an embodiment of the present invention. As shown in the figure, the polishing apparatus receives an XY table 2 for setting a workpiece 1, a polishing tool driving unit 4 for mounting a polishing tool 3, and a polishing tool 3 mounted on the polishing tool driving unit 4. A constant pressure mechanism 5 that presses against the workpiece 1 with a constant pressing pressure, a table control device 6 that controls the drive of the XY table 2, a polishing tool rotation control computer 7 that controls the number of rotations of the polishing tool 3, and a constant pressure mechanism A polishing pressure control computer 8 that controls the driving of the unit 5 is included. The X-axis table 9 of the XY table has an X-axis drive motor 10 having an encoder, and the Y-axis table 11 has a Y-axis drive motor 12 having an encoder. As shown in the block diagram of FIG. 2, the polishing tool drive unit 4 includes a motor amplifier 13 and a drive motor 14 connected to the polishing tool rotation control computer 7. The constant pressure mechanism 5 includes an air cylinder 16 connected to the voltage regulator 15 and a force sensor 17 attached to the piston rod of the air cylinder 16 and connected to the polishing tool drive unit 4. As shown in the block diagram of FIG. 2, the table controller 6, the polishing tool rotation speed control computer 7, and the polishing pressure control computer 8 are connected to a control computer 18 that stores a polishing procedure.
[0019]
When the processed surface of the workpiece 1 set on the XY table 2 is polished by this polishing apparatus, the air pressure generated by the voltage regulator 15 of the constant pressure mechanism 5 is applied to the air cylinder 16 and is polished by the air cylinder 16. Polishing is performed by rotating the polishing tool 3 by the motor amplifier 13 and the motor 14 of the polishing tool driving unit 4 while pressing the tool 3 against the processing surface of the workpiece. The voltage regulator 15 that generates a polishing pressure that presses the polishing tool 3 against the processing surface is feedback-controlled so that the reading value of the force sensor 17 connected to the polishing tool driving unit 4 follows the command value. The polishing tool drive unit 4 that rotates the polishing tool 3 is controlled by a polishing tool rotation speed control computer 7, and the rotation speed of the polishing tool 3 is controlled in an open loop by voltage input to the motor amplifier 18. Further, the feed speed of the workpiece 1, that is, the movement amount of the XY table 2 is controlled by the table control device 6 by the output from the control computer 18 storing the polishing procedure.
[0020]
When the processing surface of the workpiece 1 is precisely polished with the polishing apparatus configured as described above, the responsiveness of the constant pressure mechanism unit 5 and the polishing tool 3 is affected by fluctuations in the polishing processing point where the polishing tool 3 contacts. The Further, the frequency of fluctuation of the polishing process point can be controlled by the fluctuation amount of the polishing process point and the feed rate. Therefore, when the workpiece 1 is polished by the polishing apparatus, the feed speed of the workpiece 1 is changed at any polishing point on the processing surface. When only the feed speed of the workpiece 1 is changed, unevenness in the amount of polishing removal occurs. The amount of fluctuation of the feed rate is corrected according to Preston's rule of thumb, and control is performed by weighting either or all of the polishing pressure and the polishing tool rotational speed so as to keep the polishing amount constant.
As a result, the desired polishing removal amount is obtained.
[0021]
For example, as shown in the control circuit diagram of FIG. 3, while the feed speed of the workpiece 1 is changed at an arbitrary polishing processing point on the processing surface, the polishing pressure instruction output is sent in addition to the reading value of the force sensor 17. The measured value of the speed is fed back, and the double loop control is performed so as to obtain the target polishing removal amount according to Preston's rule of thumb. FIG. 4 shows the measured value of the feed rate and the change in polishing pressure with time. As shown in FIG. 4, the response characteristic of the polishing pressure applied to the workpiece 1 can be greatly improved.
[0022]
Also, reliable control can be performed at high speed by controlling the feed speed, polishing pressure, and polishing tool rotation speed by the independent table controller 6, polishing pressure control computer 8, and polishing tool rotation speed control computer 7, respectively. Can do. Further, a command value of the feed speed, polishing pressure, and polishing tool rotation speed is output from the control computer 18 that stores the polishing procedure, and instructions are given to the table control device 6, the polishing pressure control calculator 8, and the polishing tool rotation speed control computer 7. Thus, the control output can be reliably synchronized.
[0023]
Further, as shown in FIG. 5 (b), when machining a machined surface having an undulation 20 with respect to the ideal surface, the feed rate is increased at a portion where the wavelength of the undulation 20 is long as shown in (a). Then, control is performed so that the undulation 20 has a shorter wavelength, and the polishing pressure or the number of rotations of the polishing tool is controlled so as to satisfy a certain condition with respect to the feed speed. By controlling the feed speed according to the wavelength of the waviness 20 of the processed surface with respect to the ideal surface in this way, as shown in FIG. 5C, the polishing tool 3 and the constant pressure mechanism 5 are polished so as not to follow in the copying process. The frequency of the undulation component 21 of the tool 3 can be controlled, the polishing process can be performed at a feed rate suitable for the inclination and curvature of the processed surface of the workpiece 1 or the shape of the undulation, and the polishing removal amount can be arbitrarily controlled. Can do.
[0024]
In this way, when the feed rate is controlled according to the wavelength of the undulation 20 of the processed surface with respect to the ideal surface, as shown in FIG. 6, the processed surface of the workpiece 1 before polishing is processed by the non-contact surface shape sensor 22. The state is measured in-process and input to the control computer 18. The control computer 18 calculates the error between the measured processed surface of the workpiece 1 and the ideal surface, estimates the wave length of the waviness to be removed, and plans the feed rate at each polishing processing point. Also, the amount of polishing removal at each polishing processing point is planned from the error from the ideal surface. The workpiece 1 is controlled by controlling the polishing pressure so as to obtain the planned polishing removal amount while feeding the workpiece 1 by controlling the feeding amount of the XY table 2 in accordance with the planned feeding speed. Polishing can be performed at a feed rate suitable for the shape of the waviness of the processed surface.
[0025]
Further, when the processed surface of the workpiece 1 is a convex surface 23 as shown in FIG. 7A, the sliding direction of the polishing tool 3 is reversed at the apex of the convex surface 23, so that the conventional profile polishing is performed. In the method, pressure characteristics change near the apex of the convex surface 23, and polishing cannot be performed at a constant pressure, and the processed surface is damaged. Therefore, as shown in FIG. 7B, the feed rate is reduced near the apex of the convex surface 23, and the polishing pressure is increased according to the feed rate as shown in FIG. On the other hand, the polishing tool 3 can be surely followed.
[0026]
In this way, by changing the feed rate corresponding to the position of the polishing processing point, it is possible to adjust to a value suitable for the response characteristics of the polishing tool 3 and the constant pressure mechanism unit 5. Further, the weight of polishing removal can be kept constant by weighting any or all of the polishing pressure and the number of rotations of the polishing tool according to Preston's rule of thumb with respect to fluctuations in the feed rate.
[0027]
In the above embodiment, the case where the feed speed, the polishing pressure, and the polishing tool rotation speed are controlled by the independent table control device 6, the polishing pressure control computer 8, and the polishing tool rotation speed control computer 7 has been described. As shown in the figure, the X-axis motor 10 and the Y-axis motor 12 of the XY table 2, the motor amplifier 13 of the constant pressure mechanism unit 5, and the polishing tool drive unit 4 are controlled via an analog I / O unit 24. The XY table 2, the constant pressure mechanism unit 5 and the polishing tool driving unit 4 are subjected to feedback calculation processing by software stored in the control computer 18 so as to control the feed speed, polishing pressure and polishing tool rotation speed. Anyway. Thus, by controlling the feed speed, the polishing pressure, and the number of rotations of the polishing tool with one control computer 18, synchronization can be easily achieved.
[0028]
In the above embodiment, the case where the analog I / O unit 24 is provided to connect the XY table 2, the constant pressure mechanism unit 5 and the polishing tool drive unit 4 to the control computer 18 has been described. As shown, a motion control board 25, an analog input / output board 26, and a digital signal processing board 27 are incorporated in the control computer 18. The motion control board 25 controls the X-axis drive motor 10 and the Y-axis drive motor 12 that drive the XY table 2, and the digital signal processing board 27 outputs to the voltage regulator 15 of the constant pressure mechanism 5 and the force sensor 17. May be subjected to feedback calculation processing, and the analog input / output board 26 may output an instruction value for the number of rotations of the polishing tool. In this way, each input / output can be instructed or referred to from the software stored in the control computer 18, and the synchronized control can be easily realized.
[0029]
In each of the above-described embodiments, the case where the polishing pressure is varied in accordance with the change in the feed speed of the workpiece 1 has been described. However, either the polishing pressure or the polishing tool rotational speed is determined in accordance with the change in the feed speed of the workpiece 1 or Both may be variable.
[0030]
【The invention's effect】
As described above, according to the present invention, the polishing removal amount is calculated based on the measured polishing pressure and the workpiece feed rate, the polishing removal amount command value is corrected based on the calculated polishing removal amount, and the corrected polishing removal amount command is corrected. The value is fed back to correct the polishing pressure target value, and the measured polishing pressure is fed back to the corrected polishing pressure target value to control the polishing amount to be constant with changes in the feed rate. The response characteristics of the polishing pressure applied to the material can be greatly improved , the polishing process can be performed at a feed rate suitable for the inclination, curvature and waviness of the processed surface, and the amount of polishing removal can be controlled arbitrarily. .
[0032]
Furthermore, the feed speed of the workpiece is changed according to the wavelength of the waviness of the processed surface with respect to the ideal surface, and either the polishing pressure or the polishing tool rotational speed is set so that the polishing amount becomes constant with respect to the change of the feed speed, or By controlling both, the waviness frequency can be controlled and the polishing accuracy can be improved so that the polishing tool and the constant pressure mechanism do not follow in the copying process.
[0033]
In addition, by measuring the state of the processed surface of the workpiece and changing the feed rate according to the state of the processed surface, it is possible to reduce the effort of prior programming and improve the polishing accuracy. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention.
FIG. 2 is a block diagram illustrating a configuration of a control unit according to the embodiment.
FIG. 3 is a control circuit diagram of the embodiment.
FIG. 4 is a fluctuation characteristic diagram of a feed rate and a polishing pressure in the embodiment.
FIG. 5 is a change characteristic diagram of a feed rate with respect to a swell component.
FIG. 6 is a layout view showing measurement of a waviness component of a processed surface.
FIG. 7 is a change characteristic diagram of a feed rate and a polishing pressure when a processed surface including a convex surface is polished.
FIG. 8 is a configuration diagram of a second embodiment.
FIG. 9 is a configuration diagram of a third embodiment.
FIG. 10 is a configuration diagram of a conventional example.
FIG. 11 is a control circuit diagram of a conventional example.
FIG. 12 is a frequency response characteristic diagram of a conventional polishing tool.
FIG. 13 is an explanatory view showing a state when a processed surface having waviness is polished in a conventional example.
[Explanation of symbols]
1; work piece, 2; XY table, 3; polishing tool, 4; polishing tool drive unit,
5; constant pressure mechanism, 6; table control device, 7; polishing tool rotation control computer,
8; polishing pressure control computer, 9; X-axis table, 10; X-axis drive motor,
11: Y-axis table, 12: Y-axis drive motor, 13: Motor amplifier,
14; drive motor, 15; voltage regulator, 16; air cylinder,
17; Force sensor, 18; Control computer.

Claims (4)

研磨工具を回転させて加工面に押し当て、被加工物を研磨方向に送ることによって研磨を行う研磨方法において、
測定した研磨圧力と被加工物の送り速度とにより研磨除去量を算出し、算出した研磨除去量により研磨除去量指令値を補正し、補正した研磨除去量指令値をフィードバックして研磨圧力目標値を補正し、補正した研磨圧力目標値に測定した研磨圧力をフィードバックして送り速度の変化に対して研磨量が一定になるように制御することを特徴とする研磨方法。
In a polishing method in which a polishing tool is rotated and pressed against a processing surface, and polishing is performed by sending a workpiece in a polishing direction.
The polishing removal amount is calculated based on the measured polishing pressure and the workpiece feed rate, the polishing removal amount command value is corrected by the calculated polishing removal amount, and the corrected polishing removal amount command value is fed back to obtain the polishing pressure target value. The polishing method is characterized in that the polishing pressure is fed back to the corrected polishing pressure target value and controlled so that the polishing amount becomes constant with respect to the change in feed rate.
上記被加工物の送り速度を、理想面に対する加工面のうねりの波長に応じて変化させる請求項1記載の研磨方法。The polishing method according to claim 1, wherein a feed speed of the workpiece is changed according to a wavelength of waviness of the processed surface with respect to an ideal surface. 上記被加工物の加工面の状態を測定し、加工面の状態に対応して送り速度を変化させる請求項1又は2記載の研磨方法。The polishing method according to claim 1 or 2, wherein the state of the processed surface of the workpiece is measured, and the feed rate is changed in accordance with the state of the processed surface. 被加工物をセットして被加工物の送り速度を可変するX−Yテーブルを駆動するテーブル駆動部と、研磨工具を装着して回転する研磨工具駆動部と、研磨工具駆動部に装着した研磨工具を被加工物に一定の研磨圧力で押し付ける定圧機構部及び制御部とを有する研磨装置において、A table driving unit that drives an XY table that sets a workpiece and varies the feed speed of the workpiece, a polishing tool driving unit that rotates by attaching a polishing tool, and a polishing that is mounted on the polishing tool driving unit In a polishing apparatus having a constant pressure mechanism unit and a control unit for pressing a tool against a workpiece with a constant polishing pressure,
上記制御部は、上記定圧機構部で測定した研磨圧力と上記テーブル駆動部から出力する被加工物の送り速度とにより研磨除去量を算出し、算出した研磨除去量により研磨除去量指令値を補正し、補正した研磨除去量指令値をフィードバックして研磨圧力目標値を補正し、補正した研磨圧力目標値に上記定圧機構部で測定した研磨圧力をフィードバックして送り速度の変化に対して研磨量が一定になるように制御することを特徴とする研磨装置。The control unit calculates the polishing removal amount based on the polishing pressure measured by the constant pressure mechanism unit and the workpiece feed rate output from the table driving unit, and corrects the polishing removal amount command value based on the calculated polishing removal amount. The corrected polishing removal amount command value is fed back to correct the polishing pressure target value, and the polishing pressure measured by the constant pressure mechanism is fed back to the corrected polishing pressure target value to correct the polishing amount against the change in feed rate. A polishing apparatus characterized by controlling so as to be constant.
JP2000394464A 2000-12-26 2000-12-26 Polishing method and polishing apparatus Expired - Fee Related JP4219550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394464A JP4219550B2 (en) 2000-12-26 2000-12-26 Polishing method and polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394464A JP4219550B2 (en) 2000-12-26 2000-12-26 Polishing method and polishing apparatus

Publications (2)

Publication Number Publication Date
JP2002192462A JP2002192462A (en) 2002-07-10
JP4219550B2 true JP4219550B2 (en) 2009-02-04

Family

ID=18860094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394464A Expired - Fee Related JP4219550B2 (en) 2000-12-26 2000-12-26 Polishing method and polishing apparatus

Country Status (1)

Country Link
JP (1) JP4219550B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374114B2 (en) * 2007-11-08 2013-12-25 株式会社ノリタケカンパニーリミテド Slab grinding method and control device for slab grinding apparatus
CN102275130A (en) * 2011-08-17 2011-12-14 四川欧曼机械有限公司 Novel swinging control structure

Also Published As

Publication number Publication date
JP2002192462A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP4813912B2 (en) Method for dividing motion of relative motion between a workpiece and a tool of a machine tool, and a machine tool for performing motion division
US5140777A (en) Method and apparatus for polishing optical elements
KR100914349B1 (en) Method of controlling a servo-motor
US6602110B2 (en) Automated polishing apparatus and method of polishing
JPH0792382B2 (en) Control method and control device for coordinate measuring machine
US6592430B1 (en) High-precision machining system
CN114274047A (en) An efficient and precise grinding and polishing trajectory optimization method based on force perception measurement
JP4219550B2 (en) Polishing method and polishing apparatus
JP2002301659A (en) Automatic finishing method and equipment
JP2025000936A (en) Deburring device
WO2000056502A1 (en) Lapping machine, lapping method, and method of fabricating magnetic head
JPH01146654A (en) Automatic grinding device
JP3529575B2 (en) Force control robot and control method thereof
JP5369478B2 (en) Polishing equipment
JPH03142159A (en) Pressure control type grinding device
JP2000308939A (en) Guide device using ultrasonic motor as drive source for movable body
JP2001260020A (en) Pressurizing force variable polishing device
JPH10286771A (en) Grinding device and grinding method
JP2023090137A (en) Processing system and processing method
JPH07241766A (en) Polishing head
JP7328474B1 (en) Numerical controller
JP2003062751A (en) Waviness removing method, polishing device, workpiece, mold for molding optical element, optical element and printing processor
JP2002172551A (en) Curved face grinding device and method
JP2000317831A (en) Control device for disc sander
JP2002086334A (en) Curved surface polishing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees