JP4204016B2 - Silicone sealant - Google Patents
Silicone sealant Download PDFInfo
- Publication number
- JP4204016B2 JP4204016B2 JP26617597A JP26617597A JP4204016B2 JP 4204016 B2 JP4204016 B2 JP 4204016B2 JP 26617597 A JP26617597 A JP 26617597A JP 26617597 A JP26617597 A JP 26617597A JP 4204016 B2 JP4204016 B2 JP 4204016B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- silicone
- organopolysiloxane
- curing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004590 silicone sealant Substances 0.000 title claims description 14
- 229920001296 polysiloxane Polymers 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 11
- 239000000945 filler Substances 0.000 claims description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- 239000000080 wetting agent Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001282 organosilanes Chemical class 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 238000001723 curing Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 239000003566 sealing material Substances 0.000 description 14
- 239000003431 cross linking reagent Substances 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 229920002379 silicone rubber Polymers 0.000 description 8
- 239000004945 silicone rubber Substances 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 238000007259 addition reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229910000077 silane Inorganic materials 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- -1 polysiloxane Polymers 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 3
- WXWYJCSIHQKADM-ZNAKCYKMSA-N (e)-n-[bis[[(e)-butan-2-ylideneamino]oxy]-ethenylsilyl]oxybutan-2-imine Chemical compound CC\C(C)=N\O[Si](O\N=C(/C)CC)(O\N=C(/C)CC)C=C WXWYJCSIHQKADM-ZNAKCYKMSA-N 0.000 description 3
- OGZPYBBKQGPQNU-DABLZPOSSA-N (e)-n-[bis[[(e)-butan-2-ylideneamino]oxy]-methylsilyl]oxybutan-2-imine Chemical compound CC\C(C)=N\O[Si](C)(O\N=C(/C)CC)O\N=C(/C)CC OGZPYBBKQGPQNU-DABLZPOSSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910021485 fumed silica Inorganic materials 0.000 description 3
- WHIVNJATOVLWBW-UHFFFAOYSA-N n-butan-2-ylidenehydroxylamine Chemical compound CCC(C)=NO WHIVNJATOVLWBW-UHFFFAOYSA-N 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 229910052573 porcelain Inorganic materials 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- XKBQRJBETDMEFN-ILRZCOILSA-N (e)-n-[bis[[(e)-butan-2-ylideneamino]oxy]-phenylsilyl]oxybutan-2-imine Chemical compound CC\C(C)=N\O[Si](O\N=C(/C)CC)(O\N=C(/C)CC)C1=CC=CC=C1 XKBQRJBETDMEFN-ILRZCOILSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000013005 condensation curing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- PXAJQJMDEXJWFB-UHFFFAOYSA-N acetone oxime Chemical compound CC(C)=NO PXAJQJMDEXJWFB-UHFFFAOYSA-N 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- OLLFKUHHDPMQFR-UHFFFAOYSA-N dihydroxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](O)(O)C1=CC=CC=C1 OLLFKUHHDPMQFR-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- IPZIVCLZBFDXTA-UHFFFAOYSA-N ethyl n-prop-2-enoylcarbamate Chemical compound CCOC(=O)NC(=O)C=C IPZIVCLZBFDXTA-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VMESOKCXSYNAKD-UHFFFAOYSA-N n,n-dimethylhydroxylamine Chemical compound CN(C)O VMESOKCXSYNAKD-UHFFFAOYSA-N 0.000 description 1
- VDUIPQNXOQMTBF-UHFFFAOYSA-N n-ethylhydroxylamine Chemical compound CCNO VDUIPQNXOQMTBF-UHFFFAOYSA-N 0.000 description 1
- FWSXGNXGAJUIPS-UHFFFAOYSA-N n-pentan-2-ylidenehydroxylamine Chemical compound CCCC(C)=NO FWSXGNXGAJUIPS-UHFFFAOYSA-N 0.000 description 1
- NAQQTJZRCYNBRX-UHFFFAOYSA-N n-pentan-3-ylidenehydroxylamine Chemical compound CCC(CC)=NO NAQQTJZRCYNBRX-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- JUYONNFUNDDKBE-UHFFFAOYSA-J tri(oct-2-enoyloxy)stannyl oct-2-enoate Chemical compound [Sn+4].CCCCCC=CC([O-])=O.CCCCCC=CC([O-])=O.CCCCCC=CC([O-])=O.CCCCCC=CC([O-])=O JUYONNFUNDDKBE-UHFFFAOYSA-J 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Sealing Material Composition (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、洗面台や窓などの各種内外装材の目地を封止加工する際に使用されるシリコーンシーリング材に関する。
【0002】
【従来の技術】
従来、各種内外装材の目地を封止加工する場合、目地に直接シーリング材を流し込んで硬化、接着させる、いわゆるシーラント工法(ウエット工法)が利用されている。その場合に使用されるシーリング材には、ポリスルフィド系、ポリウレタン系、アクリルウレタン系、シリコーン系などのものがあるが、これらの中でも、シリコーンシーリング材は、耐熱性、耐寒性、耐候性、並びに意匠性の点で優れていることから、広範囲に使用されている。
しかしながら、従来のシリコーンシーリング材には、次のような問題があった。すなわち、
1)従来のシリコーンシーリング材は、液状又はペースト状であり、不定形であるため、目地に流し込む場合、表面成形作業や内部に気泡などが発生しないようにする作業が必要となるが、これらの作業には相当の熟練を要する、
2)従来のシリコーンシーリング材は、比較的低分子量のポリシロキサン(シリコーンオイル)からなり、それに含まれる残留オリゴマーや未架橋のポリシロキサンが硬化物表面から滲出して目地や被加工物の外観を損ねやすい、という問題である。
そこで、こうした問題を解決するため、シリコーンゴム系材料を目地形状に応じて有機過酸化物又は付加反応により硬化させる定形のシリコーンシーリング材(特開平9−100461号公報参照)が提案されている。
【0003】
【発明が解決しようとする課題】
上記シリコーンシーリング材にも、次のような問題があった。
すなわち、
1)有機過酸化物又は付加反応により架橋硬化させるため、一部のタイプのものを除き、施工後に加熱する必要がある。加熱すると、シリコーンシーリング材と被着物の熱膨張率の差により残留応力が発生し、その結果、被着物への接着強度が低下する、
2)上記シリコーンシーリング材は、施工前の保存時においても自己硬化反応が徐徐に進み、被着体に対する接着反応性が低下しやすい。そのため、施工前は、冷蔵又は冷凍保存して硬化反応が進まないようにする必要がある、
3)付加反応により架橋硬化させる場合、被着体によっては硬化せず、接着不良の事態を生じることがある。そこで、かかる事態の発生を防止するため前処理を施すが、その前処理に手間がかかり、また、前処理をしても完全に防止することができない、
4)上記1)〜3)のいずれの場合も、不都合を回避するために特別な処理、装置、設備を必要とするため、作業性およびコストの面において難点がある、という問題である。
【0004】
そこで、本発明は、安定した接着反応性および接着強度を維持することができるシリコーンシーリング材を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく、鋭意検討を重ねた結果、従来の有機過酸化物又は付加反応により架橋硬化させる定形のシリコーンシーリング材の代わりに、脱オキシムにより硬化する縮合硬化型のシリコーンゴムに各種成分を配合した組成物からなる定形のシリコーンシーリング材とすれば上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、分子鎖両末端に水酸基をもつオルガノポリシロキサン100重量部、上記水酸基に対して50〜500当量の架橋剤、触媒0.005〜0.1重量部、充填剤5〜50重量部、および湿潤剤0.5〜10重量部からなることを特徴とするシリコーンシーリング材である。
【0006】
【発明の実施の形態】
本発明のシリコーンシーリング材は、分子鎖両末端に、反応性官能基である水酸基をもち、平均単位式Ra SiO(4-a)/2 (aは1.90〜2.05)で示されるオルガノポリシロキサンを主成分とする。
上記式中、Rはメチル基、エチル基、プロピル基などのアルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基、トリル基などのアリール基、ビニル基、アリル基などのアルケニル基またはこれらの炭素原子に結合した水素原子の一部または全部をハロゲン原子、アミノ基、エポキシ基、カルボキシル基、シアノ基などで置換したものから選択される同一または異種の1価炭化水素基であり、特にはRの80%以上はメチル基であるのが好ましい。
また、上記オルガノポリシロキサンの平均重合度は、3,000以上、好ましくは5,000〜10,000である。このようにオルガノポリシロキサンの平均重合度を3,000以上と高くすることにより、シリコーンゴムシーリング材を定形にするために添加する充填剤の量を少なくすることができ、かつ、ゴム弾性を損なうことのない硬化物を得ることができる。その上、残留する低分子量のオルガノポリシロキサンが少なくなるので、未架橋物が硬化前に滲出しにくくなり、被着体などの汚染を防止することができる。
【0007】
上記オルガノポリシロキサンを縮合硬化させるために架橋剤を配合する。架橋剤には、けい素原子に結合したケトオキシム基を1分子中に3個以上有するオルガノシラン又はこれらの混合物を用いる。具体的には、テトラキス(メチルエチルケトオキシム)シラン、メチルトリス(メチルエチルケトオキシム)シラン、メチルトリス(アセトンオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、フェニルトリス(メチルエチルケトオキシム)シラン、メチルトリス(ジエチルケトオキシム)シラン、メチルトリス(メチルプロピルケトオキシム)シランなどが挙げられるが、特には、架橋速度の適切さの点から、メチルトリス(メチルエチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、フェニルトリス(メチルエチルケトオキシム)シランが好ましい。
また、けい素原子に結合したケトオキシム基を1分子中に2個有するオルガノシラン、例えば、ジメチルビス(メチルエチルケトオキシム)シラン、メチルビニルビス(メチルエチルケトオキシム)シランを、架橋密度の調整のため併用してもよい。ただし、ケトオキシム基を1分子中に3個以上有する架橋剤に対して、重量比で20%を超えないことが望ましい。20%を超えると物性の低下を招くからである。
【0008】
架橋剤の配合量は、オルガノポリシロキサンの水酸基に対し50〜500当量とし、特には150〜400当量が好ましい。50当量未満の場合、防湿保存性が低下し、500当量を超えた場合、本来の硬化反応が阻害され、逆に硬化しにくくなる。
【0009】
また、縮合架橋によるオルガノポリシロキサンの硬化速度を適切に調節するため、触媒を配合する。触媒としては、オクタン酸スズやオクテン酸スズなどの有機酸塩やジブチルスズジラウレート、ジブチルスズオレートなどのアルキルスズ化合物、Ti(OR)4 (Rはエチル、プロピル、ブチル、アミル、ヘキシルなどのアルキル基)で示される有機チタン化合物、ジメチルヒドロキシルアミン、エチルヒドロキシルアミンなどのアミン類がある。これらは1種類に限定されるものではなく、2種以上を組み合わせてもよい。
触媒の配合量は、上記オルガノポリシロキサン100重量部に対して、0.005〜0.1重量部であり、特に0.01〜0.05重量部が好ましい。0.005重量部未満の場合、内部硬化が不完全となり、0.1重量部を超える場合、防湿保存性が低下すると共に、硬化速度が速くなりすぎて施工作業性が低下する。
なお、後に述べる接着助剤として、γーアミノプロピルトリエトキシシランなどのアミン系シランカップリング材を用いる場合は、これらが触媒効果も有するため、上記触媒は添加する必要がないか、あるいは極微量の添加であってもよい。
【0010】
オルガノポリシロキサンに強度や賦形性などを付与するため、充填剤を配合する。炭酸カルシウム、酸化チタンなども用いることができるが、耐熱性や補強効果の点からシリカ系充填剤が好ましい。シリカ系充填剤としては、煙霧質シリカ、湿式シリカ、疎水性シリカ、石英粉末、けいそう土などが挙げられるが、特に煙霧質シリカが好ましい。これらのシリカ系充填剤には、分散性を向上させるため、クロロシラン、シラザンなどで予め表面処理を施してもよい。また、シリカ系充填剤の粒径は50μm以下とするのがよい。50μmより大きいと補強効果が低下する。
充填剤の配合量は、上記オルガノポリシロキサン100重量部に対して、5〜50重量部、好ましくは10〜30重量部である。配合量が5重量部未満の場合、十分な強度や賦形性などが得られず、50重量部を超えた場合、オルガノポリシロキサン組成物が硬くなり、施工性が低下する。
【0011】
充填剤の分散性を高め、安定した強度を得るために湿潤剤を配合する。湿潤剤は、例えば、末端に水酸基をもち、重合度が5〜20程度の低重合度のジメチルシリコーンオイル、ジフェニルシランジオール、ヘキサメチルジシラザンが挙げられる。その配合量は、オルガノポリシロキサン100重量部に対して、0.5〜10重量部とする。配合量が0.5重量部未満の場合、分散性向上効果が得られず、10重量部を超えた場合、強度が低下する。
【0012】
本発明のシリコーンゴムシーリング材には、上記各成分の他、接着助剤、非補強性充填剤、無機顔料、紫外線吸収剤、防カビ剤などを適宜配合してもよい。
接着助剤は、例えば、γ−アミノプロピルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどのシランカップリング剤やイソプロピルイソステアロイルチタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス[(ジトリデシル)フォスファイト]チタネートなどのチタネートカップリング剤が挙げられ、その配合量はオルガノポリシロキサン100重量部に対して、2.0重量部以下とするのが好ましい。
【0013】
本発明のシリコーンシーリング材は、上記した各成分の所定量を乾燥雰囲気中で均一に混合し、一定の形状に成形することによって得ることができる。得られたシリコーンシーリング材は、常温で空気中に暴露すると、空気中の水分によって脱オキシムによる縮合架橋反応が進行し、ゴム弾性体に硬化する。また、架橋剤中のけい素原子に結合した加水分解性官能基が加水分解してシラノール基が生成し、このシラノール基とガラス、タイル、金属などの無機材料との間に水素結合が形成し、硬化後に良好な接着が得られる。
【0014】
本発明のシリコーンシーリング材を一定の形状に成形するには、一般に知られた方法で、シート状やヒモ状など、所望の形状とすればよい。例えば、2本ロール、加圧ニーダー、バンバリーミキサーを用いて、上記各成分を配合、混練して、シリコーンゴム組成物を得た後、2本ロールやカレンダーロールによりシート状のシリコーンシーリング材を得ることができる。これを、さらにギロチンカッターやスリッター刃を用いて切断することにより、ヒモ状や短冊状の定形体が得られ、押出機により異形断面ヒモ状定形体も得られる。
【0015】
また、本発明のシリコーンシーリング材を保存する場合は、大気中の水分で硬化反応が進行しないように防湿包装を施すとよい。防湿包装としては、透湿度の小さいプラスチックフィルム、例えば、OPP、PVDCの単体または複合フィルム、あるいはアルミ蒸着PET、シリカ蒸着PET、アルミ箔とプラスチックフィルムの複合品から選択すればよいが、透湿度が実質0で、かつ温度依存性が小さく耐久性に優れた、アルミ箔とプラスチックフィルムの積層フィルムが好ましい。さらに、この積層フィルムは、折り曲げによるアルミ箔のピンホール発生を防止するため、積層フィルムを2枚重ねた後、熱溶着などの方法で製袋されたものが好ましい。また、必要に応じて、包装中に酸化カルシウム、合成ゼオライト、シリカゲルなどの吸湿剤を同封したり、窒素置換、真空包装を行ってもよい。
【0016】
【実施例】
次に、実施例を挙げて本発明をさらに詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
【0017】
(実施例1〜8)
オルガノポリシロキサンには、分子鎖両末端に水酸基をもつ、オルガノポリシロキサンを主成分とするシリコーンゴムコンパウンド「KEー76S」(信越化学工業社製、商品名、平均重合度8,000)、架橋剤には、メチルトリス(メチルエチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、触媒には、ジブチルスズラウレート、充填剤には、平均粒径15μmの煙霧質シリカ、湿潤剤には、両末端に水酸基をもつ重合度10のシリコーンオイル、接着助剤には、γ−アミノプロピルトリエトキシシランを用い、これらの各成分が表1に示した組成割合からなる混合物を2本ロールで十分に混練して、縮合硬化性のシリコーンゴム組成物を得た。このものを2本ロールで分出しして試料を作成し、以下の各試験を行った。
【0018】
【表1】
【0019】
(可塑度)
上記試料をJIS K6300に付属するJIS C2123の解説に記載の方法により可塑度を測定した。試験片の形状は球状とした。
(防湿保存性)
0.6×4×5cmの試料を、厚さ12μmのPETフィルムと厚さ9μmのアルミ箔と厚さ80μmのPEフィルムとからなる積層フィルムを5×6cmの大きさに切断して作製した防湿袋に入れてヒートシール密封し、23℃、55%R.H.の条件で放置し、1日目、3日目、1〜4週間目に開封して試料表面の硬化が生じるまでの期間を指触により判断した。
(硬化時間)
厚さ6mmの試料を、23℃、55%R.H.の条件で放置し、硬化が平衡値に達するまでの時間を24時間毎に測定した。
(硬度、引張強度、伸び)
試料を、23℃、55%R.H.の条件で2週間放置し、硬度、引張強度、伸びは、すべてJIS K6301による方法で測定した。
(接着強度)
試料を、23℃、55%R.H.の条件で2週間放置し、フロートガラスおよびアルマイトアルミに対する90°剥離による接着強度を測定した。
以上の各項目についての結果を表2に示した。
【0020】
【表2】
【0021】
(比較例1〜5)
各成分の組成割合を表3に示したものとした以外は、実施例1〜8と同様の条件、方法により上記項目について測定し、その結果を表4に示した。
【0022】
【表3】
【0023】
【表4】
【0024】
(実施例9)
実施例1と同様の組成割合からなる各成分を配合した後、直ちに押出成形して、断面が3×7mmで、未硬化のヒモ状定形体を得た。
上記定形体を直ちに、外装材として軟質PVC複合化粧板がコンクリート下地材にブチルゴム系接着剤で貼合されている幅8mm、深さ4mmの目地に挿入して、上からロールなどの治具で押圧、固定した。
そして、23℃、55%R.H.の条件で2週間放置したところ、1日で表面が硬化し、3日でほぼ完全に硬化して気密性、水密性を得ることができた。また、目地部を一部切り取って、手で引っ張り剥離したところ、剥離状況は薄層凝集破壊が見られ、良好であった。
【0025】
(実施例10)
実施例9と同様の組成割合からなる各成分を配合後、直ちに2mm厚さに分出しして、両面を厚さ0.04mmのOPPフィルムで挟んで保護した後、磁器タイル形状(30×30mm、ピッチ35mm)に打ち抜き、防湿袋に入れて保存した。
2週間経過後、防湿袋から取り出し、OPPフィルムを剥離した後、30×30mmの磁器タイル16枚を上記の打ち抜いたシリコーンシーリング材にはめ込み、その目地部を治具で押圧し、目地とタイルを一体化した。
そして、23℃、55%R.H.の条件で放置したところ、1日で表面が硬化し、3日でほぼ完全に硬化して、各タイルについて均一な接着性を得ることができた。
【0026】
(比較例6)
比較例1で使用した試料と同一のものを用いて、実施例10と同様の操作を行った。その結果、1日で表面が硬化し、3日でほぼ完全に硬化したが、各タイルについて接着性にバラツキが見られ、手で引っ張ると剥れてしまうものもあった。
【0027】
(比較例7)
比較例3で使用した試料と同一のものを用いて、実施例10と同様の操作を行った。その結果、1日で表面が硬化し、3日でほぼ完全に硬化したが、各タイルについて接着性にバラツキが見られ、手で引っ張ると剥れてしまうものもあった。なお、施工時、定形体が硬く、押圧によってタイルと定形体を密着させることが困難であった。
【0028】
(比較例8)
オルガノポリシロキサンには、付加反応により架橋硬化するオルガノポリシロキサンを主成分とするシリコーンゴムコンパウンド「KE−153U」(信越化学工業社製、商品名)100重量部、架橋剤には「C153A」(信越化学工業社製、商品名)7重量部、触媒には「Cat PL−2」(信越化学工業社製、商品名)0.3重量部、反応抑制剤には「R153A」(信越化学工業社製、商品名)0.05重量部、接着助剤にはビニルトリメトキシシラン3重量部を用い、実施例9と同様の操作を行った。その結果、1週間放置したが、目地の接着部の硬化が不完全で、目地の水密性、気密性を得ることができなかった。
【0029】
(比較例9)
比較例8で使用した試料と同一のものを用いて、実施例10と同様の操作を行った。ただし、磁器タイル形状に打ち抜いた後、5℃で冷蔵庫に保存し、2週間後に冷蔵庫から取り出して操作を行った。その結果、2週間経過後、硬化したが、各タイルについて接着性にバラツキが見られ、手で引っ張ると剥れてしまうものもあった。
【0030】
(評価)
架橋剤の配合量が本発明の範囲外である比較例1、2と実施例5、6とを比較するとわかるように、架橋剤の量が少ない場合(比較例1)は、防湿保存性が低下するとともに硬化時間が長くなり、架橋剤の量が多い場合(比較例2)の場合は、硬化時間が長くなった。
触媒の配合量が本発明の範囲外である比較例3〜5と実施例4、7、8を比較するとわかるように、触媒を配合しない場合(比較例4)は、硬化時間が著しく長くなるとともに、引張強度や伸びが低下した。また、触媒の配合量が多い場合(比較例3、5)は、防湿保存性や接着強度が低下した。
以上の結果から、各成分の組成割合を本発明で規定した数値範囲とすることにより、防湿保存性、硬化速度、硬度などの物性および接着強度に優れた縮合硬化型のシリコーンシーリング材が得られることが判明した。また、実施例9、10および比較例6、7の結果から、本発明は接着性、施工性に優れており、付加反応硬化型のシーリング材である比較例8、9と実施例9、10の結果からも同様のことが判明した。
【0031】
【発明の効果】
本発明は、従来知られている有機過酸化物又は付加反応により硬化させるシーリング剤よりも、良好な接着強度が得られ、水密性、気密性に優れる。
また、いずれの被着体に対しても、接着強度にバラツキが少なく、信頼性の高い接着が得られる。
さらに、常温で硬化するため、加熱が不要であり、そのため、従来のように加熱による接着強度の低下が起こらない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicone sealing material used when sealing joints of various interior and exterior materials such as a washstand and a window.
[0002]
[Prior art]
Conventionally, when sealing joints of various interior / exterior materials, a so-called sealant method (wet method) is used in which a sealing material is poured directly into the joints to be cured and bonded. Sealing materials used in such cases include polysulfide, polyurethane, acrylurethane, and silicone types. Among these, silicone sealants are heat resistant, cold resistant, weather resistant, and design. It is widely used because of its superior properties.
However, the conventional silicone sealant has the following problems. That is,
1) Since conventional silicone sealants are liquid or pasty and are indeterminate, when they are poured into joints, it is necessary to perform surface molding work or work to prevent bubbles from being generated inside. The work requires considerable skill,
2) The conventional silicone sealant consists of a relatively low molecular weight polysiloxane (silicone oil). Residual oligomers and uncrosslinked polysiloxane contained in the silicone sealant ooze out from the surface of the cured product to give the appearance of joints and workpieces. It is a problem that it is easy to damage.
Therefore, in order to solve such problems, there has been proposed a fixed silicone sealing material (see Japanese Patent Application Laid-Open No. 9-100461) in which a silicone rubber material is cured by an organic peroxide or an addition reaction according to the joint shape.
[0003]
[Problems to be solved by the invention]
The silicone sealant also has the following problems.
That is,
1) In order to crosslink and harden by organic peroxide or addition reaction, it is necessary to heat after construction except for some types. When heated, residual stress occurs due to the difference in thermal expansion coefficient between the silicone sealant and the adherend, and as a result, the adhesive strength to the adherend decreases.
2) The above silicone sealing material undergoes a gradual self-curing reaction even during storage before construction, and the adhesion reactivity to the adherend tends to decrease. Therefore, before construction, it is necessary to prevent the curing reaction from proceeding refrigerated or frozen,
3) When cross-linking and curing is carried out by an addition reaction, some adherends are not cured and may cause poor adhesion. Therefore, pre-processing is performed to prevent the occurrence of such a situation, but the pre-processing takes time and cannot be completely prevented even if the pre-processing is performed.
4) In any of the above 1) to 3), special processing, equipment, and equipment are required to avoid inconveniences, and there is a problem in terms of workability and cost.
[0004]
Accordingly, an object of the present invention is to provide a silicone sealing material that can maintain stable adhesion reactivity and adhesion strength.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations to solve the above problems, the present inventor, as a result of condensation curing type curing by deoxime, instead of the conventional silicone peroxide or the regular silicone sealing material that is crosslinked and cured by addition reaction. The present inventors have found that the above problems can be solved by using a silicone sealant having a fixed shape made of a composition in which various components are blended with silicone rubber, and the present invention has been completed.
That is, the present invention relates to 100 parts by weight of an organopolysiloxane having hydroxyl groups at both ends of the molecular chain, 50 to 500 equivalents of a crosslinking agent, 0.005 to 0.1 parts by weight of catalyst, and 5 to 50 fillers relative to the hydroxyl group. A silicone sealant comprising parts by weight and 0.5 to 10 parts by weight of a wetting agent.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The silicone sealing material of the present invention has a hydroxyl group which is a reactive functional group at both ends of a molecular chain and is represented by an average unit formula R a SiO (4-a) / 2 (a is 1.90 to 2.05). The main component is organopolysiloxane.
In the above formula, R represents an alkyl group such as a methyl group, an ethyl group or a propyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group or a tolyl group, an alkenyl group such as a vinyl group or an allyl group, or a carbon thereof. It is the same or different monovalent hydrocarbon group selected from those in which some or all of the hydrogen atoms bonded to the atom are substituted by halogen atoms, amino groups, epoxy groups, carboxyl groups, cyano groups, etc. 80% or more of these are preferably methyl groups.
The average degree of polymerization of the organopolysiloxane is 3,000 or more, preferably 5,000 to 10,000. Thus, by increasing the average degree of polymerization of the organopolysiloxane to 3,000 or more, it is possible to reduce the amount of filler added to make the silicone rubber sealant into a regular shape, and to impair rubber elasticity. A cured product can be obtained. In addition, since the residual low molecular weight organopolysiloxane is reduced, it is difficult for the uncrosslinked product to exude before curing, and contamination of the adherend can be prevented.
[0007]
A crosslinking agent is blended to condense and cure the organopolysiloxane. As the crosslinking agent, organosilane having 3 or more ketoxime groups bonded to silicon atoms in one molecule or a mixture thereof is used. Specifically, tetrakis (methyl ethyl ketoxime) silane, methyl tris (methyl ethyl ketoxime) silane, methyl tris (acetone oxime) silane, vinyl tris (methyl ethyl ketoxime) silane, phenyl tris (methyl ethyl ketoxime) silane, methyl tris (diethyl ketoxime) silane, methyl tris (Methylpropyl ketoxime) silane and the like can be mentioned. In particular, methyl tris (methyl ethyl ketoxime) silane, vinyl tris (methyl ethyl ketoxime) silane, and phenyl tris (methyl ethyl ketoxime) silane are preferable from the viewpoint of appropriate crosslinking speed.
In addition, organosilane having two ketoxime groups bonded to silicon atoms in one molecule, for example, dimethylbis (methylethylketoxime) silane, methylvinylbis (methylethylketoxime) silane is used in combination for adjusting the crosslinking density. Also good. However, it is desirable not to exceed 20% by weight with respect to the crosslinking agent having 3 or more ketoxime groups in one molecule. This is because if it exceeds 20%, the physical properties are lowered.
[0008]
The amount of the crosslinking agent is 50 to 500 equivalents, particularly preferably 150 to 400 equivalents, based on the hydroxyl group of the organopolysiloxane. When the amount is less than 50 equivalents, the moisture-proof storage stability is lowered. When the amount exceeds 500 equivalents, the original curing reaction is inhibited, and conversely, it is difficult to cure.
[0009]
Further, a catalyst is blended in order to appropriately adjust the curing rate of the organopolysiloxane by condensation crosslinking. Catalysts include organic acid salts such as tin octoate and tin octenoate, alkyltin compounds such as dibutyltin dilaurate and dibutyltin oleate, and Ti (OR) 4 (R is an alkyl group such as ethyl, propyl, butyl, amyl, and hexyl). There are amines such as organotitanium compounds, dimethylhydroxylamine, ethylhydroxylamine which are shown. These are not limited to one type, and two or more types may be combined.
The compounding amount of the catalyst is 0.005 to 0.1 part by weight, particularly preferably 0.01 to 0.05 part by weight with respect to 100 parts by weight of the organopolysiloxane. When the amount is less than 0.005 parts by weight, the internal curing becomes incomplete, and when it exceeds 0.1 parts by weight, the moisture-proof storage stability is lowered and the curing rate becomes too fast, so that the workability is lowered.
In the case of using an amine-based silane coupling material such as γ-aminopropyltriethoxysilane as an adhesion aid described later, these have a catalytic effect, so the above catalyst does not need to be added or is extremely small. May be added.
[0010]
In order to give the organopolysiloxane strength and formability, a filler is blended. Calcium carbonate, titanium oxide, and the like can also be used, but a silica-based filler is preferable from the viewpoint of heat resistance and reinforcing effect. Examples of the silica-based filler include fumed silica, wet silica, hydrophobic silica, quartz powder, diatomaceous earth and the like, and fumed silica is particularly preferable. These silica-based fillers may be subjected to surface treatment in advance with chlorosilane, silazane or the like in order to improve dispersibility. The particle size of the silica filler is preferably 50 μm or less. When it is larger than 50 μm, the reinforcing effect is lowered.
The blending amount of the filler is 5 to 50 parts by weight, preferably 10 to 30 parts by weight with respect to 100 parts by weight of the organopolysiloxane. When the blending amount is less than 5 parts by weight, sufficient strength and formability cannot be obtained, and when it exceeds 50 parts by weight, the organopolysiloxane composition becomes hard and the workability is lowered.
[0011]
In order to increase the dispersibility of the filler and obtain a stable strength, a wetting agent is blended. Examples of the wetting agent include dimethyl silicone oil, diphenylsilanediol, and hexamethyldisilazane having a hydroxyl group at the terminal and a polymerization degree of about 5 to 20 and a low polymerization degree. The compounding quantity shall be 0.5-10 weight part with respect to 100 weight part of organopolysiloxane. If the blending amount is less than 0.5 parts by weight, the effect of improving dispersibility cannot be obtained, and if it exceeds 10 parts by weight, the strength decreases.
[0012]
In addition to the above-mentioned components, the silicone rubber sealing material of the present invention may appropriately contain an adhesion aid, a non-reinforcing filler, an inorganic pigment, an ultraviolet absorber, an antifungal agent, and the like.
Adhesion aids include, for example, silane coupling agents such as γ-aminopropyltriethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, isopropylisostearoyl titanate, isopropyltri (N- And titanate coupling agents such as aminoethyl-aminoethyl) titanate and tetraoctylbis [(ditridecyl) phosphite] titanate, and the blending amount thereof is 2.0 parts by weight or less with respect to 100 parts by weight of organopolysiloxane. It is preferable to do this.
[0013]
The silicone sealant of the present invention can be obtained by uniformly mixing predetermined amounts of the above-described components in a dry atmosphere and molding the mixture into a certain shape. When the obtained silicone sealant is exposed to air at room temperature, a condensation crosslinking reaction by deoxime proceeds by moisture in the air, and is cured into a rubber elastic body. In addition, hydrolyzable functional groups bonded to silicon atoms in the crosslinking agent are hydrolyzed to form silanol groups, and hydrogen bonds are formed between these silanol groups and inorganic materials such as glass, tile, and metal. Good adhesion is obtained after curing.
[0014]
In order to mold the silicone sealing material of the present invention into a certain shape, a desired shape such as a sheet shape or a string shape may be formed by a generally known method. For example, the above components are blended and kneaded using a two roll, a pressure kneader, and a Banbury mixer to obtain a silicone rubber composition, and then a sheet-like silicone sealing material is obtained by using two rolls and a calender roll. be able to. This is further cut using a guillotine cutter or a slitter blade to obtain a string-like or strip-like shaped body, and an extruder having a deformed cross-section shaped string-like body.
[0015]
Further, when the silicone sealing material of the present invention is stored, moisture-proof packaging is preferably performed so that the curing reaction does not proceed with moisture in the atmosphere. The moisture-proof packaging may be selected from a plastic film having a low moisture permeability, for example, OPP, PVDC alone or a composite film, aluminum vapor-deposited PET, silica vapor-deposited PET, or a composite product of aluminum foil and plastic film. A laminated film of an aluminum foil and a plastic film, which is substantially zero and has low temperature dependency and excellent durability, is preferable. Furthermore, in order to prevent the pinhole of the aluminum foil due to bending, this laminated film is preferably formed by stacking two laminated films and then making a bag by a method such as heat welding. Further, if necessary, a moisture absorbent such as calcium oxide, synthetic zeolite, silica gel or the like may be enclosed in the package, or nitrogen replacement or vacuum packaging may be performed.
[0016]
【Example】
Next, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.
[0017]
(Examples 1-8)
Organopolysiloxane has a silicone rubber compound “KE-76S” (manufactured by Shin-Etsu Chemical Co., Ltd., trade name, average polymerization degree 8,000) having a hydroxyl group at both ends of the molecular chain and mainly composed of organopolysiloxane. The agent is methyltris (methylethylketoxime) silane, vinyltris (methylethylketoxime) silane, the catalyst is dibutyltin laurate, the filler is fumed silica with an average particle size of 15 μm, and the wetting agent has hydroxyl groups at both ends. As a silicone oil having a polymerization degree of 10 and an adhesion assistant, γ-aminopropyltriethoxysilane is used, and a mixture of these components having the composition ratios shown in Table 1 is sufficiently kneaded with two rolls, A condensation curable silicone rubber composition was obtained. This was dispensed with two rolls to prepare a sample, and the following tests were performed.
[0018]
[Table 1]
[0019]
(Plasticity)
The plasticity of the sample was measured by the method described in the description of JIS C2123 attached to JIS K6300. The shape of the test piece was spherical.
(Moisture-proof storage)
Moisture-proof produced by cutting a 0.6 × 4 × 5 cm sample into a 5 × 6 cm laminate film made of 12 μm thick PET film, 9 μm thick aluminum foil, and 80 μm thick PE film Put in a bag and heat seal sealed, 23 ° C., 55% R.D. H. The period until the sample surface was cured after being opened on the first day, the third day, and the first to fourth weeks was judged by touch.
(Curing time)
A 6 mm thick sample was placed at 23 ° C. and 55% R.D. H. The time until curing reached an equilibrium value was measured every 24 hours.
(Hardness, tensile strength, elongation)
Samples were placed at 23 ° C., 55% R.D. H. The samples were allowed to stand for 2 weeks under the conditions described above, and the hardness, tensile strength, and elongation were all measured by the method according to JIS K6301.
(Adhesive strength)
Samples were placed at 23 ° C., 55% R.D. H. The film was allowed to stand for 2 weeks under the conditions described above, and the adhesive strength by 90 ° peeling to float glass and anodized aluminum was measured.
The results for each of the above items are shown in Table 2.
[0020]
[Table 2]
[0021]
(Comparative Examples 1-5)
The above items were measured under the same conditions and methods as in Examples 1 to 8, except that the composition ratio of each component was shown in Table 3, and the results are shown in Table 4.
[0022]
[Table 3]
[0023]
[Table 4]
[0024]
Example 9
Each component having the same composition ratio as in Example 1 was blended and then immediately extruded to obtain an uncured string-shaped body having a cross section of 3 × 7 mm.
Immediately insert the above shaped body into a joint of 8mm width and 4mm depth where a soft PVC composite decorative board is bonded to a concrete base material with a butyl rubber adhesive as an exterior material, and from above with a jig such as a roll Pressed and fixed.
And 23 degreeC, 55% R. H. When left for 2 weeks under the above conditions, the surface was cured in 1 day, and almost completely cured in 3 days to obtain airtightness and watertightness. Moreover, when part of the joint part was cut out and pulled and peeled by hand, the peeled state was good because a thin layer cohesive failure was observed.
[0025]
(Example 10)
After blending each component having the same composition ratio as in Example 9, it was immediately dispensed to a thickness of 2 mm and protected by sandwiching both sides with an OPP film having a thickness of 0.04 mm, and then a porcelain tile shape (30 × 30 mm , Pitch 35 mm) and stored in a moisture-proof bag.
After 2 weeks, remove from the moisture-proof bag, peel off the OPP film, fit 16 pieces of 30x30mm porcelain tiles into the punched silicone sealant, press the joints with a jig, and put the joints and tiles together Integrated.
And 23 degreeC, 55% R. H. As a result, the surface was cured in 1 day and almost completely cured in 3 days, and uniform adhesiveness could be obtained for each tile.
[0026]
(Comparative Example 6)
Using the same sample as used in Comparative Example 1, the same operation as in Example 10 was performed. As a result, the surface hardened in 1 day and almost completely hardened in 3 days. However, there was a variation in adhesiveness for each tile, and there were some that peeled off when pulled by hand.
[0027]
(Comparative Example 7)
Using the same sample as used in Comparative Example 3, the same operation as in Example 10 was performed. As a result, the surface hardened in 1 day and almost completely hardened in 3 days. However, there was a variation in adhesiveness for each tile, and there were some that peeled off when pulled by hand. In addition, the fixed form was hard at the time of construction, and it was difficult to make the tile and the fixed form adhere to each other by pressing.
[0028]
(Comparative Example 8)
The organopolysiloxane has 100 parts by weight of a silicone rubber compound “KE-153U” (manufactured by Shin-Etsu Chemical Co., Ltd., trade name) mainly composed of an organopolysiloxane that is crosslinked and cured by an addition reaction, and the crosslinking agent is “C153A” ( Shin-Etsu Chemical Co., Ltd., trade name) 7 parts by weight, catalyst “Cat PL-2” (Shin-Etsu Chemical Co., trade name) 0.3 part by weight, reaction inhibitor “R153A” (Shin-Etsu Chemical) The product was manufactured in the same manner as in Example 9, except that 0.05 part by weight (trade name, manufactured by the company) and 3 parts by weight of vinyltrimethoxysilane were used as the adhesion assistant. As a result, it was allowed to stand for one week, but the joints at the joints were not completely cured, and the joints were not able to obtain watertightness and airtightness.
[0029]
(Comparative Example 9)
The same operation as in Example 10 was performed using the same sample as that used in Comparative Example 8. However, after punching into a porcelain tile shape, it was stored in a refrigerator at 5 ° C., and after 2 weeks, it was removed from the refrigerator and operated. As a result, although it hardened | cured after progress for 2 weeks, the dispersion | variation in adhesiveness was seen about each tile, and when it pulled by hand, it might peel off.
[0030]
(Evaluation)
As can be seen from a comparison between Comparative Examples 1 and 2 and Examples 5 and 6 in which the amount of the crosslinking agent is outside the scope of the present invention, when the amount of the crosslinking agent is small (Comparative Example 1), the moisture-proof storage stability is high. While decreasing, the curing time became long, and in the case where the amount of the crosslinking agent was large (Comparative Example 2), the curing time became long.
As can be seen from a comparison between Comparative Examples 3 to 5 and Examples 4, 7, and 8 in which the amount of the catalyst is outside the range of the present invention, when no catalyst is added (Comparative Example 4), the curing time is significantly increased. At the same time, the tensile strength and elongation decreased. Moreover, when there were many compounding quantities of a catalyst (comparative examples 3 and 5), moisture-proof preservation property and adhesive strength fell.
From the above results, by setting the composition ratio of each component within the numerical range defined in the present invention, a condensation-curing type silicone sealing material excellent in physical properties such as moisture-proof storage stability, curing speed, hardness, and adhesive strength can be obtained. It has been found. Further, from the results of Examples 9 and 10 and Comparative Examples 6 and 7, the present invention is excellent in adhesiveness and workability, and Comparative Examples 8 and 9 and Examples 9 and 10 which are addition reaction curable sealing materials. From the results, the same thing was found.
[0031]
【The invention's effect】
The present invention provides better adhesive strength and is superior in water tightness and air tightness than conventionally known organic peroxides or sealants cured by addition reaction.
In addition, for any adherend, there is little variation in adhesive strength, and highly reliable adhesion can be obtained.
Furthermore, since it cures at normal temperature, heating is unnecessary, and therefore, the adhesive strength is not reduced by heating as in the conventional case.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26617597A JP4204016B2 (en) | 1997-09-30 | 1997-09-30 | Silicone sealant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26617597A JP4204016B2 (en) | 1997-09-30 | 1997-09-30 | Silicone sealant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11106738A JPH11106738A (en) | 1999-04-20 |
JP4204016B2 true JP4204016B2 (en) | 2009-01-07 |
Family
ID=17427312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26617597A Expired - Lifetime JP4204016B2 (en) | 1997-09-30 | 1997-09-30 | Silicone sealant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4204016B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103122238A (en) * | 2013-02-21 | 2013-05-29 | 晋大纳米科技(厦门)有限公司 | Antimicrobial mildew-proof silicon adhesive and preparation method thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001224485A (en) * | 2000-02-18 | 2001-08-21 | Lec Inc | Wall hanger |
US6838499B2 (en) | 2002-02-19 | 2005-01-04 | Shin-Etsu Chemical Co., Ltd. | Curable compositions |
JP4096174B2 (en) * | 2002-11-28 | 2008-06-04 | 信越ポリマー株式会社 | Rubber material for construction |
JP5597302B2 (en) * | 2013-12-26 | 2014-10-01 | 加賀産業株式会社 | Sealant filled cap manufacturing method |
CN105505293B (en) * | 2016-01-15 | 2017-12-12 | 河南理工大学 | Antibacterial flame-retardant silicone sealant and preparation method thereof |
WO2019044189A1 (en) * | 2017-08-31 | 2019-03-07 | 信越ポリマー株式会社 | Dampproof self-adhesive silicone rubber sheet and self-adhesive silicone rubber sheet enclosure |
CN116463103B (en) * | 2023-05-12 | 2024-05-14 | 佛山市荞鸿新材料有限公司 | Antibacterial mildew-proof sealant and preparation method thereof |
-
1997
- 1997-09-30 JP JP26617597A patent/JP4204016B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103122238A (en) * | 2013-02-21 | 2013-05-29 | 晋大纳米科技(厦门)有限公司 | Antimicrobial mildew-proof silicon adhesive and preparation method thereof |
CN103122238B (en) * | 2013-02-21 | 2015-01-14 | 晋大纳米科技(厦门)有限公司 | Antimicrobial mildew-proof silicon adhesive and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH11106738A (en) | 1999-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1904597B1 (en) | Pressure sensitive adhesives and methods for their preparation | |
EP0438221B1 (en) | Improved adhesion of silicone sealants | |
KR101278087B1 (en) | Structural attachment media | |
EP2638111B1 (en) | Fluid applied silicone air&water barrier system and process thereof | |
US4463129A (en) | Process for improving adhesion of rubbery polymers by reacting with silanes in two stages | |
JP6820433B2 (en) | Transparent unit | |
JP3962926B2 (en) | Room temperature curable organopolysiloxane composition | |
EP3513025A1 (en) | Moisture-curable hot melt silicone adhesive compositions including an alkoxy-functional siloxane reactive resin and glazing | |
JP4204016B2 (en) | Silicone sealant | |
US20220227969A1 (en) | Room temperature curable composition | |
CA2682182A1 (en) | Architectural unit possessing rapid deep-section cure silicone rubber component | |
JPH1036673A (en) | Method for improving adhesiveness of silicone composition | |
EP4267677A1 (en) | Sealant composition | |
JPH1161100A (en) | Silicone sealing material | |
JP4096174B2 (en) | Rubber material for construction | |
JP2004315571A (en) | Silicone rubber composition and silicone rubber molded product | |
CN111801387A (en) | Condensation curable composition | |
JPH11107387A (en) | Reactive adhesion type silicone rubber based joint member and sealing method using it | |
JP2003246929A (en) | Curable composition | |
JP7006058B2 (en) | Sealing material and sealing method | |
JP2560557B2 (en) | Adhesive silicone rubber composition | |
JP5768674B2 (en) | Room temperature curable organopolysiloxane composition | |
JPH1192746A (en) | Silicone rubber sealing material and container for holding the same | |
JP5241613B2 (en) | Adhesive for acrylic resin | |
EP0612810A2 (en) | Room temperature-curable organopolysiloxane composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080813 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081008 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081010 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141024 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |