JP4197380B2 - Electrodeionization equipment - Google Patents
Electrodeionization equipment Download PDFInfo
- Publication number
- JP4197380B2 JP4197380B2 JP26348599A JP26348599A JP4197380B2 JP 4197380 B2 JP4197380 B2 JP 4197380B2 JP 26348599 A JP26348599 A JP 26348599A JP 26348599 A JP26348599 A JP 26348599A JP 4197380 B2 JP4197380 B2 JP 4197380B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange membrane
- water
- chamber
- exchanger
- cation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、加圧水型原子力発電所の二次系における復水の脱塩処理や、その他のカチオン成分リッチの被処理水の脱塩処理に用いて好適な電気脱イオン装置に関する。
【0002】
【従来の技術】
従来、加圧水型原子力発電所においては、二次系の水処理対策として、アンモニア添加によるpH調整、ヒドラジン添加による脱酸素、および復水脱塩装置による脱塩処理が行われている。復水脱塩装置は、復水器の後段に設置され、復水器からの復水を復水脱塩装置で脱塩処理し、脱塩処理された水は脱気器、給水加熱器等を通して蒸気発生器に戻される。
【0003】
蒸気発生器では、系統内に持ち込まれた不純物および腐食生成物が濃縮されるため、蒸気発生器の二次系器内水は、一部連続的にドレン、すなわちブローダウンされる。
【0004】
蒸気発生器の伝熱管に付着するスケールの大半は、二次系の機器、配管の内面から発生する腐食生成物、すなわち鉄酸化物であるため、伝熱管へのスケール付着防止対策として、蒸気発生器への鉄酸化物の持込み低減、あるいは二次系機器、配管からの腐食生成物発生の抑制が図られている。
【0005】
現在、AVT処理、すなわちアンモニアによりpHを9.2程度に調整し、ヒドラジンにより脱酸素・還元性雰囲気として腐食生成物発生の抑制を図っているが、蒸気系統の機器、配管表面では気液二相流域であり、機器、配管表面での液相は、アンモニアの気液分配率が1以上のため、アンモニアが少なくなりpHが低下することから、鉄の溶出の抑制効果の小さいことが指摘されている。このため、アンモニア濃度を上昇させ、pHを9.2以上、たとえば9.8程度として、気液二相流域での液相側のpHの低下を防止することによって、鉄溶出を抑制させる高pH処理の採用が計画されている。
【0006】
ところが、AVT処理においてpHを9.2から9.8へと増加した場合、アンモニアの濃度は約10倍となり、復水脱塩装置はH−OH型運転のため、現在脱塩塔1塔当たり10〜15日で充填されているイオン交換体の再生を行う脱塩塔を複数設置し、いずれかの脱塩塔に対し2日に1回程度の再生を実施しているが、この現状頻度に対し1〜2日で再生を実施する必要が生じる。そのため、複数の脱塩塔の再生すべき時期が重複する事態も生じる可能性があるが、1日に数塔の再生は出来ず、また脱塩塔の樹脂量を現状以上に充填することも出来ないため、高pH運転に伴って現状の復水脱塩塔ではH−OH型運用が実質的に不可能となる。そこで高pH運転のプラントでは、復水脱塩装置による復水処理を、復水の全量に対して行うのではなく、復水部分処理もしくは、通常運転時には復水の全量を処理せずにバイパスさせる方式が計画されている。
【0007】
そこで、上記のような復水のバイパス路を設けるとともに、蒸気発生器のブローダウン水に対して、薬品による再生不要の電気脱イオン装置を用いて脱塩を行い、脱塩処理を行ったブローダウン水を復水系に戻して、二次系の水の処理を行うようにした技術が提案されている(特開平11−47560号公報)。
【0008】
すなわち、高pH運転において復水脱塩装置の脱塩塔で復水中の不純物を除去しようとすると、アンモニア濃度が高いため、アンモニアの負荷が大きく、脱塩塔樹脂は全量処理が出来ず、復水脱塩装置は復水部分処理運用もしくはバイパス運転を余儀なくされる。そこで、復水脱塩装置をバイパスした場合でも、蒸気発生器ブローダウン水を連続脱塩処理し脱塩処理した水を戻してやることにより、二次系統の不純物が除去され蒸気発生器の腐食損傷を防止することが可能となる。この蒸気発生器ブローダウン水処理装置として、薬品による再生が不要で連続運転が可能な電気脱イオン装置が最適である。この電気脱イオン装置とは、1以上の陽極および陰極を有し、アニオン交換膜およびカチオン交換膜により区切られ、イオン交換体を充填した1以上の脱塩室と、イオン交換膜を介して移動してくるイオンを濃縮する1以上の濃縮室から構成され、電流により連続的に再生されながら運転される装置である。
【0009】
【発明が解決しようとする課題】
しかしながら、従来用いられていた電気脱イオン装置では、脱塩室に充填するイオン交換体は、通常、カチオン交換体とアニオン交換体の混床として充填されており、したがって被処理水が最初に通水される部分も混床部分であり、カチオン成分リッチの被処理水、たとえば前述のようにアンモニアおよび/またはヒドラジン等のカチオン成分を比較的高濃度で含有する被処理水に対しては、それらカチオン成分の除去に適しているものではなかった。すなわち、被処理水が最初に通水されるイオン交換体層をカチオン交換体とアニオン交換体の混床層とすると、被処理水のpHが中性付近にしか推移せず、アンモニアおよび/またはヒドラジンの解離が十分に進まず、電流による濃縮室へのカチオンの移動が行われにくくなっていた。したがって、とくに上述の如く、蒸気発生器ブローダウン水のようなカチオン成分リッチの水の処理には十分な性能を発揮できなかった。
【0010】
本発明の課題は、カチオン成分リッチの被処理水を効率よく脱塩処理でき、とくに加圧水型原子力発電所において高pH運用される場合の二次系の水処理に用いて好適な電気脱イオン装置を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本件第一発明の電気脱イオン装置は、陽極と陰極の間に、カチオン交換膜およびアニオン交換膜によって区切られ内部にイオン交換体が充填された脱塩室と、該脱塩室から移動してくるイオンを受け取る濃縮室とを複数有する電気脱イオン装置において、脱塩室において被処理水が最初に通水されるイオン交換体を実質的にカチオン交換体の単床形態で充填したことを特徴とする電気脱イオン装置であって、脱塩室において被処理水が最後に通水されるイオン交換体がアニオン交換体とカチオン交換体の混床形態で充填されているものからなる。本発明において実質的にカチオン交換体の単床形態で充填したとは、カチオン交換体の比率が80%以上、好ましくは90%以上、より好ましくは95%以上であることをいう。
【0012】
また、省電力をはかるために、本件第二発明の電気脱イオン装置は、陽極と陰極の間に、カチオン交換膜およびアニオン交換膜によって区切られ内部にイオン交換体が充填された脱塩室と、該脱塩室から移動してくるイオンを受け取る濃縮室とを複数有する電気脱イオン装置において、脱塩室において被処理水が最初に通水されるイオン交換体を実質的にカチオン交換体の単床形態で充填したことを特徴とする電気脱イオン装置であって、脱塩室が、一側のカチオン交換膜、他側のアニオン交換膜および中央の中間イオン交換膜で区画された2つの小脱塩室にイオン交換体を充填して構成され、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室が設けられ、これら脱塩室および濃縮室が陽極と陰極の間に配置されており、中間イオン交換膜が、カチオン交換膜または、被処理水の流れ方向に前段にアニオン交換膜、後段にカチオン交換膜を配置した複式膜から構成されるものからなる。とくに、脱塩室が、カチオン交換膜、一の枠体、中間イオン交換膜、他の枠体、アニオン交換膜をこの順に積層することにより形成された脱イオンモジュールからなることが好ましい。また、脱塩室において被処理水が最後に通水されるイオン交換体は、アニオン交換体とカチオン交換体の混床形態で充填されていることが好ましい。
【0013】
本件第一発明および第二発明において、電気脱イオン装置全体として充填されるイオン交換体の体積分率(カチオン交換体/アニオン交換体)を2以上とすることが好ましく、これによって、カチオン成分に対する脱塩効率をさらに大幅に上昇させることができる。
【0014】
このような本発明に係る電気脱イオン装置は、とくに加圧水型原子力発電所における復水脱塩処理に好適に用いられ、さらに詳しくは、加圧水型原子力発電所における蒸気発生器のブローダウン水の脱塩処理に用いられ、脱塩処理されたブローダウン水が復水系統に戻される。
【0015】
このように構成された本発明に係る電気脱イオン装置においては、脱塩室において被処理水が最初に通水されるイオン交換体を実質的にカチオン交換体の単床形態で充填することにより、被処理水のpHが酸性側にシフトし、アンモニアおよび/またはヒドラジンの解離が進み、NH4 + および/またはN2 H6 + として存在する割合が増え、電流による濃縮室へのカチオンの移動が行われやすくなる。その結果、カチオン成分リッチの被処理水が高効率で脱塩処理される。
【0016】
また、電気脱イオン装置全体として充填されるイオン交換体の体積分率(カチオン交換体/アニオン交換体)を2以上とすれば、カチオン成分に対する脱塩効率を、該体積分率が2未満のもの、とくに従来通常に使用されていた体積分率が1程度のものに比べ、飛躍的に上昇させることができる。たとえば前述の如き加圧水型原子力発電所の二次系において高pH運転を行う場合には、通常、蒸気発生器ブローダウン水には多量のカチオン成分(アンモニア、ヒドラジンとも0.5ppm程度)が含まれている。そのため、電気脱イオン装置に充填するイオン交換体体積分率をカチオン交換体/アニオン交換体=2以上とすることにより、カチオン成分に対する脱塩効率をさらに大幅に上昇させることができる。
【0017】
また、本件第二発明の電気脱イオン装置の構成において、脱塩室が、中間イオン交換膜で区画された2つの小脱塩室から形成されていることにより、次のような作用、効果も付加される。
【0018】
すなわち、従来から、電気脱イオン装置を使用して被処理水中の不純物イオンを省電力で除去するために、電気脱イオン装置の電気抵抗を低減する種々の試みがなされている。この場合、脱塩室においては、脱塩室に使用されるイオン交換体の充填方法や充填量が、要求される処理水の水質によって決定されるため、脱塩室の電気抵抗を低減させるには限界がある。そこで、濃縮室の電気抵抗を低減するための対策が採られることが多い。たとえば、特開平9−24374号公報には、濃縮室に電解質を添加供給して濃縮質における電気抵抗を低減する方法が開示されている。また、濃縮水の循環によって導電率の上昇を促進し、濃縮室の電気抵抗を低減する方法も多数報告されている。
【0019】
しかしながら、濃縮室に電解質を添加供給して濃縮室の電気抵抗を低減する方法は、電解質を濃縮室へ供給するためのポンプ、薬剤貯留タンクおよび供給配管などを設置しなければならず、設置面積の増加、設置コストの上昇などを招く。また、定期的に薬剤の補給や管理を行わなければならず、連続再生型装置であるにもかかわらず人手がかかるという問題がある。また、濃縮水の循環によって導電率の上昇を促進し、濃縮室の電気抵抗を低減する方法は、濃縮水中に含まれるカルシウムやマグネシウムなどの硬度成分も濃厚となるのでスケールの発生を促進してしまい、結果的に電気抵抗の上昇を招来するという問題がある。
【0020】
そこで上記の中間イオン交換膜により2つの小脱塩室に区画する構成を採ることにより、イオン交換体が充填された脱塩室1つ当たりの濃縮室の数を従来の約半分にすることができ、電気脱イオン装置の電気抵抗を著しく低減できる。また、従来の装置と比較して相対的に濃縮室の数が少ないため、濃縮室を流通する濃縮水のイオン濃度を濃厚とすることができ、導電率が向上し、更に電気抵抗が低減されるとともに、濃縮室内を流通する濃縮水の流速を高めることができ、濃縮室内のスケールが発生し難くなる。さらに、2つの小脱塩室に区画することにより、各小脱塩室に充填されるイオン交換体を、処理の目的に応じて、単一のイオン交換体もしくはアニオン交換体とカチオン交換体の混合イオン交換体の単独種とすることができ、イオン交換体が充填された各小脱塩室の厚さを電気抵抗を低減し、かつ高い電流効率を得るに最適な厚さに設定することが可能となる。つまり、一つの脱塩室に複数種のイオン交換体が充填されていると、各イオン交換体の種類によって電気抵抗を小さくし電流効率を高くする最適な厚さが異なるため、脱塩室全体として最適な厚さに設定することが困難となるが、各小脱塩室に単独種のイオン交換体のみを充填する場合には、低電気抵抗と高電流効率を両立させる厚さの設定が可能となる。
【0021】
また、脱塩室を構成するイオン交換膜の輸率(つまり、除去対象となるイオンの透過率)は実質的には1ではなく、高い性能を有すると言われるイオン交換膜でも0.98以上として保証されているにすぎないので、被処理水が最後に通水されるイオン交換体層がカチオン交換体単床層またはアニオン交換体単床層であると、脱塩室から濃縮室へと移動してきたアニオン成分またはカチオン成分が輸率0.02以下分だけさらに隣の脱塩室へと移動するおそれがあり(つまり、隣の脱塩室のイオン交換膜がこの分の侵入を阻止できず)、処理水側に流出して水質の低下を招いてしまうおそれがある。そこで、最後に通水されるイオン交換体をカチオン交換体とアニオン交換体の混床とすることにより、アニオン成分、カチオン成分のどちらかが濃縮室から脱塩室へ再移動してきても十分な処理を行うことができるようになり、高純度の処理水を得ることができる。
【0022】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の第1実施態様に係る電気脱イオン装置を示しており、図2および図3は、その使用例を示している。図4および図5は、本発明の第2実施態様に係る電気脱イオン装置を示しており、図6および図7はその使用例を示している。図8は、本発明に係る電気脱イオン装置を、加圧水型原子力発電所の二次系に組み込んだシステムの例を示している。
【0023】
先ず、図1に示した第1実施態様に係る電気脱イオン装置1においては、カチオン交換膜2およびアニオン交換膜3を離間して交互に配置し、カチオン交換膜2とアニオン交換膜3で形成される空間内に一つおきにイオン交換体4を充填して脱塩室5とする。脱塩室5のそれぞれ隣に位置するアニオン交換膜3とカチオン交換膜2で形成されるイオン交換体を充填していない部分は濃縮水を流すための濃縮室6に形成される。濃縮室6は、脱塩室5から各イオン交換膜を介して移動してくるイオンを受け取る。
【0024】
上記のような脱塩室5および濃縮室6が複数、陽極7と陰極8の間に配置されている。陽極7と陰極8の内側は、それぞれ、陽極室9、陰極室10に形成されている。陽極室9、陰極室10は、必要に応じて、最外の濃縮室6に対し、カチオン交換膜あるいはアニオン交換膜、もしくはイオン交換性のない単なる隔膜によって仕切られる(図2、図3に図示)。
【0025】
陽極7と陰極8の間に直流電流を通じ、被処理水流入ライン11から被処理水が各脱塩室5に流入されるとともに、濃縮水流入ライン12から濃縮水が各濃縮室6に流入され、かつ、電極水流入ライン13、13から陽極室9、陰極室10にそれぞれ電極水が流入される。被処理水流入ライン11から流入した被処理水は、脱塩室5を流下し、除去対象となるイオンが両側のイオン交換膜を介して濃縮室6へと移動される。濃縮水流入ライン12から流入した濃縮水は、各濃縮室6を上昇し、カチオン交換膜2及びアニオン交換膜3を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮水流出ライン14から流出され、さらに電極水流入ライン13、13から流入した電極水は電極水流出ライン15、15から流出される。そして、脱塩室5で処理された脱塩水が、脱イオン水流出ライン16を通して得られる。
【0026】
脱塩室5に充填されるイオン交換体4は、被処理水が最初に通水されるイオン交換体4が実質的にカチオン交換体の単床とされている。イオン交換体4の脱塩室5への充填形態は、被処理水が最初に通水されるイオン交換体4が実質的にカチオン交換体の単床とされ、かつ、脱塩室において被処理水が最後に通水されるイオン交換体4がアニオン交換体とカチオン交換体の混床状態とされる限り、特に限定されない。たとえば、図2に示すように、各脱塩室5において、被処理水の流れ方向に、前段にカチオン交換体単床Kを配置し、後段にアニオン交換体単床AR を配置した構成は本発明の参考例であり、図3に示すように、各脱塩室5において、被処理水の流れ方向に、前段にカチオン交換体単床Kを配置し、後段にカチオン交換体とアニオン交換体の混床Mを配置した構成は本発明の実施例である。
【0027】
図1に示すように構成され、図3に示すような形態で使用される本実施態様に係る電気脱イオン装置1においては、脱塩室5において被処理水が最初に通水されるイオン交換体4を実質的にカチオン交換体の単床形態で充填することにより、カチオン成分に対する脱塩効率を大幅に上昇させることができる。カチオン成分リッチの被処理水が高効率で脱塩処理されるようになる。したがって、カチオン成分リッチの被処理水に用いて最適な電気脱イオン装置となる。たとえば後述の加圧水型原子力発電所の二次系においては、とくに高pH運転を行う場合、蒸気発生器ブローダウン水には多量のカチオン成分(アンモニア、ヒドラジンとも0.5ppm程度)が含まれているが、このブローダウン水の脱塩処理に、上記のような被処理水が最初に通水されるイオン交換体4をカチオン交換体の単床とした電気脱イオン装置を用いることにより、被処理水のpHが酸性側にシフトし、アンモニアおよび/またはヒドラジンの解離が進み、NH4 + および/またはN2 H6 + として存在する割合が増え、電流による濃縮室へのカチオンの移動が行われやすくなる。その結果、カチオン成分に対する脱塩効率を飛躍的に上昇させることができ、カチオン成分リッチの被処理水が高効率で脱塩処理される。
【0028】
またこのとき、電気脱イオン装置1全体のイオン交換体のカチオン交換体/アニオン交換体の体積分率を2以上とすることにより、従来通常に使用されていた体積分率が1程度のものに比べ、カチオン成分に対する脱塩効率をさらに大幅に上昇させることができる。したがって、一層好適な、カチオン成分リッチの被処理水処理用の電気脱イオン装置を実現できる。たとえば加圧水型原子力発電所の二次系において、とくに高pH運転を行う場合、蒸気発生器ブローダウン水には多量のカチオン成分が含まれているが、このブローダウン水の脱塩処理に、このようなイオン交換体体積分率をカチオン交換体/アニオン交換体=2以上とした電気脱イオン装置を用いることにより、カチオン成分に対する脱塩効率をさらに大幅に上昇させることができる。
【0029】
また、脱塩室5において最後に通水されるイオン交換体4がカチオン交換体とアニオン交換体の混床形態となっていることにより、たとえ濃縮室6からアニオン成分、カチオン成分のいずれかが脱塩室5内に再移動してきたとしても、そのイオンを適切に除去することが可能である。
【0030】
図4および図5に示す第2実施態様に係る電気脱イオン装置21においては、カチオン交換膜22、中間イオン交換膜24およびアニオン交換膜23を離間して交互に配置し、カチオン交換膜22と中間イオン交換膜24で形成される空間内にイオン交換体25を充填して第1小脱塩室26a、26b、26c、26dを形成し、中間イオン交換膜24とアニオン交換膜23で形成される空間内にイオン交換体25を充填して第2小脱塩室27a、27b、27c、27dを形成し、第1小脱塩室26aと第2小脱塩室27aで脱塩室28a、第1小脱塩室26bと第2小脱塩室27bで脱塩室28b、第1小脱塩室26cと第2小脱塩室27cで脱塩室28c、第1小脱塩室26dと第2小脱塩室27dで脱塩室28dを形成している。各脱塩室の両側には、イオン交換体25を充填していない濃縮室29が形成され、濃縮室29は、各小脱塩室から各イオン交換膜を介して移動してくるイオンを受け取る。
【0031】
上記のような脱塩室28a〜28dおよび濃縮室29が複数、陽極30と陰極31の間に配置されている。陽極30と陰極31の内側は、それぞれ、陽極室32、陰極室33に形成されている。陽極室32、陰極室33は、必要に応じて、最外の濃縮室29に対し、カチオン交換膜あるいはアニオン交換膜、もしくはイオン交換性のない単なる隔膜によって仕切られる(図6に図示)。
【0032】
上記の脱塩室28a〜28dは、2つの内部がくり抜かれた枠体と3つのイオン交換膜によって形成される脱イオンモジュールからなる。すなわち、図5に示すように、一つの脱イオンモジュール51は、第1枠体52の一側にカチオン交換膜22を封着し、第1枠体52のくり抜かれた部分にイオン交換体25を充填し、次いで、第1枠体52の他方の部分に中間イオン交換膜24を封着して第1小脱塩室を形成する。次に中間イオン交換膜24を挟み込むように第2枠体53を封着し、第2枠体53のくり抜かれた部分にイオン交換体25を充填し、次いで、第2枠体53の他方の部分にアニオン交換膜23を封着して第2小脱塩室を形成する。なお、イオン交換膜22、23、24は比較的柔らかいものであり、第1枠体52、第2枠体53内部にイオン交換体25を充填してその両面をイオン交換膜で封着した時、イオン交換膜が湾曲してイオン交換体25の充填層が不均一となるのを防止するため、第1枠体52、第2枠体53の空間部に複数のリブ54を縦設する。また、図では省略するが、第1枠体52、第2枠体53の上方部に被処理水の流入口又は処理水の流出口が、また枠体の下方部に被処理水の流出口又は処理水の流入口が付設されている。このような脱イオンモジュール51を複数個、その間に図では省略するスペーサーを挟んで、並設した状態が図4に示されたものであり、並設した脱イオンモジュール51の両側に陽極30と陰極31が配置されている。
【0033】
陽極30と陰極31間に直流電流を通じ、被処理水流入ライン34から各第1脱塩室26a〜26dに被処理水が流入されるとともに、濃縮水流入ライン35から各濃縮室29に濃縮水が流入され、かつ、電極水流入ライン36、36から陽極室32、陰極室33にそれぞれ電極水が流入される。被処理水流入ライン34から流入した被処理水は、第1小脱塩室26a〜26dを流下し、イオン交換体25の充填層を通過する際に不純物イオンが除去される。さらに、第1小脱塩室26a〜26dの処理水流出ライン37を通った流出水は、第2小脱塩室27a〜27dの被処理水流入ライン38を通って第2小脱塩室27a〜27dを流下し、ここでもイオン交換体25の充填層を通過する際に不純物イオンが除去され、脱イオン水が脱イオン水流出ライン39から得られる。また、濃縮水流入ライン35から流入した濃縮水は各濃縮室29を上昇し、カチオン交換膜22およびアニオン交換膜23を介して移動してくる不純物イオンを受取り、不純物イオンを濃縮した濃縮水として濃縮水流出ライン40から流出され、さらに電極水流入ライン36、36から流入した電極水は電極水流出ライン41、41から流出される。上述の操作によって、被処理水中の不純物イオンは電気的に除去される。
【0034】
中間イオン交換膜24としては、カチオン交換膜の単一膜、あるいは被処理水の流れ方向に、前段にアニオン交換膜、後段にカチオン交換膜を配置した複式膜のいずれであってもよい。複式膜とする場合、アニオン交換膜およびカチオン交換膜のそれぞれの高さ(面積)は被処理水の水質又は処理目的などによって適宜決定される。
【0035】
第1小脱塩室または第2小脱塩室の厚さは特に限定されず、第1小脱塩室または第2小脱塩室に充填されるイオン交換体の種類と充填方法によって、最適な厚さを決定すればよい。
【0036】
脱塩室28a〜28dに充填されるイオン交換体25は、被処理水が最初に通水されるイオン交換体25が実質的にカチオン交換体の単床とされている。このイオン交換体25の脱塩室28a〜28dへの充填形態は、被処理水が最初に通水されるイオン交換体25が実質的にカチオン交換体の単床とされる限り、特に限定されないが、脱塩室28a〜28dが第1小脱塩室26a〜26dと第2小脱塩室27a〜27dとに区画されているので、この区画構造を利用して、各第1小脱塩室26a〜26dにカチオン交換体を単床形態で充填すればよい。
【0037】
たとえば、図6に示すように、第1小脱塩室26a〜26dに実質的にカチオン交換体の単床Kの形態で充填し、第2小脱塩室27a〜27dにアニオン交換体の単床AR の形態で充填することができる。あるいは、図7に示すように、第1小脱塩室26a〜26dに実質的にカチオン交換体の単床Kの形態で充填し、第2小脱塩室27a〜27dにカチオン交換体とアニオン交換体の混床Mの形態で充填することができる。いずれの充填態様にあっても、脱塩室28a〜28dにおいて被処理水が最後に通水されるイオン交換体を、カチオン交換体とアニオン交換体の混床Mとすることが好ましい。また、充填されるイオン交換体は、全体として、その体積分率、つまりカチオン交換体のアニオン交換体に対する比率(カチオン交換体/アニオン交換体)が、2以上とされていることが好ましい。
【0038】
図4に示すように構成され、図6や図7に示すような形態で使用される本実施態様に係る電気脱イオン装置21においては、脱塩室5において被処理水が最初に通水されるイオン交換体25をカチオン交換体の単床形態で充填することにより、カチオン成分に対する脱塩効率を大幅に上昇させることができ、カチオン成分リッチの被処理水が高効率で脱塩処理されるようになる。したがって、カチオン成分リッチの被処理水に用いて最適な電気脱イオン装置となる。たとえば後述の加圧水型原子力発電所の二次系においては、とくに高pH運転を行う場合、蒸気発生器ブローダウン水には多量のカチオン成分(アンモニア、ヒドラジンとも0.5ppm程度)が含まれているが、このブローダウン水の脱塩処理に、上記のような被処理水が最初に通水されるイオン交換体25をカチオン交換体の単床とした電気脱イオン装置を用いることにより、被処理水のpHが酸性側にシフトし、アンモニアおよび/またはヒドラジンの解離が進み、NH4 + および/またはN2 H6 + として存在する割合が増え、電流による濃縮室へのカチオンの移動が行われやすくなる。その結果、カチオン成分に対する脱塩効率を飛躍的に上昇させることができ、カチオン成分リッチの被処理水が高効率で脱塩処理される。
【0039】
また、充填されるカチオン交換体/アニオン交換体の体積分率を2以上とすれば、従来通常に使用されていた体積分率が1程度のものに比べ、カチオン成分に対する脱塩効率をさらに大幅に上昇させることができる。したがって、カチオン成分リッチの被処理水に用いてより最適な電気脱イオン装置となる。
【0040】
また、脱塩室28a〜28dにおいて最後に通水されるイオン交換体25をカチオン交換体とアニオン交換体の混床形態とすることにより、たとえ濃縮室29からアニオン成分、カチオン成分のいずれかが脱塩室28a〜28d内に再移動してきたとしても、そのイオンを適切に除去することが可能になる。
【0041】
また、各脱塩室28a〜28dが中間イオン交換膜24を介して2つの小脱塩室に区画されるので、脱塩室28a〜28d一つ当たりの濃縮室の数を従来の約半分にすることができ、電気脱イオン装置の電気抵抗を著しく低減できる。また、従来の装置と比較して相対的に濃縮室の数が少ないため、濃縮室を流通する濃縮水のイオン濃度を濃厚とすることができ、導電率が向上し、さらに電気抵抗が低減されるとともに、濃縮室内を流通する濃縮水の流速を高めることができ、濃縮室内のスケールが発生し難くなる。
【0042】
さらに、2つに区画された小脱塩室のそれぞれに充填するイオン交換体25の種類を、単独種とすることができるので(カチオン交換体単床、あるいはアニオン交換体単床、もしくはカチオン交換体とアニオン交換体の混床)、各小脱塩室を、電気抵抗を低減しかつ電流効率を高める上で最適な厚さに設定することができ、これによっても電気抵抗を低減して一層省電力化を図ることができる。
【0043】
上記のような第1実施態様または第2実施態様に係る電気脱イオン装置は、加圧水型原子力発電所における二次系の水処理に用いて好適なものである。
【0044】
たとえば図8に加圧水型原子力発電所の二次系ラインを示すように、蒸気発生器61には蒸気管62を通してタービン63が連結され、該タービン63に復水器64が連結されている。65は発電機である。
【0045】
復水器64にて生じる凝縮水、すなわち復水を蒸気発生器61に還流するために、復水器64と蒸気発生器61との間に、それらを連結する復水循環路としての復水管66が設けられている。この復水管66には復水器64から蒸気発生器61に向かう方向に沿って、復水ポンプ67、復水脱塩装置68、脱気器69、給水加熱器70の各装置が復水管66のライン上に設けられている。
【0046】
復水脱塩装置68を連結してある復水管66には該復水脱塩装置68と並列的に、バイパス路としてのバイパス管71が設けられ、復水を復水脱塩装置68、バイパス管71のいずれにも通水できるように構成されている。72は通水切換えバルブである。
【0047】
蒸気発生器61にはブローダウン水を取り出すための取出管73が設けられ、この取出管73の他端はその途中に冷却器(図示略)を介して電気脱イオン装置74に連結されている。更に、電気脱イオン装置74の脱塩室出口と復水器64との間に、それらを連結する還流路としての処理水管75が設けられ、処理水を復水器64を介して蒸気発生器61に還流できるように構成されている。また電気脱イオン装置74の濃縮室出口には濃縮水流出管76が設けられ、電気脱イオン装置74から流出する濃縮水を系外に排出するようになっている。この電気脱イオン装置74に、前述の第1実施態様または第2実施態様に係る電気脱イオン装置を使用することができる。
【0048】
上記のように構成されたシステムにおいては、バイパス路(バイパス管71)設けることにより、復水脱塩装置68に対し、復水の部分処理あるいは全量バイパスを行うことが可能になり、高pH運用の場合にあっても、復水脱塩装置68に高負荷をかけることなく運転することが可能になる。そして、前記実施態様に係る電気脱イオン装置(図8における74)を、アンモニア0.1ppm以上、ヒドラジン0.1ppm以上含むようなカチオン成分リッチの蒸気発生器ブローダウン水の処理に用いることにより、高pH運転を採用した場合でも、ブローダウン水の脱塩処理が可能になり、脱塩処理されたブローダウン水を復水還流系に戻してやることにより、二次系の不純物を除去することができ、蒸気発生器の腐食対策を行い、蒸気発生器細管の損傷防止をはかることが可能となる。
【0049】
ちなみに、第1実施態様または第2実施態様に係る電気脱イオン装置を、図8に示したと同様のシステムに適用し、下記条件にて試験した結果、表1に示す結果を得た。
脱塩室流量:0.12m3 /h
濃縮室流量:0.03m3 /h
原水水温 :45℃
電流値 :2A
抵抗率は25℃換算
【0050】
【表1】
【0051】
表1から分かるように、本発明の実施例1〜5では、比較例1(従来の電気脱イオン装置)に比べ、蒸気発生器ブローダウン水の脱塩処理により、アンモニア、ヒドラジンの濃度をともにより大幅に低下させることができ、電気抵抗(抵抗率の逆数)についても一層低下させて省電力化をはかることができた。
【0052】
【発明の効果】
以上説明したように、本発明の電気脱イオン装置によれば、カチオン成分リッチの被処理水を効率よく脱塩処理でき、加圧水型原子力発電所において高pH運用される場合の二次系の水、とくに蒸気発生器ブローダウン水の脱塩処理に用いて最適な電気脱イオン装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施態様に係る電気脱イオン装置の概略構成図である。
【図2】 図1の装置の参考使用例を示す模式図である。
【図3】図1の装置の別の使用例を示す模式図である。
【図4】本発明の第2実施態様に係る電気脱イオン装置の概略構成図である。
【図5】図2の装置の一脱イオンモジュールの分解斜視図である。
【図6】図2の装置の一使用例を示す模式図である。
【図7】図2の装置の別の使用例を示す模式図である。
【図8】加圧水型原子力発電所の二次系ラインの機器系統図である。
【符号の説明】
1、21、74 電気脱イオン装置
2、22 カチオン交換膜
3、23 アニオン交換膜
4、25 イオン交換体
5、28a、28b、28c、28d 脱塩室
6、29 濃縮室
7、30 陽極
8、31 陰極
9、32 陽極室
10、33 陰極室
24 中間イオン交換膜
26a、26b、26c、26d 第1小脱塩室
27a、27b、27c、27d 第2小脱塩室
51 脱イオンモジュール
52 第1枠体
53 第2枠体
54 リブ
61 蒸気発生器
63 タービン
64 復水器
65 発電機
68 復水脱塩装置
69 脱気器
70 給水加熱器
71 バイパス管(バイパス路)
75 処理水管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrodeionization apparatus suitable for use in demineralization treatment of condensate in a secondary system of a pressurized water nuclear power plant and other desalination treatment of water to be treated rich in cationic components.
[0002]
[Prior art]
Conventionally, in a pressurized water nuclear power plant, as secondary water treatment measures, pH adjustment by addition of ammonia, deoxygenation by addition of hydrazine, and desalination treatment by a condensate demineralizer are performed. The condensate demineralizer is installed at the rear stage of the condenser, and the condensate from the condenser is demineralized by the condensate demineralizer, and the demineralized water is deaerator, feed water heater, etc. Through to the steam generator.
[0003]
In the steam generator, impurities and corrosion products brought into the system are concentrated, so that the water in the secondary system of the steam generator is partially drained, that is, blown down.
[0004]
Most of the scale attached to the heat transfer tubes of the steam generator is corrosion products generated from the inner surface of the secondary equipment and piping, that is, iron oxide. The reduction of iron oxide into the vessel or the suppression of the generation of corrosion products from secondary equipment and piping has been attempted.
[0005]
At present, the pH is adjusted to about 9.2 with AVT treatment, that is, ammonia, and hydrazine is used as a deoxygenating / reducing atmosphere to suppress the formation of corrosion products. It is a phase flow region, and the liquid phase on the equipment and piping surfaces is pointed out to be less effective in suppressing iron elution because the ammonia gas-liquid partition rate is 1 or more and the ammonia is reduced and the pH is lowered. ing. Therefore, by increasing the ammonia concentration and setting the pH to 9.2 or higher, for example, about 9.8, a high pH that suppresses iron elution by preventing a decrease in pH on the liquid phase side in the gas-liquid two-phase flow region. Adoption of treatment is planned.
[0006]
However, when the pH is increased from 9.2 to 9.8 in the AVT treatment, the ammonia concentration becomes about 10 times, and the condensate demineralizer is H-OH type operation. A plurality of demineralization towers that regenerate the ion exchanger packed in 10 to 15 days are installed, and one of the demineralization towers is regenerated about once every two days. On the other hand, it is necessary to carry out the regeneration in 1 to 2 days. For this reason, there is a possibility that a plurality of demineralization towers should be regenerated at the same time. However, several towers cannot be regenerated in a day, and the amount of resin in the demineralization tower may be charged more than the current amount. Since this is not possible, H-OH type operation is virtually impossible in the current condensate demineralization tower with high pH operation. Therefore, in plants operating at high pH, the condensate treatment by the condensate demineralizer is not performed on the entire amount of condensate, but bypassed without treating the entire amount of condensate during normal operation or partial condensate treatment. A scheme to make it happen is planned.
[0007]
Therefore, while providing a bypass passage for the condensate as described above, the blow-down water of the steam generator is desalted by using a chemical deionization device that does not require regeneration with chemicals, and is subjected to a desalting treatment. A technique has been proposed in which the down water is returned to the condensate system and the secondary water is treated (Japanese Patent Laid-Open No. 11-47560).
[0008]
That is, when trying to remove impurities in the condensate in the demineralization tower of the condensate demineralizer in high pH operation, the ammonia concentration is high and the load of ammonia is large, and the demineralization tower resin cannot be completely treated. Water desalination equipment is forced to perform condensate partial treatment operation or bypass operation. Therefore, even when the condensate demineralizer is bypassed, the steam generator blow-down water is continuously desalted and the desalted water is returned to remove secondary system impurities and damage the steam generator. Can be prevented. As this steam generator blow-down water treatment apparatus, an electrodeionization apparatus that does not require regeneration by chemicals and can be operated continuously is optimal. The electrodeionization apparatus has one or more anodes and cathodes, is separated by an anion exchange membrane and a cation exchange membrane, and moves through the ion exchange membrane with one or more demineralization chambers filled with an ion exchanger. This device is composed of one or more concentrating chambers for concentrating incoming ions, and is operated while being continuously regenerated by electric current.
[0009]
[Problems to be solved by the invention]
However, in the conventional electrodeionization apparatus, the ion exchanger filled in the desalting chamber is usually filled as a mixed bed of a cation exchanger and an anion exchanger, so that the water to be treated passes first. The portion to be watered is also a mixed bed portion, and for water to be treated rich in cation components, for example, water to be treated containing a relatively high concentration of cation components such as ammonia and / or hydrazine as described above. It was not suitable for removing the cationic component. That is, when the ion exchanger layer through which the water to be treated is first passed is a mixed bed layer of a cation exchanger and an anion exchanger, the pH of the water to be treated only shifts to around neutral, and ammonia and / or The dissociation of hydrazine did not proceed sufficiently, making it difficult for cations to move to the concentrating chamber due to electric current. Therefore, in particular, as described above, sufficient performance could not be exhibited for the treatment of water rich in cationic components such as steam generator blowdown water.
[0010]
An object of the present invention is to provide a deionization apparatus that can efficiently desalinate the water to be treated rich in the cation component, and is particularly suitable for secondary water treatment when operated at a high pH in a pressurized water nuclear power plant. Is to provide.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, electrodeionization apparatus of the present matter first invention, between an anode and a cathode, and a desalination chamber ion exchanger therein, separated by cation exchange membranes and anion exchange membranes is filled In the electrodeionization apparatus having a plurality of concentration chambers for receiving ions moving from the desalting chamber, the ion exchanger through which the water to be treated is first passed in the desalting chamber is substantially a cation exchanger. An electrodeionization apparatus characterized in that it is filled in a single bed form, and the ion exchanger through which treated water is finally passed in the desalting chamber is filled in a mixed bed form of anion exchanger and cation exchanger. It consists of what is being. In the present invention, “packed substantially in the form of a single bed of a cation exchanger” means that the ratio of the cation exchanger is 80% or more, preferably 90% or more, more preferably 95% or more.
[0012]
In order to save power , the electrodeionization apparatus of the second invention of the present invention includes a demineralization chamber, which is partitioned between a positive electrode and a negative electrode by a cation exchange membrane and an anion exchange membrane and filled with an ion exchanger. In the electrodeionization apparatus having a plurality of concentration chambers for receiving ions moving from the desalting chamber, the ion exchanger through which the water to be treated is first passed in the desalting chamber is substantially a cation exchanger. The electrodeionization apparatus is characterized in that it is packed in a single-bed form , wherein the demineralization chamber is divided into two cation exchange membranes on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane on the center side. Concentrated chambers are provided on both sides of the desalting chamber through the cation exchange membrane and anion exchange membrane, and the desalting chamber and the concentrating chamber are connected to the anode and cathode. is disposed between, During the ion exchange membrane, a cation exchange membrane or consisting of those composed of the water to be treated in the flow direction upstream the anion exchange membrane, dual layer disposed cation exchange membrane in the subsequent stage. In particular, the demineralization chamber is preferably composed of a deionization module formed by laminating a cation exchange membrane, one frame, an intermediate ion exchange membrane, another frame, and an anion exchange membrane in this order. Moreover, it is preferable that the ion exchanger through which the water to be treated is finally passed in the desalting chamber is filled in a mixed bed form of an anion exchanger and a cation exchanger.
[0013]
In the first invention and the second invention, it is preferable that the volume fraction (cation exchanger / anion exchanger) of the ion exchanger filled in the electrodeionization apparatus as a whole is 2 or more. The desalting efficiency can be further greatly increased .
[0014]
Such an electrodeionization apparatus according to the present invention is particularly suitable for condensate demineralization treatment in a pressurized water nuclear power plant, and more specifically, blow-down water dewatering of a steam generator in a pressurized water nuclear power plant. Blow-down water used for salt treatment and desalted is returned to the condensate system.
[0015]
In the electrodeionization apparatus according to the present invention thus configured, the ion exchanger through which the water to be treated is first passed in the demineralization chamber is substantially filled with a single bed form of the cation exchanger. The pH of the water to be treated shifts to the acidic side, the dissociation of ammonia and / or hydrazine proceeds, the proportion of NH 4 + and / or N 2 H 6 + increases, and the cation moves to the concentration chamber by current Is easier to be done. As a result, the cation component-rich water to be treated is desalted with high efficiency.
[0016]
Moreover, if the volume fraction (cation exchanger / anion exchanger) of the ion exchanger filled as the entire electrodeionization apparatus is 2 or more, the salt removal efficiency with respect to the cation component is less than 2. In particular, the volume fraction can be dramatically increased as compared with a conventional volume fraction of about 1. For example, when high pH operation is performed in the secondary system of a pressurized water nuclear power plant as described above, the steam generator blowdown water usually contains a large amount of cationic components (about 0.5 ppm for both ammonia and hydrazine). ing. Therefore, by setting the ion exchanger volume fraction charged in the electrodeionization apparatus to cation exchanger / anion exchanger = 2 or more, the desalting efficiency for the cation component can be further greatly increased.
[0017]
Further, in the configuration of the electrodeionization apparatus of the second invention of the present invention , the demineralization chamber is formed of two small demineralization chambers partitioned by an intermediate ion exchange membrane, so that the following operations and effects are also achieved. Added.
[0018]
That is, conventionally, various attempts have been made to reduce the electrical resistance of the electrodeionization apparatus in order to remove impurity ions in the water to be treated with power saving using the electrodeionization apparatus. In this case, in the desalting chamber, since the filling method and the filling amount of the ion exchanger used in the desalting chamber are determined by the required quality of the treated water, the electrical resistance of the desalting chamber is reduced. There are limits. Therefore, measures are often taken to reduce the electrical resistance of the concentrating chamber. For example, Japanese Patent Application Laid-Open No. 9-24374 discloses a method of reducing the electrical resistance in the concentrate by adding and supplying an electrolyte to the concentration chamber. A number of methods have also been reported for promoting the increase in conductivity by circulating concentrated water and reducing the electrical resistance of the concentration chamber.
[0019]
However, the method of reducing the electrical resistance of the concentrating chamber by adding and supplying the electrolyte to the concentrating chamber requires installation of a pump, a drug storage tank, a supply pipe, and the like for supplying the electrolyte to the concentrating chamber. Increase the installation cost. In addition, there is a problem in that it is necessary to regularly supply and manage the medicine, and it is labor-intensive even though it is a continuous regeneration type device. In addition, the method of promoting the increase in conductivity by circulating the concentrated water and reducing the electrical resistance of the concentrating chamber promotes the generation of scale because the hardness components such as calcium and magnesium contained in the concentrated water are also concentrated. As a result, there is a problem that the electrical resistance is increased.
[0020]
Therefore, by adopting a configuration in which the above-mentioned intermediate ion exchange membrane divides into two small desalting chambers, the number of concentration chambers per desalting chamber filled with ion exchangers can be reduced to about half of the conventional one. The electrical resistance of the electrodeionization device can be significantly reduced. In addition, since the number of concentration chambers is relatively small compared to conventional devices, the ion concentration of concentrated water flowing through the concentration chamber can be increased, conductivity is improved, and electrical resistance is further reduced. In addition, the flow rate of the concentrated water flowing through the concentration chamber can be increased, and scale in the concentration chamber is less likely to occur. Furthermore, by dividing into two small desalting chambers, the ion exchanger filled in each small desalting chamber can be divided into a single ion exchanger or an anion exchanger and a cation exchanger depending on the purpose of the treatment. It can be a single species of mixed ion exchanger, and the thickness of each small desalting chamber filled with the ion exchanger is set to an optimum thickness for reducing electric resistance and obtaining high current efficiency. Is possible. In other words, when multiple types of ion exchangers are filled in a single desalting chamber, the optimum thickness for reducing the electrical resistance and increasing the current efficiency differs depending on the type of each ion exchanger. However, when filling each small desalination chamber with only one kind of ion exchanger, it is necessary to set the thickness to achieve both low electrical resistance and high current efficiency. It becomes possible.
[0021]
In addition, the transport number of the ion exchange membrane constituting the desalination chamber (that is, the transmittance of ions to be removed) is not substantially 1, and 0.98 or more even with an ion exchange membrane that is said to have high performance. Therefore, if the ion exchanger layer through which the water to be treated is finally passed is a cation exchanger single bed layer or an anion exchanger single bed layer, the desalting chamber is transferred to the concentration chamber. The anion component or cation component that has moved may move to the adjacent desalting chamber by an amount of 0.02 or less (that is, the ion exchange membrane in the adjacent desalting chamber can prevent this invasion). However, it may flow out to the treated water side and cause deterioration of water quality. Therefore, by using a mixed bed of a cation exchanger and an anion exchanger as the last ion exchanger to be passed, it is sufficient that either the anion component or the cation component is re-transferred from the concentration chamber to the desalting chamber. A process can be performed now and a highly purified treated water can be obtained.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an electrodeionization apparatus according to the first embodiment of the present invention, and FIGS. 2 and 3 show examples of its use. 4 and 5 show an electrodeionization apparatus according to the second embodiment of the present invention, and FIGS. 6 and 7 show examples of its use. FIG. 8 shows an example of a system in which the electrodeionization apparatus according to the present invention is incorporated in a secondary system of a pressurized water nuclear power plant.
[0023]
First, in the
[0024]
A plurality of desalting chambers 5 and
[0025]
A direct current is passed between the
[0026]
In the
[0027]
In the
[0028]
At this time, by setting the cation exchanger / anion exchanger volume fraction of the ion exchanger of the
[0029]
In addition, by
[0030]
In the electrodeionization apparatus 21 according to the second embodiment shown in FIGS. 4 and 5, the
[0031]
A plurality of desalting chambers 28 a to 28 d and a
[0032]
The demineralization chambers 28a to 28d are composed of a deionization module formed by two framed hollow bodies and three ion exchange membranes. That is, as shown in FIG. 5, one
[0033]
To-be-processed water flows into each 1st desalination chamber 26a-26d from the to-be-processed
[0034]
The intermediate
[0035]
The thickness of the first small desalting chamber or the second small desalting chamber is not particularly limited, and is optimal depending on the type and filling method of the ion exchanger filled in the first small desalting chamber or the second small desalting chamber. The thickness should be determined.
[0036]
In the ion exchanger 25 filled in the desalting chambers 28a to 28d, the ion exchanger 25 through which the water to be treated is first passed is substantially a single bed of a cation exchanger. The filling form of the ion exchanger 25 into the desalting chambers 28a to 28d is not particularly limited as long as the ion exchanger 25 through which the water to be treated is first passed is substantially a single bed of a cation exchanger. However, since the desalting chambers 28a to 28d are partitioned into the first small desalting chambers 26a to 26d and the second small desalting chambers 27a to 27d, each of the first small desalting chambers is made using this partitioning structure. The chambers 26a to 26d may be filled with a cation exchanger in a single bed form.
[0037]
For example, as shown in FIG. 6, the first small desalting chambers 26a to 26d are filled substantially in the form of a single bed K of a cation exchanger, and the second small desalting chambers 27a to 27d are simply an anion exchanger. it can be filled in the form of a bed a R. Alternatively, as shown in FIG. 7, the first small desalting chambers 26a to 26d are substantially filled in the form of a single bed K of a cation exchanger, and the second small desalting chambers 27a to 27d are filled with a cation exchanger and an anion. It can be filled in the form of a mixed bed M of exchangers. In any filling mode, the ion exchanger through which the water to be treated is finally passed in the desalting chambers 28a to 28d is preferably a mixed bed M of cation exchangers and anion exchangers. Further, the ion exchanger to be filled as a whole preferably has a volume fraction, that is, a ratio of the cation exchanger to the anion exchanger (cation exchanger / anion exchanger) of 2 or more.
[0038]
In the electrodeionization apparatus 21 according to this embodiment configured as shown in FIG. 4 and used in the form as shown in FIGS. 6 and 7, the water to be treated is first passed through the desalting chamber 5. By filling the ion exchanger 25 with a single bed form of the cation exchanger, the desalting efficiency for the cation component can be significantly increased, and the water to be treated rich in the cation component can be desalted with high efficiency. It becomes like this. Therefore, the electrodeionization apparatus is optimal for use in water to be treated rich in cationic components. For example, in the secondary system of a pressurized water nuclear power plant described later, particularly when high pH operation is performed, the steam generator blowdown water contains a large amount of cationic components (both ammonia and hydrazine are about 0.5 ppm). However, in the desalting treatment of the blow-down water, by using an electrodeionization apparatus in which the ion exchanger 25 through which the water to be treated is first passed is a single bed of a cation exchanger, The pH of water shifts to the acidic side, the dissociation of ammonia and / or hydrazine proceeds, the proportion of NH 4 + and / or N 2 H 6 + increases, and cations are transferred to the concentration chamber by current. It becomes easy. As a result, the desalting efficiency for the cation component can be dramatically increased, and the water to be treated rich in the cation component is desalted with high efficiency.
[0039]
Moreover, if the volume fraction of the cation exchanger / anion exchanger to be filled is 2 or more, the desalting efficiency for the cation component is further increased compared to the conventional volume fraction of about 1. Can be raised. Therefore, it becomes a more optimal electrodeionization apparatus when used for water to be treated rich in cationic components.
[0040]
Further, by making the ion exchanger 25 finally passed through the desalting chambers 28a to 28d into a mixed bed form of a cation exchanger and an anion exchanger, any one of the anion component and the cation component from the
[0041]
Further, since each desalting chamber 28a to 28d is partitioned into two small desalting chambers via the intermediate
[0042]
Furthermore, since the type of the ion exchanger 25 filled in each of the two small desalting chambers can be a single species (single cation exchanger, single anion exchanger, or cation exchange). And a small desalination chamber can be set to an optimum thickness for reducing electrical resistance and increasing current efficiency, which also reduces electrical resistance. Power saving can be achieved.
[0043]
The electrodeionization apparatus according to the first embodiment or the second embodiment as described above is suitable for secondary water treatment in a pressurized water nuclear power plant.
[0044]
For example, as shown in FIG. 8 showing a secondary system line of a pressurized water nuclear power plant, a turbine 63 is connected to the steam generator 61 through a
[0045]
In order to return the condensed water generated in the condenser 64, that is, the condensate to the steam generator 61, a condensate pipe 66 serving as a condensate circuit connecting the condenser 64 and the steam generator 61. Is provided. The condensate pipe 66 includes a
[0046]
In the condensate pipe 66 to which the condensate demineralizer 68 is connected, a bypass pipe 71 as a bypass path is provided in parallel with the condensate demineralizer 68, and the condensate demineralizer 68 is bypassed. It is comprised so that water can be passed through any of the pipes 71. 72 is a water flow switching valve.
[0047]
The steam generator 61 is provided with a take-out
[0048]
In the system configured as described above, by providing a bypass passage (bypass pipe 71), the condensate demineralizer 68 can be subjected to partial treatment of the condensate or the entire amount, and high pH operation is possible. Even in this case, it is possible to operate the condensate demineralizer 68 without applying a high load. And, by using the electrodeionization apparatus (74 in FIG. 8) according to the above-described embodiment for the treatment of steam generator blowdown water rich in cation components such as ammonia 0.1 ppm or more and hydrazine 0.1 ppm or more, Even when high pH operation is adopted, it is possible to desalinate blowdown water, and by removing the desalted blowdown water to the condensate reflux system, secondary impurities can be removed. Therefore, it is possible to take measures against corrosion of the steam generator and prevent damage to the steam generator capillaries.
[0049]
Incidentally, as a result of applying the electrodeionization apparatus according to the first embodiment or the second embodiment to the same system as shown in FIG. 8 and testing under the following conditions, the results shown in Table 1 were obtained.
Demineralization chamber flow rate: 0.12 m 3 / h
Concentration chamber flow rate: 0.03 m 3 / h
Raw water temperature: 45 ℃
Current value: 2A
Resistivity is converted to 25 ° C. [0050]
[Table 1]
[0051]
As can be seen from Table 1, in Examples 1 to 5 of the present invention, compared with Comparative Example 1 (conventional electrodeionization apparatus), the concentration of ammonia and hydrazine was reduced by the desalting treatment of the steam generator blowdown water. The electric resistance (reciprocal of the resistivity) can be further reduced to save power.
[0052]
【The invention's effect】
As described above, according to the electrodeionization apparatus of the present invention, the water to be treated rich in the cation component can be efficiently desalted, and the secondary water in the case of high pH operation in a pressurized water nuclear power plant. In particular, it is possible to provide an optimum electrodeionization apparatus for use in the desalting treatment of steam generator blowdown water.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electrodeionization apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram showing a reference usage example of the apparatus of FIG.
FIG. 3 is a schematic view showing another example of use of the apparatus of FIG. 1;
FIG. 4 is a schematic configuration diagram of an electrodeionization apparatus according to a second embodiment of the present invention.
FIG. 5 is an exploded perspective view of one deionization module of the apparatus of FIG. 2;
6 is a schematic diagram showing an example of use of the apparatus of FIG.
FIG. 7 is a schematic diagram showing another example of use of the apparatus of FIG.
FIG. 8 is an equipment system diagram of a secondary system line of a pressurized water nuclear power plant.
[Explanation of symbols]
1, 21, 74
75 treated water pipe
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26348599A JP4197380B2 (en) | 1999-09-17 | 1999-09-17 | Electrodeionization equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26348599A JP4197380B2 (en) | 1999-09-17 | 1999-09-17 | Electrodeionization equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001079358A JP2001079358A (en) | 2001-03-27 |
JP4197380B2 true JP4197380B2 (en) | 2008-12-17 |
Family
ID=17390178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26348599A Expired - Fee Related JP4197380B2 (en) | 1999-09-17 | 1999-09-17 | Electrodeionization equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4197380B2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4481418B2 (en) * | 2000-03-23 | 2010-06-16 | オルガノ株式会社 | Electric deionized water production equipment |
GB0016846D0 (en) | 2000-07-10 | 2000-08-30 | United States Filter Corp | Electrodeionisation Apparatus |
US7147785B2 (en) | 2000-09-28 | 2006-12-12 | Usfilter Corporation | Electrodeionization device and methods of use |
WO2003033122A2 (en) | 2001-10-15 | 2003-04-24 | United States Filter Corporation | Apparatus for fluid purification and methods of manufacture and use thereof |
US7501061B2 (en) | 2002-10-23 | 2009-03-10 | Siemens Water Technologies Holding Corp. | Production of water for injection using reverse osmosis |
US7604725B2 (en) | 2003-11-13 | 2009-10-20 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7582198B2 (en) | 2003-11-13 | 2009-09-01 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7563351B2 (en) | 2003-11-13 | 2009-07-21 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7083733B2 (en) | 2003-11-13 | 2006-08-01 | Usfilter Corporation | Water treatment system and method |
US8377279B2 (en) | 2003-11-13 | 2013-02-19 | Siemens Industry, Inc. | Water treatment system and method |
US7329358B2 (en) | 2004-05-27 | 2008-02-12 | Siemens Water Technologies Holding Corp. | Water treatment process |
JP2006218382A (en) * | 2005-02-09 | 2006-08-24 | Japan Organo Co Ltd | Electric apparatus for producing deionized water |
WO2006130786A2 (en) | 2005-06-01 | 2006-12-07 | Siemens Water Technologies Holding Corp. | Water treatment system and process |
JP4672601B2 (en) * | 2006-05-31 | 2011-04-20 | オルガノ株式会社 | Deionized water production equipment |
US10213744B2 (en) | 2006-06-13 | 2019-02-26 | Evoqua Water Technologies Llc | Method and system for water treatment |
US8277627B2 (en) | 2006-06-13 | 2012-10-02 | Siemens Industry, Inc. | Method and system for irrigation |
US10252923B2 (en) | 2006-06-13 | 2019-04-09 | Evoqua Water Technologies Llc | Method and system for water treatment |
US20080067069A1 (en) | 2006-06-22 | 2008-03-20 | Siemens Water Technologies Corp. | Low scale potential water treatment |
JP4856617B2 (en) * | 2007-11-28 | 2012-01-18 | オルガノ株式会社 | Electric deionized water production apparatus and operation method thereof |
WO2009073175A2 (en) | 2007-11-30 | 2009-06-11 | Siemens Water Technologies Corp. | Systems and methods for water treatment |
JP5719842B2 (en) | 2010-06-03 | 2015-05-20 | オルガノ株式会社 | Electric deionized water production equipment |
JP5385457B2 (en) * | 2010-06-03 | 2014-01-08 | オルガノ株式会社 | Electric deionized water production equipment |
CN102502927B (en) * | 2011-12-22 | 2013-06-12 | 浙江大学 | Device and method for desalinizing alkaline water and seawater as well as concentrating and recovering mineral salts |
IL272679B2 (en) | 2017-08-21 | 2023-09-01 | Evoqua Water Tech Llc | Treatment of saline water for agricultural and potable use |
US12180103B2 (en) | 2017-08-21 | 2024-12-31 | Evoqua Water Technologies Llc | Treatment of saline water for agricultural and potable use and for generation of disinfectant solution |
-
1999
- 1999-09-17 JP JP26348599A patent/JP4197380B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001079358A (en) | 2001-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4197380B2 (en) | Electrodeionization equipment | |
JP3385553B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP3794268B2 (en) | Electrodeionization apparatus and operation method thereof | |
US7666288B2 (en) | Apparatus for electrodeionization of water | |
JP7275536B2 (en) | Electrodeionization apparatus and method for producing deionized water using the same | |
JP2004216302A (en) | Electrodeionization equipment and water treatment equipment | |
JP2001079553A (en) | Method for filling ion exchanger in electrodeionization apparatus and electrodeionization apparatus | |
JP3760033B2 (en) | Secondary water treatment system for pressurized water nuclear power plant | |
JP4129941B2 (en) | Electrodeionization equipment | |
JP3800571B2 (en) | Secondary water treatment system for pressurized water nuclear power plant | |
CN101121555A (en) | Electrodeionization apparatus and method of operation thereof | |
JP3900666B2 (en) | Deionized water production method | |
JP3781352B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP4597388B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP3480661B2 (en) | Water treatment method for electric deionized water production equipment | |
JP4497388B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP5039569B2 (en) | Makeup water supply facility for pressurized water nuclear power plant | |
JP2007245120A (en) | Electrically operated apparatus for producing deionized water | |
JP3570350B2 (en) | Electrodeionization equipment and pure water production equipment | |
JP2003326269A (en) | Electric regenerative demineralizer | |
JP3707940B2 (en) | Condensate treatment system and condensate treatment method | |
JP2003326270A (en) | Electric regenerative demineralizer | |
JP4453972B2 (en) | Electrodeionization apparatus and operation method of electrodeionization apparatus | |
JP7460012B1 (en) | Electrodeionization apparatus and method of operating same | |
JP2001269668A (en) | Manufacturing method of pure water and device for manufacturing pure water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080613 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080926 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |