[go: up one dir, main page]

JP4188500B2 - Nitrogen-containing organophosphorus compound and flame retardant resin composition - Google Patents

Nitrogen-containing organophosphorus compound and flame retardant resin composition Download PDF

Info

Publication number
JP4188500B2
JP4188500B2 JP15543699A JP15543699A JP4188500B2 JP 4188500 B2 JP4188500 B2 JP 4188500B2 JP 15543699 A JP15543699 A JP 15543699A JP 15543699 A JP15543699 A JP 15543699A JP 4188500 B2 JP4188500 B2 JP 4188500B2
Authority
JP
Japan
Prior art keywords
nitrogen
resin
organophosphorus compound
flame retardant
containing organophosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15543699A
Other languages
Japanese (ja)
Other versions
JP2000344788A (en
Inventor
誠 寺本
英明 大西
寛史 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Original Assignee
DKS CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD. filed Critical DKS CO. LTD.
Priority to JP15543699A priority Critical patent/JP4188500B2/en
Publication of JP2000344788A publication Critical patent/JP2000344788A/en
Application granted granted Critical
Publication of JP4188500B2 publication Critical patent/JP4188500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に樹脂の難燃剤として有用である含窒素有機リン化合物、及び該化合物を含有する難燃性樹脂組成物に関するものである。
【0002】
【従来の技術】
従来より、樹脂の難燃剤としては様々な物質が用いられており、近年、安全性等の理由からハロゲンを含有しない難燃剤が注目されている。
【0003】
例えば、熱可塑性樹脂の難燃剤については、ABS樹脂(アクリルニトリル−ブタジエン−スチレン共重合体)とポリカーボネートとのアロイ、又は、耐衝撃性ポリスチレンとポリフェニレンオキサイドとのアロイにおいて、ハロゲンを含有しない難燃性樹脂を得るために、リン酸エステル化合物やメラミンシアヌレート等を添加することが知られている。また、フェノール系やエポキシ系の熱硬化性樹脂の難燃剤についても同様に、リン酸エステル化合物やメラミン誘導体、トリアジン誘導体を使用する方法が数多く報告されている。
【0004】
また、難燃剤として、リン元素と窒素元素が相乗効果を示すことは、周知の事実であり、例えば、リン源としてポリリン酸アンモニウムや芳香族リン酸エステルが、窒素源としてメラミンが併用使用されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの難燃剤は、耐水性や熱安定性が低いという問題がある。また、樹脂に添加したときに目的とする難燃性を得ようとすると難燃剤が多量に必要となり、その結果、成形加工性が悪化したり、相溶性が悪いことに起因する分散不良による樹脂物性の低下を招くという問題がある。
【0006】
特開平8−12692号公報には、このような難燃剤について、リンと窒素の含有率が高く、耐水性でかつ熱安定性の良い含窒素有機リン化合物が提案されている。しかしながら、この含窒素有機リン化合物は、ハロリン酸ジエステルにメラミンを脱ハロゲン化水素反応させることにより得られる、メラミン誘導体の有機リン化合物であり、後記の比較例からも明らかなように、樹脂との相溶性が悪いことに起因して分散不良により樹脂物性の低下をきたし、また、耐水性も十分ではないという問題がある。
【0007】
本発明は、上記の問題点に鑑みてなされたものであり、難燃性、耐水性および熱安定性に優れ、しかも樹脂に添加したときに樹脂物性の低下の小さい含窒素有機リン化合物、およびこの化合物を配合した難燃性に優れる樹脂組成物を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成するべく鋭意検討した結果、分子中に少なくとも一つのリン酸アミド基を有する特定のグアナミン誘導体である含窒素有機リン化合物が、樹脂に添加して使用した場合に、難燃性、耐水性および熱安定性に優れ、しかも樹脂物性の低下も小さいことを見いだし、本発明を完成するに至った。
【0009】
本発明の含窒素有機リン化合物は、下記一般式(1)で示されるものである。
【0010】
【化3】

Figure 0004188500
ここで、mは1または2であり、R、RおよびRは、それぞれ独立に、C1〜C10のアルキル基、アルケニル基もしくはシクロアルキル基、または、
【化4】
Figure 0004188500
(RはC1〜C10のアルキル基、nは0〜3の整数である。)で表されるアリール基であり、R、R、Rは、それぞれ独立に、水素またはC1〜C10のアルキル基、アルケニル基もしくはシクロアルキル基である。
【0011】
また、本発明の難燃性樹脂組成物は、樹脂と、上記一般式(1)で示される含窒素有機リン化合物を含有するものである。
【0012】
【発明の実施の形態】
本発明の含窒素有機リン化合物は、例として、ハロリン酸ジエステルとグアナミン類の脱ハロゲン化水素反応により得られる。
【0013】
ここで、一方の原料であるハロリン酸ジエステルは、下記一般式(2)で表される。
【0014】
【化5】
Figure 0004188500
式中、RおよびRは上記一般式(1)と同じであり、Xはハロゲン原子、例えば塩素又は臭素である。
【0015】
より具体的には、クロロリン酸ジフェニル、クロロリン酸ジキシリル、クロロリン酸ジクレジル、ブロモリン酸ジフェニルが好適な例として挙げられる。
【0016】
他方の原料であるグアナミン類は、下記一般式(3)で表される。
【0017】
【化6】
Figure 0004188500
式中、R、R、RおよびRは上記一般式(1)と同じである。
【0018】
より具体的には、ベンゾグアナミン、アセトグアナミンが好適な例として挙げられる。
【0019】
上記ハロリン酸ジエステルとグアナミン類の脱ハロゲン化水素反応は、通常、脱ハロゲン化水素剤を用いて、無水条件下、80〜200℃の温度で、2〜10時間行う。但し、脱ハロゲン化水素剤は使用しなくても良い。
【0020】
ここで、脱ハロゲン化水素剤としては、トリエチルアミン、ピリジン等の第3級アミンを好適な例として挙げることができる。この場合、使用するアミンの量は、ハロリン酸ジエステルの等モル〜2倍モルが望ましい。
【0021】
本発明の含窒素有機リン化合物はあらゆる樹脂に対して使用することができる。すなわち、本発明の難燃性樹脂組成物において、前記含窒素有機リン化合物と配合する樹脂は、特に限定されない。例えば、ポリオレフィン、ポリスチレン、ABS樹脂、ポリエステル、ポリカーボネート、ポリアミド、ポリフェニレンオキサイド等の熱可塑性樹脂だけでなく、エポキシ樹脂、フェノール樹脂、ウレタン樹脂等の熱硬化性樹脂にも使用可能である。
【0022】
該含窒素有機リン化合物の樹脂への配合量は、使用する樹脂や必要とされる難燃性能によって異なるが、通常、樹脂100重量部に対して1〜100重量部である。
【0023】
また、該含窒素有機リン化合物の樹脂への配合方法は、特に限定されない。熱硬化性樹脂に配合する場合、例えば、予め樹脂と含窒素有機リン化合物を十分に混合した後、硬化させることができる。また、熱可塑性樹脂に配合する場合、例えば、二軸押出機等で樹脂に含窒素有機リン化合物を混練した後、射出成形機等で成形することができる。
【0024】
なお、本発明の難燃性樹脂組成物においては、他の難燃剤を併用したり、他の配合剤、例えばタルク、マイカのような無機充填剤、ガラス繊維や炭素繊維のような補強剤、紫外線吸収剤、光安定剤、酸化防止剤、熱安定剤、帯電防止剤、顔料、離型剤、相溶化剤、耐衝撃改良剤等を添加してもよい。
【0025】
【実施例】
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0026】
実施例1
撹拌機、滴下ロート、冷却器および温度計を備えた500mlの三つ口フラスコに、クロロリン酸ジフェニル53.7g(0.2mol)、ベンゾグアナミン18.7g(0.1mol)、トリエチルアミン22.3g(0.22mol)、ジオキサン150mlを仕込み、100℃で3時間反応した。この反応物に塩化メチレン300mlを加えて希釈し、希塩酸で洗浄した後、水洗した。その後、塩化メチレンを留去し、メタノール500ml中に加えて結晶を析出させ、ろ過、乾燥して、生成物(A)41.3gを得た。
【0027】
この生成物(A)のIRスペクトルを測定したところ、ν=1255cm−1にP=O伸縮振動のピーク、ν=963cm−1にP−N伸縮振動およびP−O伸縮振動のピークがあった。また、DTA(示差熱分析)を測定したところ、162.8℃と181.2℃に融点と思われるピークが観測された。また、1%減量温度は316℃、5%減量温度は335℃であった。
【0028】
この生成物(A)について、ゲルパーミエーションクロマトグラフィー(GPC)測定すると2つのピークが現れ、これらはUV(254nm)検出器で測定したピーク面積比で61対39であつた。
【0029】
それぞれを分取し、質量分析したところ、生成物(A)は、下記式(A1)で表されるベンゾグアナミンのモノリン酸アミド(分子量:420)39重量%と、下記式(A2)で表されるベンゾグアナミンのジリン酸アミド(分子量:652)61重量%とからなることが分かった。
【0030】
【化7】
Figure 0004188500
実施例2
撹拌機、滴下ロート、冷却器および温度計を備えた500mlの三つ口フラスコに、クロロリン酸ジキシリル82.1g(0.22mol)、ベンゾグアナミン18.7g(0.1mol)、トリエチルアミン24.3g(0.24mol)、ジオキサン150mlを仕込み、100℃で6時間反応した。この反応物に水150mlを加えて希釈し、塩酸でpH=1に調整した後、メタノール500ml中に加えて結晶を析出させ、ろ過、乾燥して、生成物(B)51.0gを得た。
【0031】
この生成物(B)のIRスペクトルを測定したところ、ν=1248cm−1,1267cm−1にP=O伸縮振動のピーク、ν=939cm−1,969cm−1にP−N伸縮振動およびP−O伸縮振動のピークがあった。また、DTA(示差熱分析)を測定したところ、271.0℃と274.7℃に融点と思われるピークが観測された。また、1%減量温度は330℃、5%減量温度は346℃であった。
【0032】
この生成物(B)について、ゲルパーミエーションクロマトグラフィー(GPC)測定すると2つのピークが現れ、これらはUV(254nm)検出器で測定したピーク面積比で15対85であった。
【0033】
それぞれを分取し、質量分析したところ、生成物(B)は、下記式(B1)で表されるベンゾグアナミンのモノリン酸アミド(分子量:476)85重量%と、下記式(B2)で表されるベンゾグアナミンのジリン酸アミド(分子量:764)15重量%とからなることが分かった。
【0034】
【化8】
Figure 0004188500
実施例3
撹拌機、滴下ロート、冷却器および温度計を備えた500mlの三つ口フラスコに、クロロリン酸ジキシリル89.6g(0.24mol)、アセトグアナミン15.0g(0.12mol)、トリエチルアミン50.6g(0.50mol)、ジオキサン150mlを仕込み、100℃で6時間反応した。この反応物に塩化メチレン150mlを加えて希釈し、塩酸で洗浄した後、塩化メチレンを留去し、イソプロパノール500ml中に加えて結晶を析出させた。ろ過後、イソプロパノールで再結晶したものを、ろ過、乾燥して、生成物(C)53.4gを得た。
【0035】
この生成物(C)のIRスペクトルを測定したところ、ν=1248cm−1,1267cm−1にP=O伸縮振動のピーク、ν=936cm−1,967cm−1にP−N伸縮振動およびP−O伸縮振動のピークがあった。また、DTA(示差熱分析)を測定したところ、207.5℃と241.6℃に融点と思われるピークが観測された。また、1%減量温度は209℃、5%減量温度は296℃であった。
【0036】
この生成物(C)について、ゲルパーミエーションクロマトグラフィー(GPC)測定すると2つのピークが現れ、これらはUV(254nm)検出器で測定したピーク面積比で26対74であった。
【0037】
それぞれを分取し、質量分析したところ、生成物(C)は、下記式(C1)で表されるアセトグアナミンのモノリン酸アミド(分子量:357)74重量%と、下記式(C2)で表されるアセトグアナミンのジリン酸アミド(分子量:589)26重量%とからなることが分かった。
【0038】
【化9】
Figure 0004188500
実施例4〜6および比較例1
樹脂としてビスフェノールA型エポキシ樹脂(商品名:エピコート828、油化シェルエポキシ社製)89重量部、硬化剤としてジエチレントリアミン11重量部を用いて、難燃剤15重量部と混合した。難燃剤としては、実施例4では上記実施例1の生成物(A)を、実施例5では上記実施例2の生成物(B)を、実施例6では上記実施例3の生成物(C)を、比較例1ではポリリン酸アンモニウム(商品名:スミセーフ−P、住友化学工業(株)製)を、それぞれ用いた。
【0039】
得られた混合物は、脱気後、60℃で30分間加熱し、その後、100℃で15分間、熱プレスを行って、平板を作成した。得られた平板を切り出して、所定の形状の試験片を作成し、難燃性試験および耐水性試験を行った。結果を表1に示す。
【0040】
【表1】
Figure 0004188500
各測定方法は以下の通りである。
【0041】
難燃性試験:酸素指数の測定をJIS−K−7201に準拠して行った。また、UL94に準拠した垂直燃焼試験(V−0〜V−2)を行った(厚み1/8インチの試験片)。
【0042】
耐水性試験:2.5cm×2.5cm(厚さ1/8インチ)の試験片を80℃の温水中に2日間浸漬したときの難燃剤の溶出率を調べた。
【0043】
実施例7〜9および比較例2,3
樹脂としてポリプロピレン(商品名:チッソポリプロK1014、チッソ社製)100重量部を用いて、難燃剤20重量部を配合し、200℃で熱ロールにより混練した。難燃剤としては、実施例7では上記実施例1の生成物(A)を、実施例8では上記実施例2の生成物(B)を、実施例9では上記実施例3の生成物(C)を、比較例2ではポリリン酸アンモニウム(商品名:スミセーフ−P、住友化学工業(株)製)を、比較例3では下記式(D)で表されるメラミン誘導体の含窒素有機リン化合物を、それぞれ用いた。
【0044】
【化10】
Figure 0004188500
得られた混練物を200℃、150kg/cmで3分間熱プレスして、所定の形状の試験片を作成し、難燃性試験、引張試験、耐水性試験および耐熱性試験を行った。結果を表2に示す。
【0045】
【表2】
Figure 0004188500
ここで、引張試験と耐熱性試験の測定方法は以下の通りである。
【0046】
引張試験:JIS−K−7113に準拠して、2号試験片を用いて行った。
【0047】
耐熱性試験:射出成型機に200℃で40分間滞留させた後、色調変化を色差計で測定した。
【0048】
【発明の効果】
上記実施例にも見られるように、本発明の含窒素有機リン化合物を熱可塑性樹脂もしくは熱硬化性樹脂に添加して使用した場合には、難燃性、耐水性、熱安定性に優れ、しかも物性低下の小さい難燃性樹脂が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrogen-containing organophosphorus compound that is mainly useful as a flame retardant for resins, and a flame retardant resin composition containing the compound.
[0002]
[Prior art]
Conventionally, various substances have been used as resin flame retardants, and in recent years, flame retardants containing no halogen have attracted attention for safety reasons.
[0003]
For example, as a flame retardant for a thermoplastic resin, a flame retardant containing no halogen in an alloy of ABS resin (acrylonitrile-butadiene-styrene copolymer) and polycarbonate, or an alloy of impact-resistant polystyrene and polyphenylene oxide. It is known to add a phosphate ester compound, melamine cyanurate or the like in order to obtain a functional resin. Similarly, many methods using phosphate ester compounds, melamine derivatives, and triazine derivatives have been reported for the flame retardants of phenol-based and epoxy-based thermosetting resins.
[0004]
In addition, it is a well-known fact that a phosphorus element and a nitrogen element exhibit a synergistic effect as a flame retardant. For example, ammonium phosphate or aromatic phosphate is used in combination as a phosphorus source, and melamine is used in combination as a nitrogen source. Yes.
[0005]
[Problems to be solved by the invention]
However, these flame retardants have a problem of low water resistance and thermal stability. In addition, a large amount of flame retardant is required to obtain the desired flame retardancy when added to the resin, and as a result, the resin due to poor dispersion due to poor moldability or poor compatibility There is a problem that the physical properties are lowered.
[0006]
Japanese Patent Application Laid-Open No. 8-12692 proposes a nitrogen-containing organophosphorus compound having a high phosphorus and nitrogen content, water resistance and good thermal stability for such a flame retardant. However, this nitrogen-containing organophosphorus compound is an organophosphorus compound of a melamine derivative obtained by dehydrohalogenating a haloamine diester with a halophosphate diester. As is clear from the comparative examples described later, Due to the poor compatibility, there is a problem that the physical properties of the resin are lowered due to poor dispersion and the water resistance is not sufficient.
[0007]
The present invention has been made in view of the above problems, and is a nitrogen-containing organophosphorus compound that is excellent in flame retardancy, water resistance and thermal stability, and has a small decrease in resin physical properties when added to a resin, and It aims at providing the resin composition excellent in the flame retardance which mix | blended this compound.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that when a nitrogen-containing organophosphorus compound that is a specific guanamine derivative having at least one phosphoramide group in the molecule is added to a resin In addition, the present inventors have found that the flame retardancy, water resistance and thermal stability are excellent, and that the deterioration of the resin physical properties is small, and the present invention has been completed.
[0009]
The nitrogen-containing organophosphorus compound of the present invention is represented by the following general formula (1).
[0010]
[Chemical 3]
Figure 0004188500
Here, m is 1 or 2, and R 1 , R 2 and R 3 are each independently a C1-C10 alkyl group, alkenyl group or cycloalkyl group, or
[Formula 4]
Figure 0004188500
Wherein R 7 is a C1 to C10 alkyl group and n is an integer of 0 to 3, and R 4 , R 5 , and R 6 are each independently hydrogen or C1 to C10. An alkyl group, an alkenyl group or a cycloalkyl group.
[0011]
Moreover, the flame-retardant resin composition of this invention contains resin and the nitrogen-containing organophosphorus compound shown by the said General formula (1).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The nitrogen-containing organophosphorus compound of the present invention is obtained, for example, by a dehydrohalogenation reaction between a halophosphoric acid diester and a guanamine.
[0013]
Here, the halophosphoric diester which is one raw material is represented by the following general formula (2).
[0014]
[Chemical formula 5]
Figure 0004188500
In the formula, R 1 and R 2 are the same as those in the general formula (1), and X is a halogen atom such as chlorine or bromine.
[0015]
More specifically, preferred examples include diphenyl chlorophosphate, dixyl chlorophosphate, dicresyl chlorophosphate, and diphenyl bromophosphate.
[0016]
The other raw material, guanamines, is represented by the following general formula (3).
[0017]
[Chemical 6]
Figure 0004188500
In the formula, R 3 , R 4 , R 5 and R 6 are the same as those in the general formula (1).
[0018]
More specifically, preferred examples include benzoguanamine and acetoguanamine.
[0019]
The dehydrohalogenation reaction of the halophosphate diester and guanamine is usually performed using a dehydrohalogenating agent at a temperature of 80 to 200 ° C. for 2 to 10 hours under anhydrous conditions. However, a dehydrohalogenating agent need not be used.
[0020]
Here, as a dehydrohalogenating agent, tertiary amines, such as a triethylamine and a pyridine, can be mentioned as a suitable example. In this case, the amount of amine to be used is preferably equimolar to double molar of the halophosphoric acid diester.
[0021]
The nitrogen-containing organophosphorus compound of the present invention can be used for any resin. That is, in the flame retardant resin composition of the present invention, the resin blended with the nitrogen-containing organic phosphorus compound is not particularly limited. For example, it can be used not only for thermoplastic resins such as polyolefin, polystyrene, ABS resin, polyester, polycarbonate, polyamide and polyphenylene oxide, but also for thermosetting resins such as epoxy resin, phenol resin and urethane resin.
[0022]
The amount of the nitrogen-containing organophosphorus compound added to the resin varies depending on the resin used and the required flame retardancy, but is usually 1 to 100 parts by weight with respect to 100 parts by weight of the resin.
[0023]
Moreover, the compounding method of this nitrogen-containing organophosphorus compound to resin is not specifically limited. When blended with a thermosetting resin, for example, the resin and the nitrogen-containing organophosphorus compound can be sufficiently mixed and then cured. Moreover, when mix | blending with a thermoplastic resin, after knead | mixing a nitrogen-containing organophosphorus compound with resin with a twin-screw extruder etc., it can shape | mold with an injection molding machine etc., for example.
[0024]
In the flame-retardant resin composition of the present invention, other flame retardants are used in combination, other compounding agents, for example, inorganic fillers such as talc and mica, reinforcing agents such as glass fibers and carbon fibers, Ultraviolet absorbers, light stabilizers, antioxidants, heat stabilizers, antistatic agents, pigments, mold release agents, compatibilizers, impact resistance improvers, and the like may be added.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
[0026]
Example 1
A 500 ml three-necked flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer was charged with 53.7 g (0.2 mol) of diphenyl chlorophosphate, 18.7 g (0.1 mol) of benzoguanamine, and 22.3 g (0 of triethylamine). .22 mol) and 150 ml of dioxane were charged and reacted at 100 ° C. for 3 hours. The reaction product was diluted with 300 ml of methylene chloride, washed with dilute hydrochloric acid, and then washed with water. Thereafter, methylene chloride was distilled off, and the residue was added to 500 ml of methanol to precipitate crystals, filtered and dried to obtain 41.3 g of product (A).
[0027]
As a result of measuring an IR spectrum of the product (A), P to ν = 1255cm -1 = O stretching vibration peak, there was a peak of P-N stretching vibration and P-O stretching vibration ν = 963cm -1 . Moreover, when DTA (differential thermal analysis) was measured, peaks considered to be melting points were observed at 162.8 ° C. and 181.2 ° C. The 1% weight loss temperature was 316 ° C, and the 5% weight loss temperature was 335 ° C.
[0028]
For this product (A), two peaks appeared when measured by gel permeation chromatography (GPC), and the peak area ratio measured by a UV (254 nm) detector was 61:39.
[0029]
When each was fractionated and subjected to mass spectrometry, the product (A) was represented by 39% by weight of benzoguanamine monophosphate amide (molecular weight: 420) represented by the following formula (A1) and the following formula (A2). Benzoguanamine diphosphoric acid amide (molecular weight: 652) 61% by weight.
[0030]
[Chemical 7]
Figure 0004188500
Example 2
In a 500 ml three-necked flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer, 82.1 g (0.22 mol) of dixylchlorophosphate, 18.7 g (0.1 mol) of benzoguanamine, 24.3 g of triethylamine (0 .24 mol) and 150 ml of dioxane were charged and reacted at 100 ° C. for 6 hours. The reaction product was diluted by adding 150 ml of water, adjusted to pH = 1 with hydrochloric acid, then added to 500 ml of methanol to precipitate crystals, filtered and dried to obtain 51.0 g of product (B). .
[0031]
As a result of measuring an IR spectrum of the product (B), ν = 1248cm -1 , a peak of P = O stretching vibration 1267cm -1, ν = 939cm -1, P-N stretching vibration and 969cm -1 P- There was a peak of O stretching vibration. Moreover, when DTA (differential thermal analysis) was measured, peaks considered to be melting points were observed at 271.0 ° C. and 274.7 ° C. The 1% weight loss temperature was 330 ° C, and the 5% weight loss temperature was 346 ° C.
[0032]
About this product (B), when the gel permeation chromatography (GPC) measurement, two peaks appeared, and these were 15:85 in the peak area ratio measured with the UV (254 nm) detector.
[0033]
When each was fractionated and subjected to mass spectrometry analysis, the product (B) was represented by 85 wt% of benzoguanamine monophosphate amide (molecular weight: 476) represented by the following formula (B1) and the following formula (B2). Benzoguanamine diphosphoric acid amide (molecular weight: 764) and 15% by weight.
[0034]
[Chemical 8]
Figure 0004188500
Example 3
In a 500 ml three-necked flask equipped with a stirrer, a dropping funnel, a condenser and a thermometer, 89.6 g (0.24 mol) of dixyl chlorophosphate, 15.0 g (0.12 mol) of acetoguanamine, 50.6 g of triethylamine ( 0.50 mol) and 150 ml of dioxane were charged and reacted at 100 ° C. for 6 hours. The reaction product was diluted with 150 ml of methylene chloride, washed with hydrochloric acid, and then the methylene chloride was distilled off and added to 500 ml of isopropanol to precipitate crystals. After filtration, the product recrystallized with isopropanol was filtered and dried to obtain 53.4 g of product (C).
[0035]
As a result of measuring an IR spectrum of the product (C), ν = 1248cm -1 , a peak of P = O stretching vibration 1267cm -1, ν = 936cm -1, P-N stretching vibration and 967 cm -1 P- There was a peak of O stretching vibration. Moreover, when DTA (differential thermal analysis) was measured, the peak considered to be melting | fusing point was observed at 207.5 degreeC and 241.6 degreeC. The 1% weight loss temperature was 209 ° C, and the 5% weight loss temperature was 296 ° C.
[0036]
About this product (C), when the gel permeation chromatography (GPC) measurement, two peaks appeared, and these were 26:74 in the peak area ratio measured with the UV (254 nm) detector.
[0037]
When each was fractionated and subjected to mass spectrometry analysis, the product (C) was represented by 74 wt% of acetoguanamine monophosphate amide (molecular weight: 357) represented by the following formula (C1) and the following formula (C2). Of acetoguanamine, which is 26% by weight (molecular weight: 589).
[0038]
[Chemical 9]
Figure 0004188500
Examples 4 to 6 and Comparative Example 1
A resin was mixed with 15 parts by weight of a flame retardant using 89 parts by weight of a bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.) and 11 parts by weight of diethylenetriamine as a curing agent. Examples of the flame retardant include the product (A) of Example 1 in Example 4, the product (B) of Example 2 in Example 5, and the product (C) of Example 3 in Example 6. In Comparative Example 1, ammonium polyphosphate (trade name: Sumisafe-P, manufactured by Sumitomo Chemical Co., Ltd.) was used.
[0039]
The obtained mixture was degassed and heated at 60 ° C. for 30 minutes, and then subjected to hot pressing at 100 ° C. for 15 minutes to prepare a flat plate. The obtained flat plate was cut out to prepare a test piece having a predetermined shape, and a flame retardancy test and a water resistance test were performed. The results are shown in Table 1.
[0040]
[Table 1]
Figure 0004188500
Each measuring method is as follows.
[0041]
Flame retardancy test: The oxygen index was measured according to JIS-K-7201. Moreover, the vertical combustion test (V-0-V-2) based on UL94 was done (test piece of thickness 1/8 inch).
[0042]
Water resistance test: The elution rate of the flame retardant was examined when a 2.5 cm × 2.5 cm (1/8 inch thick) test piece was immersed in warm water at 80 ° C. for 2 days.
[0043]
Examples 7 to 9 and Comparative Examples 2 and 3
Using 100 parts by weight of polypropylene (trade name: Chisso Polypro K1014, manufactured by Chisso Corporation) as a resin, 20 parts by weight of a flame retardant was blended and kneaded at 200 ° C. with a hot roll. As a flame retardant, the product (A) of Example 1 is used in Example 7, the product (B) of Example 2 is used in Example 8, and the product (C) of Example 3 is used in Example 9. In Comparative Example 2, ammonium polyphosphate (trade name: Sumisafe-P, manufactured by Sumitomo Chemical Co., Ltd.) is used. In Comparative Example 3, a nitrogen-containing organophosphorus compound of the melamine derivative represented by the following formula (D) is used. , Respectively.
[0044]
Embedded image
Figure 0004188500
The obtained kneaded material was hot-pressed at 200 ° C. and 150 kg / cm 2 for 3 minutes to prepare a test piece having a predetermined shape, and subjected to a flame retardancy test, a tensile test, a water resistance test, and a heat resistance test. The results are shown in Table 2.
[0045]
[Table 2]
Figure 0004188500
Here, the measuring methods of the tensile test and the heat resistance test are as follows.
[0046]
Tensile test: A test piece No. 2 was used in accordance with JIS-K-7113.
[0047]
Heat resistance test: After being kept in an injection molding machine at 200 ° C. for 40 minutes, the color change was measured with a color difference meter.
[0048]
【The invention's effect】
As seen in the above examples, when the nitrogen-containing organophosphorus compound of the present invention is used by being added to a thermoplastic resin or a thermosetting resin, it is excellent in flame retardancy, water resistance, and thermal stability. In addition, a flame retardant resin having a small decrease in physical properties can be obtained.

Claims (2)

下記一般式(1)で示される含窒素有機リン化合物。
Figure 0004188500
(式中、mは1または2であり、R、RおよびRは、それぞれ独立に、C1〜C10のアルキル基、アルケニル基もしくはシクロアルキル基、または、
Figure 0004188500
(ここで、RはC1〜C10のアルキル基、nは0〜3の整数である。)で表されるアリール基であり、R、R、Rは、それぞれ独立に、水素またはC1〜C10のアルキル基、アルケニル基もしくはシクロアルキル基である。)
A nitrogen-containing organophosphorus compound represented by the following general formula (1).
Figure 0004188500
(In the formula, m is 1 or 2, and R 1 , R 2 and R 3 are each independently a C1-C10 alkyl group, alkenyl group or cycloalkyl group, or
Figure 0004188500
(Wherein R 7 is a C1 to C10 alkyl group, n is an integer of 0 to 3), and R 4 , R 5 , and R 6 are each independently hydrogen or A C1-C10 alkyl group, an alkenyl group or a cycloalkyl group; )
樹脂と、請求項1記載の含窒素有機リン化合物を含有する難燃性樹脂組成物。A flame retardant resin composition comprising a resin and the nitrogen-containing organophosphorus compound according to claim 1.
JP15543699A 1999-06-02 1999-06-02 Nitrogen-containing organophosphorus compound and flame retardant resin composition Expired - Lifetime JP4188500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15543699A JP4188500B2 (en) 1999-06-02 1999-06-02 Nitrogen-containing organophosphorus compound and flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15543699A JP4188500B2 (en) 1999-06-02 1999-06-02 Nitrogen-containing organophosphorus compound and flame retardant resin composition

Publications (2)

Publication Number Publication Date
JP2000344788A JP2000344788A (en) 2000-12-12
JP4188500B2 true JP4188500B2 (en) 2008-11-26

Family

ID=15606000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15543699A Expired - Lifetime JP4188500B2 (en) 1999-06-02 1999-06-02 Nitrogen-containing organophosphorus compound and flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP4188500B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548901B2 (en) * 2000-06-14 2010-09-22 株式会社Adeka Flame retardant epoxy resin composition
TW593526B (en) * 2001-09-20 2004-06-21 Wangsuen Su Jen Phosphorus group containing flame retardant hardener, advanced epoxy resins and cured epoxy resins thereof
CN102190814B (en) * 2011-03-25 2012-11-21 武汉工程大学 Hexaphenyl phosphate ester melamine salt fire retardant and method for preparing same
CN110845529B (en) * 2019-11-23 2024-02-09 合肥学院 Phosphorus-containing polyethylene polyamine flame retardant and preparation method thereof

Also Published As

Publication number Publication date
JP2000344788A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JP3885263B2 (en) Nitrogen-containing organophosphate compound and flame retardant resin composition comprising the same
EP2173801B1 (en) Flame retardant engineering polymer compositions
US9884961B2 (en) Phosphazene flame retardant polycarbonate compounds
CN111542587B (en) Flame retardant composition and flame-retardant thermoplastic resin composition containing the same
JP2004346325A (en) Titanium-containing phosphinate flame retardants
JP3122818B1 (en) Flame retardant aromatic polyamide resin composition
JP4188500B2 (en) Nitrogen-containing organophosphorus compound and flame retardant resin composition
JP3508360B2 (en) Flame retardant and flame retardant resin composition
US6617379B2 (en) Flame retardant polymer compositions
ITMI941088A1 (en) NEW POLI (PENTAERITRIL DIPHOSPHONATE) AND ITS USE IN SELF-EXTINGUISHING THERMOPLASTIC POLYMERIC COMPOSITIONS
JP2000256551A (en) Flame-retardant polyphenylene ether-based resin composition
US5281637A (en) Flameproofed thermoplastic polyester molding material and its use
JP2020011924A (en) Flame-retardant compound, lignocellulose and wood powder chemically modified with the flame-retardant compound, and resin composition containing the same
JP2004155802A (en) Flame retardant resin composition
JP2001354684A (en) Nonhalogen nitrogen-containing organophosphorus compound and flame-retardant resin composition containing the same
JP2000256378A (en) Silicon-containing organic phosphoric acid compound, method for producing the same, flame retardant containing the same, and flame retardant resin composition
Liu et al. Effect of a novel intumescent retardant for ABS with synergist Al (H 2 PO 2) 3
JP2732237B2 (en) Phosphate ester compound, flame retardant and flame retardant resin composition
JP3818228B2 (en) Phosphazene compound, production method and use thereof
JPH05163288A (en) Phosphonate compound, resin-compounding agent and flame-retardant thermoplastic resin composition
JP2003020399A (en) Flame-retardant polyphenylene ether resin composition
KR100490839B1 (en) Styrene based thermoplastic resin composition having superior fireproof properties
JP3484803B2 (en) Flame retardant resin composition
US20230227652A1 (en) Polyphosphonate Resin Composition and Molded Article Prepared Therefrom
JPH09208959A (en) Self-extinguishing composition and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Ref document number: 4188500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 6

EXPY Cancellation because of completion of term