[go: up one dir, main page]

JP4189344B2 - Carbon dioxide separation and recovery system - Google Patents

Carbon dioxide separation and recovery system Download PDF

Info

Publication number
JP4189344B2
JP4189344B2 JP2004074346A JP2004074346A JP4189344B2 JP 4189344 B2 JP4189344 B2 JP 4189344B2 JP 2004074346 A JP2004074346 A JP 2004074346A JP 2004074346 A JP2004074346 A JP 2004074346A JP 4189344 B2 JP4189344 B2 JP 4189344B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
adsorption
gas
desorption
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004074346A
Other languages
Japanese (ja)
Other versions
JP2005262001A (en
Inventor
優 廣瀬
一郎 大森
信 大場
利長 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2004074346A priority Critical patent/JP4189344B2/en
Publication of JP2005262001A publication Critical patent/JP2005262001A/en
Application granted granted Critical
Publication of JP4189344B2 publication Critical patent/JP4189344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、二酸化炭素を含有する排ガスのような原料ガスから二酸化炭素を回収するための二酸化炭素分離回収システムに関する。   The present invention relates to a carbon dioxide separation and recovery system for recovering carbon dioxide from a raw material gas such as exhaust gas containing carbon dioxide.

二酸化炭素は、京都議定書において特記された地球温暖化現象起因ガスのうちの一つであり、人工的に生成された二酸化炭素の排出量を規制することが提起されている。このため、二酸化炭素含有排ガスのような原料ガスから高効率および低コストで二酸化炭素を分離回収することが望まれている。   Carbon dioxide is one of the gases caused by the global warming phenomenon specially mentioned in the Kyoto Protocol, and it has been proposed to regulate emissions of artificially generated carbon dioxide. For this reason, it is desired to separate and recover carbon dioxide from a source gas such as carbon dioxide-containing exhaust gas with high efficiency and low cost.

二酸化炭素のガス分離法には、特定成分ガスの分離回収を主目的とするものと、その特定成分ガスの除去によるガス精製を主目的とするものとがある。   There are two types of carbon dioxide gas separation methods whose main purpose is the separation and recovery of a specific component gas and those whose main purpose is gas purification by removing the specific component gas.

従来、前者の二酸化炭素の分離回収技術としては、吸収法、圧力スイング吸着法(Pressure Swing Adsorption、以下「PSA法」と略す)、膜分離法等が知られている。中でも吸着法は二酸化炭素の吸着容量が大きく、かつ共存する空気等のキャリヤガス成分に対する吸着選択性が高い固体吸着材を用いるため、分離性能の優れた方法として知られている。   Conventionally, as the former carbon dioxide separation and recovery technology, an absorption method, a pressure swing adsorption method (hereinafter referred to as “PSA method”), a membrane separation method, and the like are known. Among them, the adsorption method is known as a method having an excellent separation performance because it uses a solid adsorbent having a large carbon dioxide adsorption capacity and high adsorption selectivity with respect to a carrier gas component such as coexisting air.

前記PSA法を二酸化炭素の回収に適用した場合には、吸着ステップにおいて高い圧力下で原料ガスを吸着材が充填された対をなす吸・脱着塔の一方に流通させて二酸化炭素をその吸着材に吸着させ、脱着ステップにおいて他方の吸・脱着塔を低い圧力にしてその吸着材に吸着ステップで吸着された二酸化炭素を脱着させて回収する。すなわち、このPSA法は吸着材が二酸化炭素を吸着した後において低圧力に移行させて圧力差を生じさせると、二酸化炭素を脱着すると共に、それ自身の二酸化炭素吸着性が回復される特性を利用したものである。
2塔式PSAの二酸化炭素回収システムでは、2塔の吸・脱着塔を圧力スイングさせることにより、高圧力下での吸着ステップおよび低圧力下での脱着ステップを交互に行い、連続的に二酸化炭素の分離、回収を行うものである。
When the PSA method is applied to the recovery of carbon dioxide, the carbon dioxide is adsorbed by flowing the raw material gas to one of the pair of adsorption / desorption towers filled with the adsorbent under high pressure in the adsorption step. In the desorption step, the other adsorption / desorption tower is set to a low pressure, and the carbon dioxide adsorbed in the adsorption step is desorbed and collected by the adsorbent. In other words, this PSA method utilizes the characteristics that when the adsorbent adsorbs carbon dioxide, it shifts to a low pressure to cause a pressure difference, and desorbs carbon dioxide and restores its own carbon dioxide adsorption. It is a thing.
In the two-column PSA carbon dioxide recovery system, the adsorption and desorption steps under high pressure and the desorption step under low pressure are alternately carried out by pressure swinging the two adsorption / desorption towers. Separation and recovery.

圧力スイングによる脱着については、“加圧から常圧への減圧”もしくは“常圧または加圧から真空ポンプによる吸引による減圧”の下で行われ、吸着ステップおよび脱着ステップをもって”1サイクル”と呼称される。   Desorption by pressure swing is performed under “depressurization from pressurization to normal pressure” or “depressurization from normal pressure or pressurization to suction by vacuum pump” and is called “one cycle” with adsorption step and desorption step. Is done.

回収される製品ガスの二酸化炭素濃度を増加させるための一手法としては、脱着ステップがなされる吸・脱着塔から排出されたガス(以下、「濃縮ガス」と称す)の一部を吸着ステップがなされる吸・脱着塔に供給する。この工程は、“濃縮還流”と称され、吸着ステップがなされる他方の吸・脱着塔において原料ガスの流れと同一方向に供給される。   One method for increasing the carbon dioxide concentration in the recovered product gas is to adsorb a part of the gas discharged from the adsorption / desorption tower (hereinafter referred to as “concentrated gas”) in which the desorption step is performed. Supplied to the absorption / desorption tower. This process is called “concentration reflux” and is supplied in the same direction as the flow of the raw material gas in the other adsorption / desorption tower in which the adsorption step is performed.

二酸化炭素の回収率を増加させるための一手法としては、吸着ステップがなされる吸・脱着塔から排出されたガス(以下、「精製ガス」と称す)の一部を脱着ステップがなされる吸・脱着塔に供給する。この工程は“精製還流”と称され、脱着ステップがなされる吸・脱着塔において濃縮ガスの排出方向と同一方向に供給される。   One technique for increasing the recovery rate of carbon dioxide is the adsorption / desorption step in which a part of the gas discharged from the adsorption / desorption tower in which the adsorption step is performed (hereinafter referred to as “purified gas”) is desorbed. Feed to desorption tower. This process is called "refining reflux" and is supplied in the same direction as the concentrated gas discharge direction in the adsorption / desorption tower in which the desorption step is performed.

前述したPSA法において、吸着ステップがなされる吸・脱着塔では原料ガスの導入、一端側での精製ガスの排出、他端側での濃縮還流がなされ、脱着ステップがなされる吸・脱着塔では一端側での精製還流、他端側での濃縮ガスの排出がなされる。   In the PSA method described above, in the adsorption / desorption tower where the adsorption step is performed, the raw material gas is introduced, the purified gas is discharged on one end side, the concentrated reflux is performed on the other end side, and in the adsorption / desorption tower where the desorption step is performed. Purification reflux is performed on one end side, and concentrated gas is discharged on the other end side.

しかしながら、このPSA法は吸着効果もしくは回収効率において必ずしも十分に満足するものではなかった。
このようなことから、特許文献1にはPSA法を利用した吸・脱着塔を多段にすることにより二酸化炭素の分離、回収特性を向上させる方法が開示されている。しかしながら、この方法は吸・脱着塔を多段にするために、システムの複雑化、高コスト化を招く問題があった。
一方、前述したPSA法に比べ吸着効果もしくは回収効率の向上を目的とし、様々な開発が行われており、DRIFPSA法(Dual Reflux Intermediate Feed PSA(双方向還流原料ガス中間供給PSA):以下「中間供給PSA法」と称す)が知られている。
However, this PSA method is not always satisfactory in terms of adsorption effect or recovery efficiency.
For this reason, Patent Document 1 discloses a method for improving the separation and recovery characteristics of carbon dioxide by using multiple stages of absorption / desorption towers using the PSA method. However, this method has a problem of increasing the complexity and cost of the system because the adsorption / desorption towers are multistage.
On the other hand, various developments have been carried out for the purpose of improving the adsorption effect or the recovery efficiency compared to the PSA method described above. The DRIFFPSA method (Dual Reflux Intermediate Feed PSA): (Referred to as “feed PSA process”).

この中間供給PSA法を利用した二酸化炭素分離回収システムは、概ね次のような構成を有する。対をなす吸・脱着塔(第1、第2の吸・脱着塔)は、吸着材がそれぞれ充填されている。二酸化炭素を含む原料ガスを切替可能に供給するためのガス導入配管(第1、第2のガス導入配管)は、前記各吸・脱着塔の中間にそれぞれ連結されている。すなわち、各吸・脱着塔においてガス供給配管の連結部を境にして一端側に向かう領域を原料ガスを精製するための精製領域、他端側に向かう領域を濃縮ガス中の二酸化炭素を吸着するための濃縮領域として機能させている。精製ガス還流配管は、前記各吸・脱着塔の一端側に連結され、この還流配管を通してそれら吸・脱着塔の間で精製ガスの一部が相互に還流される。濃縮ガス還流配管は、前記各吸・脱着塔の他端側に連結され、この還流配管を通してそれら吸・脱着塔の間で二酸化炭素濃縮ガスの一部が相互に還流される。例えば、真空ポンプは、前記各吸・脱着塔の底部に連結され、脱着ステップにおいて吸・脱着塔内を減圧にする。   A carbon dioxide separation and recovery system using the intermediate supply PSA method generally has the following configuration. The pair of absorption / desorption towers (first and second absorption / desorption towers) are each filled with an adsorbent. Gas introduction pipes (first and second gas introduction pipes) for supplying a source gas containing carbon dioxide in a switchable manner are respectively connected to the middle of the respective adsorption / desorption towers. That is, in each of the adsorption / desorption towers, a region toward the one end side with the gas supply pipe connecting portion as a boundary adsorbs the carbon dioxide in the concentrated gas at a purification region for purifying the source gas, and a region toward the other end side. It functions as a concentrated region for the purpose. The purified gas reflux pipe is connected to one end side of each of the adsorption / desorption towers, and a part of the purified gas is refluxed between the adsorption / desorption towers through the reflux pipe. The concentrated gas reflux pipe is connected to the other end of each of the adsorption / desorption towers, and a part of the carbon dioxide enriched gas is refluxed between the adsorption / desorption towers through the reflux pipe. For example, a vacuum pump is connected to the bottom of each of the adsorption / desorption towers, and reduces the pressure in the adsorption / desorption towers in the desorption step.

このような二酸化炭素分離回収システムにおいて、二酸化炭素を含む原料ガスはある時間単位で例えば第1ガス導入配管を通して第1吸・脱着塔の精製領域に供給されると共に、精製ガスが排出され、減圧下に置かれ第2吸・脱着塔の濃縮領域から濃縮ガスが排出される。このとき、例えば第1吸・脱着塔の精製領域から第2吸・脱着塔の精製領域への精製還流と、前記第2吸・脱着塔の濃縮領域から前記第1吸・脱着塔の濃縮領域への濃縮還流とが単一方向のガス流れとしてなされると共に、精製還流による脱着効果の促進、濃縮還流による濃縮ガス生成効果の促進が行われる。したがって、二酸化炭素を含む原料ガスを第1ガス導入配管または第2ガス導入配管に切替えて供給する操作を連続的に行うことにより、常圧下における吸着ステップおよび減圧下における脱着ステップが連続的に行われ、連続的に製品ガスを回収することが可能となる。   In such a carbon dioxide separation and recovery system, the raw material gas containing carbon dioxide is supplied to the purification region of the first adsorption / desorption tower through a first gas introduction pipe, for example, in a certain time unit, and the purified gas is discharged and decompressed. The concentrated gas is discharged from the concentrated region of the second absorption / desorption tower placed underneath. At this time, for example, purification reflux from the purification region of the first absorption / desorption column to the purification region of the second absorption / desorption column, and concentration region of the first absorption / desorption column from the concentration region of the second absorption / desorption column Is concentrated and refluxed as a unidirectional gas flow, and the desorption effect by purification reflux is promoted, and the concentrated gas generation effect by concentration reflux is promoted. Therefore, by continuously performing the operation of switching and supplying the raw material gas containing carbon dioxide to the first gas introduction pipe or the second gas introduction pipe, the adsorption step under normal pressure and the desorption step under reduced pressure are continuously performed. It is possible to continuously recover the product gas.

ところで、通常のPSA法および中間供給PSA法に用いる吸着材としては圧力変化に伴う平衡吸着量差が大きい、すなわち吸着等温線の傾斜が大きい性質を持つことが高い吸・脱着性を示すために望ましい。二酸化炭素の吸着材としては、ゼオライト系のものが知られている。このゼオライト系吸着材は、低濃度で高い吸・脱着性を示すものの、高濃度において吸着等温線の傾斜が緩やかになって小さくなることから、吸・脱着性が低下する。   By the way, the adsorbent used in the ordinary PSA method and the intermediate supply PSA method has a large difference in the amount of equilibrium adsorption due to pressure change, that is, has a large inclination of the adsorption isotherm, in order to exhibit high adsorption / desorption properties. desirable. As a carbon dioxide adsorbent, a zeolite-based adsorbent is known. Although this zeolite-based adsorbent exhibits high absorption / desorption at low concentrations, the adsorption isotherm decreases at a high concentration because the slope of the adsorption isotherm becomes gentle.

従来の中間供給PSA法を利用した二酸化炭素分離回収システムにおいて、前述したゼオライト系吸着材を用いると、その性質から製品ガス中の二酸化炭素の高濃度化、製品ガスの高回収化が制限される問題があった。
特開平5−228326号公報
In the conventional carbon dioxide separation and recovery system using the intermediate supply PSA method, if the above-mentioned zeolite-based adsorbent is used, the high concentration of carbon dioxide in the product gas and the high recovery of the product gas are restricted due to its properties. There was a problem.
JP-A-5-228326

本発明は、中間供給PSA法を利用した従来の二酸化炭素分離回収システムに比べて二酸化炭素を効率的に分離回収することが可能な二酸化炭素分離回収システムを提供するものである。すなわち、本発明は従来の二酸化炭素分離回収システムと同様な二酸化炭素濃度の原料ガスの使用、同様な還流条件および原料ガスの切替条件等の下で、1)同濃度の二酸化炭素を含む製品ガスを回収する場合には、回収率の向上、2)従来の二酸化炭素分離回収システムと同回収率で製品ガスを回収する場合には製品ガス中の二酸化炭素の高濃度化、さらに3)従来の二酸化炭素分離回収システムより回収率の向上および高濃度化、を達成することができる。   The present invention provides a carbon dioxide separation and recovery system capable of efficiently separating and recovering carbon dioxide as compared with a conventional carbon dioxide separation and recovery system using an intermediate supply PSA method. That is, the present invention is based on the use of the raw material gas having the same carbon dioxide concentration as in the conventional carbon dioxide separation and recovery system, the same reflux conditions and the switching conditions of the raw material gas, etc. 1) Product gas containing the same concentration of carbon dioxide To improve the recovery rate, 2) increase the concentration of carbon dioxide in the product gas when recovering the product gas at the same recovery rate as the conventional carbon dioxide separation and recovery system, and 3) the conventional The recovery rate can be improved and the concentration can be increased as compared with the carbon dioxide separation and recovery system.

本発明は、中間供給PSA法を利用した従来の二酸化炭素分離回収システムに比べて前記1)〜3)の改善を図ることが可能で、さらにユーザの要求に応じた原料ガス中の二酸化炭素の分離回収操作を実行し得る二酸化炭素分離回収システムを提供するものである。   The present invention can improve the above-mentioned 1) to 3) as compared with the conventional carbon dioxide separation and recovery system using the intermediate supply PSA method, and further, the carbon dioxide in the raw material gas according to the user's request. A carbon dioxide separation and recovery system capable of performing a separation and recovery operation is provided.

本発明によると、中間供給PSA法を利用した二酸化炭素分離回収システムにおいて、
吸着材が充填された少なくとも対をなす吸・脱着塔と、
前記各吸・脱着塔の中間にそれぞれ連結され、二酸化炭素を含む原料ガスを供給するための切替可能なガス導入配管と、
前記各吸・脱着塔の一端で精製ガスの一部を相互に還流させるための精製ガス還流手段と、
前記各吸・脱着塔の他端で二酸化炭素濃縮ガスの一部を相互に還流させるための濃縮ガス還流手段と、
前記各吸・脱着塔における前記ガス導入配管の連結部を境にして一端に向かう領域を精製領域、他端に向かう領域を濃縮領域とし、この濃縮領域の温度を前記精製領域のそれより高くするための温度制御手段と
を具備したことを特徴とする二酸化炭素分離回収システムが提供される。
According to the present invention, in a carbon dioxide separation and recovery system using an intermediate supply PSA method,
At least a pair of absorption / desorption towers filled with an adsorbent,
Switchable gas introduction pipes connected to the middle of each of the adsorption / desorption towers for supplying a raw material gas containing carbon dioxide,
Purified gas reflux means for refluxing part of the purified gas to each other at one end of each of the adsorption / desorption towers;
A concentrated gas reflux means for refluxing part of the carbon dioxide concentrated gas at the other end of each of the adsorption / desorption towers;
A region toward one end with the gas introduction pipe connecting portion in each of the adsorption / desorption towers as a boundary is a purification region, and a region toward the other end is a concentration region, and the temperature of the concentration region is higher than that of the purification region. And a carbon dioxide separation and recovery system characterized by comprising a temperature control means.

なお、前記ガス導入配管が位置される中間とは前記対をなす吸・脱着塔の一端側に前記精製領域、他端側に濃縮領域を形成し得る両端を除く任意の位置である。   The middle where the gas introduction pipe is located is an arbitrary position excluding both ends that can form the purification region on one end side of the pair of absorption / desorption towers and the concentration region on the other end side.

また本発明によると、中間供給PSA法を利用した二酸化炭素分離回収システムにおいて、
吸着材が充填された少なくとも対をなす吸・脱着塔と、
前記各吸・脱着塔にそれぞれ連結され、二酸化炭素を含む原料ガスを供給するための切替可能なガス導入配管と、
前記各吸・脱着塔の一端で精製ガスの一部を相互に還流させるための精製ガス還流手段と、
前記各吸・脱着塔の他端で二酸化炭素濃縮ガスの一部を相互に還流させるための濃縮ガス還流手段と、
前記各吸・脱着塔の温度を制御するための温度制御手段と
を具備し、
前記ガス導入配管は、複数に分岐され、それら分岐配管は前記各吸・脱着塔の高さ方向の複数位置に連結され、かつ
前記温度制御手段は、冷却・加熱の切替が可能で、前記各分岐配管の間に位置する各吸・脱着塔の領域に対応してそれぞれ複数配置されることを特徴とする二酸化炭素分離回収システムが提供される。
According to the present invention, in the carbon dioxide separation and recovery system using the intermediate supply PSA method,
At least a pair of absorption / desorption towers filled with an adsorbent,
A switchable gas introduction pipe connected to each of the adsorption / desorption towers for supplying a raw material gas containing carbon dioxide,
Purified gas reflux means for refluxing part of the purified gas to each other at one end of each of the adsorption / desorption towers;
A concentrated gas reflux means for refluxing part of the carbon dioxide concentrated gas at the other end of each of the adsorption / desorption towers;
Temperature control means for controlling the temperature of each of the adsorption / desorption towers,
The gas introduction pipe is branched into a plurality of pipes, the branch pipes are connected to a plurality of positions in the height direction of the respective suction / desorption towers, and the temperature control means is capable of switching between cooling and heating. A carbon dioxide separation and recovery system is provided, wherein a plurality of carbon dioxide separation / recovery systems are arranged corresponding to the areas of the respective adsorption / desorption towers located between the branch pipes.

本発明によれば、中間供給PSA法を利用した従来の二酸化炭素分離回収システムに比べて1)〜3)の改善を図ることが可能で、二酸化炭素の大気への排出を低減して地球の温暖化防止に寄与できると共に、回収した二酸化炭素を清涼飲料水、消化剤など、または液体化して冷凍機の冷却媒体などに有効に利用できる二酸化炭素分離回収システムを提供できる。   According to the present invention, it is possible to improve 1) to 3) as compared with the conventional carbon dioxide separation and recovery system using the intermediate supply PSA method, and to reduce the emission of carbon dioxide to the atmosphere. It is possible to provide a carbon dioxide separation and recovery system that can contribute to prevention of global warming and can effectively use the recovered carbon dioxide as a soft drink, a digestive agent, or the like, or liquefy it as a cooling medium for a refrigerator.

以下、本発明に係る二酸化炭素分離回収システムを図面を参照して詳細に説明する。
(第1実施形態)
図1、図2は、この第1実施形態に係る中間供給PSA法を利用した二酸化炭素分離回収システムを示す概略図である。特に、図1では第1吸・脱着塔による吸着ステップ,第2吸・脱着塔による脱着ステップ時の各バルブの開閉状態を、図2では第1吸・脱着塔による脱着ステップ,第2吸・脱着塔による吸着ステップ時の各バルブの開閉状態を示す。なお、図1、図2において開放バルブを白抜き、閉鎖バルブを黒塗りにして表示した。
対をなす吸・脱着塔(第1、第2の吸・脱着塔)1,2は、中間にガスの導入を円滑にするためのメッシュ部3,4が介装されている。これらメッシュ部3,4を境にして前記第1、第2の吸・脱着塔1,2の上部側には、原料ガスを精製するための精製領域5,6が形成されている。前記メッシュ部3,4を境にして前記第1、第2の吸・脱着塔1,2の下部側には、濃縮ガス中の二酸化炭素を吸着するための濃縮領域7,8が形成されている。前記各領域5〜9には、いずれも同種の吸着材、例えばゼオライト系吸着材が充填されている。
Hereinafter, a carbon dioxide separation and recovery system according to the present invention will be described in detail with reference to the drawings.
(First embodiment)
1 and 2 are schematic views showing a carbon dioxide separation and recovery system using the intermediate supply PSA method according to the first embodiment. In particular, FIG. 1 shows the open / close state of each valve during the adsorption step by the first adsorption / desorption tower and the desorption step by the second adsorption / desorption tower, and FIG. 2 shows the desorption step by the first adsorption / desorption tower, The open / close state of each valve during the adsorption step by the desorption tower is shown. In FIGS. 1 and 2, the open valve is outlined and the closed valve is black.
The pair of absorption / desorption towers (first and second absorption / desorption towers) 1 and 2 are provided with mesh portions 3 and 4 for smooth gas introduction in the middle. On the upper side of the first and second adsorption / desorption towers 1 and 2 with the mesh portions 3 and 4 as boundaries, purification regions 5 and 6 for purifying the raw material gas are formed. Concentrated regions 7 and 8 for adsorbing carbon dioxide in the concentrated gas are formed on the lower side of the first and second adsorption / desorption towers 1 and 2 with the mesh portions 3 and 4 as a boundary. Yes. Each of the regions 5 to 9 is filled with the same kind of adsorbent, for example, a zeolite adsorbent.

ガスポート9,10は、前記各メッシュ部3、4に対応する前記第1、第2の吸・脱着塔1,2に取り付けられている。ガス導入配管11から分岐した第1、第2のガス導入配管12、13は、前記ガスポート9,10にそれぞれ連結されている。これら第1、第2のガス導入配管12、13には、バルブ14,15がそれぞれ介装され、これらバルブ14,15を所望の時間間隔で開閉することにより二酸化炭素を含む原料ガスの供給切替がなされる。   The gas ports 9 and 10 are attached to the first and second absorption / desorption towers 1 and 2 corresponding to the mesh portions 3 and 4, respectively. First and second gas introduction pipes 12 and 13 branched from the gas introduction pipe 11 are connected to the gas ports 9 and 10, respectively. These first and second gas introduction pipes 12 and 13 are respectively provided with valves 14 and 15, and the supply gas source switching including carbon dioxide is switched by opening and closing these valves 14 and 15 at desired time intervals. Is made.

前記精製領域5,6が位置する前記第1、第2の吸・脱着塔1,2の上端は、配管16により相互に連結されている。この配管16には、2つのバルブ17,18が介装されている。配管19は、一端が前記第1吸・脱着塔1上端とバルブ17の間の配管16部分、他端が前記第2吸・脱着塔2上端と前記バルブ18の間の配管16部分に連結されている。この配管19には、2つのバルブ20,21が介装されている。精製ガスを排出するための配管22は、前記バルブ17,18間の配管16部分から分岐されている。この配管22には、バルブ23が介装されている。配管24は、前記分岐点と前記バルブ23の間の配管22部分から分岐され、他端が前記バルブ20,21間の配管19に連結されている。この配管24には、精製還流ニィードルバルブ25が介装されている。このような配管、バルブおよび精製還流ニィードルバルブにより精製ガス還流手段が構成されている。
前記精製ガス還流手段において、図1に示すように3つのバルブ17,21,23を開き、バルブ18,20を閉じ、精製還流ニィードルバルブ25の開度を調節することにより、前記第1吸・脱着塔1の上端から精製ガスが配管16、バルブ17および配管22を通過し、大部分が矢印に示すようにその配管22他端から大気に放出されると共に、精製還流ニィードルバルブ25で絞られた精製ガスの一部が配管24、バルブ21が介装された配管19部分および配管16を経由して前記第2吸・脱着塔2上端に流れてその内部に還流される。
一方、前記精製ガス還流手段において図2に示すように3つのバルブ18,21,23を開き、2つのバルブ17,21を閉じ、精製還流ニィードルバルブ25の開度を調節することにより、前記第2吸・脱着塔2の上端から精製ガスが配管16、バルブ18および配管22を通過し、大部分が矢印に示すようにその配管22他端から大気に放出されると共に、精製還流ニィードルバルブ25で絞られた精製ガスの一部が配管24、バルブ20が介装された配管19および配管16を経由して前記第1吸・脱着塔1上端に流れてその内部に還流される。
前記濃縮領域7,8が位置する前記第1、第2の吸・脱着塔1,2の下端は、配管26により相互に連結されている。この配管26には、2つのバルブ27,28が介装されている。配管29は、一端が前記第1吸・脱着塔1下端と前記バルブ27の間の配管26部分、他端が前記第2吸・脱着塔2下端と前記バルブ28の間の配管26部分に連結されている。この配管29には、2つのバルブ30,31が介装されている。濃縮ガスを排出するための配管32は、前記2つのバルブ30,31間の配管29部分から分岐されている。この配管32には、圧力制御手段であるポンプ33およびバルブ34が前記分岐点側から順次介装されている。このポンプ33は、システム特性上、真空ポンプであることが望ましい。配管35は、前記ポンプ33とバルブ34の間の配管32部分から分岐され、他端が前記2つのバルブ27,28間の配管26部分に連結されている。この配管35には、前記ポンプ33とバルブ34の間の配管32の分岐部側から濃縮還流バッファタンク36、加圧ポンプ37、濃縮還流ニィードルバルブ38が介装されている。このような配管、バルブ、濃縮還流ニィードルバルブ、濃縮還流バッファタンクおよび加圧ポンプにより濃縮ガス還流手段が構成されている。
前記濃縮ガス還流手段において、図1に示すようにバルブ27,31,34を開き、バルブ28,30を閉じ、濃縮還流ニィードルバルブ38の開度を調節し、さらに真空ポンプ33、加圧ポンプ37を作動することにより、前記第2吸・脱着塔2の下端から濃縮ガスが配管26、バルブ31が介装された配管29および配管32を通過し、大部分が矢印に示すようにその配管32他端から製品ガスとして回収されると共に、濃縮還流ニィードルバルブ38で絞られた濃縮ガスの一部が配管35、濃縮還流バッファタンク36およびバルブ27が介装された配管26を経由して前記第1吸・脱着塔1下端に流れてその内部に還流される。
一方、前記濃縮ガス還流手段において図2に示すように3つのバルブ28,30,34を開き、バルブ27,31を閉じ、濃縮還流ニィードルバルブ38の開度を調節し、さらに真空ポンプ33、加圧ポンプ37を起動することにより、前記第1吸・脱着塔1の下端から濃縮ガスが配管26、バルブ30が介装された配管29および配管32を通過し、大部分が矢印に示すようにその配管32他端から製品ガスとして回収されると共に、濃縮還流ニィードルバルブ38で絞られた濃縮ガスの一部が配管35、濃縮還流バッファタンク36およびバルブ28が介装された配管26部分を経由して前記第2吸・脱着塔2下端に流れてその内部に還流される。
第1温度管理部材、例えば水道水のような常温水が流通されるチューブ39,40は前記第1、第2の吸・脱着塔1、2の精製領域5,6側に配置され、それら精製領域5,6を常温に保持している。第2温度管理部材、例えばリボン状ヒータ41,42は前記第1、第2の吸・脱着塔1、2の濃縮領域7,8側に配置され、それらの濃縮領域7,8を加温している。このようなチューブ39,40およびリボン状ヒータ41,42により温度制御手段が構成される。この温度制御手段による前記第1、第2の吸・脱着塔1、2の精製領域5,6と濃縮領域7,8との温度差は使用する吸着材の特性によって決められる。例えばゼオライト系吸着材の場合には、精製領域5,6を常温にすると、濃縮領域7,8をそれより30℃高い温度にすることが望ましい。特に精製領域5,6は原料ガス中の比較的低濃度の二酸化炭素の吸着量を増加させる観点から、極力低温にすることが望ましい。ただし、過剰な冷却もしくは加温状態を維持することは、エネルギーコストが増加するため効率的ではない。
The upper ends of the first and second adsorption / desorption towers 1 and 2 where the purification regions 5 and 6 are located are connected to each other by a pipe 16. Two pipes 17 and 18 are interposed in the pipe 16. One end of the pipe 19 is connected to the pipe 16 part between the upper end of the first suction / desorption tower 1 and the valve 17, and the other end is connected to the pipe 16 part between the upper end of the second suction / desorption tower 2 and the valve 18. ing. Two valves 20 and 21 are interposed in the pipe 19. A pipe 22 for discharging the purified gas is branched from a pipe 16 portion between the valves 17 and 18. A valve 23 is interposed in the pipe 22. The pipe 24 is branched from a pipe 22 portion between the branch point and the valve 23, and the other end is connected to the pipe 19 between the valves 20 and 21. A refined reflux needle valve 25 is interposed in the pipe 24. A purified gas reflux means is constituted by such a pipe, a valve, and a purified reflux needle valve.
In the purified gas recirculation means, as shown in FIG. 1, the three valves 17, 21, 23 are opened, the valves 18, 20 are closed, and the opening degree of the purified recirculation needle valve 25 is adjusted, whereby the first suction valve 25 is closed. The purified gas passes from the upper end of the desorption tower 1 through the pipe 16, the valve 17 and the pipe 22, and most of the purified gas is discharged to the atmosphere from the other end of the pipe 22 as indicated by the arrow, and the purified reflux needle valve 25 Part of the narrowed purified gas flows to the upper end of the second adsorption / desorption tower 2 through the pipe 24, the pipe 19 part in which the valve 21 is interposed, and the pipe 16, and is returned to the inside.
On the other hand, in the purified gas reflux means, as shown in FIG. 2, the three valves 18, 21, 23 are opened, the two valves 17, 21 are closed, and the opening degree of the purified reflux needle valve 25 is adjusted. Purified gas passes from the upper end of the second absorption / desorption tower 2 through the pipe 16, the valve 18 and the pipe 22, and most of the purified gas is discharged to the atmosphere from the other end of the pipe 22 as indicated by the arrow. Part of the purified gas throttled by the valve 25 flows to the upper end of the first suction / desorption tower 1 via the pipe 24, the pipe 19 and the pipe 16 provided with the valve 20, and is refluxed therein.
Lower ends of the first and second adsorption / desorption towers 1 and 2 where the enrichment regions 7 and 8 are located are connected to each other by a pipe 26. Two pipes 27 and 28 are interposed in the pipe 26. The pipe 29 has one end connected to the pipe 26 portion between the lower end of the first suction / desorption tower 1 and the valve 27, and the other end connected to the pipe 26 portion between the lower end of the second suction / desorption tower 2 and the valve 28. Has been. Two valves 30 and 31 are interposed in the pipe 29. A pipe 32 for discharging the concentrated gas is branched from a pipe 29 portion between the two valves 30 and 31. A pump 33 and a valve 34, which are pressure control means, are sequentially inserted in the pipe 32 from the branch point side. The pump 33 is preferably a vacuum pump in terms of system characteristics. The pipe 35 is branched from a pipe 32 portion between the pump 33 and the valve 34, and the other end is connected to a pipe 26 portion between the two valves 27 and 28. Concentrated reflux buffer tank 36, pressurizing pump 37, and concentrated reflux needle valve 38 are interposed in this piping 35 from the branching side of piping 32 between pump 33 and valve 34. Concentrated gas recirculation means is constituted by such a pipe, valve, concentration recirculation needle valve, concentration recirculation buffer tank and pressurizing pump.
In the concentrated gas reflux means, as shown in FIG. 1, the valves 27, 31, and 34 are opened, the valves 28 and 30 are closed, the opening degree of the concentrated reflux needle valve 38 is adjusted, a vacuum pump 33, a pressure pump 37 is operated, the concentrated gas passes from the lower end of the second adsorption / desorption tower 2 through the pipe 26, the pipe 29 and the pipe 32 provided with the valve 31, and most of the pipe as shown by the arrows. 32 is recovered as product gas from the other end, and part of the concentrated gas throttled by the concentrated reflux needle valve 38 is routed through the piping 35, the concentrated reflux buffer tank 36, and the piping 26 in which the valve 27 is interposed. It flows to the lower end of the first suction / desorption tower 1 and is refluxed therein.
On the other hand, in the concentrated gas reflux means, as shown in FIG. 2, the three valves 28, 30, 34 are opened, the valves 27, 31 are closed, the opening degree of the concentrated reflux needle valve 38 is adjusted, and the vacuum pump 33, By starting the pressurizing pump 37, the concentrated gas passes from the lower end of the first suction / desorption tower 1 through the piping 26, the piping 29 and the piping 32 having the valve 30 interposed, and most of them are indicated by arrows. In addition, the product gas is recovered from the other end of the pipe 32 as product gas, and a part of the concentrated gas throttled by the concentrated reflux needle valve 38 is part of the pipe 26 in which the pipe 35, the concentrated reflux buffer tank 36 and the valve 28 are interposed. And then flows to the lower end of the second adsorption / desorption tower 2 and is refluxed therein.
The first temperature control member, for example, tubes 39 and 40 through which room-temperature water such as tap water is circulated are arranged on the purification regions 5 and 6 side of the first and second adsorption / desorption towers 1 and 2, and the purification is performed. Regions 5 and 6 are held at room temperature. The second temperature control member, for example, the ribbon heaters 41 and 42 are arranged on the concentration regions 7 and 8 side of the first and second adsorption / desorption towers 1 and 2 and heats the concentration regions 7 and 8. ing. Such tubes 39 and 40 and ribbon heaters 41 and 42 constitute a temperature control means. The temperature difference between the purification regions 5 and 6 and the concentration regions 7 and 8 of the first and second adsorption / desorption towers 1 and 2 by the temperature control means is determined by the characteristics of the adsorbent used. For example, in the case of a zeolitic adsorbent, it is desirable that the refining regions 5 and 6 be at room temperature, and the concentrating regions 7 and 8 be 30 ° C. higher than that. In particular, the purification regions 5 and 6 are desirably made as low as possible from the viewpoint of increasing the amount of adsorption of carbon dioxide having a relatively low concentration in the raw material gas. However, maintaining excessive cooling or warming is not efficient because of increased energy costs.

次に、前述した図1、図2に示す二酸化炭素分離回収システムの二酸化炭素の吸着、脱着操作を説明する。
(1)第1吸・脱着塔1による吸着ステップ,第2吸・脱着塔2による脱着ステップ
まず、図1に示すようにバルブ14,17、21,23,27,31,34を開き、バルブ15,18,20,28,30を閉じる。また、チューブ39,40に水道水を流通させて第1、第2の吸・脱着塔1,2の精製領域5,6をそれぞれ常温に保持し、リボン状ヒータ41,42に通電して第1、第2の吸・脱着塔1,2の濃縮領域7、8を例えば60℃に加温する。これにより精製領域5,6に充填されたゼオライト系吸着材は、常温近傍に保持され、濃縮領域7、8に充填されたゼオライト系吸着材は例えば60℃近傍に保持される。
Next, carbon dioxide adsorption and desorption operations of the carbon dioxide separation and recovery system shown in FIGS. 1 and 2 will be described.
(1) Adsorption step by the first absorption / desorption tower 1 and desorption step by the second absorption / desorption tower 2 First, as shown in FIG. 1, the valves 14, 17, 21, 23, 27, 31, and 34 are opened and the valves are opened. Close 15, 18, 20, 28, 30. Further, the tap water is circulated through the tubes 39 and 40 to keep the purification regions 5 and 6 of the first and second adsorption / desorption towers 1 and 2 at room temperature, respectively, and the ribbon heaters 41 and 42 are energized to supply the first. 1. The concentration regions 7 and 8 of the second absorption / desorption towers 1 and 2 are heated to 60 ° C., for example. As a result, the zeolite-based adsorbent filled in the purification regions 5 and 6 is held near normal temperature, and the zeolite-based adsorbent filled in the concentration regions 7 and 8 is held near 60 ° C., for example.

この状態において図1に示すように二酸化炭素を含む原料ガス(例えば二酸化炭素を含む排ガス)をガス導入配管11に供給すると、原料ガスは分岐した第1ガス導入配管12、開放したバルブ14、ガスポート9を通して第1吸・脱着塔1のメッシュ部3に導入され、ここからゼオライト系吸着材が充填された精製領域5を上昇する間に二酸化炭素が吸着される。二酸化炭素量が低減されたキャリヤガスは、配管22から大気に放出される。一方、真空ポンプ33を起動すると、第2吸・脱着塔2の下端からガスが配管26,29,32を通して吸引され、その濃縮領域8内が減圧になるため、濃縮領域8内に充填されたゼオライト系吸着材から吸着ステップで吸着された二酸化炭素が脱着され、生成された濃縮ガスは前記配管32を通して回収される。   In this state, when source gas containing carbon dioxide (for example, exhaust gas containing carbon dioxide) is supplied to the gas introduction pipe 11 as shown in FIG. 1, the source gas is branched into the first gas introduction pipe 12, the opened valve 14, and the gas. Carbon dioxide is adsorbed while it is introduced into the mesh part 3 of the first adsorption / desorption tower 1 through the port 9 and ascends the purification region 5 filled with the zeolite adsorbent. The carrier gas with a reduced amount of carbon dioxide is released from the pipe 22 to the atmosphere. On the other hand, when the vacuum pump 33 is started, gas is sucked from the lower end of the second suction / desorption tower 2 through the pipes 26, 29, and 32, and the concentration region 8 is depressurized, so that the concentration region 8 is filled. Carbon dioxide adsorbed in the adsorption step is desorbed from the zeolite-based adsorbent, and the produced concentrated gas is recovered through the pipe 32.

前記吸着ステップにおいて、第1吸・脱着塔1の精製領域5に充填されたゼオライト系吸着材は水道水が流通されるチューブ39により常温近傍に保持されているため、ゼオライト系吸着材による低濃度の二酸化炭素に対する高い吸着性が発現され、二酸化炭素が効率よく吸着される。一方、前記脱着ステップにおいて第2吸・脱着塔2の濃縮領域8に充填されたゼオライト系吸着材はリボン状ヒータ42により例えば60℃近傍に加温されて保持されているため、圧力変化に伴う平衡吸着量差が大きい、すなわち吸着等温線の傾斜が大きい性質(高い吸・脱着性)を示す。その結果、前記濃縮領域8内を減圧することによって、加温されたゼオライト系吸着材から吸着ステップで吸着された二酸化炭素が効率よく脱着され、二酸化炭素濃度の高い濃縮ガスが回収される。   In the adsorption step, the zeolitic adsorbent packed in the purification region 5 of the first adsorption / desorption tower 1 is held near normal temperature by the tube 39 through which tap water is circulated. High adsorbability with respect to carbon dioxide is expressed, and carbon dioxide is adsorbed efficiently. On the other hand, the zeolitic adsorbent filled in the concentration region 8 of the second adsorption / desorption tower 2 in the desorption step is heated and held near, for example, 60 ° C. by the ribbon heater 42, so that the pressure changes. It exhibits the property that the difference in equilibrium adsorption amount is large, that is, the slope of the adsorption isotherm is large (high adsorption / desorption properties). As a result, by reducing the pressure in the concentration region 8, the carbon dioxide adsorbed in the adsorption step is efficiently desorbed from the heated zeolite-based adsorbent, and the concentrated gas having a high carbon dioxide concentration is recovered.

前記第1吸・脱着塔1の精製ガスは、前記精製ガス還流手段で説明したように精製還流ニィードルバルブ25の開度に応じ、その一部が配管24,19,16を通して前記第2吸・脱着塔2の精製領域6に還流される。一方、前記第2吸・脱着塔2の濃縮ガスは前記濃縮ガス還流手段で説明したように濃縮還流ニィードルバルブ38の開度に応じてその一部が配管35,26を通して前記第1吸・脱着塔1の濃縮領域7に還流される。なお、この濃縮還流はバッファタンク36にて一時保管され、加圧ポンプ37の起動により定量が前記第1吸・脱着塔1の濃縮領域7に還流される。   The purified gas in the first adsorption / desorption tower 1 is partially passed through the pipes 24, 19, and 16 in accordance with the opening of the purified reflux needle valve 25 as described in the purified gas reflux means. Reflux to the purification zone 6 of the desorption tower 2 On the other hand, the concentrated gas in the second suction / desorption tower 2 is partially passed through the pipes 35 and 26 according to the opening degree of the concentrated reflux needle valve 38 as described in the concentrated gas reflux means. It is refluxed to the concentration region 7 of the desorption tower 1. The concentrated reflux is temporarily stored in the buffer tank 36, and the fixed amount is returned to the concentrated region 7 of the first suction / desorption tower 1 by starting the pressurizing pump 37.

すなわち、前記第1吸・脱着塔1の精製領域5から前記第2吸・脱着塔2の精製領域6への精製還流、および前記第2吸・脱着塔2の濃縮領域8から前記第1吸・脱着塔1の濃縮領域7への濃縮還流の単一方向のガス流れが生じる。この単一方向のガス流れにおいて、前記精製還流により脱着ステップがなされる第2吸・脱着塔2の精製領域6、濃縮領域8内に充填されたゼオライト系吸着材から既に吸着された二酸化炭素の脱着が促進される。また、前記濃縮還流により吸着ステップがなされる第1吸・脱着塔1の濃縮領域7内に充填されたゼオライト系吸着材での濃縮ガス中の二酸化炭素の吸着がなされ、濃縮ガスの高濃度化が促進される。   That is, the purification reflux from the purification region 5 of the first adsorption / desorption tower 1 to the purification region 6 of the second adsorption / desorption tower 2, and the concentration region 8 of the second adsorption / desorption tower 2 from the first adsorption / desorption tower 2. A unidirectional gas flow of concentration reflux to the concentration region 7 of the desorption tower 1 occurs. In this unidirectional gas flow, the carbon dioxide already adsorbed from the zeolite adsorbent packed in the purification region 6 and the concentration region 8 of the second adsorption / desorption tower 2 where the desorption step is performed by the purification reflux. Desorption is promoted. Further, carbon dioxide in the concentrated gas is adsorbed by the zeolitic adsorbent packed in the concentration region 7 of the first adsorption / desorption tower 1 where the adsorption step is performed by the concentration reflux, and the concentration of the concentrated gas is increased. Is promoted.

このような前記第1、第2の吸・脱着塔1、2の精製領域5、6と濃縮領域7、8の間での温度制御、および精製還流と濃縮還流の相互作用により、前記吸着、脱着ステップにおいて第1吸・脱着塔1の精製領域5で原料ガス中の二酸化炭素を効率よく吸着でき、かつその濃縮領域7で濃縮ガスをより高濃度化でき、第2吸・脱着塔2の濃縮領域8にて吸着ステップで吸着された二酸化炭素を効率的に脱着して二酸化炭素濃度がより高い濃縮ガスを回収できる。
(2)第1吸・脱着塔1による脱着ステップ,第2吸・脱着塔2による吸着ステップ
水道水が流通されるチューブ39,40による常温保持、リボン状ヒータ41,42による加温を続行した状態で、ある時間単位にてバルブの開閉状態を切替えて第1、第2の吸・脱着塔1、2による吸・脱着を切替える。すなわち図2に示すようにバルブ15,18,20,23,28,30,32を開き、バルブ14,17,21,27,31を閉じる。
この状態において図2に示すように二酸化炭素を含む原料ガスをガス導入配管11に供給すると、原料ガスは第2ガス導入管13、開放したバルブ15、ガスポート10を通して第2吸・脱着塔2のメッシュ部4に導入され、ここからゼオライト系吸着材が充填された精製領域6を上昇する間に二酸化炭素が吸着される。一方、真空ポンプ33を起動すると、第1吸・脱着塔1の下端からガスが配管26,29,32を通して吸引され、その濃縮領域7内が減圧になるため、濃縮領域7内に充填されたゼオライト系吸着材から既に吸着された二酸化炭素が脱着され、生成された濃縮ガスは前記配管32を通して排出される。
By the temperature control between the purification regions 5 and 6 and the concentration regions 7 and 8 of the first and second adsorption / desorption towers 1 and 2, and the interaction between the purification reflux and the concentration reflux, the adsorption, In the desorption step, carbon dioxide in the raw material gas can be efficiently adsorbed in the purification region 5 of the first adsorption / desorption column 1, and the concentrated gas can be further concentrated in the concentration region 7. The concentrated gas having a higher carbon dioxide concentration can be recovered by efficiently desorbing the carbon dioxide adsorbed in the adsorption step in the concentration region 8.
(2) Desorption step by the first absorption / desorption tower 1, adsorption step by the second absorption / desorption tower 2 Maintaining room temperature by the tubes 39 and 40 through which tap water is circulated, and heating by the ribbon heaters 41 and 42 were continued. In the state, the opening / closing state of the valve is switched in a certain time unit to switch the absorption / desorption by the first and second absorption / desorption towers 1 and 2. That is, as shown in FIG. 2, the valves 15, 18, 20, 23, 28, 30, 32 are opened and the valves 14, 17, 21, 27, 31 are closed.
In this state, when a source gas containing carbon dioxide is supplied to the gas introduction pipe 11 as shown in FIG. 2, the source gas passes through the second gas introduction pipe 13, the opened valve 15, and the gas port 10, and the second adsorption / desorption tower 2. The carbon dioxide is adsorbed while ascending the purification region 6 filled with the zeolite adsorbent. On the other hand, when the vacuum pump 33 is started, gas is sucked from the lower end of the first suction / desorption tower 1 through the pipes 26, 29, 32, and the concentration region 7 is depressurized, so that the concentration region 7 is filled. Carbon dioxide that has already been adsorbed from the zeolite-based adsorbent is desorbed, and the produced concentrated gas is discharged through the pipe 32.

前記吸着ステップにおいて、第2吸・脱着塔2の精製領域6に充填されたゼオライト系吸着材は前記(1)で説明したのと同様にゼオライト系吸着材による低濃度の二酸化炭素に対する高い吸着性が発現され、二酸化炭素が効率よく吸着される。一方、前記脱着ステップにおいて前記(1)で説明したのと同様に第1吸・脱着塔1の濃縮領域7に充填されたゼオライト系吸着材から既に吸着された二酸化炭素が効率よく脱着され、二酸化炭素濃度の高い濃縮ガスが回収される。   In the adsorption step, the zeolitic adsorbent packed in the purification region 6 of the second adsorption / desorption tower 2 has a high adsorptivity to a low concentration of carbon dioxide by the zeolitic adsorbent as described in the above (1). And carbon dioxide is adsorbed efficiently. On the other hand, in the desorption step, the carbon dioxide already adsorbed from the zeolitic adsorbent filled in the concentration region 7 of the first adsorption / desorption tower 1 is efficiently desorbed in the same manner as described in (1) above. A concentrated gas with a high carbon concentration is recovered.

前記第2吸・脱着塔2の精製ガスは、前記精製ガス還流手段で説明したように精製還流ニィードルバルブ25の開度に応じ、その一部が配管24,19,16を通して前記第1吸・脱着塔1の精製領域5に還流される。一方、前記第1吸・脱着塔1の濃縮ガスは前記濃縮ガス還流手段で説明したように濃縮還流ニィードルバルブ38の開度に応じてその一部が配管35,26を通して前記第2吸・脱着塔2の濃縮領域8に還流される。なお、この濃縮還流はバッファタンク36にて一時保管され、加圧ポンプ37の起動により定量が前記第2吸・脱着塔2の濃縮領域8に還流される。   The purified gas in the second adsorption / desorption tower 2 is partially routed through the pipes 24, 19, 16 in accordance with the opening of the purified reflux needle valve 25 as described in the purified gas reflux means. Reflux to the purification zone 5 of the desorption tower 1 On the other hand, the concentrated gas in the first suction / desorption tower 1 is partially passed through the pipes 35 and 26 according to the opening of the concentrated reflux needle valve 38 as described in the concentrated gas reflux means. The mixture is refluxed to the concentration region 8 of the desorption tower 2. The concentrated reflux is temporarily stored in the buffer tank 36, and the fixed amount is returned to the concentrated region 8 of the second suction / desorption tower 2 by starting the pressurizing pump 37.

すなわち、前記第2吸・脱着塔2の精製領域6から前記第1吸・脱着塔1の精製領域5への精製還流、および前記第1吸・脱着塔1の濃縮領域7から前記第2吸・脱着塔2の濃縮領域8への濃縮還流の単一方向のガス流れが生じ、前記(1)で説明したのと同様に前記精製還流により脱着ステップがなされる第1吸・脱着塔1の精製領域5、濃縮領域7内に充填されたゼオライト系吸着材から既に吸着された二酸化炭素の脱着が促進され、前記濃縮還流により吸着ステップがなされる第2吸・脱着塔2の濃縮領域8内に充填されたゼオライト系吸着材での濃縮ガス中の二酸化炭素の吸着がなされ、濃縮ガスの高濃度化が促進される。   That is, the purification reflux from the purification region 6 of the second adsorption / desorption tower 2 to the purification region 5 of the first adsorption / desorption tower 1, and the concentration of the second adsorption / desorption tower 1 from the concentration region 7 of the second adsorption / desorption tower 1 are performed. A gas flow in a single direction of concentration and reflux to the concentration region 8 of the desorption column 2 is generated, and the desorption step is performed by the purification and reflux in the same manner as described in the above (1). In the concentration region 8 of the second adsorption / desorption tower 2 where the desorption of carbon dioxide already adsorbed from the zeolite-based adsorbent packed in the purification region 5 and the concentration region 7 is promoted and the adsorption step is performed by the concentration reflux. The carbon dioxide in the concentrated gas is adsorbed by the zeolite-based adsorbent filled in the catalyst, and the concentration of the concentrated gas is increased.

このような前記第1、第2の吸・脱着塔1、2の精製領域5、6と濃縮領域7、8の間での温度制御、および精製還流と濃縮還流の相互作用により、前記吸着、脱着ステップにおいて第2吸・脱着塔2の精製領域6で原料ガス中の二酸化炭素を効率よく吸着でき、その濃縮領域8で濃縮ガスをより高濃度化でき、第1吸・脱着塔1の濃縮領域7で既に吸着された二酸化炭素を効率的に脱着して二酸化炭素濃度がより高い濃縮ガスを回収できる。
したがって、第1実施形態に係る二酸化炭素分離回収システムによれば、前記第1、第2の吸・脱着塔1、2の精製領域5、6と濃縮領域7、8との間にゼオライト系吸着材による二酸化炭素の吸・脱着性に見合った温度差を付与して、前記(1)、(2)の操作および切替え操作を連続的に行うことにより、常圧下における吸着ステップでの効率的な吸着、濃縮ガスの二酸化炭素の高濃度化、減圧下における脱着ステップでの効率的な脱着を連続的に行うことができる。
By the temperature control between the purification regions 5 and 6 and the concentration regions 7 and 8 of the first and second adsorption / desorption towers 1 and 2, and the interaction between the purification reflux and the concentration reflux, the adsorption, In the desorption step, carbon dioxide in the raw material gas can be efficiently adsorbed in the purification region 6 of the second adsorption / desorption column 2, and the concentrated gas can be further concentrated in the concentration region 8, and the first adsorption / desorption column 1 can be concentrated. The concentrated gas having a higher carbon dioxide concentration can be recovered by efficiently desorbing the carbon dioxide already adsorbed in the region 7.
Therefore, according to the carbon dioxide separation and recovery system according to the first embodiment, the zeolite adsorption between the purification regions 5 and 6 and the concentration regions 7 and 8 of the first and second adsorption / desorption towers 1 and 2 is performed. By giving a temperature difference corresponding to the absorption and desorption properties of carbon dioxide by the material and continuously performing the operations (1) and (2) and the switching operation, it is possible to efficiently perform the adsorption step under normal pressure. Adsorption, high concentration of carbon dioxide in the concentrated gas, and efficient desorption in the desorption step under reduced pressure can be performed continuously.

その結果、中間供給PSA法を利用した従来の二酸化炭素分離回収システムと同様な二酸化炭素濃度の原料ガスの使用、同様な還流条件および原料ガスの切替条件等の下で、次のような効果を達成できる。
1)従来の二酸化炭素分離回収システムと同濃度の二酸化炭素を含む製品ガスを回収する場合には、回収率を向上することができる。
As a result, the following effects were obtained under the use of the raw material gas having the same carbon dioxide concentration as in the conventional carbon dioxide separation and recovery system using the intermediate supply PSA method, the same reflux conditions, and the raw material gas switching conditions. Can be achieved.
1) When recovering a product gas containing carbon dioxide having the same concentration as a conventional carbon dioxide separation and recovery system, the recovery rate can be improved.

2)従来の二酸化炭素分離回収システムと同回収率で製品ガスを回収する場合には、製品ガス中の二酸化炭素の高濃度化することができる。   2) When the product gas is recovered at the same recovery rate as that of the conventional carbon dioxide separation and recovery system, the concentration of carbon dioxide in the product gas can be increased.

3)従来の二酸化炭素分離回収システムよりも回収率の向上および高濃度化を達成することができる。   3) A higher recovery rate and higher concentration can be achieved than the conventional carbon dioxide separation and recovery system.

また、二酸化炭素の大気への排出を低減して地球の温暖化防止に寄与できる。   In addition, it can contribute to the prevention of global warming by reducing the discharge of carbon dioxide into the atmosphere.

(第2実施形態)
この第2実施形態に係る中間供給PSA法を利用した二酸化炭素分離回収システムは、図3に示す原料ガスのガス導入配管を多段にし、かつ原料ガス管の吸着材充填領域に対応して温度制御手段を配置した以外、実質的に前述した図1および図2と同様な構造を有する。図4は、図3の要部拡大図である。なお、図3および図4において前述した図1、図2と同様な部材は同符号を付して説明を省略する。
第1吸・脱着塔1は、ガスの導入を円滑にするための複数、例えば9つのメッシュ部3a〜3iが高さ方向に亘って例えば等間隔でそれぞれ介装されている。これらメッシュ部3a〜3iの間、メッシュ部3aの上部側、メッシュ部3iの下部側に位置する前記第1吸・脱着塔1には、吸着材が充填された10の吸着材充填領域51a〜51jをそれぞれ形成している。前記吸着材は、いずれも同種のゼオライト系のものである。
複数のガスポート9a〜9iは、前記各メッシュ部3a〜3iに対応する前記第1吸・脱着塔1に取り付けられている。ガス導入配管11から分岐した複数の第1ガス導入配管12a〜12iは、前記ガスポート9a〜9iにそれぞれ連結されている。これらの第1ガス導入配管12a〜12iには、バルブ14a〜14iがそれぞれ介装されている。
例えば水道水のような常温水および温水(例えば60℃の温水)切替え可能に流通される10本のチューブ52a〜52jは、図4に示すように前記第1吸・脱着塔1の前記吸着材充填領域51a〜51jにそれぞれ対応して配置されている。この図4においては、チューブ52f〜52jは示されていないが、以下では便宜的にそれらのチューブがあるものとして説明する。
なお、第2吸・脱着塔は図示していないが、この第2吸・脱着塔においても前記第1吸・脱着塔1と同様な構造を有する。
このような吸・脱着塔(例えば第1吸・脱着塔1)に複数のメッシュ部3a〜3iで区画され、吸着材が充填された複数の吸着材充填領域51a〜51jをそれぞれ高さ方向に形成し、かつ前記メッシュ部3a〜3iと連通するガスポート9a〜9iに複数に分岐したガス導入配管(例えば第1ガス導入管12a〜12i)を連結する構成にすることによって、ユーザの要求に応じて前述した精製領域および濃縮領域の容積を変更し、原料ガス中の二酸化炭素の分離回収操作を実行することができる。
(Second Embodiment)
The carbon dioxide separation and recovery system using the intermediate supply PSA method according to the second embodiment has a multistage gas gas introduction pipe shown in FIG. 3 and temperature control corresponding to the adsorbent filling region of the raw gas pipe. Except for the arrangement of the means, it has a structure substantially similar to that shown in FIGS. 4 is an enlarged view of a main part of FIG. 3 and 4, the same members as those in FIGS. 1 and 2 described above are denoted by the same reference numerals, and the description thereof is omitted.
In the first absorption / desorption tower 1, a plurality of, for example, nine mesh portions 3a to 3i for smooth gas introduction are respectively provided at equal intervals in the height direction, for example. Between the mesh parts 3a to 3i, the first adsorbing / desorbing tower 1 located on the upper side of the mesh part 3a and on the lower side of the mesh part 3i has 10 adsorbent filling regions 51a to 51a filled with an adsorbent. 51j are formed. The adsorbents are all of the same type of zeolite.
The plurality of gas ports 9a to 9i are attached to the first suction / desorption tower 1 corresponding to the mesh portions 3a to 3i. A plurality of first gas introduction pipes 12a to 12i branched from the gas introduction pipe 11 are connected to the gas ports 9a to 9i, respectively. Valves 14a to 14i are interposed in the first gas introduction pipes 12a to 12i, respectively.
For example, ten tubes 52a to 52j circulated so as to be able to switch between room temperature water and hot water (for example, hot water of 60 ° C.) such as tap water are used as the adsorbent of the first adsorption / desorption tower 1 as shown in FIG. It is arranged corresponding to each of the filling regions 51a to 51j. In FIG. 4, the tubes 52f to 52j are not shown, but the following description will be made assuming that these tubes are provided for convenience.
Although the second absorption / desorption tower is not shown, the second absorption / desorption tower has the same structure as the first absorption / desorption tower 1.
Such adsorbing / desorbing tower (for example, the first adsorbing / desorbing tower 1) is partitioned by a plurality of mesh portions 3a-3i, and a plurality of adsorbent filling regions 51a-51j filled with adsorbent are respectively arranged in the height direction. By forming a gas introduction pipe (for example, the first gas introduction pipes 12a to 12i) branched into a plurality of gas ports 9a to 9i that are formed and communicated with the mesh portions 3a to 3i, a user's request is met. Accordingly, the volume of the purification region and the concentration region described above can be changed, and the separation and recovery operation of carbon dioxide in the raw material gas can be executed.

すなわち、例えば大気中への二酸化炭素の放出を極力抑える操作を行う場合には、前記第1ガス導入管12a〜12iのうち、下部側のガス導入管(例えば12g)のバルブ14gを選択的に開き、このガス導入管12gより上方のチューブ52a〜52gに常温水を流通させ、それより下方のチューブ52h〜52jに温水を流通させる。このような使用形態により、チューブ52a〜52gに対応する第1吸・脱着塔1の吸着材充填領域51a〜51gを精製領域、チューブ52h〜52jに対応する第1吸・脱着塔1の吸着材充填領域51h〜51jを濃縮領域、とすることができる。つまり、精製領域の容積を濃縮領域の容積に比べて実効的の増大できる。その結果、原料ガスを前記ガス導入管12gを通して第1吸・脱着塔1に導入することによって、その原料ガス中の二酸化炭素を十分に吸着できるために、二酸化炭素量が極力低減されたキャリヤガスを前述した図1の配管22から大気に放出することができる。
一方、製品ガスの二酸化炭素をより高濃度化する場合には、前記第1ガス導入管12a〜12iのうち、上部側のガス導入管(例えば12c)のバルブ14cを選択的に開き、この第1ガス導入管12cより上方のチューブ52a〜52cに常温水を流通させ、それより下方のチューブ52d〜52jに温水を流通させる。このような使用形態により、チューブ52a〜52cに対応する第1吸・脱着塔1の吸着材充填領域51a〜51cを精製領域、チューブ52d〜52jに対応する第1吸・脱着塔1の吸着材充填領域51h〜51jを濃縮領域、とすることができる。つまり、濃縮領域の容積を精製領域の容積に比べて実効的の増大できる。その結果、例えば第2吸・脱着塔において脱着ステップで脱着された濃縮ガスを第1吸・脱着塔1に濃縮還流することによって、第1吸・脱着塔1においてより効率的に濃縮ガスを吸着できるために、二酸化炭素濃度がより高い製品ガスを前述した図1の配管32から回収することができる。
なお、前述した第2実施形態においては第1吸・脱着塔1を例示して説明したが、第2吸・脱着塔2についても同様な操作がなされる。
That is, for example, when performing an operation for suppressing the release of carbon dioxide to the atmosphere as much as possible, the valve 14g of the lower gas introduction pipe (for example, 12g) among the first gas introduction pipes 12a to 12i is selectively selected. Open, normal temperature water is circulated through the tubes 52a to 52g above the gas introduction pipe 12g, and hot water is circulated through the tubes 52h to 52j below it. According to such usage, the adsorbent filling regions 51a to 51g of the first adsorption / desorption tower 1 corresponding to the tubes 52a to 52g are used as the purification region, and the adsorbent of the first adsorption / desorption tower 1 corresponding to the tubes 52h to 52j. The filling regions 51h to 51j can be the concentration region. That is, the volume of the purification region can be effectively increased as compared with the volume of the concentration region. As a result, by introducing the raw material gas into the first adsorption / desorption tower 1 through the gas introduction pipe 12g, the carbon dioxide in the raw material gas can be sufficiently adsorbed, so that the amount of carbon dioxide is reduced as much as possible. Can be released to the atmosphere from the pipe 22 shown in FIG.
On the other hand, when increasing the concentration of carbon dioxide in the product gas, the valve 14c of the upper gas introduction pipe (for example, 12c) among the first gas introduction pipes 12a to 12i is selectively opened, The normal temperature water is circulated through the tubes 52a to 52c above the one gas introduction pipe 12c, and the hot water is circulated through the tubes 52d to 52j below it. With such a usage pattern, the adsorbent filling regions 51a to 51c of the first adsorption / desorption tower 1 corresponding to the tubes 52a to 52c are purified, and the adsorbent of the first adsorption / desorption tower 1 corresponding to the tubes 52d to 52j. The filling regions 51h to 51j can be the concentration region. That is, the volume of the concentration region can be effectively increased as compared with the volume of the purification region. As a result, for example, the concentrated gas desorbed in the desorption step in the second adsorption / desorption tower is concentrated and refluxed to the first adsorption / desorption tower 1 so that the concentrated gas is adsorbed more efficiently in the first adsorption / desorption tower 1. Therefore, the product gas having a higher carbon dioxide concentration can be recovered from the pipe 32 shown in FIG.
In the second embodiment described above, the first absorption / desorption tower 1 has been described as an example. However, the same operation is performed for the second absorption / desorption tower 2.

したがって、第2実施形態に係る二酸化炭素分離回収システムによれば前述した第1実施形態の二酸化炭素分離回収システムと同様、常圧下における吸着ステップでの効率的な吸着、濃縮ガスの二酸化炭素の高濃度化、減圧下における脱着ステップでの効率的な脱着を連続的に行うことができるため、前述した1)〜3)の効果を達成でき、かつ二酸化炭素の大気への排出を低減して地球の温暖化防止に寄与できるる。   Therefore, according to the carbon dioxide separation and recovery system according to the second embodiment, as in the carbon dioxide separation and recovery system of the first embodiment described above, efficient adsorption in the adsorption step under normal pressure, and high carbon dioxide concentration gas. Since the efficient desorption in the desorption step under concentration and reduced pressure can be performed continuously, the effects 1) to 3) described above can be achieved, and the emission of carbon dioxide to the atmosphere can be reduced to reduce the earth. Can contribute to the prevention of global warming.

また、大気中への二酸化炭素の放出を極力抑える、製品ガスの二酸化炭素をより高濃度化するなどユーザの要求に応じて原料ガス中の二酸化炭素の分離回収操作を実行することができる。   In addition, it is possible to execute a separation and recovery operation of carbon dioxide in the raw material gas according to the user's request such as suppressing the release of carbon dioxide into the atmosphere as much as possible and increasing the concentration of carbon dioxide in the product gas.

(第3実施形態)
この第3実施形態に係る中間供給PSA法を利用した二酸化炭素分離回収システムは、図5に示す原料ガスの二酸化炭素の濃度に応じて複数のガス導入配管のバルブの開放選択等を行う自動切替制御装置を追加した以外、実質的に前述した図1〜図4と同様な構造を有する。なお、図5において前述した図1〜図4と同様な部材は同符号を付して説明を省略する。
自動切替制御装置101は、処理回路102、タッチパネル103および温度管理回路104を備えている。
前記処理回路102は、ガス導入管11に供給された原料ガス中の二酸化炭素濃度を測定する濃度計105に信号線106を通して接続されている。この処理回路102は、前記タッチパネル103に信号線107を通して接続されている。また、前記処理回路102は多芯信号線108およびそれからの単信号線108a,108b,108c…を通して前記ガス導入管11から分岐された複数の第1ガス導入配管12a〜12iのバルブ14a〜14iに接続されている。この図5においては、第1ガス導入配管12a〜12c、12f〜12iおよびバルブ14a〜12c、12f〜14は示されていないが、以下では便宜的にそれらの第1導入管およびバルブがあるものとして説明する。このような接続において、前記処理回路102には前記タッチパネル103から原料ガスの濃度に応じて前記バルブ14a〜14iのどれを選択するかを決める制御信号が予め入力される。この設定により前記濃度計105からの検出信号が前記処理回路102に出力されると、この処理回路102から前記バルブ14a〜14iのうちの1つを選択する信号が出力され、そのバルブが開放される。
(Third embodiment)
The carbon dioxide separation and recovery system using the intermediate supply PSA method according to the third embodiment performs automatic switching for performing selection of opening of valves of a plurality of gas introduction pipes according to the carbon dioxide concentration of the raw material gas shown in FIG. Except for the addition of a control device, it has a structure substantially similar to that shown in FIGS. In FIG. 5, the same members as those shown in FIGS.
The automatic switching control device 101 includes a processing circuit 102, a touch panel 103, and a temperature management circuit 104.
The processing circuit 102 is connected through a signal line 106 to a concentration meter 105 that measures the concentration of carbon dioxide in the raw material gas supplied to the gas introduction pipe 11. The processing circuit 102 is connected to the touch panel 103 through a signal line 107. Further, the processing circuit 102 supplies the valves 14a to 14i of the plurality of first gas introduction pipes 12a to 12i branched from the gas introduction pipe 11 through the multicore signal line 108 and the single signal lines 108a, 108b, 108c. It is connected. In FIG. 5, the first gas introduction pipes 12a to 12c and 12f to 12i and the valves 14a to 12c and 12f to 14 are not shown. Will be described. In such a connection, a control signal that determines which of the valves 14 a to 14 i is selected from the touch panel 103 according to the concentration of the raw material gas is input to the processing circuit 102 in advance. When a detection signal from the densitometer 105 is output to the processing circuit 102 by this setting, a signal for selecting one of the valves 14a to 14i is output from the processing circuit 102, and the valve is opened. The

また、前記処理回路102は前記温度管理回路104に信号線109を通して接続されている。この温度管理回路104は、多芯信号線110およびそれからの単信号線110a,110b,110c…を通してメッシュ部3a〜3iで区画された第1吸・脱着塔1の吸着材充填領域51a〜51jに対応するチューブ52a〜52jへの常温水および温水(例えば55℃の温水)の供給を切替えるための切替え部材(図示せず)に接続されている。この図5においては、メッシュ部3a〜3b、3f〜3i、吸着材充填領域51a〜51c、51f〜51jおよびチューブ52a〜52c、52f〜52は示されていないが、以下では便宜的にそれらのメッシュ部、吸着材充填領域およびチューブがあるものとして説明する。このような接続において、前記処理回路102から前記濃度計105からの検出信号に基づく制御信号が前記温度管理回路104に出力されると、この温度管理回路104から前記各チューブ52a〜52jの切替部材(図示せず)に常温水または温水のいずれかに切替える信号が出力される。   The processing circuit 102 is connected to the temperature management circuit 104 through a signal line 109. The temperature management circuit 104 passes through the multi-core signal line 110 and the single signal lines 110a, 110b, 110c... To the adsorbent filling regions 51a to 51j of the first adsorption / desorption tower 1 partitioned by the mesh portions 3a to 3i. It connects to the switching member (not shown) for switching supply of the normal temperature water and warm water (for example, 55 degreeC warm water) to the corresponding tubes 52a-52j. In FIG. 5, the mesh portions 3a to 3b, 3f to 3i, the adsorbent filling regions 51a to 51c, 51f to 51j, and the tubes 52a to 52c, 52f to 52 are not shown. A description will be given assuming that there are a mesh portion, an adsorbent filling region, and a tube. In such a connection, when a control signal based on a detection signal from the densitometer 105 is output from the processing circuit 102 to the temperature management circuit 104, the switching member of each of the tubes 52a to 52j is output from the temperature management circuit 104. A signal for switching to either room temperature water or warm water is output (not shown).

さらに、前記処理回路102は多芯信号線111およびそれからの単信号線111a,111bを通して精製還流ニィードルバルブ25および濃縮還流ニィードルバルブ38に接続されている。このような接続において、前記処理回路102は前記タッチパネル104から製品ガスにおける二酸化炭素濃度および回収量に関する制御条件が予め入力され、この制御条件に基づいて前記精製還流ニィードルバルブ25および濃縮還流ニィードルバルブ38の開度を調節する信号が出力される。
なお、第2吸・脱着塔は図示していないが、この第2吸・脱着塔においても前記第1吸・脱着塔1と同様な構造を有し、かつ自動切替制御装置との接続がなされる。
このような第3実施形態に係る二酸化炭素分離回収システムにおいて、二酸化炭素を含む原料ガスをガス導入配管11に供給すると、その原料ガス中の二酸化炭素の濃度が濃度計105で検出され、この検出信号は信号線106を通して制御盤101の処理回路102に出力される。処理回路102は、この検出信号の入力により第1ガス導入配管12a〜12iのバルブ14a〜14iのうちの1つ、例えばバルブ14eを選択する信号が出力され、そのバルブ14eを開放する。同時に、処理回路102から前記濃度計105からの検出信号に基づく制御信号が前記温度管理回路104に出力される。温度管理回路104は、この制御信号の入力により第1吸・脱着塔1の吸着材充填領域51a〜51jに対応するチューブ52a〜52jの切替部材(図示せず)に切替える信号が出力され、第1ガス導入管12eより上方のチューブ52a〜52eに常温水を流通させ、それより下方のチューブ52f〜52jに温水を流通させる。
このような使用形態により、チューブ52a〜52eに対応する第1吸・脱着塔1の吸着材充填領域51a〜51eを常温に保持された精製領域、チューブ52f〜52jに対応する第1吸・脱着塔1の吸着材充填領域51f〜51jを加温された濃縮領域、とすることができる。すなわち、原料ガス中の二酸化炭素の濃度に見合って精製領域および濃縮領域の容積を自動的に増減することができる。
具体的には、原料ガス中の二酸化炭素濃度が低い場合には第1ガス導入配管12a〜12iのバルブ14a〜14iのうち低位置のバルブを濃度計105からの検出信号により自動的に開放し、その第1導入管の上方のチューブに例えば水道水を流通してその第1導入配管の連結位置(メッシュ部)より上方の吸着材充填領域を精製領域としてその容積を実効的の増大させることによって、第1吸・脱着塔1において原料ガス中の低濃度の二酸化炭素を十分効率よく吸着することができる。
Further, the processing circuit 102 is connected to the purified reflux needle valve 25 and the concentrated reflux needle valve 38 through a multi-core signal line 111 and single signal lines 111a and 111b therefrom. In such a connection, the processing circuit 102 is preliminarily input with control conditions relating to the carbon dioxide concentration and the recovery amount in the product gas from the touch panel 104, and based on these control conditions, the purification reflux needle valve 25 and the concentration reflux needle. A signal for adjusting the opening of the valve 38 is output.
Although the second absorption / desorption tower is not shown, the second absorption / desorption tower has the same structure as the first absorption / desorption tower 1 and is connected to the automatic switching control device. The
In such a carbon dioxide separation and recovery system according to the third embodiment, when a raw material gas containing carbon dioxide is supplied to the gas introduction pipe 11, the concentration of carbon dioxide in the raw material gas is detected by the concentration meter 105, and this detection is performed. The signal is output to the processing circuit 102 of the control panel 101 through the signal line 106. In response to the input of the detection signal, the processing circuit 102 outputs a signal for selecting one of the valves 14a to 14i of the first gas introduction pipes 12a to 12i, for example, the valve 14e, and opens the valve 14e. At the same time, a control signal based on the detection signal from the densitometer 105 is output from the processing circuit 102 to the temperature management circuit 104. In response to the input of this control signal, the temperature management circuit 104 outputs a signal for switching to a switching member (not shown) of the tubes 52a to 52j corresponding to the adsorbent filling regions 51a to 51j of the first adsorption / desorption tower 1. The normal temperature water is circulated through the tubes 52a to 52e above the one gas introduction pipe 12e, and the hot water is circulated through the tubes 52f to 52j below it.
By such a usage pattern, the adsorbent filling regions 51a to 51e of the first adsorption / desorption tower 1 corresponding to the tubes 52a to 52e are purified regions maintained at room temperature, and the first adsorption / desorption corresponding to the tubes 52f to 52j. The adsorbent filling regions 51f to 51j of the tower 1 can be heated regions. That is, the volumes of the purification region and the concentration region can be automatically increased or decreased in accordance with the concentration of carbon dioxide in the raw material gas.
Specifically, when the carbon dioxide concentration in the raw material gas is low, the low-position valve among the valves 14a to 14i of the first gas introduction pipes 12a to 12i is automatically opened by a detection signal from the concentration meter 105. For example, tap water is circulated through the tube above the first introduction pipe, and the volume is effectively increased with the adsorbent filling area above the connection position (mesh portion) of the first introduction pipe as a purification area. Thus, the low concentration carbon dioxide in the raw material gas can be adsorbed sufficiently efficiently in the first adsorption / desorption tower 1.

一方、原料ガス中の二酸化炭素濃度が高い場合には第1ガス導入配管12a〜12iのバルブ14a〜14iのうち高位置のバルブを濃度計105からの検出信号により自動的に開放し、その第1導入管の上方のチューブに例えば水道水を流通してその第1導入配管の連結位置(メッシュ部)より上方の吸着材充填領域を精製領域としてその容積を実効的に減少させ、濃縮領域の容積を実効的に増大させることによって、第1吸・脱着塔1において原料ガス中の高濃度の二酸化炭素を十分効率よく吸着することができ、同時に濃縮領域の容積増により濃縮ガスの二酸化炭素の高濃度化が図られ、より高濃度の製品ガスを回収できる。
また、前記処理回路102から精製還流ニィードルバルブ25および濃縮還流ニィードルバルブ38に制御信号を出力し、それらの開度を調節することによって、回収される製品ガスの二酸化炭素濃度および回収量を制御することができる。
したがって、第3実施形態によれば前述した第1実施形態の二酸化炭素分離回収システムと同様、常圧下における吸着ステップでの効率的な吸着、濃縮ガスの二酸化炭素の高濃度化、減圧下における脱着ステップでの効率的な脱着を連続的に行うことができるため、前述した第1実施形態の二酸化炭素分離回収システムと同様、常圧下における吸着ステップでの効率的な吸着、濃縮ガスの二酸化炭素の高濃度化、減圧下における脱着ステップでの効率的な脱着を連続的に行うことができるため、前述した1)〜3)の効果を達成でき、かつ二酸化炭素の大気への排出を低減して地球の温暖化防止に寄与できる。
On the other hand, when the carbon dioxide concentration in the raw material gas is high, the valve at the higher position among the valves 14a to 14i of the first gas introduction pipes 12a to 12i is automatically opened by the detection signal from the concentration meter 105, and the first 1 For example, tap water is circulated through the tube above the introduction pipe, and the volume of the adsorbent filling area above the connection position (mesh part) of the first introduction pipe is effectively reduced to reduce the volume thereof. By effectively increasing the volume, the high concentration of carbon dioxide in the raw material gas can be adsorbed sufficiently efficiently in the first adsorption / desorption tower 1, and at the same time, the concentration of carbon dioxide in the concentrated gas can be increased by increasing the volume of the concentration region. High concentration is achieved, and higher concentration product gas can be recovered.
Further, the control circuit outputs control signals from the processing circuit 102 to the purified reflux needle valve 25 and the concentrated reflux needle valve 38, and adjusts the opening of the control signal to thereby adjust the carbon dioxide concentration and the recovered amount of the recovered product gas. Can be controlled.
Therefore, according to the third embodiment, as in the carbon dioxide separation and recovery system of the first embodiment described above, efficient adsorption in the adsorption step under normal pressure, higher concentration of carbon dioxide in the concentrated gas, and desorption under reduced pressure. Since efficient desorption at the step can be performed continuously, as in the carbon dioxide separation and recovery system of the first embodiment described above, efficient adsorption at the adsorption step under normal pressure, and carbon dioxide in the concentrated gas Since it is possible to continuously perform efficient desorption in the desorption step under high concentration and reduced pressure, the above-mentioned effects 1) to 3) can be achieved, and emission of carbon dioxide into the atmosphere can be reduced. It can contribute to the prevention of global warming.

また、原料ガス中の二酸化炭素の濃度に見合って精製領域および濃縮領域の容積を自動的に増減することができるために、原料ガス中の二酸化炭素の濃度に依存せずに前述した1)〜3)の効果を達成できる。   In addition, since the volume of the purification region and the concentration region can be automatically increased or decreased in accordance with the concentration of carbon dioxide in the raw material gas, the above-mentioned 1) to ˜depending on the concentration of carbon dioxide in the raw material gas. The effect of 3) can be achieved.

なお、前述した第1〜第3の実施形態においては吸着ステップと脱着ステップの間で圧力差を付与するために、吸着ステップがなされる吸・脱着塔にガス導入管から常圧の原料ガスを供給し、脱着ステップがなされる吸・脱着塔内を真空ポンプで排気して減圧にしたが、このような形態に限定されない。例えば、吸着ステップがなされる吸・脱着塔にガス導入管から加圧された原料ガスを供給し、脱着ステップがなされる吸・脱着塔内を常圧にして吸着ステップと脱着ステップの間で圧力差を付与してもよい。
また、前述した第2、第3の実施形態においては吸・脱着塔の複数の吸着材充填領域に対応して配置した温度制御手段として常温水または温水が流通されるチューブを用いたが、例えば複数の吸着材充填領域に対応して第1温度管理部材である常温水が流通されるチューブと第2温度管理部材であるヒータを並置して温度制御手段を構成してもよい。
In the first to third embodiments described above, in order to provide a pressure difference between the adsorption step and the desorption step, normal pressure source gas is supplied from the gas introduction pipe to the adsorption / desorption tower in which the adsorption step is performed. Although the inside of the suction / desorption tower which is supplied and desorbed is evacuated by a vacuum pump to reduce the pressure, it is not limited to such a form. For example, a pressurized source gas is supplied from a gas introduction pipe to an adsorption / desorption tower in which an adsorption step is performed, and the pressure in the adsorption / desorption step is set to normal pressure in the adsorption / desorption tower in which the desorption step is performed. A difference may be imparted.
In the second and third embodiments described above, a room temperature water or a tube through which hot water is circulated is used as the temperature control means arranged corresponding to the plurality of adsorbent packed regions of the adsorption / desorption tower. Corresponding to a plurality of adsorbent filling regions, the temperature control means may be configured by juxtaposing a tube through which normal temperature water as the first temperature management member is circulated and a heater as the second temperature management member.

本発明の第1実施形態に係る中間供給PSA法を利用した二酸化炭素分離回収システム(第1吸・脱着塔による吸着ステップ,第2吸・脱着塔による脱着ステップ時の各バルブの開閉状態を併記)を示す概略図。The carbon dioxide separation and recovery system using the intermediate supply PSA method according to the first embodiment of the present invention (the open / close state of each valve at the time of the adsorption step by the first adsorption / desorption tower and the desorption step by the second adsorption / desorption tower is also shown. ) Is a schematic diagram showing. 本発明の第1実施形態に係る中間供給PSA法を利用した二酸化炭素分離回収システム(第1吸・脱着塔による脱着ステップ,第2吸・脱着塔による吸着ステップ時の各バルブの開閉状態を併記)を示す概略図。The carbon dioxide separation and recovery system using the intermediate supply PSA method according to the first embodiment of the present invention (denoting the open / close state of each valve during the desorption step by the first adsorption / desorption tower and the adsorption step by the second adsorption / desorption tower) ) Is a schematic diagram showing. 本発明の第2実施形態に係る二酸化炭素分離回収システムの第1吸・脱着塔部分を示す概略図。Schematic which shows the 1st absorption / desorption tower part of the carbon dioxide separation-and-recovery system which concerns on 2nd Embodiment of this invention. 図3の要部を拡大し、かつ詳述した概略図。FIG. 4 is an enlarged schematic view illustrating a main part of FIG. 3 in detail. 本発明の第3実施形態に係る中間供給PSA法を利用した二酸化炭素分離回収システムの要部を示す概略図。Schematic which shows the principal part of the carbon dioxide separation-and-recovery system using the intermediate supply PSA method which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…第1吸・脱着塔、2…第2吸・脱着塔、5,6…精製領域、7,8…濃縮領域、11…ガス導入配管、12、12a〜12i…第1ガス導入配管、13…第2ガス導入配管、14,14a〜14i、15…バルブ、25…精製還流ニィードルバルブ、33…真空ポンプ、35…加圧ポンプ、38…濃縮還流ニィードルバルブ、39,40、52a〜52I…チューブ、41,42…リボン状ヒータ、51a〜51i…吸着材充填領域、101…自動切替制御装置、102…処理回路、103…タッチパネル、104…温度管理回路。   DESCRIPTION OF SYMBOLS 1 ... 1st absorption / desorption tower, 2 ... 2nd absorption / desorption tower, 5, 6 ... Purification area | region, 7, 8 ... Concentration area | region, 11 ... Gas introduction piping, 12, 12a-12i ... 1st gas introduction piping, DESCRIPTION OF SYMBOLS 13 ... 2nd gas introduction piping, 14, 14a-14i, 15 ... Valve, 25 ... Refinement | purification reflux needle valve, 33 ... Vacuum pump, 35 ... Pressurization pump, 38 ... Concentration reflux needle valve, 39, 40, 52a ˜52I, tube, 41, 42, ribbon heater, 51a-51i, adsorbent filling region, 101, automatic switching control device, 102, processing circuit, 103, touch panel, 104, temperature management circuit.

Claims (3)

双方向還流原料ガス中間供給圧力スイング吸着法を利用した二酸化炭素分離回収システムにおいて、
吸着材が充填された少なくとも対をなす吸・脱着塔と、
前記各吸・脱着塔の中間にそれぞれ連結され、二酸化炭素を含む原料ガスを供給するための切替可能なガス導入配管と、
前記各吸・脱着塔の一端で精製ガスの一部を相互に還流させるための精製ガス還流手段と、
前記各吸・脱着塔の他端で二酸化炭素濃縮ガスの一部を相互に還流させるための濃縮ガス還流手段と、
前記各吸・脱着塔における前記ガス導入配管の連結部を境にして一端に向かう領域を精製領域、他端に向かう領域を濃縮領域とし、この濃縮領域の温度を前記精製領域のそれより高くするための温度制御手段と
を具備したことを特徴とする二酸化炭素分離回収システム。
In the carbon dioxide separation and recovery system using the bi-directional reflux feed gas intermediate supply pressure swing adsorption method,
At least a pair of absorption / desorption towers filled with an adsorbent,
Switchable gas introduction pipes connected to the middle of each of the adsorption / desorption towers for supplying a raw material gas containing carbon dioxide,
Purified gas reflux means for refluxing part of the purified gas to each other at one end of each of the adsorption / desorption towers;
A concentrated gas reflux means for refluxing part of the carbon dioxide concentrated gas at the other end of each of the adsorption / desorption towers;
A region toward one end with the gas introduction pipe connecting portion in each of the adsorption / desorption towers as a boundary is a purification region, and a region toward the other end is a concentration region, and the temperature of the concentration region is higher than that of the purification region. A carbon dioxide separation and recovery system comprising a temperature control means for the purpose.
双方向還流原料ガス中間供給圧力スイング吸着法を利用した二酸化炭素分離回収システムにおいて、
吸着材が充填された少なくとも対をなす吸・脱着塔と、
前記各吸・脱着塔にそれぞれ連結され、二酸化炭素を含む原料ガスを供給するための切替可能なガス導入配管と、
前記各吸・脱着塔の一端で精製ガスの一部を相互に還流させるための精製ガス還流手段と、
前記各吸・脱着塔の他端で二酸化炭素濃縮ガスの一部を相互に還流させるための濃縮ガス還流手段と、
前記各吸・脱着塔の温度を制御するための温度制御手段と
を具備し、
前記ガス導入配管は、複数に分岐され、それら分岐配管は前記各吸・脱着塔の高さ方向の複数位置に連結され、かつ
前記温度制御手段は、冷却・加熱の切替が可能で、前記各分岐配管の間に位置する各吸・脱着塔の領域に対応してそれぞれ複数配置されることを特徴とする二酸化炭素分離回収システム。
In the carbon dioxide separation and recovery system using the bi-directional reflux feed gas intermediate supply pressure swing adsorption method,
At least a pair of absorption / desorption towers filled with an adsorbent,
A switchable gas introduction pipe connected to each of the adsorption / desorption towers for supplying a raw material gas containing carbon dioxide,
Purified gas reflux means for refluxing part of the purified gas to each other at one end of each of the adsorption / desorption towers;
A concentrated gas reflux means for refluxing part of the carbon dioxide concentrated gas at the other end of each of the adsorption / desorption towers;
Temperature control means for controlling the temperature of each of the adsorption / desorption towers,
The gas introduction pipe is branched into a plurality of pipes, the branch pipes are connected to a plurality of positions in the height direction of the respective suction / desorption towers, and the temperature control means is capable of switching between cooling and heating. A carbon dioxide separation / recovery system, wherein a plurality of carbon dioxide separation / recovery systems are arranged corresponding to the areas of the adsorption / desorption towers located between the branch pipes.
前記原料ガスの濃度に応じて前記各分岐配管への原料ガスの供給および前記複数の温度制御手段の冷却・加熱を自動的に切替るための自動切替制御装置をさらに有することことを特徴とする請求項2記載の二酸化炭素分離回収システム。   The apparatus further comprises an automatic switching control device for automatically switching supply of the source gas to each branch pipe and cooling / heating of the plurality of temperature control means according to the concentration of the source gas. The carbon dioxide separation and recovery system according to claim 2.
JP2004074346A 2004-03-16 2004-03-16 Carbon dioxide separation and recovery system Expired - Lifetime JP4189344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074346A JP4189344B2 (en) 2004-03-16 2004-03-16 Carbon dioxide separation and recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074346A JP4189344B2 (en) 2004-03-16 2004-03-16 Carbon dioxide separation and recovery system

Publications (2)

Publication Number Publication Date
JP2005262001A JP2005262001A (en) 2005-09-29
JP4189344B2 true JP4189344B2 (en) 2008-12-03

Family

ID=35087101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074346A Expired - Lifetime JP4189344B2 (en) 2004-03-16 2004-03-16 Carbon dioxide separation and recovery system

Country Status (1)

Country Link
JP (1) JP4189344B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611355B2 (en) * 2007-09-27 2011-01-12 月島環境エンジニアリング株式会社 Gas processing method and gas processing equipment
JP5109028B2 (en) * 2008-04-03 2012-12-26 システム エンジ サービス株式会社 Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons
JP5256252B2 (en) * 2010-07-09 2013-08-07 月島環境エンジニアリング株式会社 Gas processing method and gas processing equipment
US20180224145A1 (en) * 2015-07-27 2018-08-09 Sharp Kabushiki Kaisha Air-conditioning system and carbon dioxide absorbing unit
CN117446804B (en) * 2023-12-26 2024-03-22 大连华邦化学有限公司 Carbon dioxide purification method

Also Published As

Publication number Publication date
JP2005262001A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US5169413A (en) Low temperature pressure swing adsorption with refrigeration
US7189280B2 (en) Adsorptive separation of gas streams
US10080992B2 (en) Apparatus and system for swing adsorption processes related thereto
ES2265322T3 (en) PROCEDURE AND SYSTEM FOR ADSORTION BY PRESSURE SWING IN SINGLE MILK.
JPH07108366B2 (en) Double adsorption method
CA2209441C (en) Multi-thermal pulse psa system
JPH0639230A (en) Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
JPH04267919A (en) Method and device for adsorption by rapid change in adiabatic compression in separation of multicomponent gas
JPH0531481B2 (en)
US11103826B2 (en) Use of Type V adsorbent and gas concentration for gas adsorption and capture
JP5968252B2 (en) Methane gas enrichment method
JPH11239711A (en) Psa method using simultaneous evacuation of top and bottom of adsorbent bed
JP6351721B2 (en) Gas concentration method
JP4189344B2 (en) Carbon dioxide separation and recovery system
KR100845518B1 (en) Krypton gas and xenon gas separation method and apparatus
KR102715922B1 (en) Gas separation device and gas separation method
TW201637706A (en) Purification method and purification system for helium gas
JP2511516B2 (en) Unheated adsorption device and method combining air purification and fractionation
KR102057024B1 (en) Process and system for swing adsorption using the demetrizer's overhead stream as a purge gas
AU2016201267B2 (en) A plant and process for simutaneous recovering multiple gas products from petrochemical offgas
KR100862080B1 (en) Pressure Swing Adsorption Method And Apparatus thereof
JP2000279740A (en) Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent
KR100619290B1 (en) Medium and low purity gas concentrator
JP3610253B2 (en) Mixed gas adsorption separation method
JP6325437B2 (en) Nitrogen gas separation method and nitrogen gas separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4