[go: up one dir, main page]

JP4200249B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4200249B2
JP4200249B2 JP28133099A JP28133099A JP4200249B2 JP 4200249 B2 JP4200249 B2 JP 4200249B2 JP 28133099 A JP28133099 A JP 28133099A JP 28133099 A JP28133099 A JP 28133099A JP 4200249 B2 JP4200249 B2 JP 4200249B2
Authority
JP
Japan
Prior art keywords
evaporator
compressor
isobutane
pressure
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28133099A
Other languages
Japanese (ja)
Other versions
JP2001108341A (en
Inventor
笹部  茂
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28133099A priority Critical patent/JP4200249B2/en
Publication of JP2001108341A publication Critical patent/JP2001108341A/en
Application granted granted Critical
Publication of JP4200249B2 publication Critical patent/JP4200249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は特に可燃性のイソブタンを冷媒に使用した場合の冷蔵庫に関するものである。
【0002】
【従来の技術】
近年、地球温暖化等の環境問題が注目されている。このような観点より、冷媒をハイドロフルオロカーボンから可燃性ではあるが地球温暖化への影響が極めて少ないハイドロカーボンへの転換が図られている。
【0003】
従来、可燃性であるハイドロカーボンのイソブタンを冷媒として使用している冷蔵庫としては、1993年2月にベルギーで行われた11R−11FのコミッションB1/2の予稿集のP281〜P291に開示されている。
【0004】
以下、図面を参照しながら、従来のイソブタンを冷媒に使用した冷蔵庫について説明する。
【0005】
図6において、1は冷蔵庫本体、2は断熱箱体で、3はABS樹脂やポリスチロール樹脂からなる内箱、4は銅板からなる外箱、5はウレタン等からなる断熱材で構成されている。6はドアで断熱箱体2に設けられている。本体1の背面下部には機械室7が設置されている。8は蒸発器で内箱4の内側に設置される。また、機械室7に圧縮機9が設置され、凝縮器10、膨張機構11と順次環状に接続し冷却サイクルを構成する。
【0006】
そして、この冷却サイクルにはイソブタン12が封入されており、電源コンセント15から電気の供給を受けて運転を行う。内箱4の内側には内箱4の内側の温度により圧縮機9の運転停止を制御する庫内温度調節手段13が設置される。14はドアスイッチで庫内灯15の点滅の制御を行う。
【0007】
以上のように構成された冷蔵庫について、以下その動作を説明する。まず、圧縮機9を運転すると、圧縮機9から吐出された高温高圧のイソブタン12は、凝縮器10で外気と熱交換して凝縮液化し、膨張機構11に流入する。膨張機構11でイソブタン12は減圧され、蒸発器8で蒸発し内箱4の内側の空気と熱交換を行う。
【0008】
ここで蒸発気化したイソブタン12は圧縮機9へと戻る。また、内箱4の内側の温度変化に伴って、圧縮機9は庫内温度調節手段13の制御によって運転,停止を繰り返す。ここで、蒸発器8の内容積、冷媒の封入量、冷却サイクルを構成する配管の径と長さ等によっては、圧縮機9の運転時は蒸発器8内の冷媒の圧力は負圧となっているが、停止時は蒸発器8内の冷媒の圧力は大気圧以上になる。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、圧縮機9の停止時は蒸発器8内のイソブタンの大気圧以上になっていることから、内箱4の内側に設けられた蒸発器8と膨張機構11あるいは圧縮機9への戻り配管との接続部から可燃性のイソブタン12が冷蔵庫の内箱4の内側に漏れる可能性がある。
【0010】
内箱4の内側にはドアスイッチ14や庫内灯15等の接点機器があり、内箱4の内側にイソブタン12が充満した状態でドアを開くとこれらの接点機器が着火源となり可燃性のイソブタン12に引火し爆発するという問題があった。
【0011】
本発明は、上記従来の課題を解決するもので、イソブタンが冷蔵庫の内側に漏れにくくすることを目的とする。
【0012】
【課題を解決するための手段】
本発明の冷蔵庫においては、蒸発器内の冷媒の圧力が負圧のときのみ圧縮機の運転を停止することを特徴としたものである。
【0013】
この本発明によれば、イソブタンが冷蔵庫の内側に漏れることによって引火し爆発する可能性を低減できる冷蔵庫を得られる。
【0014】
【発明の実施の形態】
本発明の請求項1に記載の発明は、圧縮機と、凝縮器と、膨張機構と、蒸発器とを順次環状に接続して冷媒としてイソブタンを封入した冷却サイクルを有する断熱箱体からなり、前記蒸発器内の冷媒の圧力が負圧のときのみ前記圧縮機の運転を停止することを特徴とした冷蔵庫であり、圧縮機の停止時は蒸発器内のイソブタンの圧力は大気圧よりも低いので、冷蔵庫の内箱の内側に備えられた蒸発器の接続部から庫内へイソブタンが漏れないという作用を有する。
【0015】
請求項2に記載の発明は、蒸発器内の冷媒の圧力あるいは温度を検知するセンサーを設け、前記センサーが大気圧あるいは−15℃以上を検知すると、圧縮機が運転することを特徴とした請求項1記載の冷蔵庫であり、圧縮機の停止時に蒸発器よりも温度が高い凝縮器内のイソブタンが蒸発器内に流入し蒸発することで蒸発器内の冷媒の温度及び圧力が上昇し温度が−15℃、圧力が大気圧に達したとき温度センサーあるいは圧力センサーの検知により圧縮機が運転することで蒸発器内のイソブタンが圧縮機へ戻るので蒸発器内のイソブタンの圧力は大気圧以上にはならないので、冷蔵庫の内箱の内側に備えられた蒸発器の接続部から庫内へイソブタンが漏れないという作用を有する。
【0016】
請求項3に記載の発明は、蒸発器内の冷媒の圧力あるいは温度を検知するセンサーと、庫内の冷気を循環させるファンを備え、圧縮機の停止時にセンサーが大気圧あるいは−15℃以上を検知すると、前記ファンが回転し庫内の冷気によって前記蒸発器を冷却することを特徴とした請求項1記載の冷蔵庫であり、蒸発器内の冷媒の温度及び圧力が上昇し温度が−15℃、圧力が大気圧に達したとき温度センサーあるいは圧力センサーの検知により、ファンが回転することで庫内の冷気によって蒸発器は冷却され、蒸発器の温度上昇による蒸発器内のイソブタンの圧力上昇を軽減することで蒸発器内のイソブタンの圧力は大気圧以上にはならず、冷蔵庫の内箱の内側に備えられた蒸発器の接続部から庫内へイソブタンが漏れないという作用を有する。
【0017】
請求項4に記載の発明は、蒸発器と凝縮器の間に電磁弁を設け、前記電磁弁を、圧縮機の停止前に閉じることで前記蒸発器内の冷媒を排出することを特徴とした請求項1記載の冷蔵庫であり、圧縮機の停止前に電磁弁が閉じることで、凝縮器と蒸発器の間の冷媒の流路が遮断された状態で圧縮機の運転により蒸発器内の冷媒が圧縮機へ戻り蒸発器内の冷媒は排出されるため、圧縮機の停止時に蒸発器内の圧力は上昇せず、蒸発器の除霜によって蒸発器の温度が0℃以上になっても蒸発器内の圧力は上昇せず大気圧以上にはならないので、冷蔵庫の内箱の内側に備えられた蒸発器の接続部から庫内へのイソブタン漏れ防止をさらに向上するという作用を有する。
【0018】
以下、本発明の実施の形態について、図1から図5を用いて説明する。
【0019】
(実施の形態1)
図1は、本発明の実施の形態1による冷蔵庫の断面図を示し、図1において、8は蒸発器であり内箱4の内側に配設され、9は圧縮機であり機械室7内に設置され、凝縮器10、膨張機構11と順次環状に接続し冷却サイクルを構成し、断熱箱体2に設置されている。
【0020】
以上のように構成された冷蔵庫について、以下図1を用いてその動作を説明する。まず、圧縮機9を運転すると、圧縮機9から吐出された高温高圧のイソブタン12は、凝縮器10で外気と熱交換して凝縮液化し、膨張機構11に流入する。膨張機構11でイソブタン12は減圧され、蒸発器8で蒸発し内箱4の内側の空気と熱交換を行う。
【0021】
ここで蒸発気化したイソブタン12は圧縮機9へと戻る。また、内箱4の内側の温度変化に伴って、圧縮機9は庫内温度調節手段13の制御によって運転,停止を繰り返す。
【0022】
そして、圧縮機9の運転時は蒸発器8内のイソブタン12の圧力は負圧となっている。圧縮機9の停止時には蒸発器8よりも温度が高い凝縮器10内のイソブタン12が膨張機構11を通じて蒸発器8内に流入してくる。蒸発器8内に流入したイソブタン12が蒸発することで蒸発器8内の圧力が次第に上昇する。
【0023】
そして、蒸発器8内のイソブタン12の圧力が大気圧に達したとき、圧縮機9は蒸発器8内の冷媒の圧力が負圧のときのみ運転を停止するので圧縮機9の運転は再開する。圧縮機9が運転を始めることで蒸発器8内のイソブタン12は圧縮機へ戻り蒸発器8内のイソブタン12の圧力は減少し大気圧以上にはならない。
【0024】
したがって、冷蔵庫の内箱4の内側に備えられた蒸発器8の接続部から内箱4の内側の庫内へイソブタンが漏れることはない。
【0025】
(実施の形態2)
図2は、本発明の実施の形態2による冷蔵庫の断面図を示し、図2において、16は蒸発器内の冷媒の圧力を検知する圧力センサーであり、蒸発器8の入口の配管内に設けられている。
【0026】
以上のように構成された冷蔵庫について、以下図2を用いてその動作を説明する。まず、圧縮機9を運転すると、圧縮機9から吐出された高温高圧のイソブタン12は、凝縮器10で外気と熱交換して凝縮液化し、膨張機構11に流入する。膨張機構11でイソブタン12は減圧され、蒸発器8で蒸発し内箱4の内側の空気と熱交換を行う。ここで蒸発気化したイソブタン12は圧縮機9へと戻る。
【0027】
また、内箱4の内側の温度変化に伴って、圧縮機9は庫内温度調節手段13の制御によって運転,停止を繰り返す。ここで、圧縮機9の運転時は蒸発器8内のイソブタン12の圧力は負圧となっている。圧縮機9の停止時には蒸発器8よりも温度が高い凝縮器10内のイソブタン12が膨張機構11を通じて蒸発器8内に流入してくる。
【0028】
蒸発器8内に流入したイソブタン12は蒸発することで蒸発器8内の圧力が次第に上昇する。そして、蒸発器8内のイソブタン12の圧力が大気圧に達したとき、圧力センサー16の検知により圧縮機9が運転を再開する。圧縮機9が運転を始めることで蒸発器8内のイソブタン12は圧縮機9へ戻り蒸発器8内のイソブタン12の圧力は減少し大気圧以上にはならない。
【0029】
したがって、冷蔵庫の内箱4の内側に備えられた蒸発器8の接続部から内箱4の内側の庫内へイソブタンが漏れることはない。
【0030】
なお、以上の説明では圧力センサーの設置場所は蒸発器の入口部の配管としたが、膨張機構の出口から圧縮機の入口までの圧縮機の運転中に負圧となる冷却サイクルの配管であれば設置場所は特定されない。
【0031】
また、センサーとして圧力センサーによる場合を説明したが、温度センサーを用いて温度センサーの検知温度が−15℃に達したときに圧縮機が運転するように構成した場合も同様の効果が得られる。
【0032】
(実施の形態3)
図3は、本発明の実施の形態3による冷蔵庫の断面図を示し、図3において、17はファンであり蒸発器8の前面に設けられている。
【0033】
以上のように構成された冷蔵庫について、以下図3を用いてその動作を説明する。圧縮機9は庫内温度調節手段13の制御によって運転,停止を繰り返して内箱4の内側の庫内温度の温調を行っている。ここで、圧縮機9の運転時は蒸発器8内のイソブタン12の圧力は負圧となっている。
【0034】
また、圧縮機9の停止時には蒸発器8よりも温度が高い凝縮器10内のイソブタン12が膨張機構11を通じて蒸発器8内に流入してくる。蒸発器8内に流入した温度の高いイソブタン12は蒸発することで蒸発器8内の温度及び圧力が次第に上昇する。そして、蒸発器8内のイソブタン12の圧力が大気圧に達したとき、圧力センサー16の検知によりファン17が回転する。
【0035】
このとき、蒸発器8内のイソブタン12の温度は−15℃になっているのに対し内箱4内の内側の庫内温度は高くても−18℃であることから、ファン17の回転によって冷気が循環し蒸発器8は熱交換し冷却され、蒸発器8内のイソブタン12の温度は低下するとともに蒸発器8内のイソブタン12の圧力は低下する。
【0036】
したがって、冷蔵庫の内箱4の内側に備えられた蒸発器8の接続部から、内箱4の内側の庫内へイソブタンが漏れることはない。
【0037】
なお、以上の説明ではファン17を蒸発器8の前面に設置したが、蒸発器8の前面に設置しても同様の効果が得られる。また、ファンの吹き出し方向についても前方、後方のどちらか特定しない。
【0038】
(実施の形態4)
図4は、本発明の実施の形態4による冷蔵庫の断面図を示し、図4において、18は電磁弁であり、蒸発器8の入口部の配管に設けられている。また、図5に電磁弁18と圧縮機9の動作関係図を示す。
【0039】
以下図4及び図5を用いてその動作を説明する。圧縮機9は庫内温度調節手段13の制御によって運転,停止を繰り返して内箱4の内側の庫内温度の温調を行っている。ここで、図5に示すように電磁弁18は圧縮機9が停止する前に閉じるように制御されており、電磁弁18が閉じると蒸発器8と膨張機構11の間の冷媒流路が遮断されることから、電磁弁18が閉じた後は、蒸発器8へはイソブタン12が流入しない。
【0040】
そして、蒸発器8内のイソブタン12は、圧縮機9が運転されることで圧縮機9内へ戻り排出される。この後、圧縮機9は停止し内箱4の内側の庫内温度が上昇すると、庫内温度調節手段13の検知によって圧縮機9の運転が再開する。また、電磁弁18は圧縮機9の運転が再開する前に開くため圧縮機9の起動時に冷媒不足によって冷凍能力が低下することはない。
【0041】
したがって、圧縮機9の停止時に蒸発器8が内箱4の内側の庫内との熱交換によって温度上昇しても蒸発器8内にはイソブタン12は存在しないことから、蒸発器8内の圧力は上昇せず大気圧以上になることはない。また、蒸発器8のヒータ加熱による除霜を行う場合、蒸発器8の温度は0℃以上になるが蒸発器8内の圧力は上昇せず大気圧以上になることはない。
【0042】
したがって、冷蔵庫の内箱4の内側に備えられた蒸発器8の接続部から内箱4の内側へのイソブタンの漏れ防止をさらに向上することができる。
【0043】
なお、以上の説明では電磁弁18は蒸発器8の入口部の配管に設けたが、内箱4の外側の凝縮器10の出口の配管に設けても良い。蒸発器8内へ流入するイソブタンの液の量を軽減するには蒸発器8に近い箇所がよい。庫内容積の有効化、生産性を考慮すると凝縮器10に近い箇所がよい。
【0044】
以上のように、本発明の実施の形態3によれば、イソブタンが冷蔵庫の内側に漏れることによって引火し爆発する可能性をさらに低減することができる。
【0045】
【発明の効果】
以上のように本発明によれば、蒸発器内の冷媒の圧力が負圧のときのみ圧縮機の運転を停止するので、蒸発器内のイソブタンの圧力は大気圧以上にならないことから、内箱の内側に備えられた蒸発器の接続部から内箱の内側の庫内へイソブタンが漏れにくくなる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による冷蔵庫の断面図
【図2】本発明の実施の形態2による冷蔵庫の断面図
【図3】本発明の実施の形態3による冷蔵庫の断面図
【図4】本発明の実施の形態4による冷蔵庫の断面図
【図5】本発明の実施の形態4による冷蔵庫の電磁弁と圧縮機の動作関係図
【図6】従来の冷蔵庫の断面図
【符号の説明】
2 断熱箱体
8 蒸発器
9 圧縮機
10 凝縮器
11 膨張機構
12 イソブタン
16 圧力センサー
17 ファン
18 電磁弁
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a refrigerator when combustible isobutane is used as a refrigerant.
[0002]
[Prior art]
In recent years, environmental problems such as global warming have attracted attention. From such a point of view, the refrigerant is being converted from hydrofluorocarbon to hydrocarbon that is flammable but has very little influence on global warming.
[0003]
Conventionally, as a refrigerator that uses flammable hydrocarbon isobutane as a refrigerant, it is disclosed in P281 to P291 of the 11R-11F commission B1 / 2 proceedings in Belgium in February 1993. Yes.
[0004]
Hereinafter, a refrigerator using conventional isobutane as a refrigerant will be described with reference to the drawings.
[0005]
In FIG. 6, 1 is a refrigerator body, 2 is a heat insulating box, 3 is an inner box made of ABS resin or polystyrene resin, 4 is an outer box made of copper plate, and 5 is made of a heat insulating material made of urethane or the like. . 6 is a door and is provided in the heat insulation box 2. A machine room 7 is installed at the lower back of the main body 1. An evaporator 8 is installed inside the inner box 4. Moreover, the compressor 9 is installed in the machine room 7, and it connects with the condenser 10 and the expansion mechanism 11 in cyclic | annular form sequentially, and comprises a cooling cycle.
[0006]
In this cooling cycle, isobutane 12 is enclosed, and operation is performed by receiving electricity from a power outlet 15. Inside the inner box 4 is installed an internal temperature adjusting means 13 for controlling the stop of the operation of the compressor 9 by the temperature inside the inner box 4. A door switch 14 controls the blinking of the interior lamp 15.
[0007]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below. First, when the compressor 9 is operated, the high-temperature and high-pressure isobutane 12 discharged from the compressor 9 is condensed and liquefied by exchanging heat with the outside air in the condenser 10 and flows into the expansion mechanism 11. The isobutane 12 is depressurized by the expansion mechanism 11 and is evaporated by the evaporator 8 to exchange heat with the air inside the inner box 4.
[0008]
The isobutane 12 evaporated here returns to the compressor 9. Further, the compressor 9 is repeatedly operated and stopped under the control of the internal temperature adjusting means 13 as the temperature inside the inner box 4 changes. Here, depending on the internal volume of the evaporator 8, the amount of refrigerant enclosed, the diameter and length of the pipes constituting the cooling cycle, the pressure of the refrigerant in the evaporator 8 is negative during the operation of the compressor 9. However, when stopped, the pressure of the refrigerant in the evaporator 8 becomes equal to or higher than atmospheric pressure.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, when the compressor 9 is stopped, the atmospheric pressure of isobutane in the evaporator 8 is higher than the atmospheric pressure, so the evaporator 8 and the expansion mechanism 11 provided inside the inner box 4 or the compression There is a possibility that the flammable isobutane 12 may leak into the inner box 4 of the refrigerator from the connection with the return pipe to the machine 9.
[0010]
There are contact devices such as a door switch 14 and an interior light 15 inside the inner box 4. When the door is opened with the inner box 4 filled with isobutane 12, these contact devices become an ignition source and are flammable. There was a problem that the isobutane 12 ignited and exploded.
[0011]
This invention solves the said conventional subject, and it aims at making isobutane hard to leak inside the refrigerator.
[0012]
[Means for Solving the Problems]
The refrigerator of the present invention is characterized in that the operation of the compressor is stopped only when the pressure of the refrigerant in the evaporator is negative.
[0013]
According to the present invention, it is possible to obtain a refrigerator that can reduce the possibility of igniting and exploding when isobutane leaks inside the refrigerator.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention comprises a heat insulating box having a cooling cycle in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected in an annular shape and isobutane is enclosed as a refrigerant. The refrigerator is characterized in that the operation of the compressor is stopped only when the pressure of the refrigerant in the evaporator is a negative pressure, and the pressure of isobutane in the evaporator is lower than the atmospheric pressure when the compressor is stopped. Therefore, it has the effect | action that isobutane does not leak into the store | warehouse | chamber from the connection part of the evaporator with which the inner side of the inner box of the refrigerator was equipped.
[0015]
The invention described in claim 2 is provided with a sensor for detecting the pressure or temperature of the refrigerant in the evaporator, and the compressor is operated when the sensor detects atmospheric pressure or -15 ° C or more. The refrigerator according to Item 1, wherein when the compressor is stopped, isobutane in the condenser having a temperature higher than that of the evaporator flows into the evaporator and evaporates, so that the temperature and pressure of the refrigerant in the evaporator rise to increase the temperature. When the pressure reaches −15 ° C. and the pressure reaches atmospheric pressure, the isobutane in the evaporator returns to the compressor by operating the compressor by detection of the temperature sensor or pressure sensor, so the pressure of isobutane in the evaporator exceeds the atmospheric pressure. Therefore, isobutane does not leak from the connection part of the evaporator provided inside the inner box of the refrigerator into the cabinet.
[0016]
The invention according to claim 3 is provided with a sensor for detecting the pressure or temperature of the refrigerant in the evaporator and a fan for circulating the cool air in the refrigerator, and when the compressor is stopped, the sensor is at atmospheric pressure or −15 ° C. or higher. 2. The refrigerator according to claim 1, wherein when detected, the fan rotates and the evaporator is cooled by cool air in the cabinet, and the temperature and pressure of the refrigerant in the evaporator rise and the temperature reaches −15 ° C. When the pressure reaches atmospheric pressure, the temperature sensor or the detection of the pressure sensor causes the fan to rotate so that the evaporator is cooled by the cool air in the refrigerator, and the pressure of isobutane in the evaporator increases due to the temperature rise of the evaporator. By reducing the pressure, the pressure of isobutane in the evaporator does not exceed atmospheric pressure, and there is an effect that isobutane does not leak from the connection part of the evaporator provided inside the refrigerator inner box into the refrigerator. That.
[0017]
The invention according to claim 4 is characterized in that a solenoid valve is provided between the evaporator and the condenser, and the solenoid valve is closed before the compressor is stopped to discharge the refrigerant in the evaporator. 2. The refrigerator according to claim 1, wherein the solenoid valve is closed before the compressor is stopped, so that the refrigerant in the evaporator is operated by the operation of the compressor while the refrigerant flow path between the condenser and the evaporator is shut off. Returns to the compressor and the refrigerant in the evaporator is discharged. Therefore, the pressure inside the evaporator does not increase when the compressor is stopped, and it evaporates even if the temperature of the evaporator exceeds 0 ° C due to the defrosting of the evaporator. Since the pressure in the chamber does not increase and does not exceed atmospheric pressure, it has the effect of further improving the prevention of isobutane leakage from the connecting portion of the evaporator provided inside the inner box of the refrigerator.
[0018]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0019]
(Embodiment 1)
FIG. 1 is a sectional view of a refrigerator according to Embodiment 1 of the present invention. In FIG. 1, 8 is an evaporator and is disposed inside an inner box 4, and 9 is a compressor and is installed in a machine room 7. It is installed, and is connected to the condenser 10 and the expansion mechanism 11 in an annular manner to constitute a cooling cycle, and is installed in the heat insulating box 2.
[0020]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below using FIG. First, when the compressor 9 is operated, the high-temperature and high-pressure isobutane 12 discharged from the compressor 9 is condensed and liquefied by exchanging heat with the outside air in the condenser 10 and flows into the expansion mechanism 11. The isobutane 12 is depressurized by the expansion mechanism 11 and is evaporated by the evaporator 8 to exchange heat with the air inside the inner box 4.
[0021]
The isobutane 12 evaporated here returns to the compressor 9. Further, the compressor 9 is repeatedly operated and stopped under the control of the internal temperature adjusting means 13 as the temperature inside the inner box 4 changes.
[0022]
During operation of the compressor 9, the pressure of the isobutane 12 in the evaporator 8 is negative. When the compressor 9 is stopped, isobutane 12 in the condenser 10 having a temperature higher than that of the evaporator 8 flows into the evaporator 8 through the expansion mechanism 11. As the isobutane 12 flowing into the evaporator 8 evaporates, the pressure in the evaporator 8 gradually increases.
[0023]
When the pressure of isobutane 12 in the evaporator 8 reaches atmospheric pressure, the compressor 9 stops operating only when the pressure of the refrigerant in the evaporator 8 is negative, so that the operation of the compressor 9 resumes. . When the compressor 9 starts operation, the isobutane 12 in the evaporator 8 returns to the compressor, and the pressure of the isobutane 12 in the evaporator 8 decreases and does not exceed atmospheric pressure.
[0024]
Therefore, isobutane does not leak from the connection part of the evaporator 8 provided inside the inner box 4 of the refrigerator into the inside of the inner box 4.
[0025]
(Embodiment 2)
FIG. 2 shows a cross-sectional view of a refrigerator according to Embodiment 2 of the present invention. In FIG. 2, 16 is a pressure sensor for detecting the pressure of the refrigerant in the evaporator, and is provided in the inlet pipe of the evaporator 8. It has been.
[0026]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below using FIG. First, when the compressor 9 is operated, the high-temperature and high-pressure isobutane 12 discharged from the compressor 9 is condensed and liquefied by exchanging heat with the outside air in the condenser 10 and flows into the expansion mechanism 11. The isobutane 12 is depressurized by the expansion mechanism 11 and is evaporated by the evaporator 8 to exchange heat with the air inside the inner box 4. The isobutane 12 evaporated here returns to the compressor 9.
[0027]
Further, the compressor 9 is repeatedly operated and stopped under the control of the internal temperature adjusting means 13 as the temperature inside the inner box 4 changes. Here, during operation of the compressor 9, the pressure of the isobutane 12 in the evaporator 8 is negative. When the compressor 9 is stopped, isobutane 12 in the condenser 10 having a temperature higher than that of the evaporator 8 flows into the evaporator 8 through the expansion mechanism 11.
[0028]
As the isobutane 12 flowing into the evaporator 8 evaporates, the pressure in the evaporator 8 gradually increases. And when the pressure of the isobutane 12 in the evaporator 8 reaches atmospheric pressure, the compressor 9 restarts operation by detection of the pressure sensor 16. When the compressor 9 starts operation, the isobutane 12 in the evaporator 8 returns to the compressor 9 and the pressure of the isobutane 12 in the evaporator 8 decreases and does not exceed atmospheric pressure.
[0029]
Therefore, isobutane does not leak from the connection part of the evaporator 8 provided inside the inner box 4 of the refrigerator into the inside of the inner box 4.
[0030]
In the above description, the installation location of the pressure sensor is the piping at the inlet of the evaporator, but it may be the piping of the cooling cycle that becomes negative pressure during the operation of the compressor from the outlet of the expansion mechanism to the inlet of the compressor. The installation location is not specified.
[0031]
Moreover, although the case where a pressure sensor is used as the sensor has been described, the same effect can be obtained when the temperature sensor is used to operate the compressor when the detected temperature of the temperature sensor reaches −15 ° C.
[0032]
(Embodiment 3)
3 shows a cross-sectional view of a refrigerator according to Embodiment 3 of the present invention. In FIG. 3, reference numeral 17 denotes a fan, which is provided on the front surface of the evaporator 8.
[0033]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below using FIG. The compressor 9 is operated and stopped under the control of the internal temperature adjusting means 13 to adjust the internal temperature of the internal box 4. Here, during operation of the compressor 9, the pressure of the isobutane 12 in the evaporator 8 is negative.
[0034]
Further, when the compressor 9 is stopped, isobutane 12 in the condenser 10 having a temperature higher than that of the evaporator 8 flows into the evaporator 8 through the expansion mechanism 11. The isobutane 12 having a high temperature that has flowed into the evaporator 8 evaporates, whereby the temperature and pressure in the evaporator 8 gradually increase. When the pressure of isobutane 12 in the evaporator 8 reaches atmospheric pressure, the fan 17 is rotated by detection of the pressure sensor 16.
[0035]
At this time, the temperature of the isobutane 12 in the evaporator 8 is −15 ° C., whereas the internal temperature in the inner box 4 is −18 ° C. even if it is high. The cool air circulates and the evaporator 8 is heat-exchanged and cooled, so that the temperature of the isobutane 12 in the evaporator 8 decreases and the pressure of the isobutane 12 in the evaporator 8 decreases.
[0036]
Therefore, isobutane does not leak into the inside of the inner box 4 from the connecting portion of the evaporator 8 provided inside the inner box 4 of the refrigerator.
[0037]
In the above description, the fan 17 is installed on the front surface of the evaporator 8, but the same effect can be obtained by installing the fan 17 on the front surface of the evaporator 8. Also, neither the front direction nor the rear direction is specified for the fan blowing direction.
[0038]
(Embodiment 4)
FIG. 4 shows a cross-sectional view of a refrigerator according to Embodiment 4 of the present invention. In FIG. 4, reference numeral 18 denotes an electromagnetic valve, which is provided in a pipe at the inlet of the evaporator 8. FIG. 5 shows an operation relation diagram of the electromagnetic valve 18 and the compressor 9.
[0039]
The operation will be described below with reference to FIGS. The compressor 9 is operated and stopped under the control of the internal temperature adjusting means 13 to adjust the internal temperature of the internal box 4. Here, as shown in FIG. 5, the electromagnetic valve 18 is controlled to be closed before the compressor 9 stops, and when the electromagnetic valve 18 is closed, the refrigerant flow path between the evaporator 8 and the expansion mechanism 11 is interrupted. Therefore, the isobutane 12 does not flow into the evaporator 8 after the electromagnetic valve 18 is closed.
[0040]
And the isobutane 12 in the evaporator 8 returns to the compressor 9 and is discharged when the compressor 9 is operated. Thereafter, when the compressor 9 stops and the internal temperature inside the inner box 4 rises, the operation of the compressor 9 is resumed by the detection of the internal temperature adjusting means 13. Further, since the solenoid valve 18 is opened before the operation of the compressor 9 is resumed, the refrigerating capacity is not lowered due to the lack of refrigerant when the compressor 9 is started.
[0041]
Therefore, even if the temperature of the evaporator 8 rises due to heat exchange with the inside of the inner box 4 when the compressor 9 is stopped, the isobutane 12 does not exist in the evaporator 8. Does not rise and does not exceed atmospheric pressure. When defrosting by heating the heater of the evaporator 8 is performed, the temperature of the evaporator 8 becomes 0 ° C. or higher, but the pressure in the evaporator 8 does not increase and does not exceed atmospheric pressure.
[0042]
Therefore, it is possible to further improve the prevention of isobutane leakage from the connecting portion of the evaporator 8 provided inside the inner box 4 of the refrigerator to the inside of the inner box 4.
[0043]
In the above description, the solenoid valve 18 is provided in the piping at the inlet of the evaporator 8, but may be provided in the piping at the outlet of the condenser 10 outside the inner box 4. In order to reduce the amount of isobutane liquid flowing into the evaporator 8, a location close to the evaporator 8 is preferable. Considering the effectiveness of the internal volume and productivity, a location close to the condenser 10 is preferable.
[0044]
As described above, according to Embodiment 3 of the present invention, the possibility that isobutane ignites and explodes due to leakage inside the refrigerator can be further reduced.
[0045]
【The invention's effect】
As described above, according to the present invention, since the operation of the compressor is stopped only when the pressure of the refrigerant in the evaporator is negative, the pressure of isobutane in the evaporator does not exceed atmospheric pressure. The isobutane is less likely to leak from the connection part of the evaporator provided inside the inside of the box to the inside of the inner box.
[Brief description of the drawings]
1 is a sectional view of a refrigerator according to a first embodiment of the present invention. FIG. 2 is a sectional view of a refrigerator according to a second embodiment of the present invention. FIG. 3 is a sectional view of a refrigerator according to a third embodiment of the present invention. 4 is a cross-sectional view of a refrigerator according to a fourth embodiment of the present invention. FIG. 5 is an operation relation diagram of a solenoid valve and a compressor of the refrigerator according to a fourth embodiment of the present invention. Explanation】
2 heat insulation box 8 evaporator 9 compressor 10 condenser 11 expansion mechanism 12 isobutane 16 pressure sensor 17 fan 18 solenoid valve

Claims (4)

圧縮機と、凝縮器と、膨張機構と、蒸発器とを順次環状に接続して冷媒としてイソブタンを封入した冷却サイクルを有する断熱箱体からなり、前記蒸発器内の冷媒の圧力が負圧のときのみ前記圧縮機の運転を停止することを特徴とした冷蔵庫。A compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected in an annular manner to form a heat insulating box having a cooling cycle in which isobutane is sealed as a refrigerant, and the refrigerant pressure in the evaporator is negative. A refrigerator characterized by stopping the operation of the compressor only when. 蒸発器内の冷媒の圧力あるいは温度を検知するセンサーを設け、前記センサーが大気圧あるいは−15℃以上を検知すると、圧縮機が運転することを特徴とした請求項1記載の冷蔵庫。2. The refrigerator according to claim 1, wherein a sensor for detecting the pressure or temperature of the refrigerant in the evaporator is provided, and the compressor is operated when the sensor detects atmospheric pressure or -15 [deg.] C. or higher. 蒸発器内の冷媒の圧力あるいは温度を検知するセンサーと、庫内の冷気を循環させるファンを備え、圧縮機の停止時に前記センサーが大気圧あるいは−15℃以上を検知すると、前記ファンが回転し庫内の冷気によって前記蒸発器を冷却することを特徴とした請求項1記載の冷蔵庫。It has a sensor that detects the pressure or temperature of the refrigerant in the evaporator and a fan that circulates cool air in the refrigerator. When the sensor detects atmospheric pressure or -15 ° C or higher when the compressor is stopped, the fan rotates. The refrigerator according to claim 1, wherein the evaporator is cooled by cold air in a refrigerator. 蒸発器と凝縮器の間に電磁弁を設け、前記電磁弁を、圧縮機の停止前に閉じることで前記蒸発器内の冷媒を排出することを特徴とした請求項1記載の冷蔵庫。2. The refrigerator according to claim 1, wherein an electromagnetic valve is provided between the evaporator and the condenser, and the refrigerant in the evaporator is discharged by closing the electromagnetic valve before stopping the compressor.
JP28133099A 1999-10-01 1999-10-01 refrigerator Expired - Fee Related JP4200249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28133099A JP4200249B2 (en) 1999-10-01 1999-10-01 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28133099A JP4200249B2 (en) 1999-10-01 1999-10-01 refrigerator

Publications (2)

Publication Number Publication Date
JP2001108341A JP2001108341A (en) 2001-04-20
JP4200249B2 true JP4200249B2 (en) 2008-12-24

Family

ID=17637610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28133099A Expired - Fee Related JP4200249B2 (en) 1999-10-01 1999-10-01 refrigerator

Country Status (1)

Country Link
JP (1) JP4200249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115847A1 (en) * 2018-12-05 2020-06-11 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530983B2 (en) * 1993-12-28 2004-05-24 松下電器産業株式会社 Separate air conditioner
JPH07294023A (en) * 1994-04-28 1995-11-10 Nippondenso Co Ltd Refrigerating cycle apparatus for automotive air conditioner
JP3452666B2 (en) * 1994-12-28 2003-09-29 株式会社東芝 Freezer refrigerator
JPH08247646A (en) * 1995-03-14 1996-09-27 Matsushita Refrig Co Ltd Direct cooling type refrigerating device
JPH0914782A (en) * 1995-06-29 1997-01-17 Daikin Ind Ltd Air conditioner
JP3523381B2 (en) * 1995-07-26 2004-04-26 株式会社日立製作所 refrigerator
JP3617143B2 (en) * 1995-10-11 2005-02-02 株式会社デンソー Air conditioner for vehicles
JPH109737A (en) * 1996-06-19 1998-01-16 Matsushita Refrig Co Ltd Refrigerator
JPH109736A (en) * 1996-06-19 1998-01-16 Matsushita Refrig Co Ltd Refrigerator
JPH11173684A (en) * 1997-12-12 1999-07-02 Hitachi Ltd Freezer refrigerator

Also Published As

Publication number Publication date
JP2001108341A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP2007248005A (en) Refrigerator
CZ301186B6 (en) Vapor compression system and operating mode thereof
JPH11211293A (en) Refrigerator
CN102997558A (en) Refrigerator
JP4200249B2 (en) refrigerator
KR200246301Y1 (en) Refrigerator suppling hot and cold water
JP2013044438A (en) Refrigerator
JP3626890B2 (en) refrigerator
CN114838536B (en) Refrigerator and defrosting control method thereof
JP2002188878A (en) Refrigerator
JP3404299B2 (en) refrigerator
JP3713948B2 (en) refrigerator
JP7442047B2 (en) refrigerator
JP7442045B2 (en) refrigerator
JPH07190590A (en) Refrigerator
JP7442046B2 (en) refrigerator
JP2003156276A (en) Electric refrigerator
CN116086089B (en) Refrigerator with a refrigerator body
CN116026080B (en) Refrigerator with a refrigerator body
JPH06194008A (en) Discharge superheat control valve
JPH10103838A (en) Refrigerator with deep freezer
JPH08240348A (en) Refrigerator
JPH08136112A (en) Refrigerator
JP2002277144A (en) Refrigerator
KR20050063258A (en) Method for control operation of pan in refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees