[go: up one dir, main page]

JP4200225B2 - Injection molding method by gate-step heating - Google Patents

Injection molding method by gate-step heating Download PDF

Info

Publication number
JP4200225B2
JP4200225B2 JP2003162523A JP2003162523A JP4200225B2 JP 4200225 B2 JP4200225 B2 JP 4200225B2 JP 2003162523 A JP2003162523 A JP 2003162523A JP 2003162523 A JP2003162523 A JP 2003162523A JP 4200225 B2 JP4200225 B2 JP 4200225B2
Authority
JP
Japan
Prior art keywords
gate
resin
during
injection
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162523A
Other languages
Japanese (ja)
Other versions
JP2004358900A (en
Inventor
章弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2003162523A priority Critical patent/JP4200225B2/en
Publication of JP2004358900A publication Critical patent/JP2004358900A/en
Application granted granted Critical
Publication of JP4200225B2 publication Critical patent/JP4200225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック射出成形用金型のホットランナー方式におけるゲートチップの工程別加熱によるゲート樹脂の溶融−固化を制御する射出成形方法に関する。
【0002】
【従来の技術】
近年、プラスチック成形時の廃棄物の減量等の点から、余計な固化ランナーなどを作らないように、ホットランナー方式などによる射出成形方法が利用されている。ホットランナー方式には、内部加熱方式(トーピード型)、外部加熱方式(ホットノズル型)、それらの混合型(ホットチップゲート型など)があるが、いずれの方式でも、スプルーからキャビティの樹脂ゲートまでのランナー部分を溶融状態に保つために、金型とは別に温度コントロールされる。
ホットランナーとキャビティの間を開閉する樹脂ゲートとしては、ホットチップゲートなどのオープンゲートやエッジゲートやバルブゲートなどが挙げられるが、構造が簡単で調整が容易なものとしてホットチップゲートが用いられる。
【0003】
特開昭62−184826号公報には、型締中または型締後にノズル先端温度を、開口するための上限温度に上昇させ、該温度に所定時間維持し、この間に樹脂を射出し、所定時間維持後ノズル先端を下限温度に低下させてノズル先端を閉鎖して、型開きを行うノズル温度制御方法が開示されている(例えば特許文献1参照)。
しかし、この方法では、保圧工程中はゲートチップヒータへの通電を遮断ないし低電力で維持するため、ゲート部の樹脂の固化が促進されており、保圧力が十分に成形品に伝達せずボイドが発生したり寸法精度が悪くなる。また、該公報の図3に示す制御方法では、保圧終了前に温度を下げているので、成形品に精度不良が発生する。
また、特開平11−320615号公報には、ホットランナーゲート部を溶融状態に保った状態で成形する厚肉成形品の製造方法として、射出開始を起点として射出・保圧時間を変化させて得られた成形品の重量変化が殆どなくなるまでの期間、ヒーターなどで加熱状態に維持することが開示されている(例えば特許文献2参照)。
しかし、この方法では、樹脂焼け、熱分解が生じやすく、離型時にゲート部の樹脂が固化が不十分で、離型時のゲート部からの樹脂漏れが発生し、外観、強度、寸法精度などに悪影響を及ぼす。
【0004】
【特許文献1】
特開昭62−184826号公報(請求の範囲、図1および図3)
【特許文献2】
特開平11−320615号公報(請求項1〜3、段落番号[0008])
【0005】
【発明が解決しようとする課題】
本発明の目的は、成形品内の収縮率分布を低減させ、寸法精度を良好にするために、射出前のゲートチップ加熱によるゲートの熱的開放、保圧工程中のゲートの樹脂の溶融維持、及び離型時のゲート部からの樹脂漏れの防止を可能にした射出成形法を提供することである。
【0006】
【課題を解決するための手段】
本発明者は、射出前および射出工程中のゲートチップの加熱条件と、保圧工程中のゲートチップの加熱条件とを別々に制御し、且つ冷却工程中にゲートチップの加熱を停止又は大幅に低下させることにより、上記課題を解決できることを見いだし、本発明を完成するに至った。
【0007】
即ち、本発明は、射出工程前および射出工程中は、樹脂ゲートの樹脂が溶融温度+20℃以上、分解開始温度未満になるようにゲートチップを加熱し、保圧工程中は樹脂ゲートの樹脂を溶融温度以上、溶融温度+40℃未満に維持するようにゲートチップを加熱し、冷却工程中は樹脂ゲートの樹脂を溶融温度未満にするようにゲートチップの加熱を低下または停止する射出成形方法であって、前記樹脂として、ポリアセタール、ポリブチレンテレフタレート又はポリフェニレンスルフィドを使用することを特徴とする射出成形方法である。
本発明においては、ゲートチップの加熱をヒータに通電して行うことが好ましい
【0008】
【発明の実施の形態】
以下、本発明を図を使用して説明する。
図1に、本発明に係るゲートチップの温度制御パターン(e)および(f)と、従来のゲートチップの加熱方法に係る温度制御パターン(a)〜(d)の比較を示す。
横軸は各工程、縦軸はゲートチップのヒータの加熱用電力の相対比率(%)である。
【0009】
ホットチップゲートでは、従来のゲートチップの温度制御は、図1の(a)通常成形−1では、射出前にゲートチップのヒータに通電することで加熱してゲート部の固化樹脂を溶融させることで熱的にゲートを開放する。ゲート開放後に樹脂の射出を行ない、保圧工程及び冷却工程中は、ゲートチップヘの通電を停止することでゲート部の樹脂を固化させ、熱的にゲートを閉鎖する。そのような温度制御を行なうことで、射出前のゲートの開放と離型時のゲート部からの樹脂漏れ防止を両立させている。
この場合、保圧工程中及び冷却工程中はゲートチップヘの通電を停止して、加熱していないため、ゲート部の樹脂の固化は促進されており、充分な保圧力が製品に伝達し難い状態にあり、ボイドが発生したりして寸法精度に悪影響を及ぼす。
【0010】
図1の(b)通常成形−2では、上記(a)通常成形−1において、保圧工程中及び冷却工程中はゲートチップヘの通電が大幅に低下されるが、次の成形サイクルのゲート開放に備えて、加熱が続けられる。この成形方法では、十分な保圧力が成形品に伝達し難く、ボイドが発生したりして寸法精度に悪影響を及ぼす。
図1の(c)ゲート溶融成形−1では、保圧工程中も射出工程と同じ状態でゲートチップの加熱が続けられ、冷却工程でゲートチップ加熱が停止されるため、離型時にゲートチップの温度が溶融温度未満に下がらず、ゲート部からの樹脂漏れが発生してはな垂れが生じたり、製品内に漏れた樹脂が混入することにより、外観、強度、寸法精度等に悪影響を及ぼしたり、長時間ゲートチップが加熱されるの樹脂焼けや熱分解を生じることがある。
図1の(d)ゲート溶融成形−2は、図1の(c)ゲート溶融成形−1において、冷却工程中はゲートチップヘの通電が大幅に低下されるが、次の成形サイクルのゲート開放に備えて、加熱が続けられる。そのため、図1の(c)と同じ問題が生じる。
【0011】
図1の(e)は、本発明の方法に係るゲートチップの温度制御パターンであり、射出工程前にゲートチップは溶融温度+20℃以上、分解開始温度未満になるように加熱され、射出工程中は射出工程前と同一条件で加熱され、保圧工程中は樹脂ゲートの樹脂を溶融温度+40℃未満、溶融温度以上に維持するように加熱され、冷却工程中は樹脂ゲートの樹脂を溶融温度未満にするようにゲートチップの加熱が停止される。
図1の(f)は、図1の(e)において、冷却工程中は樹脂ゲートの樹脂を溶融温度未満にするように、ゲートチップヘの通電が大幅に低下されるが、次の成形サイクルのゲート開放に備えて、加熱が続けられる。
図1の(e)および(f)の温度制御パターンとすることにより、射出開始前にゲートが熱的に開放されること、保圧工程中に樹脂が溶融温度以上の流動可能状態に保たれること、および離型時にゲートが閉じられることから樹脂漏れが生じない。
【0012】
本発明に係るゲートチップの工程別加熱方法の詳細は、次の通りである。
(i)射出工程前および射出工程中の加熱
加熱パターンには特に制限はないが、型開きして成形品を取り出した後、直ちに昇温を開始して型締め終了後直ちに射出工程に入れるように加熱するパターンが、成形サイクルを短くするために好ましい。
射出工程前および射出工程中のゲートチップの通電力(Wi)および通電時間(ti)は、樹脂の種類、射出成形装置の種類、射出条件、ゲートチップ加熱用ヒーターの発熱量などによって異なるが、通電力(Wi)は、ゲートチップの樹脂が溶融温度+20℃以上、分解開始温度未満になるように、制御される。
【0013】
(ii)保圧工程中の樹脂の溶融状態の維持
本発明では、保圧工程中のゲートチップの通電力(Wp)および通電時間(tp)は、ゲートチップの樹脂を溶融温度以上、溶融温度+40℃未満に維持するように、制御される。溶融温度+40℃以上に加熱されると、特に長時間の連続成形において樹脂焼け、熱分解、離型時のゲート部からの樹脂漏れが発生し、外観、強度、寸法精度などに悪影響を及ぼす。また、溶融温度未満では充分な保圧力が製品に伝達し難い状態にあり、ボイドが発生したりして寸法精度に悪影響を及ぼす。
(iii)冷却工程中の樹脂の固化
冷却工程中に樹脂ゲートの樹脂を固化するように加熱を停止するか十分に低下する。具体的には、溶融温度未満とする。溶融温度以上では、離型時のゲート部からの樹脂漏れが発生し、外観、強度、寸法精度などに悪影響を及ぼす。
【0014】
なお、金型の熱伝導、熱容量の点から、上記(i)〜(iii)の温度は滑らかに連続的につながって、上下するものであり、各工程の設定時間も樹脂の種類および成形品の形状や要求性能によって有る程度任意に設定されるので、各工程においてその温度領域に維持される時間は、各工程の時間的長さに対して必ずしも100%である必要はなく、実質的に本発明の効果が得られれば特に制限はないが、各工程毎に異なるが、好ましくは射出工程90〜100%、保圧工程100〜110%、さらに好ましくは射出工程95〜100%、保圧工程100〜105%である。例えば、射出工程開始時点で溶融温度+20℃にあった場合、射出工程中で最後の10%の時間は溶融温度+20℃よりも低くてもよく、保圧工程中、溶融温度+40℃よりも低く溶融温度以上にあった場合、冷却工程中の最初の10%の時間は溶融温度以上であってもよく、冷却工程中では型開きの段階で樹脂ゲートからの樹脂漏れ等が生じない温度まで冷却されれば、最初の10%の時間が溶融温度以上で、残りの時間が溶融温度未満であってもよい。
【0015】
本発明に係るゲートチップの工程別加熱方法は、手動で行ってもよいが、センサーと制御装置を設けて、比例/積分制御などにより自動化することが好ましい。
【0016】
本発明に使用される成形樹脂は、熱可塑性樹脂であり、具体的には、ポリアセタール、ポリブチレンテレフタレート又はポリフェニレンスルフィドであり、好ましくはポリフェニレンスルフィドである。
【0017】
上記樹脂には、各種の樹脂添加剤、充填剤、樹脂改質剤等が入っていてもよい。
充填剤は、機械的強度、耐熱性、寸法安定性、電気的性質等に優れるために、特に剛性を高める目的で有効である。
充填剤は、目的に応じて繊維状、粉粒状又は板状のものが用いられる。繊維状充填剤としては、ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、醐素繊維、チタン酸カリ繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物などの無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。尚、ポリアミド、フッ素樹脂、アクリル樹脂などの高融点有機質繊維状物質も使用することができる。一方、粉粒状充填剤としては、カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、タルク、クレー、硅藻土、ウォラストナイトの如き硅酸塩、酸化鉄、酸化チタン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。
又、板状充填剤としては、マイカ、ガラスフレーク、各種金属箔等が挙げられる。これらの無機充填剤は1種又は2種以上併用することができる。繊維状充填剤、特にガラス繊維又はカーボン繊維と、粒状又は板状充填剤の併用は特に機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。無機充填剤の添加量は樹脂材料全量に対しそれぞれ40重量%以下である。これより多いと成形加工性や靱性が損なわれ好ましくない。特に好ましくは30重量%以下である。
尚、本発明において使用する熱可塑性樹脂材料は熱可塑性樹脂に一般的に添加される上記以外の公知の物質、すなわち、酸化防止剤、紫外線吸収剤、光安定剤等の各種安定剤、帯電防止剤、難燃剤、難燃助剤、染料や顔料等の着色剤、潤滑剤、可塑剤及び結晶化促進剤、結晶核剤、離型剤、界面活性剤、帯電防止剤等を任意の組み合わせで配合することも勿論可能である。
【0018】
本発明に係る成形方法としては、射出成形、射出圧縮成形等が挙げられる。
【0019】
本発明により得られる成形品は、平面度が70μm以下、好ましくは50μm以下と高いので、高い寸法精度を必要とする成形品に適する。
【0020】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
なお、本実施例では、下記に示すような形状の成形品を射出成形し、寸法精度の指標として平面度を、ゲートからの樹脂漏れの指標としてはな垂れを調べた。
成形品の平面度測定
装置:テーラーホブソン社製タリロンド300
測定方法:最外周より0.5mmの位置から中心に向けて4mm刻みで4箇所測定することを、円周上で多数点行った。
【0021】
[実施例1および比較例1〜4]
ポリフェニレンスルフィドとして、フォートロン(登録商標)6165A6(ポリプラスチックス(株)製、溶融温度280℃、分解開始温度400℃)を使用した。
成形品形状:外径φ35mm×肉厚4mmの円盤
成形機:住友重機械(株)製SE100D
ホットランナ:(株)新興セルビク製、マイクロプローブCG045F−2Hセンター1点ゲート、ゲート径φ2
シリンダ温度:320℃
金型温度:140℃
ゲートチップ加熱条件:ゲートチップ加熱温度は、ゲートチップ通電力が、最大使用電力を100%とした場合の99%では350℃、80%では290℃、60%では280℃、40%では260℃である。
各工程の時間は下記の通りである。
射出開始前(型閉じ開始から射出開始直前まで):0.5秒
射出工程:0.5秒
保圧工程:60秒
冷却工程:10秒
型開き開始から突き出し完了まで:1.5秒
結果を表1に示す。
【0022】
【表1】

Figure 0004200225
【0023】
ゲートチップを射出工程前および射出工程中のみ加熱する比較例1では、はな垂れはないものの、平面度が96μmと非常に大きい。
従来の温度制御で、保圧中及び冷却中も、ゲートチップ加熱通電力40%で通電し続けた比較例2では、はな垂れはないものの、平面度が約60μmと大きく、通電力60%で通電し続けた比較例3では、平面度は44μmと小さいものの、はな垂れが発生する。通電力80%で通電し続けた比較例4では、平面度は45μmと小さいものの、はな垂れが著しく発生する。
【0024】
実施例1に示すように、射出前通電力99%、保圧中通電力60%、冷却中は通電を停止することで、平面度が良好ではな垂れの無い成形品を得ることができた。
【0025】
平面度は、従来の成形方法(比較例1)では100μm程度であったが、本発明の方法により半減する。
また、冷却工程中もチップ加熱電力を射出前のチップ加熱電力の40%以上にした場合では、ゲートチップで樹脂が固化しないので、はな垂れを生じるが、本発明の方法では、はな垂れを生じない。
【0026】
【発明の効果】
本発明によれば、平面度が良好で、はな垂れの無い成形品を得ることができた。
【図面の簡単な説明】
【図1】図1は、実施例および比較例に係るゲートチップの温度制御パターンを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an injection molding method for controlling the melting and solidification of a gate resin by heating according to the process of a gate chip in a hot runner method of a plastic injection mold.
[0002]
[Prior art]
In recent years, an injection molding method such as a hot runner method has been used so as not to make an extra solidified runner from the viewpoint of reducing waste during plastic molding. The hot runner method includes an internal heating method (torpedo type), an external heating method (hot nozzle type), and a mixed type (hot tip gate type, etc.). The temperature is controlled separately from the mold in order to keep the runner part in a molten state.
Examples of the resin gate that opens and closes between the hot runner and the cavity include an open gate such as a hot chip gate, an edge gate, and a valve gate. A hot chip gate is used because of its simple structure and easy adjustment.
[0003]
Japanese Patent Laid-Open No. 62-184826 discloses that during or after mold clamping, the nozzle tip temperature is raised to the upper limit temperature for opening and maintained at that temperature for a predetermined time, during which a resin is injected, and for a predetermined time. A nozzle temperature control method is disclosed in which the nozzle tip is closed by lowering the nozzle tip after maintenance to close the nozzle tip (see, for example, Patent Document 1).
However, in this method, the energization to the gate chip heater is interrupted or maintained at low power during the pressure holding process, so that the solidification of the resin in the gate portion is promoted and the pressure holding is not sufficiently transmitted to the molded product. Voids occur and dimensional accuracy deteriorates. Further, in the control method shown in FIG. 3 of the publication, since the temperature is lowered before the pressure holding is finished, an accuracy defect occurs in the molded product.
Japanese Patent Application Laid-Open No. 11-320615 discloses a method for manufacturing a thick molded product that is molded in a state in which a hot runner gate portion is maintained in a molten state by changing injection / holding time from the start of injection. It is disclosed that a heated state is maintained with a heater or the like until a weight change of the molded product almost disappears (see, for example, Patent Document 2).
However, with this method, resin burning and thermal decomposition are likely to occur, the resin of the gate part is insufficiently solidified at the time of mold release, resin leakage from the gate part at the time of mold release occurs, appearance, strength, dimensional accuracy, etc. Adversely affect.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-184826 (Claims, FIGS. 1 and 3)
[Patent Document 2]
JP-A-11-320615 (claims 1 to 3, paragraph number [0008])
[0005]
[Problems to be solved by the invention]
The purpose of the present invention is to thermally reduce the gate by heating the gate chip before injection and maintain the melting of the resin of the gate during the pressure holding process in order to reduce the shrinkage distribution in the molded product and to improve the dimensional accuracy. Another object of the present invention is to provide an injection molding method capable of preventing resin leakage from the gate portion at the time of mold release.
[0006]
[Means for Solving the Problems]
The inventor separately controls the heating conditions of the gate chip before and during the injection process and the heating condition of the gate chip during the pressure holding process, and stops or significantly reduces the heating of the gate chip during the cooling process. It has been found that the above-mentioned problems can be solved by lowering, and the present invention has been completed.
[0007]
That is, the present onset Ming, during the injection process before and injection step, resin in the resin gate melting temperature + 20 ° C. or higher, and heating the gate tip to less than the decomposition start temperature, during the holding process of the resin gate resin Is an injection molding method in which the gate chip is heated to maintain the melting point above the melting temperature and below the melting temperature + 40 ° C., and during the cooling step, the heating of the gate chip is reduced or stopped so that the resin of the resin gate is below the melting temperature. there are, as the resin, polyacetal, Ru injection molding method der characterized by the use of polybutylene terephthalate or polyphenylene sulfide.
In the present invention , it is preferable to heat the gate chip by energizing the heater.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 shows a comparison between temperature control patterns (e) and (f) of a gate chip according to the present invention and temperature control patterns (a) to (d) according to a conventional gate chip heating method.
The horizontal axis represents each step, and the vertical axis represents the relative ratio (%) of the heating power of the heater of the gate chip.
[0009]
In the hot chip gate, the conventional temperature control of the gate chip is as follows. In (a) normal molding-1 in FIG. 1, the gate chip heater is energized and heated to melt the solidified resin in the gate part before injection. To open the gate thermally. Resin is injected after the gate is opened, and during the pressure holding process and the cooling process, the energization to the gate chip is stopped to solidify the resin in the gate portion and thermally close the gate. By performing such temperature control, both the opening of the gate before injection and the prevention of resin leakage from the gate portion at the time of mold release are achieved.
In this case, since the energization to the gate chip is stopped and not heated during the pressure holding process and the cooling process, the solidification of the resin in the gate portion is promoted, and it is difficult to transmit sufficient pressure holding to the product. In this state, voids are generated and the dimensional accuracy is adversely affected.
[0010]
In (b) normal molding-2 in FIG. 1, in the above-mentioned (a) normal molding-1, the energization to the gate chip is greatly reduced during the pressure holding process and the cooling process. Heating continues in preparation for opening. In this molding method, it is difficult to transmit a sufficient holding pressure to the molded product, and voids are generated, which adversely affects the dimensional accuracy.
In (c) gate melt molding-1 in FIG. 1, the heating of the gate chip is continued in the same state as the injection process during the pressure holding process, and the heating of the gate chip is stopped in the cooling process. If the temperature does not drop below the melting temperature and the resin leaks from the gate, dripping may occur or the leaked resin may enter the product, adversely affecting the appearance, strength, dimensional accuracy, etc. sometimes long gate chips cause resin burning or pyrolysis being heated.
In FIG. 1 (d) gate melt molding-2, in FIG. 1 (c) gate melt molding-1, the energization to the gate chip is greatly reduced during the cooling process, but the gate is opened in the next molding cycle. Heating is continued in preparation for. For this reason, the same problem as in FIG.
[0011]
FIG. 1E shows a temperature control pattern of the gate chip according to the method of the present invention. Before the injection process, the gate chip is heated to a melting temperature + 20 ° C. or higher and lower than the decomposition start temperature, and during the injection process. Is heated under the same conditions as before the injection process. During the pressure holding process, the resin gate resin is heated to maintain the melting temperature below + 40 ° C. and above the melting temperature. During the cooling process, the resin gate resin is heated below the melting temperature. Thus, heating of the gate chip is stopped.
FIG. 1 (f) shows that in FIG. 1 (e), the energization to the gate chip is greatly reduced so that the resin of the resin gate is lower than the melting temperature during the cooling step. Heating continues in preparation for the gate opening.
By using the temperature control patterns of (e) and (f) in FIG. 1, the gate is thermally opened before the start of injection, and the resin is kept in a flowable state at the melting temperature or higher during the pressure-holding step. are possible, and the resin leakage is not caused from Rukoto gate is closed during release.
[0012]
The details of the gate chip heating method according to the present invention are as follows.
(I) There is no particular limitation on the heating and heating pattern before and during the injection process, but after the mold is opened and the molded product is taken out, the temperature rise is started immediately and the mold is put into the injection process immediately after the mold is closed. A pattern that is heated rapidly is preferable in order to shorten the molding cycle.
The power consumption (Wi) and energization time (ti) of the gate chip before and during the injection process vary depending on the type of resin, the type of injection molding device, the injection conditions, the amount of heat generated by the heater for heating the gate chip, etc. The power transmission (Wi) is controlled so that the resin of the gate chip is at a melting temperature + 20 ° C. or higher and lower than the decomposition start temperature.
[0013]
(Ii) Maintaining the molten state of the resin during the pressure-holding step In the present invention, the power consumption (Wp) and energization time (tp) of the gate chip during the pressure-holding step are equal to or higher than the melting temperature of the resin of the gate chip. Controlled to maintain below + 40 ° C. When heated to a melting temperature of + 40 ° C. or higher, resin burnt, thermal decomposition, and resin leakage from the gate part during mold release occur particularly during long-term continuous molding, which adversely affects the appearance, strength, dimensional accuracy, and the like. In addition, when the temperature is lower than the melting temperature, it is difficult to transmit a sufficient holding pressure to the product, and voids are generated, which adversely affects dimensional accuracy.
(Iii) Solidification of resin during cooling step Heating is stopped or sufficiently reduced so that the resin of the resin gate is solidified during the cooling step. Specifically, it is less than the melting temperature. Above the melting temperature, resin leakage from the gate during mold release occurs, adversely affecting the appearance, strength, dimensional accuracy, and the like.
[0014]
In addition, from the viewpoint of heat conduction and heat capacity of the mold, the temperatures of (i) to (iii) are smoothly and continuously connected and go up and down. Since it is arbitrarily set depending on the shape and required performance, the time maintained in the temperature region in each process does not necessarily need to be 100% with respect to the time length of each process. Although there is no particular limitation as long as the effect of the present invention is obtained, it is different for each process, but preferably 90 to 100% injection process, 100 to 110% pressure holding process, more preferably 95 to 100% injection process, pressure holding The process is 100 to 105%. For example, when the melting temperature is + 20 ° C. at the start of the injection process, the last 10% of the time in the injection process may be lower than the melting temperature + 20 ° C., and lower than the melting temperature + 40 ° C. during the pressure holding process. If it is above the melting temperature, the first 10% of the time during the cooling process may be above the melting temperature, and during the cooling process, it is cooled to a temperature at which resin leakage from the resin gate does not occur at the mold opening stage. If so, the first 10% of time may be above the melting temperature and the remaining time may be below the melting temperature.
[0015]
The gate chip heating method according to the present invention may be performed manually, but it is preferable to provide a sensor and a control device and automate by proportional / integral control or the like.
[0016]
Molding resin used in the present invention is a thermoplastic resin, specifically, Po Li acetal, a polybutylene terephthalate or polyphenylene sulfide, good Mashiku is polyphenylene sulfide.
[0017]
The resin may contain various resin additives, fillers, resin modifiers, and the like.
Since the filler is excellent in mechanical strength, heat resistance, dimensional stability, electrical properties, and the like, it is particularly effective for increasing the rigidity.
The filler is in the form of a fiber, powder or plate depending on the purpose. Fiber fillers include glass fiber, asbestos fiber, carbon fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, silicon fiber, potassium titanate fiber, stainless steel, aluminum, titanium Inorganic fibrous materials such as metallic fibrous materials such as copper and brass. A particularly typical fibrous filler is glass fiber. High melting point organic fibrous materials such as polyamide, fluororesin, and acrylic resin can also be used. On the other hand, as granular filler, carbon black, graphite, silica, quartz powder, glass beads, glass balloon, glass powder, calcium oxalate, aluminum oxalate, kaolin, talc, clay, diatomaceous earth, wollastonite Metal oxides such as oxalate, iron oxide, titanium oxide and alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfates of metals such as calcium sulfate and barium sulfate, other silicon carbide, silicon nitride, Examples thereof include boron nitride and various metal powders.
Examples of the plate filler include mica, glass flakes, various metal foils and the like. These inorganic fillers can be used alone or in combination of two or more. The combined use of fibrous fillers, particularly glass fibers or carbon fibers, and granular or plate-like fillers is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties and the like. The addition amount of the inorganic filler is 40% by weight or less for the total amount of the resin material. If it is more than this, the moldability and toughness are impaired, which is not preferable. Particularly preferred is 30% by weight or less.
The thermoplastic resin material used in the present invention is a known substance other than those generally added to the thermoplastic resin, that is, various stabilizers such as an antioxidant, an ultraviolet absorber, a light stabilizer, and an antistatic agent. Agents, flame retardants, flame retardant aids, colorants such as dyes and pigments, lubricants, plasticizers and crystallization accelerators, crystal nucleating agents, mold release agents, surfactants, antistatic agents, etc. in any combination It is of course possible to mix them.
[0018]
Examples of the molding method according to the present invention include injection molding and injection compression molding.
[0019]
The molded product obtained by the present invention has a flatness of 70 μm or less, preferably 50 μm or less, and is therefore suitable for a molded product that requires high dimensional accuracy.
[0020]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
In this example, a molded product having a shape as shown below was injection-molded, and flatness was measured as an index of dimensional accuracy, and sagging was checked as an index of resin leakage from the gate.
Flatness measuring device for molded product: Talirond 300 manufactured by Taylor Hobson
Measuring method: A number of points were measured on the circumference from the position of 0.5 mm from the outermost circumference toward the center at four points in 4 mm increments.
[0021]
[Example 1 and Comparative Examples 1 to 4]
Fortron (registered trademark) 6165A6 (manufactured by Polyplastics Co., Ltd., melting temperature 280 ° C., decomposition start temperature 400 ° C.) was used as polyphenylene sulfide.
Shape of molded product: Disc molding machine with outer diameter of φ35mm x wall thickness of 4mm: SE100D manufactured by Sumitomo Heavy Industries, Ltd.
Hot runner: Shin-Selvik Co., Ltd., Microprobe CG045F-2H center 1-point gate, gate diameter φ2
Cylinder temperature: 320 ° C
Mold temperature: 140 ° C
Gate chip heating conditions: The gate chip heating temperature is 350 ° C. for 99%, 290 ° C. for 80%, 280 ° C. for 60%, and 260 ° C. for 40% when the maximum power consumption is 100%. It is.
The time of each process is as follows.
Before injection start (from mold closing start to immediately before injection start): 0.5 seconds Injection process: 0.5 seconds Holding pressure process: 60 seconds Cooling process: 10 seconds From mold opening start to ejection completion: 1.5 seconds Table 1 shows.
[0022]
[Table 1]
Figure 0004200225
[0023]
In Comparative Example 1 in which the gate chip is heated only before and during the injection process, the flatness is as very large as 96 μm although there is no drooping.
In Comparative Example 2 in which current is kept at 40% of the gate chip heating power during the pressure holding and cooling under the conventional temperature control, the flatness is large as about 60 μm and the power is 60% although there is no drooping. In Comparative Example 3 in which the energization was continued, the flatness was as small as 44 μm, but the drooping occurred. In Comparative Example 4 in which energization was continued at 80% power, the flatness was as small as 45 μm, but the drooping occurred remarkably.
[0024]
As shown in Example 1, it was possible to obtain a molded product without dripping with good flatness by stopping energization during injection, 99% pre-injection power, 60% power during holding, and cooling. .
[0025]
The flatness was about 100 μm in the conventional molding method (Comparative Example 1), but it is halved by the method of the present invention.
In addition, when the chip heating power is set to 40% or more of the chip heating power before injection during the cooling process, the resin does not solidify at the gate chip, so that dripping occurs. However, in the method of the present invention, the dripping dripping occurs. Does not occur.
[0026]
【The invention's effect】
According to the present invention, a molded product having good flatness and no drooping could be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a temperature control pattern of gate chips according to an example and a comparative example.

Claims (2)

射出工程前および射出工程中は、樹脂ゲートの樹脂が溶融温度+20℃以上、分解開始温度未満になるようにゲートチップを加熱し、
保圧工程中は樹脂ゲートの樹脂を溶融温度以上、溶融温度+40℃未満に維持するようにゲートチップを加熱し、冷却工程中は樹脂ゲートの樹脂を溶融温度未満にするようにゲートチップの加熱を低下または停止する射出成形方法であって、前記樹脂として、ポリアセタール、ポリブチレンテレフタレート又はポリフェニレンスルフィドを使用することを特徴とする射出成形方法。
Before the injection process and during the injection process, heat the gate chip so that the resin of the resin gate is at a melting temperature + 20 ° C. or higher and lower than the decomposition start temperature,
During the pressure holding process, the gate chip is heated so as to maintain the resin of the resin gate at a melting temperature or higher and lower than the melting temperature + 40 ° C., and during the cooling process, the gate chip is heated so that the resin of the resin gate is lower than the melting temperature. The injection molding method is characterized in that polyacetal, polybutylene terephthalate or polyphenylene sulfide is used as the resin.
ゲートチップの加熱をヒータに通電して行う請求項1に記載の射出成形方法。  The injection molding method according to claim 1, wherein the gate chip is heated by energizing the heater.
JP2003162523A 2003-06-06 2003-06-06 Injection molding method by gate-step heating Expired - Fee Related JP4200225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162523A JP4200225B2 (en) 2003-06-06 2003-06-06 Injection molding method by gate-step heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162523A JP4200225B2 (en) 2003-06-06 2003-06-06 Injection molding method by gate-step heating

Publications (2)

Publication Number Publication Date
JP2004358900A JP2004358900A (en) 2004-12-24
JP4200225B2 true JP4200225B2 (en) 2008-12-24

Family

ID=34054647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162523A Expired - Fee Related JP4200225B2 (en) 2003-06-06 2003-06-06 Injection molding method by gate-step heating

Country Status (1)

Country Link
JP (1) JP4200225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159401B2 (en) * 2008-04-10 2013-03-06 パナソニック株式会社 Injection nozzle temperature control method
JP5776288B2 (en) * 2011-04-13 2015-09-09 マツダ株式会社 Temperature control device for injection mold

Also Published As

Publication number Publication date
JP2004358900A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4200225B2 (en) Injection molding method by gate-step heating
KR101082717B1 (en) Nozzle device for hot runner plastic injection mold
JP2005324483A (en) Injection molding nozzle
JPH10100216A (en) Method for obtaining injection molded product of thermoplastic resin having high quality appearance
JP2020040293A (en) Manufacturing method of injection molded article and mold structure
JP4255045B2 (en) Manufacturing method of molded products
CN101722619A (en) Surface-hardening treatment method of plate glazed plastic product
JPH1177762A (en) Injection molding die and manufacture of injection molded product
JP4725906B2 (en) Mold for thermoplastic resin injection molding
CN102267224A (en) Quick-cooling heated mold injection molding process and equipment thereof
JPH11156908A (en) Injection mold and production of injection molded product
JPH09300417A (en) Injection molding, injection molding die and injection molding device
JPH11291300A (en) Mold for plastic injection molding, production thereof and injection molding method using mold
JP4387531B2 (en) Casting mold
JP2003521392A (en) Hot runner nozzle with ceramic shut-off needle
JP2000289074A (en) Manufacturing of heavy-walled molded article
JP2003191302A (en) Resin molding method, mold used in the molding method, and molded article from the molding method
JP4579898B2 (en) Molding method and molding apparatus
KR101865287B1 (en) Ceramic mold system for high temperature molding
JP3535939B2 (en) Molding method to obtain plastic molded products with high quality appearance
JP2011126186A (en) Resin molding process and injection molding machine
JP2000158505A (en) Method for molding polyacetal resin
JP4137692B2 (en) Polyphenylene sulfide molding method and molding die
JP2002530222A (en) Mold temperature control method for injection molding
JP2006035268A (en) Casting die

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees