JP4218230B2 - Sintered body target for transparent conductive film production - Google Patents
Sintered body target for transparent conductive film production Download PDFInfo
- Publication number
- JP4218230B2 JP4218230B2 JP2001207892A JP2001207892A JP4218230B2 JP 4218230 B2 JP4218230 B2 JP 4218230B2 JP 2001207892 A JP2001207892 A JP 2001207892A JP 2001207892 A JP2001207892 A JP 2001207892A JP 4218230 B2 JP4218230 B2 JP 4218230B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- film
- germanium
- transparent conductive
- indium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、太陽電池や液晶表面素子などに用いられる低抵抗透明導電膜をスパッタリング法で製造する際に利用される焼結体スパッタリングターゲットに関する。
【0002】
【従来の技術】
透明導電膜は、高い導電性と可視光領域での高い透過率とを有する。これは、太陽電池や液晶表示素子、その他各種受光素子の電極などに利用されている他、自動車や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなどの各種の防曇用の透明発熱体としても利用されている。
【0003】
透明導電膜には、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)や、アルミニウムやガリウムをドーパントとして含む酸化亜鉛(ZnO)や、錫をドーパントとして含む酸化インジウム(In2O3)などが広範に利用されている。特に錫をドーパントとして含む酸化インジウム膜、すなわちIn2O3−Sn系膜はITO(Indium tin oxide )膜と称され、特に低抵抗の膜が容易に得られることから、これまで良く用いられてきた。
【0004】
これらの透明導電膜の製造方法としてはスパッタリング法が良く用いられている。スパッタリング法は、蒸気圧の低い材料の成膜や精密な膜厚制御を必要とする際に有効な手法であり、操作が非常に簡便であるため、工業的に広範に利用されている。
【0005】
スパッタリング法ではターゲットが成膜原料として用いられる。この方法は一般に、約10Pa以下のガス圧のもとで、基板を陽極とし、ターゲットを陰極としてこれらの間にグロー放電を起こしてアルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のターゲットに衝突させ、これによってはじきとばされるターゲット成分の粒子を基板上に堆積させて膜を形成するというものである。アルゴンプラズマの発生方法で分類され、高周波プラズマを用いるものは高周波スパッタリング法、直流プラズマを用いるものは直流スパッタリング法という。
【0006】
また、Sn以外の添加物を含むIn2O3系透明導電膜についても検討されており、Sn添加In2O3材料にはない特徴を有する材料がいくつか見いだされている。その中で、特許公開平9−50711、特許公開平11−322333、特許公開平11−323531、特許公開平11−329085、に記されているGe添加のIn2O3薄膜があげられる。
【0007】
Geを添加したIn2O3膜はSn添加In2O3と同等の導電性を有し、酸による膜のエッチング速度がSn添加In2O3膜と比べて速いという特徴をもつことから様々なデバイスに利用できるという利点がある。またGe添加In2O3膜は低温スパッタ成膜により、表面平滑性に優れたアモルファス膜を安定して作製できるという利点も持ち、LCDなどの各種表示デバイスへの応用に有利である。なお、この膜をスパッタリング法で作製するためには、酸化ゲルマニウム粉末と酸化インジウム粉末の混合粉末と加圧成形し、1200℃程度で焼結して得られるターゲットが用いられる。
【0008】
近年、プラスチックLCDなどのようなプラスチック基材を用いたLCDの開発が急がれているが、これを実現するためには、室温でプラスチック基材上に低抵抗の透明導電膜を形成する必要がある。また、高い生産性を確保しつつスパッタリング法により成膜するためには、投入電力を高くして成膜速度を高速化する必要があるが、上記従来のターゲットでは、投入電力を増加させるとアーキングが発生してしまい、安定にスパッタ成膜することが困難であった。
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記事情に鑑み、基板を加熱せず室温にて低抵抗透明導電膜を形成でき、かつ高投入電力を投入しても安定して高速スパッタ成膜が可能な透明導電膜作製用焼結体ターゲットを提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、様々なターゲットの作製条件にて作製したゲルマニウム含有酸化インジウム焼結体ターゲットを用い、ガス圧、成膜ガスの種類、ターゲット−基板間距離、成膜パワー、膜厚を一定にして、基板を加熱せずにスパッタ成膜を実施した。この実験・試験によると、膜の比抵抗は、ターゲット中のゲルマニウムの含有形態に大きく依存することを見出し本発明に至った。
【0011】
すなわち、本発明の酸化インジウム系透明導電性薄膜作製用焼結体ターゲットは、共存するゲルマニウム元素がビックスバイト型結晶構造の酸化インジウムのインジウムサイトに含有される全量が置換固溶しており、粉末X線回折測定においてビックスバイト型構造の酸化インジウム相に起因する回折ピークのみが観察され、かつ、ゲルマニウムの含有量がGe/In原子比で0.02〜0.09であることを特徴とする。
【0012】
【発明の実施の形態】
本発明の酸化インジウム焼結体ターゲットはGe元素を含む。というのは、このようなターゲットから得た膜では、酸化インジウム膜中の原子価が3価であるインジウム位置に4価のゲルマニウムが占有し、これによってキャリア電子を放出して導電率が増加し、低抵抗の膜となるからである。得られる膜組成は用いる装置や成膜条件により影響され、必ずしもターゲットの組成をそのまま反映するとは限らないが、ターゲット中のゲルマニウム元素をGe/In原子比で0.02以上0.09以下とすると好ましい低抵抗の膜が得られる。
【0013】
本発明のターゲットを得るには、例えば、所定量の酸化インジウムと酸化ゲルマニウムとを湿式ボールミル等を用いて粉砕混合し、得られた混合物を乾燥し、造粒し、造粒物を得、これを型に入れて成形し、得た成形体を酸素存在下で焼結し、徐冷することにより得られる。
【0014】
上記したように、得られる膜の比抵抗は、ターゲット中のゲルマニウムの含有形態に大きく依存する。すなわち、ゲルマニウムが、酸化ゲルマニウムの形態で酸化インジウム焼結体中に存在しているターゲットと比べて、酸化ゲルマニウムの形態として存在せずにビックスバイト型結晶構造の酸化インジウム(In2O3)のインジウムサイトに置換固溶しているターゲットを用いた方が膜の比抵抗が明らかに低い。ここでビックスバイト(bixbyite)とは酸化インジウム(In2O3)の結晶構造であり、希土類酸化物C型とも呼ばれる(透明導電膜の技術、オーム社、p.82参照)。
【0015】
この理由は次のように説明できる。スパッタリングにおける成膜のメカニズムは、プラズマ中のアルゴンイオンがターゲット表面に衝突してターゲット成分の粒子がはじき飛ばされ、基板上に堆積される。この際、はじき飛ばされる粒子のほとんどはターゲット材料の1原子であるが、クラスターと呼ばれる原子数個で形成される塊状もわずかに含まれる。ターゲット中に酸化ゲルマニウムの粒子が含まれていると、酸化ゲルマニウム粒子の部分からスパッタリングによって酸化ゲルマニウムのクラスターがはじき飛ばされる。基板は、基板上に堆積した酸化ゲルマニウムのクラスターが酸化インジウムに固溶するのに十分な温度を有していない。このため、比抵抗の高い酸化ゲルマニウムのクラスターがそのまま膜成分となり、膜全体の比抵抗が増加する。
【0016】
一方、本発明のターゲット、すなわちゲルマニウムがインジウムサイトに固溶しているターゲットをもちいれば、クラスターとしてはじき飛ばされる粒子はゲルマニウムが固溶した酸化インジウムであるため、膜の比抵抗を増加させることはない。
【0017】
本発明者の実験・試験によると、粉末X線回折測定にて酸化ゲルマニウムが検出されたターゲットを用いた場合は、酸化ゲルマニウムが検出されないターゲットを用いた場合と比較して、同一条件でスパッタ成膜した膜の比抵抗は明らかに高い。
【0018】
また、ターゲット中に酸化ゲルマニウム粒子が存在すると、酸化ゲルマニウム粒子の比抵抗は高いため、プラズマから照射されるアルゴンイオンで帯電が起こり、アーキングが生じる。この傾向はターゲット投入電力を上げてアルゴンイオンの照射量が増加するほど大きくなる。これに対し、本発明に従ったターゲットではゲルマニウムが全てインジウムサイトに置換固溶していて高抵抗の粒子が存在しないため投入パワーを増加させてもアーキングは生じない。よって高投入電力による高速成膜が可能である。
【0019】
従って、本発明の焼結体ターゲットを用いれば、従来の技術よりも低抵抗の透明導電膜を加熱しない基板上に製造することができる。しかも、アーキングを発生することなく安定に高投入パワーを導入した高速成膜が可能である。
【0020】
【実施例】
以下、実施例によって本発明をより具体的に説明する.
[実施例1〜4]
Geが酸化インジウムのインジウムサイトに置換固溶した酸化インジウム焼結体ターゲットを製造した。
【0021】
平均粒径が1μm以下のIn2O3粉末、および平均粒径が1μm以下のGeO2 粉末を原料粉末とした。In2O3粉末とGeO2 粉末を所定の割合で調合し樹脂製ポットに入れ湿式ボールミルで混合した。この際、硬質ZrO2 ボールを用い、混合時間を18時間とした。混合後スラリーを取り出し、濾過、乾燥、造粒して造粒物を得た。
【0022】
造粒物を型に入れ冷間静水圧プレスで3ton/cm2 の圧力を掛けて成形した。この成形体を焼結炉内に入れ、炉内容積0.1m3 当たり5リットル/分の割合で焼結炉内に酸素を導入しつつ、1500℃で5時間保持して成形体を焼結した。この際、室温より1500℃まで、1℃/分の割合で昇温し、焼結終了後の冷却は、まず酸素の導入を止め、1500℃から1100℃までを10℃/分の割合で降温した。
【0023】
その後、焼結体を直径152mm、厚み5mmの大きさに加工し、スパッタ面をカップ砥石で磨いてターゲットとし、無酸素銅製のバッキングプレートに金属インジウムを用いてボンディングした。この際に得られた焼結体の破材を粉砕し、粉末X線回折測定を実施したところビックスバイト型構造の酸化インジウム相に起因する回折ピークのみが観察されたことから実質的に全量のゲルマニウム元素がインジウムサイトに置換固溶していることを確認した。
【0024】
直流マグネトロンスパッタリング装置の非磁性体ターゲット用カソードに上記焼結体ターゲットを取り付けた。そして、ターゲット−基板間距離を70mmとし、純度99.9999重量%のArガスを導入してガス圧を0.5Paとし、DC500Wで直流プラズマを発生させてPETフィルム上に加熱せずにスパッタリングを実施した。約500nmの薄膜を作製し四探針法で膜の表面抵抗を測定して比抵抗を算出した。ターゲットのGe/In原子比と膜の測定によって求めた膜の比抵抗値を表1に示す。
【0025】
【0026】
[比較例1〜4]
原料粉末の湿式ボールミル混合を5時間と短くし、焼結温度(最高到達温度)を1200℃と低くして、酸化ゲルマニウム相を含む酸化インジウム焼結体ターゲットを作製した。ターゲット中に酸化ゲルマニウム相を含んでいることは粉末X線回折法で確認した。実施例と同様の条件でスパッタ成膜を実施し、膜の比抵抗を測定した結果を表2に示す。
【0027】
以上のように、本発明に従って、ゲルマニウムが酸化インジウム(In2O3)のインジウムサイトに完全に置換固溶したターゲットを用いれば、酸化ゲルマニウム相を含むターゲットを用いた時と比べて明らかに比抵抗の低い膜を作製することができる。
【0028】
[実施例5、比較例5]
また、上述のガス圧、ガス種、ターゲット基板間距離に一定とし、DC電力を変化させた時のアーキングの発生回数の変化を観測した。アーキング発生回数は、10分間に発生したアーキングをカウントし、1分あたりの平均の発生回数を求めた。ターゲットはGe/In原子が0.02と一定にして、一つは、粉末X線回折にて酸化インジウム相のみ確認されたターゲット(実施例5)と酸化ゲルマニウム相の含有が確認されたターゲット(比較例5)を用いた。結果を表3に示す。
【0029】
表3に示すように、本発明のターゲットではDC投入電力を増加させてもアーキングは発生せず安定してスパッタ成膜することができた。投入電力が高いと成膜速度が速くなるため、高速に膜を製造することが可能になる。これに対し、比較例6の酸化ゲルマニウム相を含むターゲットを用いた場合では、DC投入電力を増加させるとアーキングが発生してしまい安定してスパッタ成膜することができない。またアーキングが発生した状況で作製した膜の比抵抗は極端に高かった。
【0030】
【発明の効果】
本発明の酸化インジウム焼結体ターゲットは、従来よりも低抵抗の透明導電膜を製造することができる。また、本発明の酸化インジウム焼結体ターゲットはスパッタ成膜時の投入電力を増加させてもアーキングを発生することなく安定に成膜できる。よって、高速に安定に透明導電膜が製造できるので電子部品のコスト低減に結びつく。よって、本発明は工業的な価値が極めて高い。[0001]
[Industrial application fields]
The present invention relates to a sintered sputtering target used when a low-resistance transparent conductive film used for solar cells, liquid crystal surface elements, and the like is produced by a sputtering method.
[0002]
[Prior art]
The transparent conductive film has high conductivity and high transmittance in the visible light region. This is used for solar cells, liquid crystal display elements, and other light receiving element electrodes, as well as various antifogging transparent heat generating elements such as heat ray reflective films, antistatic films, and refrigeration showcases for automobiles and buildings. It is also used as a body.
[0003]
The transparent conductive film includes tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, zinc oxide (ZnO) containing aluminum or gallium as a dopant, indium oxide (In 2 O 3 ) containing tin as a dopant, or the like. Widely used. In particular indium oxide film containing tin as a dopant, i.e. an In 2 O 3 -Sn based films is referred to as ITO (Indium tin oxid e) film, especially the low-resistance film is easily obtained, often used heretofore I came.
[0004]
A sputtering method is often used as a method for producing these transparent conductive films. The sputtering method is an effective method when film formation of a material having a low vapor pressure or precise film thickness control is required, and since the operation is very simple, it is widely used industrially.
[0005]
In the sputtering method, a target is used as a film forming material. In this method, generally, under a gas pressure of about 10 Pa or less, a substrate is used as an anode, a target is used as a cathode, a glow discharge is generated between them to generate argon plasma, and argon cations in the plasma are converted into cathode targets. The target component particles which are caused to collide with each other and to be repelled by this are deposited on the substrate to form a film. The plasma is classified according to the method of generating argon plasma, and the one using high-frequency plasma is called high-frequency sputtering, and the one using direct-current plasma is called direct-current sputtering.
[0006]
In addition, an In 2 O 3 based transparent conductive film containing additives other than Sn has been studied, and some materials having characteristics not found in Sn-added In 2 O 3 materials have been found. Among them, there are Ge-doped In 2 O 3 thin films described in Japanese Patent Publication Nos. 9-50711, 11-322333, 11-332331, and 11-329085.
[0007]
The In 2 O 3 film to which Ge is added has the same conductivity as that of the Sn-added In 2 O 3, and the etching rate of the film with acid is faster than that of the Sn-added In 2 O 3 film. There is an advantage that it can be used for various devices. Further, the Ge-added In 2 O 3 film has an advantage that an amorphous film having excellent surface smoothness can be stably produced by low-temperature sputtering film formation, which is advantageous for application to various display devices such as LCDs. In order to produce this film by a sputtering method, a target obtained by pressure molding with a mixed powder of germanium oxide powder and indium oxide powder and sintering at about 1200 ° C. is used.
[0008]
In recent years, development of LCDs using plastic substrates such as plastic LCDs has been urgently needed. To achieve this, it is necessary to form a low-resistance transparent conductive film on plastic substrates at room temperature. There is. In addition, in order to form a film by sputtering while ensuring high productivity, it is necessary to increase the input power to increase the film formation speed. However, in the conventional target described above, if the input power is increased, arcing is performed. As a result, it was difficult to stably form a sputter film.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent conductive film that can form a low-resistance transparent conductive film at room temperature without heating the substrate and can stably perform high-speed sputter film formation even when high input power is applied. and to provide a fabrication sintered target.
[0010]
[Means for Solving the Problems]
The present inventor uses a germanium-containing indium oxide sintered compact target prepared under various target preparation conditions, and makes the gas pressure, the type of film forming gas, the target-substrate distance, the film forming power, and the film thickness constant. Then, sputter deposition was performed without heating the substrate. According to this experiment and test, the inventors have found that the specific resistance of the film greatly depends on the germanium content in the target.
[0011]
That is, in the sintered body target for producing an indium oxide-based transparent conductive thin film of the present invention, the coexisting germanium element contained in the indium sites of indium oxide having a bixbyite crystal structure is substituted and dissolved, and the powder In the X-ray diffraction measurement, only a diffraction peak due to an indium oxide phase having a bixbite structure is observed , and the germanium content is 0.02 to 0.09 in terms of Ge / In atomic ratio. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The indium oxide sintered compact target of this invention contains Ge element. This is because, in a film obtained from such a target, tetravalent germanium occupies the indium position where the valence is trivalent in the indium oxide film, thereby releasing carrier electrons and increasing the conductivity. This is because the film has a low resistance. The film composition obtained is influenced by the apparatus used and the film formation conditions, and does not necessarily reflect the composition of the target as it is, but if the germanium element in the target is 0.02 or more and 0.09 or less in terms of Ge / In atomic ratio A preferred low resistance film is obtained.
[0013]
In order to obtain the target of the present invention, for example, a predetermined amount of indium oxide and germanium oxide are pulverized and mixed using a wet ball mill or the like, and the obtained mixture is dried and granulated to obtain a granulated product. Is molded in a mold, and the obtained molded body is sintered in the presence of oxygen and slowly cooled.
[0014]
As described above, the specific resistance of the obtained film greatly depends on the germanium content in the target. That is, in comparison with the target in which germanium is present in the indium oxide sintered body in the form of germanium oxide, indium oxide (In 2 O 3 ) having a bixbite type crystal structure without being present in the form of germanium oxide. The specific resistance of the film is clearly lower when using a target that is substituted and dissolved in the indium site. Here, the bixbyite is a crystal structure of indium oxide (In 2 O 3 ) and is also referred to as a rare earth oxide C type (see Transparent Electroconductive Technology, Ohm, p. 82).
[0015]
The reason for this can be explained as follows. The film formation mechanism in sputtering is that argon ions in the plasma collide with the target surface, and target component particles are repelled and deposited on the substrate. At this time, most of the particles to be repelled are one atom of the target material, but a lump formed by several atoms called a cluster is also included slightly. When germanium oxide particles are contained in the target, germanium oxide clusters are repelled from the germanium oxide particle portion by sputtering. The substrate does not have a temperature sufficient to allow germanium oxide clusters deposited on the substrate to dissolve in indium oxide. For this reason, a cluster of germanium oxide having a high specific resistance becomes a film component as it is, and the specific resistance of the entire film increases.
[0016]
On the other hand, if the target of the present invention, that is, the target in which germanium is dissolved in the indium site is used, the particles to be repelled as a cluster are indium oxide in which germanium is dissolved, so that the specific resistance of the film is increased. Absent.
[0017]
According to the experiments and tests of the present inventor, when a target in which germanium oxide is detected by powder X-ray diffraction measurement is used, sputtering is performed under the same conditions as compared with a target in which germanium oxide is not detected. The specific resistance of the film is clearly high.
[0018]
Further, when germanium oxide particles are present in the target, the germanium oxide particles have a high specific resistance, so that charging is caused by argon ions irradiated from plasma and arcing occurs. This tendency increases as the target input power increases and the argon ion irradiation amount increases. On the other hand, in the target according to the present invention, all germanium is substituted and dissolved in the indium site and no high-resistance particles are present, so that arcing does not occur even when the input power is increased. Therefore, high-speed film formation with high input power is possible.
[0019]
Therefore, if the sintered compact target of this invention is used, it can manufacture on the board | substrate which does not heat the transparent conductive film of lower resistance than the prior art. In addition, high-speed film formation that stably introduces high input power without causing arcing is possible.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically by way of examples.
[Examples 1 to 4]
An indium oxide sintered compact target in which Ge was substituted and dissolved in an indium site of indium oxide was manufactured.
[0021]
In 2 O 3 powder having an average particle diameter of 1 μm or less and GeO 2 powder having an average particle diameter of 1 μm or less were used as raw material powders. In 2 O 3 powder and GeO 2 powder were mixed at a predetermined ratio, placed in a resin pot, and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried and granulated to obtain a granulated product.
[0022]
The granulated product was put into a mold and molded by applying a pressure of 3 ton / cm 2 with a cold isostatic press. This molded body is put in a sintering furnace, and the molded body is sintered by holding at 1500 ° C. for 5 hours while introducing oxygen into the sintering furnace at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume. did. At this time, the temperature is raised from room temperature to 1500 ° C. at a rate of 1 ° C./minute, and cooling after the completion of sintering first stops the introduction of oxygen and decreases the temperature from 1500 ° C. to 1100 ° C. at a rate of 10 ° C./minute. did.
[0023]
Thereafter, the sintered body was processed to a size of 152 mm in diameter and 5 mm in thickness, the sputter surface was polished with a cup grindstone as a target, and bonded to an oxygen-free copper backing plate using metal indium. The sintered material obtained at this time was crushed and subjected to powder X-ray diffraction measurement. As a result, only the diffraction peak due to the indium oxide phase having a bixbite structure was observed, so that substantially the entire amount was obtained. It was confirmed that the germanium element was substituted and dissolved in the indium site.
[0024]
The sintered compact target was attached to a nonmagnetic target cathode of a direct current magnetron sputtering apparatus. Then, the target-substrate distance is set to 70 mm, Ar gas having a purity of 99.9999% by weight is introduced to set the gas pressure to 0.5 Pa, DC plasma is generated at DC 500 W, and sputtering is performed without heating on the PET film. Carried out. A specific resistance was calculated by preparing a thin film of about 500 nm and measuring the surface resistance of the film by the four-probe method. Table 1 shows the Ge / In atomic ratio of the target and the specific resistance value of the film obtained by measuring the film.
[0025]
[0026]
[Comparative Examples 1-4]
The wet ball mill mixing of the raw material powder was shortened to 5 hours, the sintering temperature (maximum temperature reached) was lowered to 1200 ° C., and an indium oxide sintered body target containing a germanium oxide phase was produced. It was confirmed by powder X-ray diffraction that the target contained a germanium oxide phase. Table 2 shows the results of sputtering film formation under the same conditions as in the examples and measuring the specific resistance of the film.
[0027]
As described above, according to the present invention, when a target in which germanium is completely substituted and dissolved in the indium site of indium oxide (In 2 O 3 ) is used, the ratio is clearly higher than when a target containing a germanium oxide phase is used. A film having low resistance can be manufactured.
[0028]
[Example 5, Comparative Example 5]
In addition, the above-described gas pressure, gas type, and distance between target substrates were fixed, and changes in the number of arcing occurrences when DC power was changed were observed. The number of arcing occurrences was determined by counting arcing that occurred in 10 minutes and calculating the average number of occurrences per minute. The target was fixed at Ge / In atoms of 0.02, and one was a target in which only an indium oxide phase was confirmed by powder X-ray diffraction (Example 5) and a target in which the inclusion of a germanium oxide phase was confirmed ( Comparative Example 5) was used. The results are shown in Table 3.
[0029]
As shown in Table 3, with the target of the present invention, even if the DC input power was increased, arcing did not occur and stable sputter deposition could be achieved. When the input power is high, the film forming speed is increased, so that the film can be manufactured at high speed. On the other hand, in the case where the target containing the germanium oxide phase of Comparative Example 6 is used, if the DC input power is increased, arcing occurs and stable sputtering cannot be performed. In addition, the resistivity of the film produced in the situation where arcing occurred was extremely high.
[0030]
【The invention's effect】
The indium oxide sintered compact target of the present invention can produce a transparent conductive film having a lower resistance than conventional ones. Moreover, the indium oxide sintered compact target of the present invention can form a film stably without causing arcing even when the input power during the sputtering film formation is increased. Therefore, since a transparent conductive film can be manufactured stably at high speed, it leads to cost reduction of electronic components. Therefore, the present invention has extremely high industrial value.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001207892A JP4218230B2 (en) | 2001-07-09 | 2001-07-09 | Sintered body target for transparent conductive film production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001207892A JP4218230B2 (en) | 2001-07-09 | 2001-07-09 | Sintered body target for transparent conductive film production |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003020276A JP2003020276A (en) | 2003-01-24 |
JP4218230B2 true JP4218230B2 (en) | 2009-02-04 |
Family
ID=19043800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001207892A Expired - Lifetime JP4218230B2 (en) | 2001-07-09 | 2001-07-09 | Sintered body target for transparent conductive film production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4218230B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5416991B2 (en) * | 2009-03-03 | 2014-02-12 | Jx日鉱日石金属株式会社 | Oxide sintered body target, method for producing the target, transparent conductive film, and method for producing the transparent conductive film |
-
2001
- 2001-07-09 JP JP2001207892A patent/JP4218230B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003020276A (en) | 2003-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3906766B2 (en) | Oxide sintered body | |
JP4560149B2 (en) | Transparent conductive material, transparent conductive glass and transparent conductive film | |
WO2007141994A1 (en) | Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base | |
CN103717779A (en) | Zn-sn-o type oxide sintered body and method for producing same | |
KR20100012040A (en) | Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter | |
JP4779798B2 (en) | Oxide sintered body, target, and transparent conductive film obtained using the same | |
JP4175071B2 (en) | Oxide sintered body and sputtering target | |
JP2002275623A (en) | Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom | |
JP4559553B2 (en) | Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film | |
TW201837214A (en) | Sputtering target, sputtering target production method, amorphous film, amorphous film production method, crystalline film, and crystalline film production method | |
JP3780932B2 (en) | Sintered target for producing transparent conductive thin film and method for producing the same | |
JP4823386B2 (en) | Oxide sintered body for manufacturing transparent conductive film | |
JP6064895B2 (en) | Indium oxide-based oxide sintered body and method for producing the same | |
JP2008038234A (en) | Lanthanum oxide-containing oxide target | |
JP3775344B2 (en) | Oxide sintered body | |
JP2002275624A (en) | Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom | |
JP4218230B2 (en) | Sintered body target for transparent conductive film production | |
JP2012054336A (en) | Oxide sintered compact and oxide semiconductor thin film | |
JP4370868B2 (en) | Oxide sintered body, sputtering target, and method for producing oxide transparent electrode film | |
CN110546300A (en) | Sputtering target for transparent conductive film | |
JP2003239063A (en) | Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture | |
JP2904358B2 (en) | Manufacturing method of ITO sintered body | |
JP5000231B2 (en) | Gadolinium oxide-containing oxide target | |
JP2002256423A (en) | Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor | |
JP2012051745A (en) | Sintered oxide and oxide semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080404 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080404 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080821 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080827 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081103 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4218230 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |