JP4187931B2 - 2組の電極を備えた膨張可能なカテーテルとその使用方法 - Google Patents
2組の電極を備えた膨張可能なカテーテルとその使用方法 Download PDFInfo
- Publication number
- JP4187931B2 JP4187931B2 JP2000565801A JP2000565801A JP4187931B2 JP 4187931 B2 JP4187931 B2 JP 4187931B2 JP 2000565801 A JP2000565801 A JP 2000565801A JP 2000565801 A JP2000565801 A JP 2000565801A JP 4187931 B2 JP4187931 B2 JP 4187931B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- leads
- lead
- catheter
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title description 41
- 210000003484 anatomy Anatomy 0.000 claims abstract description 79
- 239000012530 fluid Substances 0.000 claims description 59
- 239000004020 conductor Substances 0.000 claims description 10
- 230000008602 contraction Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 210000003462 vein Anatomy 0.000 abstract description 231
- 208000014617 hemorrhoid Diseases 0.000 abstract description 26
- 210000003101 oviduct Anatomy 0.000 abstract description 19
- 230000000694 effects Effects 0.000 abstract description 17
- 208000000624 Esophageal and Gastric Varices Diseases 0.000 abstract description 14
- 208000024170 esophageal varices Diseases 0.000 abstract description 14
- 201000010120 esophageal varix Diseases 0.000 abstract description 14
- 238000010438 heat treatment Methods 0.000 abstract description 13
- 238000009826 distribution Methods 0.000 abstract description 10
- 230000010287 polarization Effects 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 56
- 239000008280 blood Substances 0.000 description 45
- 210000004369 blood Anatomy 0.000 description 45
- 238000011282 treatment Methods 0.000 description 45
- 239000011248 coating agent Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 206010056091 Varices oesophageal Diseases 0.000 description 13
- 239000012212 insulator Substances 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 238000002604 ultrasonography Methods 0.000 description 8
- 230000017531 blood circulation Effects 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 208000032843 Hemorrhage Diseases 0.000 description 6
- 230000000740 bleeding effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000015271 coagulation Effects 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000004064 dysfunction Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 210000002073 venous valve Anatomy 0.000 description 5
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 4
- 206010046996 Varicose vein Diseases 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000035602 clotting Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 210000003238 esophagus Anatomy 0.000 description 4
- 238000002594 fluoroscopy Methods 0.000 description 4
- 229960002897 heparin Drugs 0.000 description 4
- 229920000669 heparin Polymers 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 210000003752 saphenous vein Anatomy 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- 210000003423 ankle Anatomy 0.000 description 3
- 239000003146 anticoagulant agent Substances 0.000 description 3
- 229940127219 anticoagulant drug Drugs 0.000 description 3
- 239000000560 biocompatible material Substances 0.000 description 3
- 208000034158 bleeding Diseases 0.000 description 3
- 230000023555 blood coagulation Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000002683 foot Anatomy 0.000 description 3
- 201000007772 internal hemorrhoid Diseases 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 208000027185 varicose disease Diseases 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 206010015719 Exsanguination Diseases 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 206010061876 Obstruction Diseases 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 208000025865 Ulcer Diseases 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 201000002816 chronic venous insufficiency Diseases 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000002380 cytological effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000010339 dilation Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 210000003111 iliac vein Anatomy 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 210000001758 mesenteric vein Anatomy 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000000414 obstructive effect Effects 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 210000003240 portal vein Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 231100000397 ulcer Toxicity 0.000 description 2
- 238000012285 ultrasound imaging Methods 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 210000002620 vena cava superior Anatomy 0.000 description 2
- 201000002282 venous insufficiency Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 206010047141 Vasodilatation Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 210000003513 popliteal vein Anatomy 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 210000005070 sphincter Anatomy 0.000 description 1
- 210000000955 splenic vein Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000001631 vena cava inferior Anatomy 0.000 description 1
- 230000008320 venous blood flow Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22038—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with a guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22065—Functions of balloons
- A61B2017/22067—Blocking; Occlusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00404—Blood vessels other than those in or around the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00482—Digestive system
- A61B2018/00488—Esophagus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00589—Coagulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00898—Alarms or notifications created in response to an abnormal condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/124—Generators therefor switching the output to different electrodes, e.g. sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/1253—Generators therefor characterised by the output polarity monopolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
- A61B2090/3782—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/002—Irrigation
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Particle Accelerators (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Electron Sources, Ion Sources (AREA)
- Discharge Heating (AREA)
- Electrotherapy Devices (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrostatic Spraying Apparatus (AREA)
Description
本件は、1997年9月11日に出願された同時係属出願および1997年10月26日に出願された出願連続番号第08/958,766号の部分継続出願である。
【発明の属する技術分野】
【0002】
本発明は一般に、ファローピアン管や、表層静脈および貫通静脈、痔静脈、食道静脈などの(これらに限定されないが)静脈のような、中空の解剖学的構造体を収縮させるためのエネルギーを付与する方法および装置に関するものであり、より特定すると、高周波(RF)エネルギー、マイクロ波エネルギー、または、熱エネルギーを付与するための複数リードを備えた電極装置を利用する方法および装置に関連する。
【0003】
【従来の技術】
人間の下肢の静脈系は本質的に表層静脈系と深層静脈系とから構成されており、貫通静脈がこれら2つの静脈系を接続している。表層系は長い伏在静脈すなわち大伏在静脈と短い伏在静脈とを備えている。深層静脈系は前脛骨静脈と後脛骨静脈とを備えており、これらが連結し合って膝窩静脈を形成し、これが今度は、短い伏在静脈と接合されると、大腿静脈となる。
【0004】
静脈系は、血流を心臓に帰還させる方向に導く無数の一方向弁を備えている。静脈系は通常は2尖弁であり、各弁尖が血液の嚢または貯水器を形成しており、この血液は、逆行性血圧下で、弁尖の自由表面が一緒になって血液の逆流を阻止するようにさせるとともに、心臓へは順行性血流のみを許容するよう働く。不全症の弁が流路に在ると、弁尖が適切な封鎖を設けず、血液の逆行性の流れを止めることができないので、この弁は閉鎖不能となる。静脈弁が作用しないと、応力や圧力の増大が下肢静脈部やその上の組織の内部で発生し、時には、それ以上の弁機能不全を生じる結果となる。弁機能不全を原因とすることが多い2つの静脈症状としては、拡張蛇行静脈と、より症候的な慢性静脈不全症がある。
【0005】
拡張蛇行静脈の症状としては、下肢の表層静脈の拡張および蛇行が挙げられるが、この結果、顕著な変色、痛み、膨張と、多分、潰瘍が生じる。拡張蛇行静脈は1種以上の静脈弁の不全症が関与していることが多く、これにより表層静脈系内部の血液の逆流を許してしまう。これが深層静脈逆流と貫通静脈逆流を悪化させることにもなり得る。静脈の現行の治療は、静脈の抜去、結紮、さらに時としては、静脈の部分的移植のような外科手術処置手順を万全でないままに行っている。
【0006】
慢性静脈不全症は拡張蛇行静脈のさらに悪化した症状を含んでおり、これは、静脈弁部分の変性衰弱が原因であったり、或いは、脚、足首、足のような肉体の組織に作用する動水学的力が原因であったりする。静脈中の弁が作用しないと、静水圧が下手で次の静脈弁で増大し、そこの静脈を拡張させる。これが続くと、より多くの静脈弁が最後には作用しなくなる。それだけの静脈弁が作用しなくなると、足および足首より上の血液柱の有効高さが上昇し、足首や足の組織に及ぼされる重量と静水圧が増大する。弁機能不全の結果として血液柱の重量が臨界点に達すると、足首の潰瘍が成長し始め、最初は深層部分に発生したものが、最終的には表層に現れる。このような潰瘍は、深層静脈系や他の静脈系における弁機能不全のせいである劣悪な静脈血液循環のために、容易には治らない。
【0007】
上記以外の関連する静脈症状としては、拡張痔核や、食道静脈瘤が挙げられる。直腸静脈叢の圧力および拡張により、内部痔核が拡張し、かつ/または、脱出して、無理に肛門開口部を通り抜けることがある。痔核が脱出したままであると、かゆみや出血を含めて、かなり不快なことになり得る。このような脱出痔核からの静脈還流は肛門括約筋により阻害されることになり、これは絞扼痔核を生じる。血栓症は、脱出静脈内部の血液が凝固した場合に、その結果として生じる。この極度に苦痛に満ちた症状は浮腫や炎症を生じることがある。
【0008】
食道静脈瘤と呼ばれる静脈瘤は、下部食道の粘膜下組織に関する静脈系に形成されることがあり、拡張静脈から放血が生じる可能性がある。放血すなわち出血の原因は食道静脈瘤であることもあり、これは止血するのが困難となることがあり、治療しないままでいると、命を脅かす事態にまで発展する可能性がある。かかる静脈瘤は容易に糜爛となり、大量の消化管出血を生じる結果となる。
【0009】
滅菌その他を目的としたファロピアン管の結紮(管結紮)は、通常は、腹腔鏡検査法により実施される。医者はファロピアン管を1本または複数本剪断して、その端部を縛る。外部からの焼灼法またはクランプ法も利用可能である。全身麻酔または局所麻酔を利用しなければならない。上記方法の全てがファロピアン管の外側から実施される。
【0010】
痔核や食道静脈瘤は管腔内結紮により緩和することができる。本文中で使用された場合は、「結紮」または「管腔内結紮」という語は、管腔または中空の解剖学的構造内部からエネルギーを付与することによる管腔または中空の解剖学的構造の閉塞、崩壊、または、閉鎖を含む。本文中で使用された場合は、「結紮」または「管腔内結紮」という語は電気的結紮を含む。ファロピアン管結紮の場合は、ファロピアン管自体(ファロピアン内管)内部から結紮を実施して、外部からの方法に付随する外傷を回避するのが望ましい。
【0011】
結紮は、電極装置を通して付与されるエネルギーなどのエネルギーを利用した管腔の焼灼または凝固を含む。電極装置は管腔に導入されて、管腔壁に接触するように位置決めされる。適切に位置決めされると、高周波エネルギーが電極装置により壁に付与され、それにより、管腔の断面直径を縮小させる。静脈については、例えば、5mm(0.2インチ)から1mm(0.04インチ)までの静脈の断面直径の縮小は管腔を通る血液の流れをかなり低減し、有効な閉塞を生じる結果となる。効果的な閉塞または結紮に必要ではないが、静脈壁が完璧に崩壊することにより、静脈を通る血液の流れを遮断する管腔全体の閉鎖が生じる。同様に、ファロピアン管は、患者の殺菌を実施するのに十分なだけ崩壊させることが可能である。
【0012】
結紮を実施する1つの装置は、電極装置が遠位端に装着された管状シャフトを備えている。電気リードがシャフトを通り、シャフトの遠位端から近位端まで延びている。シャフトの近位端では、リードは電極コネクタ付近で終端するが、シャフトの遠位端では、リードは電極装置に接続されている。電気コネクタはリードと、通常は高周波(RF)発生装置である動力源との間にインターフェイスを設けている。RF発生装置は、通常はマイクロプロセッサである制御装置の誘導下で作動する。
【0013】
結紮装置はモノポーラー構成またはバイポーラー構成のいずれかで作動し得る。モノポーラー構成では、電極装置は、正極荷電または負極荷電された電極から構成されている。電極を通過する電流のための帰還経路が本体の外側に設けられており、具体例として、患者を大型の低インピーダンスパッドと物理的接触状態にすることにより設けられる。電流は結紮装置から患者を通って低インピーダンスパッドへと流れる。バイポーラ構成では、電極装置は、誘電材料により、或いは、空間関係などにより互いから分離された概ね同一寸法の、1対の互いに反対極性に荷電した電極から構成されている。従って、バイポーラモードでは、電流の帰還経路は、電極装置自体の電極(単数または複数)により設けられている。電流は一方の電極から組織を通って流れ、反対極性に荷電した電極を通って還流する。
【0014】
過剰加熱により生じた焼灼のせいである組織損傷、すなわち、炭化から保護するために、温度検知装置が電極装置に装着されている。温度検知装置は、静脈組織の温度を監視する熱電対であればよい。熱電対はシャフトによりRF発生装置および制御装置とのインターフェイスとして機能するとともに、制御装置に電気信号を供与するが、制御装置は温度を監視するとともに、温度に応じて電極装置を介して組織に付与されるエネルギーを調節する。
【0015】
結紮装置の全体的有効性は、装置の内部に包含される電極装置に大いに依存している。一定形状と一定寸法を有した中実装置を備えたモノポーラー電極装置およびバイポーラー電極装置は、幾つかの理由から、結紮装置の有効性を制限している。第1に、一定寸法の電極装置は通常は、静脈壁の周囲または内径のわずか1点で静脈壁と接触するにすぎない。その結果、RFエネルギーの付与は接触している静脈組織内部では大いに集中されているが、静脈組織の残余の部分を通るRF電流の流れは不釣合いに弱い。従って、接触点付近の静脈壁の領域は、静脈壁の他の領域よりも高速で崩壊し、静脈管腔の不均一な収縮を生じる結果となるが、この結果として、閉塞部の全体的強度が不適切となり、最終的には管腔が再度開く。不適切な閉塞を回避するには、RFエネルギーが延長期間にわたって付与されて、電極と接触していない組織を通って流れることを含め、熱エネルギーを発生しながら組織を通って流れ、その組織が十分に収縮するようにしなければならない。エネルギーの延長付与によって、容認できないレベルまで血液の温度を上昇させる可能性が一層高くなり、電極上や静脈中に相当量の熱により誘発された凝血塊を形成する結果となり得るが、これは望ましくない。これは、治療の前には静脈の放血により、また、温度調節された電力輸送の利用により防止することができる。
【0016】
第2に、一定寸法の電極装置を備えている結紮装置の有効性は、或る一定寸法の静脈に限定されている。電極装置よりも実質的に大きい直径を有している静脈を結紮しようと試みた結果として、すぐ上で説明したように静脈壁を不均一に加熱するばかりか、静脈径の不十分な収縮を生じる。電極装置の直径と相対的な静脈径が大きいほど、電極接触点から遠隔にある各点における静脈壁に付与されるエネルギーは小さくなる。従って、静脈組織が電極接触点で過剰焼灼状態になるまでは、静脈壁は完全には崩壊しないようになる可能性が大きくなる。そのような凝固作用が最初は静脈を閉塞しても、そのような閉塞は一時的にすぎず、つまり、凝固した血液が最終的には溶解して静脈を再疎通させる可能性がある。このような不適正の一解決策が、多様な直径を備えた交換可能な電極装置を有する装置である。別な解決策は、標的となる静脈の直径の正確な寸法を供えたカテーテルが必要な時に直ぐに使えるように、多数の異なる寸法を有する1組のカテーテルを備えておくことである。しかし、かかる解決策は、経済的に有効でないか、使用するのに冗漫となり得る。広範な寸法の管腔と一緒に使用できる単体のカテーテル装置を備えていることが望ましい。
【0017】
静脈に関して先に説明したけれども、このコンセプトは体内の他の中空の解剖学的構造にも同様に広く適用可能である。不必要な反復を避けることを考慮するにあたり、上記説明は一般に静脈に限定されている。
【0018】
拡張可能な電極装置の必要性と、標的となる解剖学的構造において、その壁の直径が電極装置の直径よりも大きい場合に、その壁の周囲帯状部に沿ってRFエネルギーをより均一に分布することができるようにすることにより、解剖学的構造のより予測可能かつより有効な閉塞を設けると同時に、熱により誘発される凝血塊の形成を最小限に抑制する方法の必要性とを、当業者は認識している。かかる装置および方法は、痔核、食道静脈瘤、ファロピアン管は元より、貫通静脈および表層静脈などの(それらに限定されないが)体内の全ての静脈の結紮に適用可能なのは当然である。本発明は上記のような必要性と上記以外の必要性を満たしている。
【0019】
【発明の概要】
簡単に、また、一般的に言うと、本発明は、静脈、ファロピアン管、痔核、または、食道静脈瘤などの中空の解剖学的構造の壁の広く周囲帯状部に沿ってエネルギーを付与するための装置および方法を提供している。この装置および方法に従ったエネルギーの付与の結果として、より均一かつ予測のできる組織の収縮を生じる。
【0020】
第1の局面では、中空の解剖学的構造にエネルギーを付与するための装置は、エネルギーが組織に付与される位置である作動端を備えたシャフトを有しているカテーテルと、カテーテルの作動端に搭載された第1の複数の伸張可能な電極リードであって、各リードが1つの電極を有している、そのような電極リードと、第1の複数の電極リードから分離され、かつ、第1の複数の電極リードから長軸線方向に間隔を設けられたカテーテルの作業端に搭載された第2の複数の伸張可能な電極リードであって、各リードが1つの電極を有している、そのような電極リードとを備えており、第1の複数の電極リードと第2の複数の電極リードの各々が、電極がカテーテルシャフトから外方向に配置される位置である伸張可能な位置と、電極がシャフトにもっと接近して配置される位置である収縮位置とを有しており、エネルギーを付与するための装置が、カテーテルに搭載された配備装置を更に備えており、配備装置は、選択された電極が収縮位置に存在している位置である第1の位置と、電極が伸張位置に存在している位置である第2の位置とを有している。より詳細な局面では、第1の複数の電極リードは、カテーテルシャフトから外方向に付勢されるように形成されており、配備装置は、可動鞘部材を備えており、鞘部材が第1の複数の電極リードをその少なくとも1部の上で包囲しているとともに、包囲されたリードを収縮位置へ閉じ込める第1の位置を有しており、可動鞘部材は、第1の複数の電極リードおよび第2の複数の電極リードが外方向に伸張できるようにされた第2の位置を有している。更に、第2の複数の電極リードは、カテーテルシャフトから外方向に付勢されるように形成されている。第1の位置に在る可動鞘部材は第2の複数の電極リードをその少なくとも1部の上で包囲するとともに、包囲されたリードを収縮位置に閉じ込める。
【0021】
更なる局面では、第1の複数の電極リードと第2の複数の電極リードには各リードの遠位部を外方向に拡張させる傾向のある外方向への湾曲部が設けられると同時に、第2の複数の電極リードが第1の複数の電極リードに近接してカテーテルに搭載されており、電極リードと関連して第1の位置に在る可動鞘部材は第1の複数の電極リードおよび第2の複数の電極リードの湾曲部から遠方にあって、それにより、第1の複数の電極リードと第2の複数の電極リードとを収縮構成に維持している。第2の位置に在る可動鞘部材は第1の複数の電極リードと第2の複数の電極リードの湾曲部に近接しており、それにより、第1の複数の電極リードおよび第2の複数の電極リードが外方向に伸張できるようにしている。
【0022】
更に詳細な局面では、電極リードは肩持ち梁構成の作業端に搭載されている。第1の複数の電極リードおよび第2の複数の電極リードの各々は作業端に関連して、リードの電極が、伸張位置にある時には、実質的に互いに均一に間隔を設けた電極の実質的に対称的な構成を形成するように配置される。各電極リードはその長さに沿って絶縁された導電材料から形成され、各電極リードは、絶縁が存在していない外方向に面した部分を備えていることにより、電極を形成している。電極リードは、鞘部材が第2位置にある時には、リードが移動により中空の解剖学的構造と付着状態になるのに十分な強度を備え、リードは、中空の解剖学的構造を収縮させることができると同時に、収縮している組織と付着状態のままでいることができるような強度を備えている。
【0023】
第1の複数の電極リードは第1の導電性取付リングに搭載されており、このリングには、上記リードの電極が電気的に内部接続されている。第2の複数の電極リードは第2の導電性取付リングに搭載されており、このリングには、上記リードの電極が電気的に内部接続されている。第3の導電性取付リングが設けられ、このリングには、第1の複数の電極リードか第2の複数の電極リードのうちの選択されたグループから交互の電極リードが接続されて、その結果、選択されたグループの互いに隣接するリードが異なる取付リングに接続される。電源が電極に接続され、制御装置が電源を制御する。スイッチが制御装置に接続され、スイッチは、制御装置が取付リングに異なる極性を付与する位置である第1位置と、制御装置が取付リングに同一極性を付与する位置である第2位置とを有している。
【0024】
また別な局面では、電源は電極に接続され、制御装置は電源を制御し、温度センサーは電極リードに搭載され、温度センサーは温度信号を制御装置に付与し、制御装置は温度信号に応答して電源を制御する。
【0025】
また別な局面では、制御装置は、電極リードに付与される電源の出力を制御することにより、第1の複数のリードの互いに隣接する電極が互いに反対の極性に属しているようにすると同時に、第2の複数の電極が電気的に中性となるように電極の極性を維持すること、第1の複数のリードの電極の極性を切り替えることにより、第1の複数のリードの周囲の中空の解剖学的構造の崩壊時に、電極が全て同一極性に属するようにすること、更に、電源を制御して、電極の極性を切り替える工程を実施している時に、第1の複数のリードの電極に相対的に反対の極性に第2の複数のリードの電極が属しているようにすることを含め、選択されたとおりにリードの電気極性を切り替えるようにされる。制御装置は、より詳細な局面では、第1の複数の互いに隣接する電極が互いに反対の極性に属するように電源を制御するのに更に適合するようにされ、第2の複数の互いに隣接する電極が互いに反対の極性に属するように電源を制御するのに更に適合するようにされ、第2の複数の電極の極性が選択された結果、互いに反対の極性が第1の複数の電極と長軸線方向に整列状態になるように電源を制御するのに更に適合するようにされる。また別な局面では、この装置は患者の体表に配置される背面プレートを更に備えており、この場合、制御装置は、電極が第1の極性に属するように複数の電極リードのうちの1つに付与されるエネルギーを制御するのに更に適合するようにされ、背面プレートが第2の極性に属するように背面プレートに付与されるエネルギーを制御するのに更に適合するようにされる。
【0026】
別な局面では、配備装置は可動鞘部材と、鞘部材の内部に接地された整列装置とを備えており、整列装置が電極リード間を分離状態に維持し、鞘部材と整列装置との互いに関連する運動により、電極リードが伸張しているか、収縮しているかを制御する。
【0027】
本発明の他の方法の局面によれば、シャフトと作業端とを備えたカテーテルを中空の解剖学的構造に導入する工程が提示されるが、この工程では、第1の複数の電極リードが作業端に配置されるとともに、第2の複数の電極リードが作業端に配置され、かつ、第1の複数の電極リードから長軸線方向に間隔を設けられ、各リードは1つの電極が電源に接続され、この方法は、カテーテルの作業端から外方向に第1の複数のリードを伸張させる工程を提示し、第1の複数の電極は互いから離れる方向に移動するとともに内壁と接触状態になり、この方法は、カテーテルの作業端から外方向に第2の複数のリードを伸張させる工程を更に提示し、第2の複数の電極は互いから離れる方向に移動するとともに、第1の複数の内壁上の接点から長軸線方向に互いに間隔を設けた位置で内壁と接触状態になる。更に、別な局面では、この方法は、電極リードの電極から中空の解剖学的構造にエネルギーを付与して、中空の解剖学的構造を効果的に閉塞させる工程を含んでいる。
【0028】
より詳細な局面は、鞘部材と、第1の複数の電極と、第2の複数の電極とを互いに関連させて移動させ、選択的に、電極リードを外方向に伸張させる、或いは、電極リードを収縮させる。
【0029】
この方法は、中空の細胞学的組織内でカテーテルを移動させると同時に、電極により中空の解剖学的構造にエネルギーを継続して付与する工程を更に含んでいる。更に、エネルギーを付与する工程の前に、かつ/または、その工程の期間中に、所望の寸法まで中空の解剖学的構造を圧縮する工程が提供される。別な工程は、エネルギーを付与する工程の前に、かつ/または、その工程の期間中に、止血器または弾性バンドで中空の解剖学的構造を圧迫する工程と、止血器またはバンドに形成された超音波ウインドウを通して中空の解剖学的構造を監視する工程とを含んでいる。この方法のより詳細な局面は、解剖学的構造から血液を移動させるための流体を輸送することにより、或いは、中空の細胞学的組織を圧迫することにより、エネルギーを付与する工程の前に、かつ/または、その工程の期間中に、中空の解剖学的構造から全血を採取する工程を含む。
【0030】
更に、第1の複数のリードの電極に付与されたエネルギーを制御して、電極が第1の極性を有するようにする工程と、第2の複数のリードの電極に付与されたエネルギーを制御して、電極が第1の極性とは異なる第2の極性を有するようにする工程とが提示される。別な局面では、第1の複数のリードの互いに隣接する電極が互いに反対の極性に属するように電源を制御すると同時に、第2の複数の電極が電気的に中性になるように電極の極性を維持する工程と、第1の複数のリードの周囲における中空の解剖学的構造の崩壊時に、第1の複数のリードの電極が全て同一極性に属するように電極の極性を切り替える工程と、電極の極性を切り替える工程を実施する時に、第1の複数のリードの電極と相対して第2の複数のリードの電極が反対の極性に属するように電源を制御する工程とが提示される。
【0031】
また別な局面は、患者の体表に背面プレートを装着させる工程と、電極が第1の極性に属するように複数の電極リードのうちの一方に付与されるエネルギーを制御する工程と、背面プレートが第2の極性に属するように背面プレートに付与されるエネルギーを制御する工程とを含む。別な局面では、この方法は、第1の複数の互いに隣接する電極が互いに反対の極性に属するように電源を制御する工程と、第2の複数の互いに隣接する電極が互いに反対の極性に属するように電源を制御する工程と、反対の極性が第1の複数の電極と長軸線方向に整列するように第2の複数の電極の極性が選択されるように電源を制御する工程とを含む。
【0032】
また更に詳細な局面では、本発明の方法は、電極リードの温度を検知する工程と、リードで検知された温度に応じて電極リードへの電力の付与を制御する工程とを含んでいる。更に、エネルギーを付与する工程の前に、流体を利用して中空の解剖学的構造を洗浄する工程とが提示されている。
【0033】
別な局面は、第1の複数および第2の複数の長軸線方向に互いに間隔を設けた、静脈内へと伸張可能な電極リードを有しているカテーテルを導入する工程、このカテーテルをファロピアン管に導入する工程、カテーテルを痔核に導入する工程、または、カテーテル食道静脈瘤に導入する工程とを含んでいる。
【0034】
本発明の上記および上記以外の局面および利点は、本発明の実施形態を具体例で例示している添付の図面と関連して理解すれば、後述の詳細な説明から明白となる。
【0035】
【発明の実施の形態】
同一参照番号が図中の同様の、または、対応する要素を示している図面をより特に参照すると、静脈のような解剖学的構造にエネルギーを付与するためのカテーテル10が図1に示されている。カテーテル10は、遠位オリフィス14を作業端15に備えている外側鞘部材12を有している。外側鞘部材12のコネクタ端部17がハンドル16に装着されているが、ハンドルは、RF発生装置であるのが普通である電源22とマイクロプロセッサ制御装置とのインターフェイスとして作用する電気コネクタ18を有している。電源22およびマイクロプロセッサ23は、普通は、1つのユニットに包含されている。制御装置23は、管腔内静脈治療場所に配置された、熱電対のようなセンサーからの外部命令およびデータに応答して、電源22を制御している。別な実施形態では、自動温度制御が存在していないようにするためにユーザは一定電気出力を選択することが可能であるとともに、ユーザは、読み取り用の表示装置上の温度を見て、手動で電気出力を調節できる。カテーテル10は、遠位オリフィス14により外側鞘部材12の内外へ移動する伸張可能な電極装置24(部分的に図示する)を備えている。電極装置は、シャフト内部で電極を移動させることにより、或いは、電極と相対的に外側シャフトを移動させることにより伸張可能となる複数の電極を備えている。図1は1個の中央電極を包囲している複数の電極を例示しているが、このカテーテルについての異なる電極構成を説明する。
【0036】
内側鞘部材28または内側部材が外側鞘部材12に包含されている。流体ポート21は外側鞘部材12の内部と連絡状態にある。カテーテル10は、ポート21を通るセーラインで周期的に洗浄することができる。洗浄流体は、外側鞘部材と内側鞘部材との間を移動することができる。ポートは薬物治療剤の輸送を可能にする。カテーテルを洗浄することにより、血液などの生体的流体がカテーテル10の内部に蓄積されるのを防止する。静脈の治療領域から血液を排出して凝血塊の形成または血栓症を防止するために、静脈のような中空の解剖学的構造の治療領域はセーラインまたは誘電流体のような流体で洗浄することができる。誘電流体の使用は、治療領域から離れた場所での意図せぬ加熱効果を最小限に抑えることができる。誘電流体はRFエネルギーの電流が静脈壁から離れる方にはがれるのを防止している。
【0037】
1つの実施形態では、カテーテル10は、外側鞘部材12の遠位端で始まり、ハンドル16のガイドワイヤポート20で終端する前に実質的に外側鞘部材12の軸線に沿って延在している管腔を備えている。ガイドワイヤは、所望の治療場所にカテーテルを誘導する際に使用するために、カテーテル10の管腔を通して導入することができる。カテーテルがより小さい静脈を治療するための寸法にされた場合は、カテーテルの外径は、外側鞘部材12と内側鞘部材28との間の流体の流動を斟酌し得ない。しかし、流体の流動は、かかる実施形態におけるガイドワイヤのために、管腔を通して導入させることができる。
【0038】
ここで図2、図2a、図3、図4、図4a、図5を参照すると、外側鞘部材12はシェル44および先端部46を備えている。カテーテル10が静脈を通して操作されている時に、カテーテル10に非外傷性の先端を設けるために、先端46は遠位端で内方向にテーパ状にされるか、或いは、円錐頭状にされるのが好ましい。しかし、先端46は、ガイドワイヤ上で、静脈血管系の撓みを通ってカテーテル10のトラッキングを容易にする他の形状を有していてもよい。例えば、円錐頭状先端46は、70 Shore Aなどの軟性デュロメータを有しているポリマーから製造することができる。シェル44は、低摩擦係数を有する生体適合性材料から構成される。或る構成では、外側鞘部材12は、静脈管腔内部に適合するような寸法にされるが、例えば、5フレンチと9フレンチの間であっても良く、これは、1.7mm(0.07インチ)と3.0mm(1.2インチ)の間の直径に対応し、或いは、適当となるような他の寸法でも良い。
【0039】
電極装置24は絶縁主要リード30などの多数のリードを備えているが、或る実施形態では、二次リード31を備えている。リードの極性が所望されたとおりに切り替わるように、リードは電源22(図1)に接続されるのが好ましい。代替例として、マイクロプロセッサ制御装置は、電極装置のための電力の他の特性を制御するばかりか、極性を切り替えるためにも使用することが可能である。従って、電極装置は、バイポーラ構成でも、モノポーラ構成でも、いずれでも作動することができる。互いに隣接する主要リード30が互いに反対の極性を有している場合には、電極装置24はバイポーラ電極装置として作動する。主要リード30が共通極性に荷電された場合は、電極装置24はモノポーラ電極装置として作動することができる。主要リード30が共通極性に荷電された場合で、二次リード31が反対の極性を有している場合には、電極装置24がバイポーラ電極装置として作動する。図2および図3に示された本発明の実施形態は、主要リード30および二次リード31を有している電極装置24を描いているが、図4および図5に示された本発明の実施形態は、わずか4本の主要リードしか有していない電極装置24を描画している。本発明は、4本の主要リード30に制限されておらず、4本より多数の、または少数のリードをいずれの実施形態に使用してもかまわない。リードの数は治療されるべき中空の解剖学的構造の寸法または直径に依存し得る。互いに並列状態の電極は互いに或る一定の距離の範囲に維持されるべきである。適切な電流密度と適切な熱分布を確保するために、より大きな血管はより多数の主要リードを必要とする可能性がある。
【0040】
リード30、31の各々についての絶縁体は遠位端32、33では除去されて、導電ワイヤを露出させることができる。図2、図2a、図3に示されているような第1の構成では、電極は略球状またはスプーン状のいずれかを呈し得る。図4、図4a、図5に示されているように、電極はスプーン形状を有しているが、この形状は球状または他の形状に成形するように組み合わされて、静脈の崩壊時にはプロファイルを最小限にする。電極34は、遠位端32で一体形成されるか、各主要リード30の遠位端に溶着されるか、或るいは、同遠位端に別途形成されるか、いずれかである。遠位端32が電極として作用していると称する場合には、これは、電極34が遠位端32で一体形成されている事例には限定されないものと理解するべきである。例えば、遠位端が周囲組織にエネルギーを付与し得る場合としては、遠位端で電極が一体形成されている場合か、電極が遠位端に別個に溶着されている場合か、遠位端に別なエネルギー輸送装置が配置されている場合のいずれかである。電極34は、通常は、主要リード30の直径よりも大きい直径を有している。例えば、主要リード30は0.18mm(0.007インチ)から0.28mm(0.011インチ)までの範囲にわたる直径を有し得るが、電極34は0.36mm(0.014インチ)から0.51mm(0.020インチ)までの直径を有している。主要リード30および電極34は、ステンレス鋼のような生体適合性材料から作成されているのが好ましい。主要リード30を包囲している絶縁体は一般に、0.03mm(0.001インチ)と0.06mm(0.0025インチ)との間の厚さを有しており、0.23mm(0.009インチ)と0.41mm(0.016インチ)との間の結合したリードと絶縁体との直径を生じる。代替の構成では、図2および図3に示されるように、各主要リード30は0.76mm(0.03インチ)から1.0mm(0.04インチ)までの幅と、約0.13mm(0.005インチ)の厚さとを有した細長い形状に成形されるが、二次リード31は管状形状に成形されるのが普通である。上記のような寸法は例示を目的として提示されており、限定として提示されているわけではないことに留意するべきである。半球状電極34は、具体的には、主要リード30の遠位端32に溶着された16インチ(1.6mm)直径の球までサンドペーパーなどで研磨することにより遠位端に成形されるが、この球は主要リード30の遠位端32に溶着される。電極は、導電リードから所望の型または形状を打ち出すことにより構成することもできる。電極はリードと一体であり、リードの残余は絶縁されている。二次リード31の遠位端33は、略球状電極35を含んでいるのが好ましい。
【0041】
整列装置36は、リード30、31がそれぞれの近位端でのみカテーテルに搭載されるように、また、整列装置内部のリードと整列装置から遠隔のリードとの間が分離状態に維持されるように、リードを配置する。リードは、整列装置に搭載されると、片持ち梁を形成することができる。整列装置36の好ましい構成は、整列装置36の軸線に関して実質的に対称的に位置決めされた、複数の偏心した、軸線方向に整列した管腔38を備えている。整列装置36は、例えば、ポリアミドなどの誘電材料から構成された中実の円柱を通して、複数の軸線方向に整列した管腔38を突出させることにより、形成される。各リード30は個々の偏心管腔38を貫通して、整列装置36の背面から外へ出る。整列装置36は、軸線と整列状態になり得る中心管腔48を更に備え得る。或る実施形態では、中央管腔48は、ガイドワイヤを受容するために使用されるか、或いは、RFエネルギーの付与期間中に治療領域に薬剤および冷却溶液を輸送するため、または、潅流させるために使用される。他の実施形態では、中央管腔48は、二次リード31のために使用することができる。整列装置36は、温度センサーとして使用される熱電対のリードのような追加リードのための補助管腔47を更に備え得る。整列装置36は、リード30、31と、存在しているとすれば、ガイドワイヤが互いに有し得る結合効果を阻止する、或いは、最小限にするために、誘電材料から構成されている。整列装置の長さは、例えば、或る実施形態では12.5mm(0.5インチ)から19.0mm(0.75インチ)である。しかしながら、これらの寸法は例示のために提示されており、限定するためではない。
【0042】
図2、図2a、図3に示された発明の実施形態では、内側鞘部材28は整列装置36に装着され、整列装置の背面37を超えて延在している。内側鞘部材28は整列装置36の外壁を完全に包囲し、粘着剤または圧着により外壁に載置されて、外壁が内側鞘部材と相対的に固定位置に残留するようにするのが好ましい。内側鞘部材と整列装置とは、外側鞘部材と相対的に内側部材として作用し得る。内側鞘部材28は低摩擦係数を有する生体適合性材料から構成されている。内側鞘部材28は、リード30、31と電気コネクタ18(図1)との間の相互接続のための経路を設けている。この相互接続は、どのような方法についても、発生し得る。リード30、31は連続的であり、内側鞘部材28の全長にわたって延在している。代替例(図示せず)として、正極荷電されたリード30、31は内側鞘部材28に収容された共通して正極荷電された導体と接続し得る。同様に、負極荷電されたリード30、31は共通して負極荷電された導体と結合し得る。リード30、31は、リードの極性が切り替えられるようにする導体に接続されるのが好ましい。導体は、例えば、ポリウレタンで被膜した36ゲージ銅リードから構成されている。結合は、内側鞘部材28内部のいかなる点でも発生し得る。カテーテルに包含されたワイヤの量を低減するために、リードが整列装置36の背面37を出る点でリード30、31を結合するのが有利である。電極装置に更なる安定性を付加するために、接着材料40が整列装置36の正面端でリード30、31を包囲するのが好ましい。この実施形態では、外側鞘部材12が整列装置36上を後方に後退させられると、リード30、31は遠位オリフィス14を通って外に出る。内方向にテーパ状の先端46は外側鞘部材12の後退運動を阻止し、整列装置36が露出するのを防止している。
【0043】
図3はリード30、31が後退位置に在るのを示しているが、この場合、全てのリードが円錐頭形状の先端部46および外側シェル44の内部に位置している。整列装置36は外側シェル44と相対的に移動させられている。カテーテルが蛇行する静脈系を通って操作される時のために、軟質の円錐頭が非外傷性先端を設けている。二次リード31の遠位端における電極は、円錐頭46に形成された開口と概ね同一寸法となるように寸法設定することができる。整列装置がカテーテルの外側鞘部材の中へと後退した時には、円錐頭が二次リードの電極と一緒になって閉じた非外傷性先端を形成する。これにより、円錐頭が軟質デュロメータを備えた材料から構成されていない場合でも、非外傷性先端を設けることができる。
【0044】
ここで図4および図5を参照すると、別な実施形態では、整列装置36が外側鞘部材12に装着されることにより、外側鞘部材に関して不動状態のままとなる。内側鞘部材28は整列装置36の背面に可動に設置され、主要リード30と電気コネクタ18(図1)との間の相互接続用の経路を再度設けている。或る実施形態では、内側鞘部材28は、内側鞘部材の全長にわたって延在するガイドワイヤ管49を備えている。ガイドワイヤ管49は、一方端では整列装置36の中央管腔48と連絡するように、また、他方端ではガイドワイヤポート20(図1)と連絡するように整列されている。主要リード30は、切れ目が無く、内側鞘部材28の全長にわたって延在しており、或いは、前述のように共通リードに結合することができる。主要リード30は、具体例として、ポッティング材50を利用して内側鞘部材28の正面端27に固着され、内側鞘部材28の移動の結果として、それに呼応して主要リード30が整列装置36の管腔38を通って移動するのを引き起こす。主要リード30は整列装置36を通って移行し、内側鞘部材28の正面端が整列装置36の背面37に向けて移動すると、遠位オリフィス14を通って外へ出る。
【0045】
上記実施形態では、主要リード30は、例えば、円弧状または湾曲状に形成されて、互いから離れる方向に移動することにより、接触を回避している。主要リード30のこの「遠位部」とは、リードが遠位オリフィス14を通って十分に伸張した時に整列装置36の正面端から延在しているリードの部分のことである。遠位部42は、整列装置36の軸線に対して互いから半径方向外向きに移動するように形成されているとともに、対称的構成を形成するのが好ましい。これは、図2aおよび図4aの両方の実施形態に示されている。主要リード30における円弧または湾曲の程度は、リードが遠位オリフィス14を通って外側鞘部材12を出た時にリードを半径方向に伸張させるのに十分であれば、どのような程度でもよい。主要リード30が血液中で伸張するとともに、電極34が静脈壁と付着状態になるのに十分なだけの力を与えるのに、円弧または湾曲の程度が十分であるのが不可欠である。電極は、十分な接触を確保するために、静脈壁に部分的に深く埋もれるのが好ましい。十分な表層付着を達成するために、電極の丸みを帯びた部分が静脈壁内に埋められて、電極の非絶縁表面全体が有効な電流分布を目的として静脈組織と接触状態になる。静脈組織と接触状態にある電極の表面領域は、静脈組織のスポット加熱を生じ可能性のある高電流密度を回避するのに十分であるのが好ましい。加熱効果は、静脈の周囲帯状部に沿って分布しているのが好ましい。付着した電極は、静脈の周囲に沿って互いからわずか4ミリメートルまたは5ミリメートル程度の間隔しか設けられるべきではない。従って、電極構成は治療されている静脈の寸法または直径に関連している。主要リード30の、リード形状や絶縁体厚さといった他の特性がリードの押し力に影響し、円弧または湾曲の度合いは、上記のような要因を補償するように調節されなければならない。例えば、電極装置24の1構成では、0.18mm(0.007インチ)と0.28mm(0.011インチ)との間の直径と、0.05mm(0.002インチ)と0.13mm(0.005インチ)との間の全絶縁体厚さとを備えたワイヤが、円弧状にされ、または、鋭角に屈曲されて、解剖学的構造との十分な付着を供与する。上記寸法は例示を目的として提示されており、限定するものではないものと理解するべきである。
【0046】
リードがカテーテルの作業端から伸張しきってしまうと、リードを外方向に伸張させる他の技術を使い得るようにすることができる。例えば、リードは真っ直ぐにすることができるが、整列装置に搭載された時には、リードが正常に外方向に向かうような角度で取り付けられる。
【0047】
付着力を増大させるためには、主要リード30は断面が矩形の細長い形状に成形され、例えば、0.76mm(0.030インチ)から1.0mm(0.039インチ)の幅と約0.13mm(0.005インチ)の厚さとの寸法を有しているのが好ましい。矩形断面は、幅方向の広がりが湾曲することに対する耐性を増大させるが、厚さ方向の広がりについては、もっと自由に湾曲できるようにする。主要リード30の細長い形状に成形された構成が図2、図2a、図3に示されており、横方向の安定性を増大させると同時に、半径方向への必要な湾曲を許容している。図2、図2a、図3では、各主要リードは矩形断面を有しており、より薄い寸法の矩形断面がリードの伸張方向と整列状態になるようにカテーテルと関連して載置されている。リードは、外方向に伸張すると、横方向には湾曲しにくくなっており、リード間の均一な間隔設定がより一層確実となる。均一な間隔設定は、リードの遠位端で電極と付着している静脈組織の付近において、均一な加熱を促進する。
【0048】
リード30の遠位部の長さは、電極装置24の構成にも影響する。2つの互いに対向する電極34の間の最大距離、すなわち、電極装置24の有効直径は遠位部42の湾曲の程度と長さとの影響を受ける。遠位部42の長さが長いほど、電極装置24の直径は大きい。従って、遠位部42の長さと円弧または湾曲の程度とを変更することにより、カテーテル10は、異なる寸法にされた解剖学的構造について使用するために構成することができる。
【0049】
このカテーテルには互いに異なる数のリード30、31を採用することができる。リード30、31の数は 整列装置の直径と、整列装置を通って突出させられ得る管腔36、38、47の数とにより制限されている。バイポーラ構成では、偶数本の主要リード30が多数の互いに反対極性に荷電した電極対を形成するのに利用できるのが好ましい。解剖学的構造と付着した電極は、互いから或る一定距離の範囲内に維持されるべきである。モノポーラ構成では、どのような本数の共通極性に荷電したリード30でも存在し得る。モノポーラモードでは、解剖学的構造を介するRFエネルギーの分配は、組織の外部に在る点における、大型金属パッドのような、帰還装置を設けることによって組織を通る電流用の帰還路を設けることにより、獲得される。
【0050】
ここで再度、図1を参照すると、アクチュエータ25が遠位オリフィス14を通る電極装置24の伸張を制御している。アクチュエータ25はスイッチ、レバー、ねじ筋を切った制御ノブ、或いは、これ以外の好適な機構からなる形態を採り得て、本事例について可能な限り、外側鞘部材12または内側鞘部材28の運動を監視する微制御を提供し得るものであるのが好ましい。本発明の1実施形態では、アクチュエータ25(図1)は外側鞘部材12(図2、図2a、図3)とのインターフェイスとして機能して、外側鞘部材を内側鞘部材28と相対的に前後に移動させる。別な実施形態では、アクチュエータ25(図1)は内側鞘部材28(図4、図4a、図5)とのインターフェイスとして機能して、外側鞘部材を内側鞘部材と相対的に前後に移動させる。従って、外側鞘部材と内側鞘部材との間の相対位置が制御されるが、他の制御アプローチも利用することができる。
【0051】
図2、図2a、図3、図4、図4a、図5を再度参照すると、カテーテル10は熱電対のような温度センサー26を備えている。温度センサー26は、センサー26が電極34の露出表面とほぼ同一表面になる、或いは、実質的に同一表面になるように、電極34上の適所に搭載される。センサー26は、例示を明瞭にするためにのみ、電極から突出しているように図面中には示されている。センサー26は、露出電極表面に付着した解剖学的構造の部分の温度を検知する。解剖学的構造の温度の監視作業により、組織の収縮を開始する準備がいつできたかを良好に示す。解剖学的構造に面している電極上に設置された温度センサー26は、収縮がいつ発生したか(70℃以上)を示すとともに、相当量の熱誘発された凝血塊が電極上でいつ形成され始め得るかを示す。それ故に、摂氏70度を越える温度を維持すると、解剖学的構造の治療的収縮を生じる。電極34からのRFエネルギーの付与は、監視中の温度がオペレータにより選択された特定温度に達すると、或いは、その温度を超過すると、中断または低減されるが、通常は、その温度で解剖学的構造が焼灼され始める。温度センサー26は、補助管腔47を通り、次いで、内側鞘部材28を通って延在しているのが好ましい1対のセンサーリード45を介して、制御装置23(図1)とのインターフェイスとして機能する。温度センサー26からの信号は、選択された温度基準と監視された温度とに従って、電極34に供給されたRFエネルギーの大きさを制御する制御装置23に供与される。静脈の十分な収縮が検出された場合に、電極から静脈部分へのRFエネルギーの付与を遮断または調整して静脈の過剰加熱を回避するための自動システムでは、インピーダンス監視および超音波パルス反響動作のような他の技術が利用できる。インピーダンスは、凝血塊形成の開始を検出するために使用することができる。
【0052】
ここで図6、図6a、図7aから図7cを参照すると、カテーテル10の1実施形態の動作では、静脈52のような中空の解剖学的構造にカテーテルが挿入される。このカテーテルは、図2および図3に関連して論じた実施形態に類似している。カテーテル10は外部鞘部材60を更に備えており、この鞘部材を通して流体が治療場所に搬送され得る。この実施形態では、流体ポート(図示せず)は外部鞘部材60の内部と連絡しており、流体は外部鞘部材60と外側鞘部材12との間から輸送される。外部鞘部材60は、流体を通して排出させ得る同軸チャネルを形成するように、外側鞘部材12を包囲している。
【0053】
X線透視検査法、超音波、血管顕微鏡画像化技術、或いは、それら以外の技術を利用して、カテーテルの特殊な配置の方向を設定し、静脈内における位置を確認することができる。次に、アクチュエータ(図示せず)が作動されて、外側鞘部材12を後方に後退させるか、或いは、内側鞘部材28を前方に前進させて、遠位オリフィス14を通るリード30、31を露出させることにより、内側鞘部材に相対的に外側鞘部材をシフトさせる。リード30、31が遠位オリフィス14を出ると、主要リード30は整列装置36の軸線と相対的に半径方向外向きに伸張するが、二次リード31は実質的に線型のままである。静脈壁54との付着が発生して、主要リード30の外方向への移動が阻止されるまで、主要リード30が外方向に移動し続ける。主要リード30は、静脈壁54の広く周囲の帯状部に沿って静脈と接触する。主要リード30の外方向の移動は、実質的に対称な態様で発生する。その結果、主要リード電極34は静脈壁54の周囲帯状部に沿って実質的に均一に間隔を設けられる。中央リード電極35は、静脈壁54に接触せずに、静脈54の内部で懸垂状態となる。
【0054】
電極34が静脈の治療場所に設置された時、電源22が作動されて、好適なRFエネルギーを供与する。1つの好適な周波数は510kHzである。付与されるべきエネルギーの周波数を選択する際に利用される1つの基準は、静脈組織における熱効果の、深さをなどの分散態様について所望の制御を行うことである。別な基準は、熱電対信号からRFノイズを除去するためのフィルタ回路との適合性である。
【0055】
バイポーラ動作では、主要リード30は最初、互いに隣接するリードが互いに反対極性に荷電されるように荷電されるが、二次リードは電気的に中性である。このような複数対の互いに反対極性に荷電されたリード30は活性電極対を形成して、互いの間でRFフィールドを生成する。従って、非連続的なRFフィールドが静脈壁54の周囲帯状部に沿って設定される。これら非連続的なフィールドは、互いに反対極性の互いに隣接する電極34が互いの間にRFフィールドを生じたとおりの、静脈壁54の周囲帯状部全体に沿って対称的なRFフィールドパターンを形成する。治療されている静脈壁に沿って、均一な温度分布を達成することができる。
【0056】
互いに隣接する静脈組織内部でRFエネルギーが変換されて熱となり、この熱効果が静脈組織を収縮させ、静脈の直径を低減する。治療中の静脈壁に沿った均一な温度分布は治療領域における高温点の形成を回避するが、静脈直径の制御された均一な低下を促進する。熱効果は、静脈中のコラーゲン原線維の構造的変容を生じる。コラーゲン原線維は、熱効果を原因とする熱に反応して断面が縮小して密集する。図7aに示されるように、エネルギーは静脈壁54を主要リード電極34の付近で崩壊させる。電極34によるそれ以上の方向が阻止されるまで、壁54は継続して崩壊し続ける。壁54がそれ以上崩壊すなわち結紮されなくなる点に電極が触れるまで、収縮していく静脈壁54によって電極が一緒に延々と遠くへ押し進められる。主要リード電極34の付近の静脈壁54の崩壊時に、主要リード電極の極性が切り替わって、全ての主要リード電極が共通極性に荷電される。リードの極性の切り替えは即時的である必要はない。RFエネルギーの付与が終わると、極性が切り替わり、次いで、RFエネルギーが切り替わった極性で再度付与される。次に、二次リード電極35が荷電され、その極性が主要リード電極34の極性と反対になる。主要リード電極34と二次リード電極35との間に、RFフィールドが設定される。
【0057】
次いで、カテーテル10が引き戻されるが、エネルギーは電極装置に付与される。図7bに示されるように、カテーテル10は引き戻されるが、主要リード電極34は静脈壁54と付着したままであるとともに、二次リード電極35は主要リード電極34により先に崩壊した静脈壁の部分と接触状態になる。従って、RFエネルギーは主要リード電極34と二次リード電極35との間の静脈壁54を通過し、カテーテル10が後退させられるにつれて、静脈壁は二次リード電極35の付近で崩壊し続ける。図7cに示されているように、この方法に従った結紮の結果として、静脈52の長さに沿った閉塞が生じる。急性閉塞に対立した冗漫な閉塞は、より強固で、再度疎通する心配が少ない。
【0058】
主要リードと二次リードの両方を有しているカテーテル10がモノポーラ様式で作動されると、同様の結果が達成される。モノポーラ動作では、二次リード電極35は中性のままであるが、主要リード30は共通極性に荷電されて、本体と外部接触状態に設置された大型低インピーダンス帰還パッド(図示せず)などの独立した電気装置と関連して作用して、一連の非連続なRFフィールドを形成する。これらRFフィールドは、静脈の周囲を巡って実質的に均一に間隔を設けられ、静脈壁の軸線方向長さに沿って移行して、静脈壁を主要リード電極付近で崩壊させる。静脈壁の崩壊時には、二次リード電極が荷電され、主要リード電極と同一極性を有するようになる。バイポーラ動作について説明したように、電極装置は後退させられ、静脈壁は崩壊する。
【0059】
バイポーラ動作とモノポーラ動作のいずれであれ、RFエネルギーの付与は、静脈52の直径とは無関係に、静脈壁を通して実質的に対称的に分配される。RFエネルギーの対称的分布は、収縮の予測可能性と均一性、ならびに、閉塞の強度を増大させる。更に、エネルギーの均一な分布は短期間のRFエネルギーの付与を可能にすることにより、電極34上の熱誘発性凝血塊の形成を低減し、或いは、回避している。このリードは、電極の非凸状外側部分を含めて、包囲している血液の加熱を更に阻止するように絶縁されている。
【0060】
外部鞘部材60と外側鞘部材12との間に形成された同軸チャネルを通して治療中の静脈をRF加熱する前とその期間中とに、流体が輸送され得る。治療場所に流体を輸送するためにカテーテル内に別な管腔を形成し得るものと理解するべきである。輸送された流体は静脈からの血液を移動させ、或いは、放血し、血液の加熱と凝固を回避するようにしている。RF治療の間は流体が継続して輸送されて、治療場所に血液が循環して戻るのを防止することができる。誘電流体の輸送が周囲インピーダンスを増大させ、RFエネルギーが静脈壁の組織内に当てられるようにする。
【0061】
ここで図8、図8a、図9a、図9bを参照すると、カテーテル10の代替の実施形態の動作では、カテーテルはガイドワイヤ53と一緒に使用され得る。先の実施形態におけるのと同様に、カテーテル10が静脈52のような中空の解剖学的構造に挿入される。ガイドワイヤ53が、エネルギー付与が望ましい点を越えて前進させられる。次に、カテーテル10は、中央管腔48およびガイドワイヤ管49(図4)によりガイドワイヤ53の上を挿通させられ、静脈を通って所望の点までガイドワイヤの上を前進させられる。RFエネルギーが電極装置24に付与される前に、ガイドワイヤ52は通常は引き戻され、或いは、除去される。
【0062】
次いで、アクチュエータ25(図1)が操作されて外側鞘部材12を後方に後退させるか、或いは、内側鞘部材28を前方に前進させて、遠位オリフィス14からリード30を露出させる。リード30は遠位オリフィス14を出て、整列装置36の軸線と相対的に半径方向外側に伸張する。静脈壁54との付着が発生するまで、リード30は継続して外方向に移動し続ける。リード30は、静脈壁54の概ね周囲を包囲した帯状部に沿って静脈と接触する。リードのこのような外方向への移動は実質的に対称的な態様で発生する。その結果、電極34は静脈壁54の周囲帯状部に沿って実質的に均一に間隔を設けられる。代替例として、電極が同一平面に沿って存在することがないように、電極はジグザグ様式で互いに間隔を設けることができる。例えば、電極が互いに向かって崩壊した時に、より小さい断面プロファイルが達成されるように、互いに隣接する電極がカテーテルからそれぞれ異なる長さに伸張し得る。
【0063】
電極34が静脈の治療場所に設置されると、電源22が活動状態にされて電極34に好適なRFエネルギーを供与し、カテーテル10が前述のようなバイポーラ態様かモノポーラ態様のいずれかで作動するようにしている。図9aおよび図9bに示されるように、エネルギーが静脈壁54を電極34の周囲で崩壊させ、リードを実質的に真っ直ぐにするとともに、電極が互いに近接して群がるようにする。壁54は、電極34(図9b)による崩壊がそれ以上進まないようにされるまで、崩壊し続ける。この時点で、エネルギーの付与は終えることができる。電極は、一緒に崩壊すると、収縮したプロファイルを備えた形状を成形するように構成することが可能である。電極は、静脈壁の崩壊により収縮したプロファイル形状を形成した後でも、RFエネルギーを付与し続けるように構成され、絶縁され得る。カテーテル10は互いに隣接する静脈部分を結紮するために引き戻すことができる。温度センサー26を備えている場合には、制御装置23により限定されたような容認可能なレベルを超えて静脈組織の温度が上昇したならば、崩壊を完了する前でもエネルギーの付与を終えることができる。
【0064】
カテーテルが流体輸送管腔(図示せず)を備えている場合には、治療されている静脈をRF加熱する前とその最中とに、流体を輸送することが可能である。流体は静脈中の治療場所から血液を移動させて、血液の凝固を回避することができる。この流体は誘電媒体であればよい。流体は、治療場所で血液の凝固を化学的に減退させ得る、へパリンのような抗凝固剤を含み得る。
【0065】
選択された静脈部についての処置を完了した後で、アクチュエータ機構は主要リードを外側鞘部材12の内部に帰納させる。外側鞘部材と内側鞘部材のいずれかが移動して、この2つの要素の位置を互いに相対的に変更する。リード30が外側鞘部材12の内部に入ってしまうと、カテーテル10は、結紮プロセスが反復される別な静脈部へと移動させることができる。全ての静脈場所の治療時に、カテーテル10が脈管から除去される。次いで、静脈の接近点が縫合閉鎖され、或いは、出血が治まるまで局所圧が付与される。
【0066】
カテーテルの別な実施形態が図10に例示されている。内側部材すなわち内側鞘部材28が外側鞘部材12の内部に包含されている。内側鞘部材は、ポリイミド、ポリエチレン、または、ナイロンのような撓み性のあるポリマーから構成されているのが好ましく、カテーテルの全長を移行し得る。大半のカテーテルは、静脈系の蛇行する経路を操舵するように、撓み性に富んでいるべきである。末広がりな遠位端39および円形端面形状を備えたハイポチューブが内側鞘部材28の遠位端上に装着されている。ハイポチューブは長さがわずか2センチメートルから3センチメートル程度であるのが好ましい。ハイポチューブは導電二次リード31の一部として作用する。非絶縁導電電極球35がハイポチューブの上を滑らされる。ハイポチューブの末広がりの遠位端は電極球がハイポチューブの遠位端を越えて移動するのを防止している。この球は、ハイポチューブ上の前後両方にこの球を溶接する等の方法により、ハイポチューブに恒久的に付着させられている。球状電極35の大半の表面または全表面が非絶縁状態のままである。ハイポチューブの残余は絶縁されて、球状の遠位端が電極として作用できるようにするのが好ましい。例えば、ハイポチューブは、パリレンの被膜のような絶縁材料で被覆することができる。ハイポチューブの内部管腔は、エポキシのような粘着剤によりハイポチューブの末広がりの遠位端に装着されている内側鞘部材28により、裏打ちされている。
【0067】
二次リード31と球状電極35とを包囲して、平坦な矩形の細長い形状を有しているのが好ましく、アームとして作用し得る複数の主要リード30が設けられている。図11に例示されているように、複数の主要リードは共通の導電リング62に接続されているのが好ましい。この構成は複数の主要リードの位置を維持すると同時に、内部電気接続部の数を低減している。リング62は内側鞘部材28に装着されている。リングと主要リードとの外側鞘部材に相対する位置は内側鞘部材の位置に追従する。先に説明したように、二次リード31のハイポチューブは内側鞘部材28にも装着されている。2つの別個の導電リングを使用して、異なる主要リードの極性が別個に制御され得るようにすることができる。例えば、互いに隣接するリードが2つの別個の導電リングのうちの一方に接続されて、互いに隣接するリードが互いに反対の極性または同一極性のいずれかを有するように切り替え得るようにすることができる。リングは一緒に近接した間隔に設定されて、それでも尚且つ、内側鞘部材に沿って互いから電気的に絶縁状態のままであるのが好ましい。リングとハイポチューブの両方が内側鞘部材と結合されて、リングと接続されている主要リード30は二次リードと一緒に移動すると同時に、互いに電気的に絶縁状態のままである。エポキシまたは他の好適な粘着剤を使用して、リングを内側鞘部材に装着させることができる。それぞれのリングからの主要リードは各々が内側鞘部材の周囲に沿って互いに交互になっている。リードの下側に沿った絶縁体はリングとリングの間の電気的短絡を防止している。
【0068】
リングと主要リードとは一緒に装着されて片持ち梁として作用し、この場合、リングは基部を形成し、矩形の主要リードは片持ち梁アームとして作動する。リード30はリングに接続されるとともに、円弧状部または湾曲部を備えているように形成されて、カテーテルから離れる方向に外向きに、かつ、周囲の静脈組織に向けて撥ねる傾向のあるアームとしてリードが作用するようにしている。リードの下側およびリングに沿った絶縁体は、リードと互いに対向するリングとの間の意図せぬ電気結合を防止している。代替例として、リードは真っ直ぐに形成され、或る角度でリングに接続されて、リードがリングから半径方向外向きに伸張する、或いは、撥ねる傾向を有するようにしている。リードがリングに装着される時の角度は、主要遠位端および電極34に強制的に血液をくぐらせて静脈壁と付着状態にするのに十分であるべきである。リード形状や絶縁体厚さのような主要リード30の他の特性は、リードの押す力に影響を及ぼし、これら要因を補償するために、円弧または湾曲の程度が調整されねばならない。リード30の矩形断面は横方向への安定性を増大させると同時に、半径方向への必要な湾曲を許容することができる。リード30は、外向きに伸張した時には、横方向には湾曲しにくくなり、リード間の均一な間隔設定が一層確実となる。リード30と遠位端との間の均一な間隔設定は、電極34による静脈付近の均一な加熱を促進する。
【0069】
主要リード30の遠位端は非絶縁状態であり、スプーン状または半球状の形状を備えた電極として作用する。リードは打ち抜き処理されて、リードの遠位端に一体成形された電極を生成することができる。解剖学的構造の壁と付着することになる遠位端電極34の非絶縁外側部分は丸み付けされて、凸状となるのが好ましい。遠位端の平坦な、または、非凸状の内側部分は絶縁されて、静脈中の包囲血液に及ぼされる熱効果のような意図しない熱効果を最小限に抑制する。遠位端電極34は、遠位端が内側鞘部材12に向けて強制されると、図10aに示されるように、遠位端同士が結合して、二次遠位端における球状電極35のプロファイルよりも小さいプロファイルを有している実質的に球状の形状を成形するように構成される。
【0070】
外側鞘部材12は一次リード30、二次リード31の上を滑動してこれらリードを包囲する。外側鞘部材12は、電極として機能する二次遠位端における球状電極35とほぼ同一寸法を有するような寸法に設定されたオリフィスを備えている。二次遠位端における電極35と外側鞘部材12のオリフィスとの間の緊密な嵌合または密着嵌合が達成される。この構成はカテーテルに非外傷性先端を設ける。電極35の二次遠位端はオリフィスよりわずかに大きいのが好ましい。外側鞘部材12の内径は、互いに結合した主要遠位端電極34の縮小されたプロファイルとほぼ同一である。互いに結合した主要遠位端電極34の縮小したプロファイルの直径は、外側鞘部材の内径よりも小さいのが好ましい。
【0071】
流体ポート(図示せず)は、外側鞘部材12と内側鞘部材28との間で流体を排出することができるように、外側鞘部材12の内部と連絡し得る。代替例として、流体ポートは、ガイドワイヤを受容し得るハイポチューブ内の中央管腔48と連絡し得る。上述のように、カテーテル10は、カテーテル10の内部で血液のような生体流体が蓄積するのを防止できるセーラインで周期的に洗浄することができる。ガイドワイヤは、所望の治療場所にカテーテルを誘導する際に使用するための管腔48を通して導入することができる。前述のように、流体は管腔を通しても、同様に洗浄または輸送することができる。中央管腔が望ましくない場合には、ハイポチューブの管腔は接合物を充填することができる。
【0072】
主要リード30と接続リングとが電源2に接続されて、複数のリードが所望される通りに切り替えることができるのが好ましい。これにより、電極装置24はバイポーラ構成とモノポーラ構成のいずれでも作動させることができる。互いに隣接する複数のリード30が互いに反対の極性を有している時には、バイポーラ電極動作が利用可能となる。主要リード30が共通極性に荷電されている場合は、患者に接触させて装着した大型の帰還電極パッドと組み合わせて、モノポーラ電極動作が利用可能となる。主要リード30が共通極性に荷電されると同時に、二次リード31がその反対の極性を備えている場合は、バイポーラ電極動作が利用できる。もっと多くのリードまたはもっと少ないリードを利用してもよい。リードの数は、治療されるべき中空の解剖学的構造の寸法すなわち直径に依存し得る。
【0073】
図示されていないが、カテーテル10は、遠位端または電極34の上の適所に搭載された、熱電対のような温度センサーを備えて、センサーが電極34の露出表面と実質的に同一平面にあるようにすることができるものと理解するべきである。センサーは、露出した電極表面と付着した解剖学的構造の部分の温度を検知する。監視下の温度が、解剖学的構造が焼灼され始める温度のような、オペレータによって選択された特定の温度に達すると、或いは、その温度を超過すると、電極34からのRFエネルギーの付与は中断され、或いは、低減される。静脈の十分な収縮が検出された時に、電極から静脈部分へのRFエネルギーの付与を遮断または調整して、静脈の過剰加熱を回避するための自動システムにおいては、インピーダンス監視や超音波パルス反響処理のような他の技術を利用することができる。
【0074】
ここで図12から図14を参照すると、カテーテル10の1実施形態の動作では、カテーテルは静脈のような中空の解剖学的構造に挿入される。X線透視検査法、超音波、血管顕微鏡画像化技術、或いは、その他の技術を利用して、静脈内でカテーテルの方向操作をしたり、カテーテルの特殊な設置を確認することができる。次いで、アクチュエータが作動されて外側鞘部材12を後退させて、リード30、31を露出させる。外側鞘部材がリードを抑制しなくなると、主要リード30は外側鞘部材により規定される軸線と相対的に外方向に移動するが、二次リード31は、外側鞘部材により規定される軸線に沿って実質的に線型なままとなる。主要リードの遠位端電極34が静脈壁54と付着状態になる位置にきて、主要リード30の外方向運動が阻止されるまで、主要リード30は継続して移動し続ける。主要リード30は静脈壁54の概ね周囲を取り巻いた領域に沿って静脈と接触する。主要リード30のこの外方向運動は実質的に対称的な態様で発生し、主要遠位端電極34は実質的に均一に互いに間隔を設けている。中央リード電極35は、静脈壁54に接触せずに、静脈の内部で懸垂状態にある。
【0075】
電極34が静脈の治療場所に位置決めされると、電源22が活動状態にされて、好適なRFエネルギーを供与する。バイポーラ動作では、まず主要リード30は、互いに隣接するリードが互いに反対の極性に荷電されるように荷電されるが、二次リードは電気的に中性となる。これら複数対の互いに反対極性に荷電されたリード30は活性電極対を形成して、リード間にRFフィールドを生成するとともに、静脈壁の周囲帯状部に沿って対称的なRFフィールドパターンを形成して、治療中の静脈壁に沿って均一な温度分布を達成している。
【0076】
RFエネルギーは、静脈組織を収縮させる熱効果を生じて、静脈の直径を低下させている。図13に示されるように、電極34によりそれ以上崩壊させられなくなるまで、エネルギーは静脈壁54を崩壊させる。収縮する静脈壁により電極が一緒により緊密に押圧される。電極34は、静脈が効果的に結紮されるのに十分なだけ小さい縮小されたプロファイル形状を呈するように、一緒に押圧される。主要リード電極34の付近における静脈壁54の崩壊時には、主要リード電極の極性は、全ての主要リード電極が共通極性に荷電されるように切り替えられる。次いで、二次リード電極35は、その極性が主要リード電極34の反対極性となるように荷電される。主要電極34および二次電極35が一緒に十分に緊密に互いから間隔を設けている場合には、静脈壁が主要リード電極の付近で崩壊すると、二次リードの遠位端の電極は静脈壁の一部と接触状態になり、RFフィールドが主要電極34と二次電極35との間に設けられるようにしている。
【0077】
カテーテル10が引き戻されて、リードの遠位端の電極と静脈壁との間の付着を確保する。カテーテル10が引き戻されると、主要リード電極34は静脈壁54と付着状態のままとなるが、二次リード電極35は、主要リード電極34により先に崩壊させられた静脈壁の部分と折衝状態になる。RFエネルギーは主要リード電極34と二次リード電極35との間の静脈組織を通過する。カテーテルが後退させられている時の結紮は、急性点閉塞よりも強固で再疎通の疑いが少ない冗漫な閉塞を生じる。
【0078】
モノポーラ動作では、二次リード電極35は中性のままであるが、主要リード30は共通極性に荷電されて、肉体と外部接触した状態で設置された大型の低インピーダンス帰還パッド(図示せず)のような独立した電気装置と関連して作用して、静脈の周囲の付近で実質的に均一に間隔を設けられたRFフィールドを形成している。静脈壁の軸線方向長さに沿ってRFフィールドにより生成された熱効果が静脈壁を主要リード電極付近で崩壊させる。静脈壁の崩壊時には、二次リード電極が荷電されて、主要リード電極の極性と同一極性を有するようになる。電極装置はバイポーラ動作で説明したように後退させられる。
【0079】
バイポーラ動作またはモノポーラ動作のいずれでも、RFエネルギーの付与は静脈壁を通して実質的に対称的に分配される。上述のように、電極は静脈の周囲に沿ってわずか4ミリメートルまたは5ミリメートル程度の間隔しか設けるべきではないが、これは、設計された電極カテーテルの標的静脈の直径を規定する。電極が実質的に対照的な配置で実質的に均一に間隔を設けられるとともに、電極間の間隔設定が維持されている場合には、RFエネルギーの対称的分布は収縮の予測可能性と均一性、および、閉塞の強度を増大させる。
【0080】
図14に示されるように、電極34が静脈壁(図12)と付着状態になった後で、エネルギーが静脈を結紮するために付与される(図13)前に、弾性の圧縮性ラップまたは膨張不能嚢のような、超音波に対して透明なウインドウを備えた外部止血器を使用して、脚のような解剖学的構造を圧迫して、該構造を包囲して静脈の直径を低減する結果となる。止血器により付与されている圧迫力は有効に静脈を結紮し得るが、或いは、そうでなければ、静脈を平坦にすることにより静脈を閉塞し得るが、或る静脈については、この圧迫力は静脈を十分には閉塞しない。この場合の固定直径の電極カテーテルは効果的ではない。形成されたリード30により外方向に伸張された電極34はこの情況には適合し得ない。
【0081】
静脈直径の低減は静脈の予備成形の支援となって、結紮された状態へと成形されるように静脈の準備を行う。外部止血器の使用も静脈の放血を行い、血液は治療場所から離れる方に強制される。治療期間中の血液の凝固は、この処置手順により回避することができる。電極から放血された静脈へとエネルギーが付与されて、静脈は結紮を達成するのに十分なだけ低減された直径へと成形される。外部止血器は結紮を用意にするために適所に留まることができる。
【0082】
静脈の伸張部を結紮するために、RFエネルギーを付与する期間中に、カテーテルを引き戻し得る。そうしている最中にも、静脈の直径が減じられた1点の代わりに、静脈の伸張部がカテーテルからのRFエネルギーにより着色される。この態様でカテーテルを後退させると、再疎通の恐れが少ない冗漫な閉塞を生じる。主要電極および二次電極を組み合わせて使用すると、静脈の伸張した長さに沿って直径を効果的に低減することができる。止血器が静脈を圧迫している間と、止血器が除去された後、カテーテルを移動させることができる。
【0083】
カテーテルが流体輸送管腔を備えている場合、RFエネルギーが静脈に付与される前に、流体を静脈に輸送することができる。輸送された流体は治療場所から血液を移動させて、止血器が静脈を圧迫した後でも、治療場所に血液が存在しなくなることを確実にする。
【0084】
止血器が超音波に対して透明な窓を備えた膨張可能嚢である場合は、超音波トランスデューサーを使用して、膨張している嚢により付与されている圧迫力のために静脈直径を平坦にする、或いは、静脈直径を低減するのを監視する。この窓はポリウレタンから形成するか、或いは、ポリウレタンパウチ間に含有されるゲルの隔離碍子から形成することができる。トランスデューサーにより静脈の超音波画像化を容易にするために、窓にゲルを付与することができる。窓を通しての超音波画像化により、オペレータは所望の静脈治療領域の位置を突き止めることができるようになると同時に、静脈がいつ有効に結紮または閉塞されたかを判断できるようにする。超音波視覚化は、電極からのRFエネルギーにより生成される熱効果により結紮された状態へと成形される準備のできた静脈の予備成形の監視を支援する。
【0085】
選択された静脈部分についての処置を完了した後で、アクチュエータはリード30を外側鞘部材12の内部に帰還させる。リード30が外側鞘部材12の内部に入ると、カテーテル10は、結紮プロセスが反復される別な静脈部分へと移動させることができる。
【0086】
別な実施形態では、図15に例示されているように、バルーン64がカテーテル上に配置され、静脈を閉塞させるためにポート66を通して膨張され得る。エネルギーを静脈壁内へと当てることによる凝固の発生を減じるために、膨張されたバルーンは血流を遮断し、静脈への高インピーダンス流体の注入を促進する。エネルギーを付与する前に静脈を閉塞させるためにバルーンを膨張させることで、静脈を閉塞させるために止血器を使用しなくても済むようにできる。更に、これはまた、圧迫性止血器が閉塞を目的として静脈を圧迫することが出来ないかもしれない深層静脈についても、静脈が閉塞され得るようにする。静脈を閉塞する不浸透性バリアを設けるために、他の機構を利用してカテーテルの直径を拡張することができるものと理解するべきである。
【0087】
バルーン64の膨張後と治療中の静脈をRF加熱する前とに、外部鞘部材60と外側鞘部材12との間に形成された同軸チャネル62を通して、流体61を輸送することができる。別な管腔をカテーテルに形成して、治療場所に流体を輸送することができるものと理解するべきである。例えば、ガイドワイヤを通過させる管腔を流体の輸送のために使用してもよい。輸送された流体は静脈の治療領域から残余の血液を移動させ、或いは、放血し、血液の加熱と凝固を回避するようにしている。RF治療期間中は流体が継続して輸送されて、血液が治療場所へと循環して戻るのを防止することができる。高誘電流体の輸送は周囲インピーダンスを増大させて、RFエネルギーが静脈壁の組織内に当てられるようにする。エネルギーは、血中で散逸するよりはむしろ、標的、すなわち、静脈壁に当てられるので、使用されるエネルギーはより少ない。それ故、静脈壁は、エネルギーが血液に達することができるようにする場合よりも急速に所望の温度に達することが可能であり、これが冷却効果をもたらす。更に、血液凝固はこのアプローチで回避され、というのも、へパリンと混合した脱イオン水のような別な流体と血液が置換されて、血液を移動させ、血餅の形成を防止しているからである。
【0088】
この実施形態の部分断面図が図16に示されており、同図では、膨張鞘部材70が外部鞘部材60を包囲して、バルーン64に同軸膨張管腔72を設けている。膨張管腔72はポート66と流体導通状態にある。セーラインまたは他の好適な流体を使用してバルーンを膨張させることができる。
【0089】
図17に示されるように、1実施形態では、バルーン64を電極を備えた湾曲自在な部材またはアーム76と組み合わせて使用することが可能であり、この場合、潅流穴78がバルーン64と湾曲自在アーム76との間のカテーテルに形成される。この実施形態のバルーン64は、バルーン膨張管腔72(図16に示されるような)を通して膨張される。静脈を治療するための湾曲自在アームの使用は米国特許出願連続番号第08/610,911号に論じられており、これは本文中で引例として援用されている。アームはカテーテルから半径方向外向きに撥ねるように構成されており、尚且つ、静脈直径が閉塞のために減じられると、カテーテルに向けて逆移動する際にほとんど抵抗を与えない。抗凝固剤、または、セーライン、もしくは、高インピーダンス流体をカテーテルの潅流穴78から導入または排出することができる。先に論じたように、高インピーダンス流体は血液を強制的に静脈治療場所から離れさせ、血液のようなより導電性の高い媒体中でエネルギーが散逸されるのを防止する。
【0090】
図18に示されるように、別な実施形態では、撓み性のある被覆80が電極34のリード30の周囲またはその内側に巻かれて、静脈内の血流を阻止している。リードが開口から外へ伸張すると、被服80はスプレーリードとスプレーリードの間の領域をカテーテルの周囲に沿って接続し、くもの巣状の被覆が静脈内部の血流を遮断するようにしている。この被覆は、血液を電極から遠ざけておくための皮膜または傘と見なすことができる。電極が静脈壁と付着した場合、電極34と被覆80との間に空隙が在るとすれば、この空隙を除去するか、または、最小限にするべきである。被覆80は流体に対して不浸透性であるべきである。好適な材料としてはPETおよびナイロンが挙げられる。リードが後退時に一緒に近接して移動する必要があり、エネルギーの付与により静脈直径が低減されるようなリードの運動への干渉を最小限にするのが好ましい場合は、エラストマー材も好適である。この実施形態は主要リードのみを利用して例示されているが、この実施形態はこれに限定されず、被覆の使用に影響を及ぼすことなく、二次リードも同様にカテーテルと一緒に備えることができるものと理解するべきである。
【0091】
先に開示されたバルーンに関しては、エネルギーの付与の前に被覆が静脈を閉塞させた結果、外部圧縮性止血器の必要性は血流を停止させる要件とはならない。更に、これにより、圧縮性止血器が静脈を圧迫して閉塞させることができない可能性がある深層静脈についても、静脈を閉塞させることができる。エネルギーの付与の前にも同様に、図4で参照番号48で示された中央管腔または図10および図11に示された中央管腔に類似した中央管腔(図示せず)を通して、脱イオン水のような高インピーダンス流体、または、へパリンまたはセーラインのような抗凝固剤、或いは、その両方、または脱イオン水と一緒のへパリンが注入され、或いは、排出され得る。中央管腔48(図示せず)を通して流体が排出される導管としても作用するシャフト管腔を通って電極が伸張する。硬化性流体を静脈治療場所に輸送して、RFエネルギーの付与により電気結紮効果を高めることも可能である。先に論じた流体に追加して、或いは、その流体の代わりに、硬化性流体を加えることができる。
【0092】
図19に示された実施形態では、パラシュート形状を備えている被覆80は、血液が被覆80の凹状部により捕獲状態になるようにすると同時に、或る量の血液が被覆の配備を維持するように配向することができる。この具体例では、被覆はバルーンであり、バルーンは、血液がバルーンに集まるようにすることができ、血液がバルーンを拡張させるようにすることができる開口84を備えている。被覆80はカテーテルシャフトに恒久的に装着することができる。カテーテルは尚且つ、バルーンが膨張状態でも、静脈に沿って移動させられ得る。
【0093】
図20に示された実施形態では、被覆80がカテーテルシャフトを包囲している外側カニューレ82に結合されるとともに、始動機構または始動レバーに接続される。外側カニューレ82はカテーテルの長軸線に沿って滑動されて、パラシュート状被覆80の一方端がカテーテルシャフトに沿って軸線方向に移動できるようにすることが可能である。カテーテルの挿入期間中は、被覆の可動端がカテーテルの接続端から引き離されて、カテーテルに押圧して被覆を崩壊させる。カテーテルが静脈治療場所に輸送された後で、カニューレ82が作業端に向けて滑動させられ、被覆80を配備するが、今度はこれを、開口84を通って入ってきた血液で充填することにより、静脈を閉塞させる。被覆に血液を充填すると、被覆が拡張し、被覆が静脈壁と接触状態になると、静脈が閉塞される。上記と同様、流体は潅流穴78または同軸チャネル48(図示せず)のいずれかを通して注入することができる。
【0094】
図21の断面図に示された実施形態では、カテーテル10は、スケルトン90がカテーテルの作業端の一部に沿って配置された伸張可能部分を備えている。スケルトン90はカテーテルの周囲シャフトよりも一層撓み性に富み、金属またはポリマー編組から構成し得る。撓み性のある薄膜92がスケルトン90を多い、薄膜の端部はスケルトンに隣接したカテーテルのシャフトに装着されている。薄膜はエラストマー材から構成されるのが好ましい。図22に示されるように、接続端の先端がカテーテルの作業端に向けて移動させられると、或いは、その逆の場合、スケルトン90が変形させられ、薄膜92を強制的に外方向に移動させて静脈壁と接触状態にする。この実施形態は、膨張流体をバルーンに供与するのに別個の管腔を必要としない。スケルトン90は、作業端と接続端とが互いに向けて強制されることがなくなると、その元の形状に戻るように弾性であるのが好ましい。カテーテルの直径を拡張するためのカテーテルの作業端に向けて接続端を移動させるための機構も米国特許出願連続番号第08/610,911号に論じられており、この件は本文に引例として援用されている。伸張可能な部分は電極の伸張とは別個に制御することができるけれども、伸張可能な部分は、カテーテルから離れて電極を伸張させる同一機構により制御することができる。
【0095】
図23および図24に例示されているように、伸張可能電極カテーテル98の別な実施形態は2組の伸張可能電極リード100、102を備えており、但し、付加的な数組の電極リードも使用可能である。この実施形態の電極104は、電極がスプーン状の接触領域を備えた、図2に例示された実施形態の電極と類似している。電極について、楕円、丸型、長円、レーストラック状などの他の形状を利用することもできる。図23および図24には参照番号104により1つの電極しか示されていないが、これは図面で明瞭にすることを目的としているにすぎない。全ての電極が参照番号104により示されるものとする。各組の電極リードが2つ程度の電極リードしか備えていないが、例示の実施形態は1組あたり6本の電極リードを備えており、但し、6本を越える数の電極リードも同様に採用することができる。
【0096】
図23および図24に示された実施形態では、複数組の電極リード100、102が互いに長軸線方向に分離している。従って、各組の電極リード内部の電極は互いから半径方向に分離されており、長軸線方向のせいで、電極の各々も他の組の各電極とは長軸線方向に分離されている。それ故に、図23および図24に示された配置のカテーテル98の作業端105における電極の半径方向分離と長軸線方向分離とが存在している。
【0097】
電極リードの構成が図23および図24に提示されているが、より高い柔軟性が患者の組織を通る電流の流れを確立する際には存在する。先の実施形態におけるのと同様に、電極は外方向に伸張して患者組織と接触状態になる。第1組の電極リードの全ての電極が同一極性を備えている場合には、その組には奇数個の電極または偶数個の電極が存在し得る。その組の全ての電極は、図11に示された導電リング62のような共通の接続点に接続することができる。カテーテルの接続端からの1個の導体が、その導電リングへの1つの接続によりその組の電極全てに電力を供給し得る。第2組の電極リードの全ての電極がそれぞれの導電リングにおいて、第1組とは異なる電位に共通に接続することができる。2つの異なる電位がカテーテルの作業端に存在しているので、エネルギーはこれらの組の電極リード間で患者組織を通って流れ、バイポーラ構成が存在することになる。従って、第1組の電極リードと第2組の電極リードとの間の距離と少なくとも同程度に長い患者組織の長さがエネルギーを受ける。
【0098】
望ましければ、全ての電極リードの全ての電極を同一電位に設定するとともに、選択された位置における患者の皮膚と接触状態の「背面プレート」におけるような、患者の体外に異なる電位を確立することにより、モノポーラ構成を確立することもできる。次いで、カテーテルの作業端105からのエネルギーは患者を通って流れ、背面プレートにより設けられた帰還部へと至る。
【0099】
分極する際の、または、電極における電位を制御する際の別な構成では、第1組の電極リードの電極は個別的に制御されて、その組のリードに異なる電位の電極対が存在するようにすることができる。これは、第1組のリード自体の内部にバイポーラアプローチを確立する。第2組のリードの電極が同様に、それらリードの間で互いに異なる電位のために接続されている場合には、これら電極もそれら自体の組の内部でバイポーラアプローチを提供し、電流が各組のリードの電極間で患者組織を通って流れることになる。第1組の第1の極性を有している電極が第2の組のリードの異なる極性を有している電極と整列状態にある場合には、エネルギーはその組内のバイポーラ電極間を流れるばかりか、他の組の電極に向かっても流れて、カテーテルの1個の作業端における2つのバイポーラ構成を設ける結果となる。第1組の電極リードと第2組の電極リードとの間の距離と少なくとも同程度に大きい長さの患者組織も、各組のリード自体の中の電極間の患者組織と同様に、エネルギーを受ける。
【0100】
丁度説明されたばかりのバイポーラアプローチと組み合わされた別なアプローチも異なる電位の背面プレートを使用して、患者組織を通るエネルギーの流れを更に制御するものである。この事例では、エネルギーは各組のリードのうちの各電極間を流れ、異なる組のリードの各電極間を流れ、更に、電極と背面プレートとの間を流れる。
【0101】
また別な構成では、電極の各々は個別的に電源(図1の22)に接続することが可能であり、各電極における電位は個別的に制御することができる(図1の23)。この構成は、患者組織を通る電流密度により厳密な制御をもたらし得る。具体例として、1組のリードの或る電極間でより少ない電流の流れが所望されるが、それらの電極と第2組のリードの電極との間ではより大きい電流の流れが所望される場合には、同一組の電極間の電位は低減することができるが、それらの電極と第2組のリードの電極との間の電位は増大されて、所望の電流密度を生じる結果となる。背面プレートも使用される事例では、かかる電極と背面プレートとの間で電流が流れるように、電極を制御することができる。各電極は個別的に制御されるので、その位置の組織に電極が付与するエネルギーのレベルは制御可能である。
【0102】
1組の電極リードあたりの電極の数に影響を及ぼしえる1つの要因は、治療されている静脈の直径である。電極リード用の接触パッドの設計も、所要の処置手順についての電極の所望数に影響を及ぼし得る。
【0103】
この実施形態では、電極リード100、102は外方向に伸張して標的組織と付着状態になるように形成されているが、標的組織が収縮すると、電極はその組織との接触を維持して、その粗引きにより内方向に移動させられる。この構成のせいで、リードは静脈の直径の変動を補償する。それゆえに、これら電極は、圧力カフスまたは止血器を使用することにより静脈または解剖学的構造の圧縮が存在していても、また、存在していなくても、組織との付着を維持することができる。
【0104】
電極カテーテル98の先端106は半球状または別な非外傷性形状を有しているべきである。先端106は電気的に中性であってもよく、ポリマーから製造されるか、或いは、ステンレス鋼から製造されていればよい。先端106は丸型形状を有しており、カテーテルの遠位極端部に配置されているので、この先端は、カテーテルを患者に導入する際には、ガイド機能を果たすことができる。
【0105】
2組の伸張可能電極を使用して静脈または他の中空解剖学的構造を前述の態様に類似した態様で結紮することができる。外側鞘部材108は引き戻されて、電極がカテーテルから外方向に伸張して治療されている管腔の壁と付着状態にすることができる。この2組の電極100、102はエネルギーを管腔に付与して、管腔が収縮させて直径を減じる。カテーテルは移動させたり、或いは、引き戻されたりすることができるが、エネルギーは管腔の伸張した領域を治療するために付与されている。管腔または静脈の所望の領域が治療されている時には(例えば、結紮されている)、エネルギーがもはや電極に供与されることは無く、外側鞘部材108が前方に押されて、伸張した電極を強制的に非伸張状態へと戻す。次いで、カテーテルは患者から除去されるか、或いは、静脈の別な部分を治療することができる。
【0106】
上述の構成要素各部の説明は、直径が3mm(0.12インチ)から10mm(0.39インチ)の寸法の範囲に入る静脈で使用されるカテーテルについてのものである。上記寸法は本発明の範囲を限定しておらず、本質的に単なる具体例であると理解するべきである。構成要素各部の寸法は変更可能であって、多様な寸法の静脈または多様な寸法の他の解剖学的構造で使用することのできるカテーテル10を構成している。
【0107】
ここで図25を参照すると、図23および図24のカテーテルの部分断面図が示されている。2種の複数の電極100、102が示されており、第1の複数の電極100は参照番号104で示されており、第2の複数の電極102は参照番号150で示されている。各電極は導電性電極リード152、154からそれぞれに形成されており、電極はその遠位端を例外として、その長さに沿って電気的に絶縁されており、この遠位端の点では、従って、絶縁が存在しないで電極を形成している。各リードは外方向への湾曲(図示せず)を有している。内側管156は管腔158を備えており、そこを通して、洗浄その他の目的で流体が流れ、或いは、そこを通して、ガイドワイヤを位置決めすることができる。ハイポチューブ160が内側管の上に設置され、絶縁体162の各層がハイポチューブの上に載置される。電極リード152の第1の複数の電極100は第1の取付リング164の近位方向に延び、このリングには全てのリードが接続されている。電極リード154の第2の複数の電極102が第2の取付リング166の近位方向に延び、このリングには全てのリードが接続されている。リング164、166はハイポチューブ絶縁体の上に載置され、2つのリングの間には導電経路は存在しないようになっている。ワイヤ導体168、170がカテーテルの近位端から各リングに延びて、特定リングに接続された全ての電極リードが電気的に相互接続される。
【0108】
交互配置が可能であり、特定の複数の或る交互電極は2つの異なるリングに接続される。各リングは電源に別個に接続され、よって、その複数の電極内でバイポーラアプローチを確立するように、リングの極性は異ならせることができる。1つの電極が「+」極であれば、それに隣接する2つの電極は「−」極となり得る。この事例では、全ての電極について合計3個のリングが存在することになる。別な構成では、両方の複数の電極がそれぞれの電極ごとに2つのリングを備えており、交互の電極が異なるリングに接続されて、各複数の電極内でバイポーラアプローチを確立することができるようにしている。この事例では、2種の複数の電極について合計4個のリングが存在していることになる。
【0109】
図25に示された点まで遠位方向に滑動すると、外側可動鞘部材172は電極リードを図示した位置まで収縮させる。近位方向に十分な距離だけ滑動すると、鞘部材172は、第2の複数の電極102の電極リードの各々における湾曲部(図示せず)を越えて移動して、図24に示されたように、全ての電極リードが外方向に伸張できるようにするという点で、配備装置として作用する。
【0110】
電極リードはこの実施形態ではステンレス鋼から形成されており、薄い絶縁体層と外方向湾曲部を備えているが、血流を通って外方向に自動的に移動して(静脈内応用例として)、標的組織の内壁と付着するのに十分な強度を備えている。内壁が電極による熱の付与のせいで収縮すると、内壁は電極リードをそれぞれの収縮位置に向かうように強制するが、外方向湾曲と形成材料とのせいで、全結紮プロセス期間中は電極は自動的に内壁と付着したままになる。
【0111】
長軸線方向に分離された2種の複数の伸張可能電極を備えている電極カテーテルの別な実施形態が図26、図27、図28に例示されている。これら実施形態は、図23から図25と関連して記載された電極カテーテルの実施形態に類似している。図26から図28に例示されている電極カテーテルの実施形態についての先端106の形状は異なっている。図26に例示された電極カテーテルは、崩壊状態の電極100の内径に一致する半径、或いは、この内径よりわずかに短い半径を有している先端106を備えている。電極100は成形先端106を崩壊させる。図27に例示された電極カテーテルは、丸みを付けた切り落とし形状を有している先端106を備えている。丸みを付けた切り落とし先端の半径は崩壊状態の電極100の内径に一致し、電極100は先端106の切り落とし部の背部で崩壊している。図28に例示された電極カテーテルは、図27に例示された先端よりも一層半球状の形状を有している先端106を備えている。
【0112】
図29をここで参照すると、下部痔核領域の静脈を治療する場合には、接近場所が準備される。ガイドワイヤ120が静脈内に通され、静脈治療場所までそこを通して前進させられる。代替例として、カテーテルは静脈に直接挿入されて、ガイドワイヤ無しで操作することができる。ガイドワイヤは静脈治療場所まで遡って前進させることができる。幾つかの脈管内経路を採って痔核治療場所に至ることができるが、他の接近場所を利用して内部痔核または外部痔核のいずれでも治療することができる。
【0113】
痔核領域に通じる静脈系の部分断面図が図29に示されている。痔核は一般に、歯状線DLより上方に形成されるか、それより下方に形成されるかに依存して、内部痔核または外部痔核と、それぞれに定義される。内部痔核IHは、上痔静脈SHVまたは中痔静脈MHVに流れ込む微細静脈が拡張状態になると、形成されるのが普通である。外部痔核は、下痔静脈IHVに流れ込む微細静脈が拡張状態になると、形成されるのが普通である。
【0114】
カテーテル122およびガイドワイヤ120を輸送する1つの方法は、痔核の拡張した静脈とは反対側の外部腸骨静脈EIにガイドワイヤ120を導入することである。ガイドワイヤは内部大静脈IVCの2分岐部を横断して下腸骨静脈IIまで操舵される。次に、ガイドワイヤは内部痔核を治療するために中痔静脈MHV内へと操縦されるか、或いは、陰部静脈PVに入ってから、外部痔核を治療するために下痔静脈IHV内へと操縦される。ガイドワイヤ120は内部痔核を治療するために、中痔静脈MHV内へと配備され、そこで操縦される。ガイドワイヤ120は、痔核の拡張静脈に達するまで、静脈系を通って操縦される。次いで、図29に示されるように、カテーテル122がガイドワイヤ120上を静脈治療場所まで輸送される。カテーテル122の作業端124は、静脈治療場所に適切に位置決めされてしまうとRFエネルギーを付与して静脈を結紮し、または、閉塞させるための複数のリードおよび電極を備えている。カテーテルは、カテーテルがガイドワイヤ上を伝って静脈血管系の湾曲部を通って追従することができるように、撓み性に富んでいるべきである。蛍光透視検査法、X線、超音波、または、同様の画像化技術を利用して、カテーテルの特殊設置の方向設定を行うとともに、静脈内の位置を確認することができる。
【0115】
カテーテルおよびガイドワイヤを輸送する別な方法は、上痔静脈にガイドワイヤを導入し、上痔静脈SHVを通して痔核領域までガイドワイヤを操縦していくことである。ガイドワイヤが適所へと操縦されてから、ガイドワイヤ上を伝ってカテーテルが内部痔核の静脈治療場所まで輸送される。静脈治療場所は拡張静脈の管腔内部に在り、電極リードはカテーテルの本体から離れる方向に伸張して、拡張静脈の壁と付着状態になる。
【0116】
カテーテル122の電極リードが静脈治療場所に位置決めされると、RF発生装置が作動されて、好適なRFエネルギーを供与して、周囲の静脈組織を加熱する。電極から放射されたエネルギーは静脈組織内部で変換されて熱になる。先に論じたように、エネルギーの付与によって静脈が崩壊し、有効に閉塞状態または結紮状態になる。
【0117】
別な解剖学的領域では、食道静脈瘤と呼ばれる静脈瘤が下食道の粘膜下組織に沿って静脈系に形成されることがあり、腫上がった静脈から出血が起こることがある。下食道領域の静脈を治療する場合は、接近場所が準備され、ガイドワイヤ120が静脈に通されてから、そこを通って静脈治療場所まで前進させられる。ガイドワイヤは、食道静脈瘤を治療するための治療場所に達するように配備および操縦することができる。静脈治療場所は拡張静脈の管腔内部であるのが好ましい。ワイヤは、修復されるべき静脈治療場所まで前進させられる。ガイドワイヤおよびカテーテルは、食道治療場所まで順行方向に前進させられるのが好ましい。代替例として、カテーテルは静脈に直接挿入し、ガイドワイヤ無しで操縦されてもよい。蛍光透視検査法、X線、超音波、または、同様の画像化技術を利用して、カテーテルの特殊な設置の方向設定を行うとともに、静脈内の位置を確認することができる。適切な寸法のカテーテル122が電極リードを食道静脈瘤に沿った静脈機能障害の場所まで導く。電極はRFエネルギーまたは他の形態のエネルギーを好適なパワーまたは周波数で付与し、静脈を崩壊させるとともに、有効に閉塞状態または結紮状態にする。
【0118】
図30に示されているように、食道領域に通じる静脈系の部分図では、カテーテル122がガイドワイヤ120を伝って静脈の拡張部へと前進させられる。カテーテルおよびガイドワイヤを輸送する1つの方法は、上腸間膜静脈SMVを通して門脈PVと、分岐して下食道Eに通じて食道静脈EVを形成する冠静脈CVとに、ガイドワイヤを導入することである。代替のルートとして、ガイドワイヤを下腸間膜静脈に導入し、脾静脈SV、門脈PV,および、冠静脈CVを経由して治療されるべき食道静脈瘤に到達する経路を辿らせることができる。
【0119】
ここで図31を参照すると、ファロピアン管の結紮が示されている。ガイドワイヤ120はファロピアン管Fに配置されて、カテーテル122もファロピアン管小孔126を通ってファロピアン管Fに位置決めされる。カテーテルのシャフトは、内視鏡128を利用して、子宮Uを通して導入されている。カテーテルの作業端はここでは、上述のようにエネルギー投与されて、ファロピアン内管結紮を実施することができる。次に、第2のファロピアン管が同一態様で結紮される。
【0120】
中空の解剖学的構造にエネルギーを付与する前に、或いは、その期間中、この組織は圧迫され、或いは、予備的に寸法調節することができる。更に、圧迫または流体排出により、管腔は放血することができる。外部手段によりファロピアン管の管腔を圧迫するための1つの方法は、肺腹膜の利用である。また別な特性として、管腔、とりわけファロピアン管の管腔はカテーテルによる負圧の付与により圧縮することができる。例えば、図25に示されたカテーテルのような開放端カテーテルでは、負圧がその開放端で管腔に付与することができる。望ましければ、膨張バルーンをオリフィスに近接してカテーテルのシャフトに搭載することが可能であり、このオリフィスを通して負圧が付与されて、管腔への負圧の付与を支援している。カテーテルの壁のポートの利用などの他の構成も可能であるが、このポートを通して負圧を付与することができる。
【0121】
正極荷電、負極荷電、第1の極性、反対極性、正極導体または負極導体として先に記載したけれども、これらの語は例示のためのみに使用されている。これらの語は一般に、異なる電極の電位のことを称しているつもりであって、特定電圧が正または負であることを示すつもりではない。更に、光ファイバーまたはマイクロ波のような他のタイプのエネルギーを利用して、治療を受けている中空の解剖学的構造に熱効果を起こすことも可能である。特定の中空の解剖学的構造は静脈(例えば、静脈瘤、痔核、食道静脈瘤など)、または、ファロピアン管であり得るが、ここに開示されたシステムを利用して、他の解剖学的構造を結紮することができるものと理解するべきである。
【0122】
本発明の幾つかの特定の形態が例示され、説明されてきたが、本発明の精神および範囲から逸脱することなしに、多様な修正を行うことができるのは明白である。従って、添付の特許請求の範囲によって限定されるのを例外として、本発明を限定することは意図していない。
【図面の簡単な説明】
【図1】 組織にエネルギーを付与するための複数の外方向に伸張可能な電極を備えている作業端と、作業端の電極に付与されるエネルギーを制御するためのマイクロプロセッサ制御装置により制御される電源に接続された接続端との両方を例示している、カテーテルの一部切り取り図を含む、エネルギー供給システムの図である。
【図2】 電極が十分に伸張した位置に在るのを描いている、本発明の局面に従ったカテーテルの第1の実施形態の作業端の断面図である。
【図2a】 図2の線2a−2aに沿って破断した、カテーテルの第1の実施形態の作業端の端面図である。
【図3】 電極が十分に後退した位置に在るのを描いている、第1の実施形態の作業端の断面図である。
【図4】 電極が十分に伸張した位置に在るのを描いている、本発明の原理に従った第2のカテーテルの作業端の断面図である。
【図4a】 図4の線4a−4aに沿って破断した、本発明の第2の実施形態の端面図である。
【図5】 電極が十分に後退した位置に在るのを描いている、図4のカテーテルの第2の実施形態の作業端の断面図である。
【図6】 電極が解剖学的構造と付着状態に在る、図2のカテーテルを包囲した解剖学的構造の断面図である。
【図6a】 図6の線6a−6aに沿って破断した、カテーテルを包囲した解剖学的構造の端面図である。
【図7a】 解剖学的構造が結紮の多様な段階に在るのを描いている、本発明の第1の実施形態に従ったカテーテルを包囲した解剖学的構造の断面図である。
【図7b】 解剖学的構造が結紮の多様な段階に在るのを描いている、本発明の第1の実施形態に従ったカテーテルを包囲した解剖学的構造の断面図である。
【図7c】 解剖学的構造が結紮の多様な段階に在るのを描いている、本発明の第1の実施形態に従ったカテーテルを包囲した解剖学的構造の断面図である。
【図8】 図4に描画したような本発明の第2の実施形態に従ったカテーテルを包囲している解剖学的構造の断面図である。
【図8a】 図8の線8a−8aに沿って破断した、カテーテルを包囲している解剖学的構造の端面図である。
【図9a】 解剖学的構造が結紮の多様な段階に在るのを描いている、本発明の第2の実施形態に従ったカテーテルを包囲している解剖学的構造の断面図である。
【図9b】 解剖学的構造が結紮の多様な段階に在るのを描いている、本発明の第2の実施形態に従ったカテーテルを包囲している解剖学的構造の断面図である。
【図10】 電極が十分に後退した位置に在るのを描いている、本発明に従ったカテーテルの第3の実施形態の作業端の断面図である。
【図10a】 図10の線10a−10aに沿って破断した、カテーテルの第3の実施形態の作業端の端面図である。
【図11】 電極が十分に伸張した位置に在るのを描いている、第3の実施形態の作業端の断面図である。
【図12】 電極が解剖学的構造と付着状態にある、図10のカテーテルを包囲した解剖学的構造の断面図である。
【図13】 解剖学的構造が電極からのエネルギーの付与により結紮されている最中である、図10のカテーテルを包囲した解剖学的構造の断面図である。
【図14】 電極が解剖学的構造と付着状態にあり、組織を結紮を目的とした電極からのエネルギーの付与の前に、外部からの圧迫が加えられて、中空組織の直径を低減している、図10のカテーテルを包囲した解剖学的構造の断面図である。
【図15】 バルーンおよびそれと同軸の流体チャネルを備えた電極カテーテルの別な実施形態の側面図である。
【図16】 バルーン膨張ポートがカテーテルの膨張鞘部材に形成されているのを示すとともに、膨張ポートと連絡状態にある膨張管腔を示している、図15のバルーンおよびカテーテルの図である。
【図17】 バルーンが電極を備えた湾曲自在アームに近接して配置され、バルーンの遠隔にあるカテーテルの一部が潅流穴を備えている、カテーテルの別な実施形態を包囲した解剖学的構造の断面図である。
【図18】 カテーテルから外へ延び出た電極のスプレーリードの間で被覆物が広がった電極カテーテルの別な実施形態の側面図である。
【図19】 バルーンおよびそれと同軸の流体チャネルが伸張可能なリードに近接して配置され、バルーンがバルーンの配備を維持するように血液を受け入れるための開口を有している、電極カテーテルの別な実施形態の側面図である。
【図20】 バルーンおよびそれと同軸の流体チャネルが伸張可能なリードに近接して配置され、バルーンがバルーンの配備を維持するように血液を受け入れるための開口を有している、電極カテーテルの別な実施形態の側面図である。
【図21】 伸張可能な部分を有している電極カテーテルの別な実施形態の部分断面側面図である。
【図22】 伸張した状態にある図21の電極カテーテルの実施形態の部分断面側面図である。
【図23】 2組の異なる複数の長軸線方向に互いに間隔を設けた、伸張可能な電極が後退した状態に在る電極カテーテルの実施形態の側面図である。
【図24】 両方の組の異なる複数の電極が伸張した形状を呈している、図23の電極カテーテルの実施形態の側面図である。
【図25】 図23の電極カテーテルの実施形態の部分断面図である。
【図26】 2組の異なる複数の長軸線方向に互いに間隔を設けた、伸張可能な電極が後退した状態に在る電極カテーテルの別な実施形態の側面図である。
【図27】 2組の異なる複数の長軸線方向に互いに間隔を設けた、伸張可能な電極が後退した状態に在る電極カテーテルの別な実施形態の側面図である。
【図28】 2組の異なる複数の長軸線方向に互いに間隔を設けた、心情可能な電極が後退した状態に在る電極カテーテルの別な実施形態の側面図である。
【図29】 痔核を治療することを目的として本発明に従った方法で使用されるカテーテルの図である。
【図30】 食道静脈瘤を治療することを目的として本発明に従った方法で使用されるカテーテルの図である。
【図31】 ファロピアン管を結紮することを目的として本発明に従った方法で使用されるカテーテルの図である。
Claims (22)
- 中空の解剖学的構造にエネルギーを付与するための装置であって、
エネルギーを上記解剖学的構造に付与する作業端を備えたシャフトを有しているカテーテルと、
このカテーテルの作業端に取付けられた複数の伸張可能な第1の電極リードであって、これらの電極リードの各々が1つの電極を備えている第1の電極リードと、
上記カテーテルの作業端に取付けらえたの複数の伸張可能な第2の電極リードであって、これらの第2の電極リードの各々が1つの電極を備えている第2の電極リードと、を有し、
複数の第1の電極リードと複数の第2の電極リードの電極の各々が、電極がカテーテルシャフトから外方向に配置される位置である伸張位置と、電極がシャフトにもっと接近して配置される位置である収縮位置とを有しており、
更に、カテーテルに取付けられた配備装置であって、この配備装置が、選択された電極が上記収縮位置に存在している位置である第1位置と、電極が上記伸張位置に存在している位置である第2位置とを取り得る上記配備装置を有し、
上記電極リードは、上記配備装置が第2位置にある時には、電極リードが移動により中空の解剖学的構造と付着状態になるのに十分な強度を備えるように選択された強度を備えた材料から上記リードが形成されており、且つ、電極リードが中空の解剖学的構造を収縮させることができると同時に、収縮している上記解剖学的構造と付着状態のままでいることができるような強度を備えており、
上記複数の第2の電極リードは、上記複数の第1の電極リードから分離され且つ長軸線方向に間隔が設けられており、
上記第1の電極リードは、上記第2の電極リードと異なる極性で作動するようになっていることを特徴とする装置。 - 上記複数の第1の電極リードが、上記カテーテルのシャフトから外方向に付勢されるように形成されており、
上記配備装置が、可動鞘部材を備えており、この可動鞘部材が、第1の複数の電極リードをその少なくとも1部の上で包囲しているとともに包囲されたリードを収縮位置へ閉じ込める第1位置と、複数の電極リードが外方向に伸張できるようにする第2位置とを取り得る請求項1に記載の装置。 - 上記複数の第2の電極リードが、上記カテーテルシャフトから外方向に付勢されるように形成され、
第1位置に在る上記可動鞘部材が上記第2の複数の電極リードをその少なくとも一部の上で包囲するとともに包囲されたリードを収縮位置に閉じ込め、
第2位置にある可動鞘部材が第2の複数の電極リードが外方向に伸張することができるようにするように形成されている請求項2に記載の装置。 - 上記複数の第1の電極リードと上記複数の第2の電極リードとの各々が、各リードの遠位部を外方向に伸張させ易い外方向への湾曲部を形成するように設けられている請求項1に記載の装置。
- 上記複数の第2の電極リードが上記第1の複数の電極リードに近接してカテーテルに取付けられており、
電極リードと関連して第1位置に在る上記可動鞘部材が第1の複数の電極リードおよび第2の複数の電極リードの湾曲部から遠方にあって、それにより、第1の複数の電極リードと第2の複数の電極リードとを収縮形状に維持しており、
第2位置に在る可動鞘部材は第1の複数の電極リードと第2の複数の電極リードの湾曲部に近接しており、それにより、第1の複数の電極リードおよび第2の複数の電極リードが外方向に伸張できるように形成されている請求項2に記載の装置。 - 上記電極リードは肩持ち梁として作業端に搭載されている請求項1に記載の装置。
- 上記複数の第1の電極リードおよび上記複数の第2の電極リードの各々は、上記作業端に関連して配置され、リードの電極が、伸張位置にある時には、実質的に互いに均一に間隔を設けた電極の実質的に対称的な構成を形成している請求項1に記載の装置。
- 各電極リードがその長さに沿って絶縁された導電材料から形成され、
各電極リードが、絶縁が存在していない外方向に面した部分を備えていることにより、電極を形成している請求項1に記載の装置。 - 上記第1の複数の電極リードが第1の導電性取付リングに搭載されており、このリングには、リードの電極が電気的に内部接続されている請求項1に記載の装置。
- 上記複数の第2の電極リードは第2の導電性取付リングに搭載されており、このリングには、リードの電極が電気的に内部接続されている請求項9に記載の装置。
- 更に、上記電極に接続された電源と、
電源を制御する制御装置と、
上記電極リードに搭載された温度センサーであって、この温度センサーは温度信号を制御装置に付与する温度センサーと、を有し、
上記制御装置は温度信号に応答して電源を制御する請求項1に記載の装置。 - 更に、上記電極に接続された電源と、
上記電極リードに付与される電源の出力を制御する制御装置と有し、
上記制御装置は選択された通りにリードの電気極性を切り替えるようにされた請求項1に記載の装置。 - 上記複数の第1の電極リードと上記複数の第2の電極リードの各々に、各リードの遠位部を外方向に伸張させ易い外方向の湾曲部を形成し、リードの各々が上記作業端と関連して配置されて、リードの電極が、伸張位置にある時には、実質的に均一に互いに間隔を設けられた電極の実質的に対称的な配置を形成し、
各電極がその長さに沿って絶縁状態にされ、各電極リードが絶縁が存在していない外方向に面した部分を備えており、それにより、中空の解剖学的構造と付着状態になるように構成された電極を形成している請求項1に記載の装置。 - 更に、上記カテーテルシャフトと上記可動鞘部材との間の流体輸送管腔を有している請求項2に記載の装置。
- 更に、ガイドワイヤを受容するように構成されたガイドワイヤ管腔を更に有している請求項1に記載の装置。
- 上記ガイドワイヤが流体輸送システムに接続されることが可能である請求項15に記載の装置。
- 上記電極リードの電極が、上記電極リードがカテーテルに取り付けられている位置より遠方に位置している請求項1に記載の装置。
- 上記複数の第1の電極リードの電極は、伸張位置にあるとき、均一に半径方向に間隔が設けられている請求項1に記載の装置。
- 上記複数の第2の電極リードの電極は、伸張位置にあるとき、均一に半径方向に間隔が設けられている請求項1に記載の装置。
- 上記電極リードの電極は、丸型である請求項1に記載の装置。
- 上記電極リードの電極は、スプーン状、楕円、又は、長円である請求項1に記載の装置。
- 更に、流体を輸送して、中空の解剖学的構造から放血する手段を有している請求項1に記載の装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/138,472 | 1998-08-21 | ||
US09/138,472 US6179832B1 (en) | 1997-09-11 | 1998-08-21 | Expandable catheter having two sets of electrodes |
PCT/US1999/019193 WO2000010475A1 (en) | 1998-08-21 | 1999-08-20 | Electrocatheter for inducing vessel stenosys having two arrays of diverging electrodes |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002523130A JP2002523130A (ja) | 2002-07-30 |
JP2002523130A5 JP2002523130A5 (ja) | 2006-10-05 |
JP4187931B2 true JP4187931B2 (ja) | 2008-11-26 |
Family
ID=22482166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000565801A Expired - Fee Related JP4187931B2 (ja) | 1998-08-21 | 1999-08-20 | 2組の電極を備えた膨張可能なカテーテルとその使用方法 |
Country Status (18)
Country | Link |
---|---|
US (3) | US6179832B1 (ja) |
EP (1) | EP1105060B1 (ja) |
JP (1) | JP4187931B2 (ja) |
KR (1) | KR20010099627A (ja) |
CN (1) | CN1297239C (ja) |
AT (1) | ATE507787T1 (ja) |
AU (2) | AU770951B2 (ja) |
BR (1) | BR9913212A (ja) |
CA (1) | CA2341251C (ja) |
DE (1) | DE69943410D1 (ja) |
HK (1) | HK1042029B (ja) |
IL (1) | IL141484A (ja) |
MX (1) | MXPA01001890A (ja) |
NO (1) | NO20010886L (ja) |
NZ (2) | NZ531919A (ja) |
PL (1) | PL346217A1 (ja) |
RU (1) | RU2207823C2 (ja) |
WO (1) | WO2000010475A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210085391A1 (en) * | 2014-12-23 | 2021-03-25 | Mark Whiteley | Medical device for treating a vein |
Families Citing this family (355)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6277112B1 (en) | 1996-07-16 | 2001-08-21 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US6602248B1 (en) | 1995-06-07 | 2003-08-05 | Arthro Care Corp. | Methods for repairing damaged intervertebral discs |
WO2003024506A2 (en) | 2001-09-14 | 2003-03-27 | Arthrocare Corporation | Methods and apparatus for treating intervertebral discs |
US7393351B2 (en) | 1995-06-07 | 2008-07-01 | Arthrocare Corporation | Apparatus and methods for treating cervical inter-vertebral discs |
US20050004634A1 (en) | 1995-06-07 | 2005-01-06 | Arthrocare Corporation | Methods for electrosurgical treatment of spinal tissue |
WO1997032532A1 (en) * | 1996-03-05 | 1997-09-12 | Vnus Medical Technologies, Inc. | Vascular catheter-based system for heating tissue |
US7604633B2 (en) | 1996-04-12 | 2009-10-20 | Cytyc Corporation | Moisture transport system for contact electrocoagulation |
US6726684B1 (en) | 1996-07-16 | 2004-04-27 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US7357798B2 (en) | 1996-07-16 | 2008-04-15 | Arthrocare Corporation | Systems and methods for electrosurgical prevention of disc herniations |
US6726685B2 (en) * | 2001-06-06 | 2004-04-27 | Oratec Interventions, Inc. | Intervertebral disc device employing looped probe |
US6464697B1 (en) * | 1998-02-19 | 2002-10-15 | Curon Medical, Inc. | Stomach and adjoining tissue regions in the esophagus |
AU6146798A (en) * | 1997-03-04 | 1998-09-22 | Vnus Medical Technologies, Inc. | Method and apparatus for treating venous insufficiency using directionally applied energy |
US6258084B1 (en) * | 1997-09-11 | 2001-07-10 | Vnus Medical Technologies, Inc. | Method for applying energy to biological tissue including the use of tumescent tissue compression |
US6200312B1 (en) * | 1997-09-11 | 2001-03-13 | Vnus Medical Technologies, Inc. | Expandable vein ligator catheter having multiple electrode leads |
US6726686B2 (en) * | 1997-11-12 | 2004-04-27 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US8551082B2 (en) | 1998-05-08 | 2013-10-08 | Cytyc Surgical Products | Radio-frequency generator for powering an ablation device |
US6740082B2 (en) * | 1998-12-29 | 2004-05-25 | John H. Shadduck | Surgical instruments for treating gastro-esophageal reflux |
US6283962B1 (en) * | 1998-06-08 | 2001-09-04 | Quantum Therapeutics Corp. | Device for valvular annulus treatment and methods thereof |
US20040249374A1 (en) * | 1998-10-23 | 2004-12-09 | Tetzlaff Philip M. | Vessel sealing instrument |
US6306133B1 (en) * | 1999-10-02 | 2001-10-23 | Quantum Cor Incorporated | Ablation catheter system and methods for repairing a valvular annulus |
US6712771B2 (en) * | 2000-06-16 | 2004-03-30 | Accumed Systems, Inc. | Temperature sensing catheter |
US20030120256A1 (en) * | 2001-07-03 | 2003-06-26 | Syntheon, Llc | Methods and apparatus for sclerosing the wall of a varicose vein |
US7077836B2 (en) * | 2000-07-21 | 2006-07-18 | Vein Rx, Inc. | Methods and apparatus for sclerosing the wall of a varicose vein |
US20050113798A1 (en) * | 2000-07-21 | 2005-05-26 | Slater Charles R. | Methods and apparatus for treating the interior of a blood vessel |
US20050107738A1 (en) * | 2000-07-21 | 2005-05-19 | Slater Charles R. | Occludable intravascular catheter for drug delivery and method of using the same |
DE10037660A1 (de) * | 2000-07-31 | 2002-02-21 | Curative Ag | Ablationskatheter |
US7789876B2 (en) | 2000-08-14 | 2010-09-07 | Tyco Healthcare Group, Lp | Method and apparatus for positioning a catheter relative to an anatomical junction |
US7387628B1 (en) | 2000-09-15 | 2008-06-17 | Boston Scientific Scimed, Inc. | Methods and systems for focused bipolar tissue ablation |
US20030158545A1 (en) | 2000-09-28 | 2003-08-21 | Arthrocare Corporation | Methods and apparatus for treating back pain |
DE60238178D1 (de) | 2001-01-16 | 2010-12-16 | Cytyc Surgical Products Palo A | Vorrichtung und verfahren zur behandlung des venösen reflux |
US20020177847A1 (en) * | 2001-03-30 | 2002-11-28 | Long Gary L. | Endoscopic ablation system with flexible coupling |
US7097644B2 (en) * | 2001-03-30 | 2006-08-29 | Ethicon Endo-Surgery, Inc. | Medical device with improved wall construction |
US6918906B2 (en) * | 2001-03-30 | 2005-07-19 | Gary L. Long | Endoscopic ablation system with improved electrode geometry |
US20030181900A1 (en) * | 2002-03-25 | 2003-09-25 | Long Gary L. | Endoscopic ablation system with a plurality of electrodes |
US20040015159A1 (en) * | 2001-07-03 | 2004-01-22 | Syntheon, Llc | Methods and apparatus for treating the wall of a blood vessel with electromagnetic energy |
US6907297B2 (en) * | 2001-09-28 | 2005-06-14 | Ethicon, Inc. | Expandable intracardiac return electrode and method of use |
US7517349B2 (en) | 2001-10-22 | 2009-04-14 | Vnus Medical Technologies, Inc. | Electrosurgical instrument and method |
US7127291B2 (en) * | 2002-03-01 | 2006-10-24 | Cardiac Pacemakers, Inc. | Coronary sinus lead with thermal sensor and method therefor |
US7137981B2 (en) * | 2002-03-25 | 2006-11-21 | Ethicon Endo-Surgery, Inc. | Endoscopic ablation system with a distally mounted image sensor |
US7163533B2 (en) * | 2002-04-04 | 2007-01-16 | Angiodynamics, Inc. | Vascular treatment device and method |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US7756583B2 (en) | 2002-04-08 | 2010-07-13 | Ardian, Inc. | Methods and apparatus for intravascularly-induced neuromodulation |
US7008417B2 (en) * | 2002-04-22 | 2006-03-07 | Medtronics, Inc. | Detecting coagulum formation |
EP1545362A4 (en) * | 2002-09-05 | 2006-05-03 | Arthrocare Corp | METHODS AND APPARATUSES FOR TREATING INTERVERTEBRAL DISCS |
EP1594672A1 (en) * | 2003-01-31 | 2005-11-16 | Preton Limited | A process for producing a performance enhanced single-layer blow-moulded container |
US7115127B2 (en) * | 2003-02-04 | 2006-10-03 | Cardiodex, Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
US7223266B2 (en) * | 2003-02-04 | 2007-05-29 | Cardiodex Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
WO2004086994A1 (en) * | 2003-03-28 | 2004-10-14 | C.R. Bard, Inc. | Method and apparatus for electrosurgical ablation |
US6964661B2 (en) * | 2003-04-02 | 2005-11-15 | Boston Scientific Scimed, Inc. | Endovenous ablation mechanism with feedback control |
WO2004098385A2 (en) * | 2003-05-01 | 2004-11-18 | Sherwood Services Ag | Method and system for programing and controlling an electrosurgical generator system |
DE202004021953U1 (de) | 2003-09-12 | 2013-06-19 | Vessix Vascular, Inc. | Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material |
US7416549B2 (en) * | 2003-10-10 | 2008-08-26 | Boston Scientific Scimed, Inc. | Multi-zone bipolar ablation probe assembly |
EP1686903B1 (en) | 2003-11-28 | 2014-07-30 | Cook Medical Technologies LLC | Vascular occlusion devices |
EP1718227A1 (en) * | 2004-02-17 | 2006-11-08 | Boston Scientific Limited | Endoscopic tissue stabilization device and related methods of use |
US7632266B2 (en) * | 2004-02-17 | 2009-12-15 | Boston Scientific Scimed, Inc. | Endoscopic devices and related methods of use |
US8048086B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US8052669B2 (en) | 2004-02-25 | 2011-11-08 | Femasys Inc. | Methods and devices for delivery of compositions to conduits |
US8048101B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US9238127B2 (en) | 2004-02-25 | 2016-01-19 | Femasys Inc. | Methods and devices for delivering to conduit |
US8100822B2 (en) * | 2004-03-16 | 2012-01-24 | Macroplata Systems, Llc | Anoscope for treating hemorrhoids without the trauma of cutting or the use of an endoscope |
GB2429162B (en) * | 2004-03-29 | 2009-03-25 | Cook Biotech Inc | Methods for producing medical graft products with differing regions |
WO2005099570A1 (en) * | 2004-04-19 | 2005-10-27 | University Of Florida Research Foundation, Inc. | Novel catheter sensor |
US20050267520A1 (en) * | 2004-05-12 | 2005-12-01 | Modesitt D B | Access and closure device and method |
WO2005112814A2 (en) * | 2004-05-17 | 2005-12-01 | C.R. Bard, Inc. | Irrigated catheter |
US20090125011A1 (en) * | 2004-06-28 | 2009-05-14 | Kamran Behzadian | Devices, Methods and Kits for Substantial and Uniform Ablation about a Linear Bipolar Array of Electrodes |
US7232438B2 (en) * | 2004-07-09 | 2007-06-19 | Ethicon Endo-Surgery, Inc. | Ablation device with clear probe |
US7678133B2 (en) * | 2004-07-10 | 2010-03-16 | Arstasis, Inc. | Biological tissue closure device and method |
US7824408B2 (en) | 2004-08-05 | 2010-11-02 | Tyco Healthcare Group, Lp | Methods and apparatus for coagulating and/or constricting hollow anatomical structures |
EP1781354A4 (en) * | 2004-08-19 | 2008-04-09 | Vein Rx Inc | OCKLUDABLE INTRAVASCULAR CATHETER FOR DRUG DISPOSAL AND METHOD FOR THE APPLICATION THEREOF |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US20070016272A1 (en) * | 2004-09-27 | 2007-01-18 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
JP5068662B2 (ja) * | 2004-11-22 | 2012-11-07 | カーディオデックス リミテッド | 静脈瘤の加熱治療技術 |
US7731712B2 (en) | 2004-12-20 | 2010-06-08 | Cytyc Corporation | Method and system for transcervical tubal occlusion |
KR20060072734A (ko) * | 2004-12-23 | 2006-06-28 | 두산인프라코어 주식회사 | 건설중장비의 압축공기 공급장치 |
US20080200871A1 (en) * | 2005-01-14 | 2008-08-21 | Slater Charles R | Valve System For a Medical Device Having an Inflatable Member |
EP2586386B1 (en) | 2005-01-25 | 2018-10-31 | Covidien LP | Structure for permanent occlusion of a hollow anatomical structure |
US20080015569A1 (en) | 2005-02-02 | 2008-01-17 | Voyage Medical, Inc. | Methods and apparatus for treatment of atrial fibrillation |
US7860555B2 (en) * | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue visualization and manipulation system |
US7930016B1 (en) | 2005-02-02 | 2011-04-19 | Voyage Medical, Inc. | Tissue closure system |
US11478152B2 (en) | 2005-02-02 | 2022-10-25 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
US7918787B2 (en) | 2005-02-02 | 2011-04-05 | Voyage Medical, Inc. | Tissue visualization and manipulation systems |
US20080009747A1 (en) * | 2005-02-02 | 2008-01-10 | Voyage Medical, Inc. | Transmural subsurface interrogation and ablation |
US8050746B2 (en) | 2005-02-02 | 2011-11-01 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US8078266B2 (en) | 2005-10-25 | 2011-12-13 | Voyage Medical, Inc. | Flow reduction hood systems |
US8137333B2 (en) * | 2005-10-25 | 2012-03-20 | Voyage Medical, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US7860556B2 (en) * | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue imaging and extraction systems |
US10064540B2 (en) | 2005-02-02 | 2018-09-04 | Intuitive Surgical Operations, Inc. | Visualization apparatus for transseptal access |
US9510732B2 (en) * | 2005-10-25 | 2016-12-06 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
US7625372B2 (en) * | 2005-02-23 | 2009-12-01 | Vnus Medical Technologies, Inc. | Methods and apparatus for coagulating and/or constricting hollow anatomical structures |
EP1865870B8 (en) | 2005-03-28 | 2012-04-04 | Vessix Vascular, Inc. | Intraluminal electrical tissue characterization and tuned rf energy for selective treatment of atheroma and other target tissues |
US7662150B2 (en) * | 2005-04-27 | 2010-02-16 | Boston Scientific Scimed, Inc. | Variable size apparatus for supporting diagnostic and/or therapeutic elements in contact with tissue |
US7674260B2 (en) | 2005-04-28 | 2010-03-09 | Cytyc Corporation | Emergency hemostasis device utilizing energy |
US7862565B2 (en) * | 2005-05-12 | 2011-01-04 | Aragon Surgical, Inc. | Method for tissue cauterization |
US8696662B2 (en) * | 2005-05-12 | 2014-04-15 | Aesculap Ag | Electrocautery method and apparatus |
US9339323B2 (en) | 2005-05-12 | 2016-05-17 | Aesculap Ag | Electrocautery method and apparatus |
US7803156B2 (en) * | 2006-03-08 | 2010-09-28 | Aragon Surgical, Inc. | Method and apparatus for surgical electrocautery |
WO2006124896A2 (en) * | 2005-05-12 | 2006-11-23 | Arstasis, Inc. | Access and closure device and method |
US8728072B2 (en) | 2005-05-12 | 2014-05-20 | Aesculap Ag | Electrocautery method and apparatus |
US8019438B2 (en) * | 2005-06-28 | 2011-09-13 | Cardiac Pacemakers, Inc. | Anchor for electrode delivery system |
EP2662042A3 (en) | 2005-07-21 | 2017-03-22 | Covidien LP | Systems and methods for treating a hollow anatomical structure |
EP2444018B1 (en) | 2005-07-21 | 2017-11-15 | Covidien LP | Systems for treating a hollow anatomical structure |
US8991676B2 (en) * | 2007-03-15 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Surgical staple having a slidable crown |
US8221310B2 (en) | 2005-10-25 | 2012-07-17 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US8961511B2 (en) | 2006-02-07 | 2015-02-24 | Viveve, Inc. | Vaginal remodeling device and methods |
US8251990B2 (en) * | 2006-03-21 | 2012-08-28 | The Cleveland Clinic Foundation | Apparatus and method of performing radiofrequency cauterization and tissue removal |
US8574229B2 (en) * | 2006-05-02 | 2013-11-05 | Aesculap Ag | Surgical tool |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20070265613A1 (en) * | 2006-05-10 | 2007-11-15 | Edelstein Peter Seth | Method and apparatus for sealing tissue |
US20100268217A1 (en) * | 2006-05-24 | 2010-10-21 | Emcision Limited | Vessel sealing device and methods |
GB0700553D0 (en) * | 2007-01-11 | 2007-02-21 | Emcision Ltd | Vessel sealing device |
US20080017043A1 (en) * | 2006-06-01 | 2008-01-24 | The Coca-Cola Company | Tea Stick Brewing Package and Method |
US9055906B2 (en) | 2006-06-14 | 2015-06-16 | Intuitive Surgical Operations, Inc. | In-vivo visualization systems |
GB0614557D0 (en) * | 2006-07-21 | 2006-08-30 | Emcision Ltd | Tissue Ablator |
US20080033241A1 (en) * | 2006-08-01 | 2008-02-07 | Ruey-Feng Peh | Left atrial appendage closure |
FR2904929A1 (fr) | 2006-08-17 | 2008-02-22 | Raouf Ayman Abdul | Systeme de sonde pour l'occlusion de lumiere corporelle et dispositif pour l'occlusion d'une telle lumiere corporelle |
EP2063781A4 (en) | 2006-09-01 | 2010-07-28 | Voyage Medical Inc | ELECTROPHYSIOLOGY CARTOGRAPHY AND VISUALIZATION SYSTEM |
US20080097476A1 (en) | 2006-09-01 | 2008-04-24 | Voyage Medical, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
US10004388B2 (en) | 2006-09-01 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Coronary sinus cannulation |
US8486060B2 (en) * | 2006-09-18 | 2013-07-16 | Cytyc Corporation | Power ramping during RF ablation |
US20080071269A1 (en) * | 2006-09-18 | 2008-03-20 | Cytyc Corporation | Curved Endoscopic Medical Device |
EP2071700A4 (en) * | 2006-10-04 | 2013-04-10 | Tokyo Electric Power Co | AC / DC CONVERSION DEVICE |
EP2455036B1 (en) | 2006-10-18 | 2015-07-15 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
JP5559539B2 (ja) | 2006-10-18 | 2014-07-23 | べシックス・バスキュラー・インコーポレイテッド | 身体組織に望ましい温度作用を誘発するシステム |
WO2008049082A2 (en) | 2006-10-18 | 2008-04-24 | Minnow Medical, Inc. | Inducing desirable temperature effects on body tissue |
US10335131B2 (en) * | 2006-10-23 | 2019-07-02 | Intuitive Surgical Operations, Inc. | Methods for preventing tissue migration |
JP2008132163A (ja) * | 2006-11-28 | 2008-06-12 | Olympus Medical Systems Corp | 身体管腔閉塞治療処置具 |
US20080140070A1 (en) * | 2006-12-07 | 2008-06-12 | Cierra, Inc. | Multi-electrode apparatus for tissue welding and ablation |
US20080183036A1 (en) | 2006-12-18 | 2008-07-31 | Voyage Medical, Inc. | Systems and methods for unobstructed visualization and ablation |
US8131350B2 (en) * | 2006-12-21 | 2012-03-06 | Voyage Medical, Inc. | Stabilization of visualization catheters |
US9226648B2 (en) | 2006-12-21 | 2016-01-05 | Intuitive Surgical Operations, Inc. | Off-axis visualization systems |
US7846160B2 (en) | 2006-12-21 | 2010-12-07 | Cytyc Corporation | Method and apparatus for sterilization |
DK2107920T3 (da) * | 2007-01-29 | 2013-10-21 | Univ Fraser Simon | Transvaskulært nervestimulationsapparat |
US7655004B2 (en) * | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US20080200873A1 (en) * | 2007-02-16 | 2008-08-21 | Alejandro Espinosa | Methods and Apparatus for Infusing the Interior of a Blood Vessel |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
WO2008134457A1 (en) | 2007-04-27 | 2008-11-06 | Voyage Medical, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US8435235B2 (en) | 2007-04-27 | 2013-05-07 | Covidien Lp | Systems and methods for treating hollow anatomical structures |
US8579886B2 (en) * | 2007-05-01 | 2013-11-12 | Covidien Lp | Accordion style cable stand-off |
US8657805B2 (en) * | 2007-05-08 | 2014-02-25 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
EP2155036B1 (en) * | 2007-05-11 | 2016-02-24 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
US9861424B2 (en) | 2007-07-11 | 2018-01-09 | Covidien Lp | Measurement and control systems and methods for electrosurgical procedures |
US8152800B2 (en) | 2007-07-30 | 2012-04-10 | Vivant Medical, Inc. | Electrosurgical systems and printed circuit boards for use therewith |
WO2009023866A1 (en) | 2007-08-15 | 2009-02-19 | Cardiodex Ltd. | Systems and methods for puncture closure |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8235985B2 (en) * | 2007-08-31 | 2012-08-07 | Voyage Medical, Inc. | Visualization and ablation system variations |
US7645142B2 (en) * | 2007-09-05 | 2010-01-12 | Vivant Medical, Inc. | Electrical receptacle assembly |
US8747398B2 (en) | 2007-09-13 | 2014-06-10 | Covidien Lp | Frequency tuning in a microwave electrosurgical system |
US8308763B2 (en) | 2007-10-05 | 2012-11-13 | Coaptus Medical Corporation | Systems and methods for transeptal cardiac procedures, including separable guidewires |
US20090105744A1 (en) * | 2007-10-17 | 2009-04-23 | Modesitt D Bruce | Methods for forming tracts in tissue |
US20090112059A1 (en) * | 2007-10-31 | 2009-04-30 | Nobis Rudolph H | Apparatus and methods for closing a gastrotomy |
US20090143640A1 (en) * | 2007-11-26 | 2009-06-04 | Voyage Medical, Inc. | Combination imaging and treatment assemblies |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US8870867B2 (en) * | 2008-02-06 | 2014-10-28 | Aesculap Ag | Articulable electrosurgical instrument with a stabilizable articulation actuator |
US20090198272A1 (en) * | 2008-02-06 | 2009-08-06 | Lawrence Kerver | Method and apparatus for articulating the wrist of a laparoscopic grasping instrument |
US8858609B2 (en) | 2008-02-07 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
US8157747B2 (en) * | 2008-02-15 | 2012-04-17 | Lary Research & Development, Llc | Single-use indicator for a surgical instrument and a surgical instrument incorporating same |
US8059059B2 (en) | 2008-05-29 | 2011-11-15 | Vivant Medical, Inc. | Slidable choke microwave antenna |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
US20090299261A1 (en) * | 2008-06-03 | 2009-12-03 | Istvan Bognar | Expandable Catheters and Methods Relating Thereto |
US8906035B2 (en) * | 2008-06-04 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Endoscopic drop off bag |
US8403926B2 (en) * | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
JP2011522633A (ja) * | 2008-06-06 | 2011-08-04 | バリックス・メディカル・コーポレイション | 血管治療装置および方法 |
US20090326572A1 (en) * | 2008-06-27 | 2009-12-31 | Ruey-Feng Peh | Apparatus and methods for rapid tissue crossing |
US9101735B2 (en) | 2008-07-07 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Catheter control systems |
US20100010303A1 (en) * | 2008-07-09 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Inflatable access device |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US20100010298A1 (en) * | 2008-07-14 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal flexible overtube |
AU2009274128A1 (en) * | 2008-07-21 | 2010-01-28 | Arstasis, Inc. | Devices and methods for forming tracts in tissue |
CN102159126A (zh) * | 2008-07-21 | 2011-08-17 | 阿尔斯塔西斯公司 | 在组织中形成管道的装置、方法和成套用具 |
US20100076451A1 (en) * | 2008-09-19 | 2010-03-25 | Ethicon Endo-Surgery, Inc. | Rigidizable surgical instrument |
US9554826B2 (en) | 2008-10-03 | 2017-01-31 | Femasys, Inc. | Contrast agent injection system for sonographic imaging |
US12171463B2 (en) | 2008-10-03 | 2024-12-24 | Femasys Inc. | Contrast agent generation and injection system for sonographic imaging |
US10070888B2 (en) * | 2008-10-03 | 2018-09-11 | Femasys, Inc. | Methods and devices for sonographic imaging |
US8894643B2 (en) | 2008-10-10 | 2014-11-25 | Intuitive Surgical Operations, Inc. | Integral electrode placement and connection systems |
US20100094075A1 (en) * | 2008-10-10 | 2010-04-15 | Hologic Inc. | Expandable medical devices with reinforced elastomeric members and methods employing the same |
US8333012B2 (en) * | 2008-10-10 | 2012-12-18 | Voyage Medical, Inc. | Method of forming electrode placement and connection systems |
US9468364B2 (en) | 2008-11-14 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Intravascular catheter with hood and image processing systems |
CN102271603A (zh) | 2008-11-17 | 2011-12-07 | 明诺医学股份有限公司 | 得知或未得知组织形态的选择性能量积累 |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US20100331622A2 (en) * | 2008-11-25 | 2010-12-30 | Ethicon Endo-Surgery, Inc. | Tissue manipulation devices |
US20100152539A1 (en) * | 2008-12-17 | 2010-06-17 | Ethicon Endo-Surgery, Inc. | Positionable imaging medical devices |
US8361066B2 (en) | 2009-01-12 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US20100191050A1 (en) * | 2009-01-23 | 2010-07-29 | Ethicon Endo-Surgery, Inc. | Variable length accessory for guiding a flexible endoscopic tool |
US20100191267A1 (en) * | 2009-01-26 | 2010-07-29 | Ethicon Endo-Surgery, Inc. | Rotary needle for natural orifice translumenal endoscopic surgery |
US20100198209A1 (en) * | 2009-01-30 | 2010-08-05 | Tartaglia Joseph M | Hemorrhoid Therapy and Method |
US20100198248A1 (en) * | 2009-02-02 | 2010-08-05 | Ethicon Endo-Surgery, Inc. | Surgical dissector |
US20100204561A1 (en) * | 2009-02-11 | 2010-08-12 | Voyage Medical, Inc. | Imaging catheters having irrigation |
US20100256629A1 (en) * | 2009-04-06 | 2010-10-07 | Voyage Medical, Inc. | Methods and devices for treatment of the ostium |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
WO2010132835A1 (en) * | 2009-05-15 | 2010-11-18 | Arstasis, Inc. | Devices, methods and kits for forming tracts in tissue |
KR102100081B1 (ko) | 2009-09-18 | 2020-04-10 | 비베베, 아이엔씨. | 질 재건 기구 및 방법 |
CN102665573B (zh) * | 2009-09-22 | 2015-09-16 | 阿尔斯塔西斯公司 | 用于在组织中形成管道的装置 |
US20110098694A1 (en) * | 2009-10-28 | 2011-04-28 | Ethicon Endo-Surgery, Inc. | Methods and instruments for treating cardiac tissue through a natural orifice |
US20110098704A1 (en) * | 2009-10-28 | 2011-04-28 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
WO2011055143A2 (en) * | 2009-11-04 | 2011-05-12 | Emcision Limited | Lumenal remodelling device and methods |
US8608652B2 (en) * | 2009-11-05 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Vaginal entry surgical devices, kit, system, and method |
EP3556308B1 (en) | 2009-11-05 | 2023-12-20 | Stratus Medical, LLC | Systems for spinal radio frequency neurotomy |
US20110115891A1 (en) * | 2009-11-13 | 2011-05-19 | Ethicon Endo-Surgery, Inc. | Energy delivery apparatus, system, and method for deployable medical electronic devices |
US20110152610A1 (en) * | 2009-12-17 | 2011-06-23 | Ethicon Endo-Surgery, Inc. | Intralumenal accessory tip for endoscopic sheath arrangements |
US8496574B2 (en) | 2009-12-17 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Selectively positionable camera for surgical guide tube assembly |
US20110152923A1 (en) * | 2009-12-18 | 2011-06-23 | Ethicon Endo-Surgery, Inc. | Incision closure device |
US8882759B2 (en) | 2009-12-18 | 2014-11-11 | Covidien Lp | Microwave ablation system with dielectric temperature probe |
US8506564B2 (en) | 2009-12-18 | 2013-08-13 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9028483B2 (en) * | 2009-12-18 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9616246B2 (en) * | 2010-01-04 | 2017-04-11 | Covidien Lp | Apparatus and methods for treating hollow anatomical structures |
US8313486B2 (en) | 2010-01-29 | 2012-11-20 | Vivant Medical, Inc. | System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device |
US20110190764A1 (en) * | 2010-01-29 | 2011-08-04 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9005198B2 (en) | 2010-01-29 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
AU2011212786C1 (en) | 2010-02-04 | 2014-10-16 | Aesculap Ag | Laparoscopic radiofrequency surgical device |
ES2869953T3 (es) | 2010-02-09 | 2021-10-26 | Medinol Ltd | Punta de catéter ensamblada con un resorte |
US10342570B2 (en) | 2014-02-03 | 2019-07-09 | Medinol Ltd. | Device for traversing vessel occlusions and method of use |
JP5668195B2 (ja) * | 2010-02-09 | 2015-02-12 | メディノール リミテッド | 血管閉塞をトラバースするための装置及びシステム、ならびに当該装置における振動可能部材を振動させる方法及び振動力を制御する方法 |
US8694071B2 (en) | 2010-02-12 | 2014-04-08 | Intuitive Surgical Operations, Inc. | Image stabilization techniques and methods |
US8568404B2 (en) | 2010-02-19 | 2013-10-29 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US8728067B2 (en) | 2010-03-08 | 2014-05-20 | Covidien Lp | Microwave antenna probe having a deployable ground plane |
US8827992B2 (en) | 2010-03-26 | 2014-09-09 | Aesculap Ag | Impedance mediated control of power delivery for electrosurgery |
US8419727B2 (en) * | 2010-03-26 | 2013-04-16 | Aesculap Ag | Impedance mediated power delivery for electrosurgery |
US9814522B2 (en) | 2010-04-06 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Apparatus and methods for ablation efficacy |
AU2011238925B2 (en) | 2010-04-09 | 2016-06-16 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
EP2563234B1 (en) | 2010-04-26 | 2021-12-08 | Covidien LP | Apparatus for effecting at least one anatomical structure |
US8632458B2 (en) | 2011-10-26 | 2014-01-21 | Macroplata Inc. | Gentle hemorrhoid treatment offering a substantially painless healing |
US20110288540A1 (en) | 2010-05-21 | 2011-11-24 | Nimbus Concepts, Llc | Systems and methods for tissue ablation |
US8979838B2 (en) | 2010-05-24 | 2015-03-17 | Arthrocare Corporation | Symmetric switching electrode method and related system |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9138289B2 (en) * | 2010-06-28 | 2015-09-22 | Medtronic Advanced Energy Llc | Electrode sheath for electrosurgical device |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9173698B2 (en) | 2010-09-17 | 2015-11-03 | Aesculap Ag | Electrosurgical tissue sealing augmented with a seal-enhancing composition |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US9044245B2 (en) * | 2011-01-05 | 2015-06-02 | Medtronic Ablation Frontiers Llc | Multipolarity epicardial radiofrequency ablation |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US10092291B2 (en) | 2011-01-25 | 2018-10-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectively rigidizable features |
US9314620B2 (en) | 2011-02-28 | 2016-04-19 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9254169B2 (en) | 2011-02-28 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
WO2012125785A1 (en) | 2011-03-17 | 2012-09-20 | Ethicon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
WO2012161875A1 (en) | 2011-04-08 | 2012-11-29 | Tyco Healthcare Group Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
WO2012148969A2 (en) | 2011-04-25 | 2012-11-01 | Brian Kelly | Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls |
US9339327B2 (en) | 2011-06-28 | 2016-05-17 | Aesculap Ag | Electrosurgical tissue dissecting device |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
WO2013055815A1 (en) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Off -wall electrode device for nerve modulation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
WO2013058962A1 (en) | 2011-10-18 | 2013-04-25 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
EP2768568B1 (en) | 2011-10-18 | 2020-05-06 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
WO2013070724A1 (en) | 2011-11-08 | 2013-05-16 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
WO2013074813A1 (en) | 2011-11-15 | 2013-05-23 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
JP6441679B2 (ja) | 2011-12-09 | 2018-12-19 | メタベンション インコーポレイテッド | 肝臓系の治療的な神経調節 |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
AU2012358143B2 (en) | 2011-12-23 | 2015-06-11 | Boston Scientific Scimed, Inc. | Expandable balloon or an electrode pad with a heat sensing device |
WO2013101452A1 (en) | 2011-12-28 | 2013-07-04 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
EP3556427B1 (en) | 2012-03-05 | 2022-06-08 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus |
CN103301567B (zh) * | 2012-03-16 | 2016-04-06 | 女康乐公司 | 一种修复女性阴道组织的治疗器 |
US9314299B2 (en) * | 2012-03-21 | 2016-04-19 | Biosense Webster (Israel) Ltd. | Flower catheter for mapping and ablating veinous and other tubular locations |
WO2013169927A1 (en) | 2012-05-08 | 2013-11-14 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US9439722B2 (en) | 2012-05-09 | 2016-09-13 | Biosense Webster (Israel) Ltd. | Ablation targeting nerves in or near the inferior vena cava and/or abdominal aorta for treatment of hypertension |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
US20130317438A1 (en) | 2012-05-25 | 2013-11-28 | Arstasis, Inc. | Vascular access configuration |
US20130317481A1 (en) | 2012-05-25 | 2013-11-28 | Arstasis, Inc. | Vascular access configuration |
JP6359528B2 (ja) | 2012-06-21 | 2018-07-18 | ラングペーサー メディカル インコーポレイテッドLungpacer Medical Inc. | 経血管横隔膜ペーシング・システム及び使用方法 |
US9078662B2 (en) | 2012-07-03 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US9545290B2 (en) | 2012-07-30 | 2017-01-17 | Ethicon Endo-Surgery, Inc. | Needle probe guide |
US9572623B2 (en) | 2012-08-02 | 2017-02-21 | Ethicon Endo-Surgery, Inc. | Reusable electrode and disposable sheath |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
WO2014043687A2 (en) | 2012-09-17 | 2014-03-20 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
ES2660481T3 (es) | 2012-09-26 | 2018-03-22 | Aesculap Ag | Aparato para corte y sellado de tejido |
JP6074051B2 (ja) | 2012-10-10 | 2017-02-01 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 血管内神経変調システム及び医療用デバイス |
CN103932676A (zh) * | 2013-01-23 | 2014-07-23 | 四川锦江电子科技有限公司 | 柔性电路电极 |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
WO2014143571A1 (en) | 2013-03-11 | 2014-09-18 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
JP6139772B2 (ja) | 2013-03-15 | 2017-05-31 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 電極パッドと共に使用するための制御ユニットおよび漏電を推定するための方法 |
WO2014150553A1 (en) | 2013-03-15 | 2014-09-25 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9055950B2 (en) | 2013-03-15 | 2015-06-16 | Chemo S.A. France | Method and system for delivering a tissue treatment using a balloon-catheter system |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
CN103300917B (zh) * | 2013-06-03 | 2016-03-23 | 吕世文 | 经皮介入的射频消融电极导管 |
WO2014197625A1 (en) * | 2013-06-05 | 2014-12-11 | Metavention, Inc. | Modulation of targeted nerve fibers |
WO2014205399A1 (en) | 2013-06-21 | 2014-12-24 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
JP2016523147A (ja) | 2013-06-21 | 2016-08-08 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 同乗型電極支持体を備えた腎除神経バルーンカテーテル |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
JP6204579B2 (ja) | 2013-07-01 | 2017-09-27 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 腎神経アブレーション用医療器具 |
WO2015006480A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
CN105377170A (zh) | 2013-07-11 | 2016-03-02 | 波士顿科学国际有限公司 | 具有可伸展电极组件的医疗装置 |
WO2015010074A1 (en) | 2013-07-19 | 2015-01-22 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
EP4049605A1 (en) | 2013-08-22 | 2022-08-31 | Boston Scientific Scimed Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
CN105555218B (zh) | 2013-09-04 | 2019-01-15 | 波士顿科学国际有限公司 | 具有冲洗和冷却能力的射频(rf)球囊导管 |
US10952790B2 (en) | 2013-09-13 | 2021-03-23 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
CN104510529B (zh) * | 2013-09-29 | 2017-01-18 | 柯惠有限合伙公司 | 具有可调节长度和/或直径的医疗装置 |
WO2015042906A1 (en) | 2013-09-29 | 2015-04-02 | Covidien Lp | Medical treatment devices having adjustable length and/or diameter |
WO2015057521A1 (en) | 2013-10-14 | 2015-04-23 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
EP3057520A1 (en) | 2013-10-15 | 2016-08-24 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9180040B2 (en) | 2013-10-18 | 2015-11-10 | Contramed, Llc | Intrauterine device with retrieval thread |
CN105636538B (zh) | 2013-10-18 | 2019-01-15 | 波士顿科学国际有限公司 | 具有柔性导线的球囊导管及其使用和制造的相关方法 |
JP2016534842A (ja) | 2013-10-25 | 2016-11-10 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 除神経フレックス回路における埋め込み熱電対 |
CN105873630B (zh) | 2013-11-22 | 2020-01-03 | 隆佩瑟尔医疗公司 | 用于通过经血管神经刺激辅助呼吸的装置和方法 |
US9370653B2 (en) * | 2013-12-05 | 2016-06-21 | Advanced Neuromodulation Systems, Inc. | Medical leads with segmented electrodes and methods of fabrication thereof |
CN105899157B (zh) | 2014-01-06 | 2019-08-09 | 波士顿科学国际有限公司 | 抗撕裂柔性电路组件 |
CA2935454A1 (en) | 2014-01-21 | 2015-07-30 | Simon Fraser University | Systems and related methods for optimization of multi-electrode nerve pacing |
US9789283B2 (en) | 2014-02-03 | 2017-10-17 | Medinol Ltd. | Catheter tip assembled with a spring |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
JP6325121B2 (ja) | 2014-02-04 | 2018-05-16 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 双極電極上の温度センサの代替配置 |
CA2976749C (en) * | 2014-03-20 | 2023-08-01 | Atricath S.P.A. | Ablation catheter and ablation apparatus |
KR102473871B1 (ko) | 2014-03-26 | 2022-12-06 | 벤클로스 인코포레이티드 | 정맥 질환 치료 |
US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
US9820664B2 (en) | 2014-11-20 | 2017-11-21 | Biosense Webster (Israel) Ltd. | Catheter with high density electrode spine array |
CN112220593A (zh) * | 2015-02-12 | 2021-01-15 | 方德里创新研究第一有限公司 | 用于心力衰竭监测的可植入式设备和相关方法 |
US9949656B2 (en) | 2015-06-29 | 2018-04-24 | Biosense Webster (Israel) Ltd. | Catheter with stacked spine electrode assembly |
US10537259B2 (en) | 2015-06-29 | 2020-01-21 | Biosense Webster (Israel) Ltd. | Catheter having closed loop array with in-plane linear electrode portion |
US10575742B2 (en) | 2015-06-30 | 2020-03-03 | Biosense Webster (Israel) Ltd. | Catheter having closed electrode assembly with spines of uniform length |
US11771491B2 (en) | 2015-12-30 | 2023-10-03 | Schuler Scientific Solutions, Llc | Tissue mapping and treatment |
WO2017192542A2 (en) | 2016-05-02 | 2017-11-09 | Affera, Inc. | Catheter sensing and irrigating |
US10524859B2 (en) | 2016-06-07 | 2020-01-07 | Metavention, Inc. | Therapeutic tissue modulation devices and methods |
ITUA20164797A1 (it) * | 2016-06-30 | 2017-12-30 | Andrea Natalizia | Catetere per ablazione con elettrodo irrigato espandibile |
US11497507B2 (en) | 2017-02-19 | 2022-11-15 | Orpheus Ventures, Llc | Systems and methods for closing portions of body tissue |
US10293164B2 (en) | 2017-05-26 | 2019-05-21 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
EP3645107B1 (en) | 2017-06-30 | 2022-08-31 | Lungpacer Medical Inc. | Systems for prevention, moderation, and/or treatment of cognitive injury |
US10195429B1 (en) | 2017-08-02 | 2019-02-05 | Lungpacer Medical Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10940308B2 (en) | 2017-08-04 | 2021-03-09 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US20190175908A1 (en) | 2017-12-11 | 2019-06-13 | Lungpacer Medical Inc. | Systems and methods for strengthening a respiratory muscle |
AU2019204574A1 (en) | 2018-06-27 | 2020-01-23 | Viveve, Inc. | Methods for treating urinary stress incontinence |
CN109009346B (zh) * | 2018-07-30 | 2024-03-29 | 孟庆义 | 一种零切口静脉曲张治疗装置 |
EP3877043A4 (en) | 2018-11-08 | 2022-08-24 | Lungpacer Medical Inc. | STIMULATION SYSTEM AND ASSOCIATED USER INTERFACES |
ES2974673T3 (es) * | 2019-03-04 | 2024-07-01 | Neuravi Ltd | Catéter de recuperación de coágulos accionado |
EP3968932A4 (en) | 2019-05-16 | 2023-01-18 | Lungpacer Medical Inc. | SYSTEMS AND METHODS FOR DETECTION AND STIMULATION |
WO2020252037A1 (en) | 2019-06-12 | 2020-12-17 | Lungpacer Medical Inc. | Circuitry for medical stimulation systems |
KR102202701B1 (ko) * | 2020-11-06 | 2021-01-13 | 박용범 | 하지정맥류 수술기구 |
USD1014762S1 (en) | 2021-06-16 | 2024-02-13 | Affera, Inc. | Catheter tip with electrode panel(s) |
US12201354B1 (en) | 2024-04-01 | 2025-01-21 | Theraheart Inc. | Expandable ablation mechanisms for shunting catheters |
Family Cites Families (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US373339A (en) | 1887-11-15 | Isidobe eskell cliffoed | ||
US373399A (en) | 1887-11-15 | hamilton | ||
US554516A (en) * | 1896-02-11 | Piano-chair | ||
US659409A (en) | 1900-08-25 | 1900-10-09 | Charles L Mosher | Electric bipolar dilator. |
US833759A (en) | 1905-07-27 | 1906-10-23 | John D Sourwine | Surgical instrument. |
US985865A (en) | 1910-06-29 | 1911-03-07 | William H Turner Jr | Embalming instrument. |
DE1163993B (de) | 1960-03-23 | 1964-02-27 | Philips Patentverwaltung | Dezimeterwellen-Stielstrahler fuer medizinsche Behandlung |
US3301258A (en) | 1963-10-03 | 1967-01-31 | Medtronic Inc | Method and apparatus for treating varicose veins |
US3557794A (en) | 1968-07-30 | 1971-01-26 | Us Air Force | Arterial dilation device |
US4043338A (en) | 1973-04-30 | 1977-08-23 | Ortho Pharmaceutical Corporation | Pharmaceutical formulation applicator device |
DE2324658B2 (de) | 1973-05-16 | 1977-06-30 | Richard Wolf Gmbh, 7134 Knittlingen | Sonde zum koagulieren von koerpergewebe |
US4016886A (en) | 1974-11-26 | 1977-04-12 | The United States Of America As Represented By The United States Energy Research And Development Administration | Method for localizing heating in tumor tissue |
US4119102A (en) | 1975-07-11 | 1978-10-10 | Leveen Harry H | Radio frequency treatment of tumors while inducing hypotension |
FR2421628A1 (fr) | 1977-04-08 | 1979-11-02 | Cgr Mev | Dispositif de chauffage localise utilisant des ondes electromagnetiques de tres haute frequence, pour applications medicales |
US4154246A (en) | 1977-07-25 | 1979-05-15 | Leveen Harry H | Field intensification in radio frequency thermotherapy |
US4346715A (en) | 1978-07-12 | 1982-08-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Hyperthermia heating apparatus |
US4522205A (en) | 1980-09-03 | 1985-06-11 | The University Court Of The University Of Edinburgh | Therapeutic device and method of inducing thrombosis in a blood vessel |
US4436715A (en) * | 1981-09-14 | 1984-03-13 | Kms Fusion, Inc. | Storage and retrieval of singlet oxygen |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
EP0189329A3 (en) | 1985-01-25 | 1987-06-03 | Robert E. Fischell | A tunneling catheter system for transluminal arterial angioplasty |
DE3516830A1 (de) | 1985-05-10 | 1986-11-13 | Max Dr. 8520 Erlangen Hubmann | Katheter |
US4658836A (en) * | 1985-06-28 | 1987-04-21 | Bsd Medical Corporation | Body passage insertable applicator apparatus for electromagnetic |
US4660571A (en) | 1985-07-18 | 1987-04-28 | Cordis Corporation | Percutaneous lead having radially adjustable electrode |
US4699147A (en) | 1985-09-25 | 1987-10-13 | Cordis Corporation | Intraventricular multielectrode cardial mapping probe and method for using same |
AT385894B (de) | 1985-10-04 | 1988-05-25 | Basem Dr Nashef | Schlauchfoermige sonde |
US4643186A (en) | 1985-10-30 | 1987-02-17 | Rca Corporation | Percutaneous transluminal microwave catheter angioplasty |
US4664120A (en) | 1986-01-22 | 1987-05-12 | Cordis Corporation | Adjustable isodiametric atrial-ventricular pervenous lead |
IL78755A0 (en) | 1986-05-12 | 1986-08-31 | Biodan Medical Systems Ltd | Applicator for insertion into a body opening for medical purposes |
US4709698A (en) | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
US5215103A (en) | 1986-11-14 | 1993-06-01 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US5231995A (en) | 1986-11-14 | 1993-08-03 | Desai Jawahar M | Method for catheter mapping and ablation |
US4765331A (en) | 1987-02-10 | 1988-08-23 | Circon Corporation | Electrosurgical device with treatment arc of less than 360 degrees |
US4807620A (en) | 1987-05-22 | 1989-02-28 | Advanced Interventional Systems, Inc. | Apparatus for thermal angioplasty |
SE8800019D0 (sv) | 1988-01-07 | 1988-01-07 | Knut Olof Edhag | For kardiell defibillering anvendbar intravaskuler elektrodkabel |
JPH0240054A (ja) * | 1988-07-29 | 1990-02-08 | Fuji Heavy Ind Ltd | 車両用内燃機関の空燃比制御装置 |
US4966597A (en) | 1988-11-04 | 1990-10-30 | Cosman Eric R | Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection |
US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
AU4945490A (en) * | 1989-01-06 | 1990-08-01 | Angioplasty Systems Inc. | Electrosurgical catheter for resolving atherosclerotic plaque |
US5779698A (en) | 1989-01-18 | 1998-07-14 | Applied Medical Resources Corporation | Angioplasty catheter system and method for making same |
US5057107A (en) | 1989-04-13 | 1991-10-15 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5078717A (en) | 1989-04-13 | 1992-01-07 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5098431A (en) * | 1989-04-13 | 1992-03-24 | Everest Medical Corporation | RF ablation catheter |
US4979948A (en) | 1989-04-13 | 1990-12-25 | Purdue Research Foundation | Method and apparatus for thermally destroying a layer of an organ |
US4976711A (en) | 1989-04-13 | 1990-12-11 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5035694A (en) * | 1989-05-15 | 1991-07-30 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter assembly with heated balloon |
US5117828A (en) | 1989-09-25 | 1992-06-02 | Arzco Medical Electronics, Inc. | Expandable esophageal catheter |
US5098429A (en) * | 1990-04-17 | 1992-03-24 | Mmtc, Inc. | Angioplastic technique employing an inductively-heated ferrite material |
JP2805377B2 (ja) * | 1990-04-19 | 1998-09-30 | キヤノン株式会社 | データ通信装置 |
US5122137A (en) | 1990-04-27 | 1992-06-16 | Boston Scientific Corporation | Temperature controlled rf coagulation |
US5188602A (en) | 1990-07-12 | 1993-02-23 | Interventional Thermodynamics, Inc. | Method and device for delivering heat to hollow body organs |
US5282845A (en) | 1990-10-01 | 1994-02-01 | Ventritex, Inc. | Multiple electrode deployable lead |
US5178618A (en) | 1991-01-16 | 1993-01-12 | Brigham And Womens Hospital | Method and device for recanalization of a body passageway |
US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
CA2061220A1 (en) | 1991-02-15 | 1992-08-16 | Mir A. Imran | Endocardial catheter for defibrillation, cardioversion and pacing, and a system and method utilizing the same |
US5345936A (en) * | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
US5275610A (en) | 1991-05-13 | 1994-01-04 | Cook Incorporated | Surgical retractors and method of use |
US5190517A (en) * | 1991-06-06 | 1993-03-02 | Valleylab Inc. | Electrosurgical and ultrasonic surgical system |
US5255678A (en) | 1991-06-21 | 1993-10-26 | Ecole Polytechnique | Mapping electrode balloon |
US5383917A (en) | 1991-07-05 | 1995-01-24 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
US6029671A (en) * | 1991-07-16 | 2000-02-29 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5263493A (en) | 1992-02-24 | 1993-11-23 | Boaz Avitall | Deflectable loop electrode array mapping and ablation catheter for cardiac chambers |
US5370677A (en) * | 1992-03-06 | 1994-12-06 | Urologix, Inc. | Gamma matched, helical dipole microwave antenna with tubular-shaped capacitor |
US5314466A (en) * | 1992-04-13 | 1994-05-24 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
US5277201A (en) | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5281218A (en) * | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
US5411025A (en) | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
US6240307B1 (en) * | 1993-09-23 | 2001-05-29 | Endocardial Solutions, Inc. | Endocardial mapping system |
US5293869A (en) | 1992-09-25 | 1994-03-15 | Ep Technologies, Inc. | Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole |
WO1994007446A1 (en) | 1992-10-05 | 1994-04-14 | Boston Scientific Corporation | Device and method for heating tissue |
US5545161A (en) | 1992-12-01 | 1996-08-13 | Cardiac Pathways Corporation | Catheter for RF ablation having cooled electrode with electrically insulated sleeve |
US5403312A (en) * | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
US5797960A (en) * | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
WO1994021170A1 (en) | 1993-03-16 | 1994-09-29 | Ep Technologies, Inc. | Flexible circuit assemblies employing ribbon cable |
ATE194469T1 (de) * | 1993-03-16 | 2000-07-15 | Ep Technologies | Träger-anordnung für mehrfach-elektroden |
US5405346A (en) * | 1993-05-14 | 1995-04-11 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter |
US5405322A (en) | 1993-08-12 | 1995-04-11 | Boston Scientific Corporation | Method for treating aneurysms with a thermal source |
US5431649A (en) * | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5409000A (en) | 1993-09-14 | 1995-04-25 | Cardiac Pathways Corporation | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
US5881727A (en) | 1993-10-14 | 1999-03-16 | Ep Technologies, Inc. | Integrated cardiac mapping and ablation probe |
WO1995010236A1 (en) | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | System for making long thin lesions |
WO1995010322A1 (en) | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | Creating complex lesion patterns in body tissue |
US5472441A (en) | 1993-11-08 | 1995-12-05 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5437664A (en) | 1994-01-18 | 1995-08-01 | Endovascular, Inc. | Apparatus and method for venous ligation |
EP0740533A4 (en) | 1994-01-18 | 1998-01-14 | Endovascular Inc | APPARATUS AND METHOD FOR VENOUS LIGATION |
US5423815A (en) | 1994-01-25 | 1995-06-13 | Fugo; Richard J. | Method of ocular refractive surgery |
US5447529A (en) * | 1994-01-28 | 1995-09-05 | Philadelphia Heart Institute | Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation |
US5462545A (en) * | 1994-01-31 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Catheter electrodes |
US5458596A (en) | 1994-05-06 | 1995-10-17 | Dorsal Orthopedic Corporation | Method and apparatus for controlled contraction of soft tissue |
US5505730A (en) | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
US5514130A (en) | 1994-10-11 | 1996-05-07 | Dorsal Med International | RF apparatus for controlled depth ablation of soft tissue |
US5722401A (en) | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
WO1996014020A1 (fr) | 1994-11-02 | 1996-05-17 | Olympus Optical Co. Ltd. | Instrument fonctionnant avec un endoscope |
IT1278372B1 (it) | 1995-02-15 | 1997-11-20 | Sorin Biomedica Cardio Spa | Catetere, particolarmente per il trattamento di aritmie cardiache. |
US5868740A (en) | 1995-03-24 | 1999-02-09 | Board Of Regents-Univ Of Nebraska | Method for volumetric tissue ablation |
EP0819014B1 (en) * | 1995-03-30 | 2003-02-05 | Heartport, Inc. | Endovascular cardiac venting catheter |
AU5487696A (en) | 1995-04-20 | 1996-11-07 | Jawahar M. Desai | Apparatus for cardiac ablation |
US5626578A (en) * | 1995-05-08 | 1997-05-06 | Tihon; Claude | RF valvulotome |
US5709224A (en) | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US5863290A (en) | 1995-08-15 | 1999-01-26 | Rita Medical Systems | Multiple antenna ablation apparatus and method |
US5810804A (en) | 1995-08-15 | 1998-09-22 | Rita Medical Systems | Multiple antenna ablation apparatus and method with cooling element |
US5951547A (en) | 1995-08-15 | 1999-09-14 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5817092A (en) | 1995-11-09 | 1998-10-06 | Radio Therapeutics Corporation | Apparatus, system and method for delivering radio frequency energy to a treatment site |
JP3981987B2 (ja) * | 1995-12-13 | 2007-09-26 | 三菱化学株式会社 | 脂肪酸乳酸エステル塩の製造方法 |
WO1997032532A1 (en) | 1996-03-05 | 1997-09-12 | Vnus Medical Technologies, Inc. | Vascular catheter-based system for heating tissue |
US6036687A (en) * | 1996-03-05 | 2000-03-14 | Vnus Medical Technologies, Inc. | Method and apparatus for treating venous insufficiency |
US6139527A (en) * | 1996-03-05 | 2000-10-31 | Vnus Medical Technologies, Inc. | Method and apparatus for treating hemorrhoids |
US5827268A (en) | 1996-10-30 | 1998-10-27 | Hearten Medical, Inc. | Device for the treatment of patent ductus arteriosus and method of using the device |
US6091995A (en) | 1996-11-08 | 2000-07-18 | Surx, Inc. | Devices, methods, and systems for shrinking tissues |
US5916235A (en) | 1997-08-13 | 1999-06-29 | The Regents Of The University Of California | Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities |
US6401719B1 (en) * | 1997-09-11 | 2002-06-11 | Vnus Medical Technologies, Inc. | Method of ligating hollow anatomical structures |
-
1998
- 1998-08-21 US US09/138,472 patent/US6179832B1/en not_active Expired - Lifetime
-
1999
- 1999-08-20 RU RU2001107852/14A patent/RU2207823C2/ru not_active IP Right Cessation
- 1999-08-20 NZ NZ531919A patent/NZ531919A/en not_active IP Right Cessation
- 1999-08-20 AU AU56863/99A patent/AU770951B2/en not_active Ceased
- 1999-08-20 IL IL141484A patent/IL141484A/en not_active IP Right Cessation
- 1999-08-20 MX MXPA01001890A patent/MXPA01001890A/es not_active IP Right Cessation
- 1999-08-20 KR KR1020017002209A patent/KR20010099627A/ko not_active Application Discontinuation
- 1999-08-20 NZ NZ510036A patent/NZ510036A/en not_active IP Right Cessation
- 1999-08-20 EP EP99943846A patent/EP1105060B1/en not_active Expired - Lifetime
- 1999-08-20 DE DE69943410T patent/DE69943410D1/de not_active Expired - Lifetime
- 1999-08-20 CN CNB998121126A patent/CN1297239C/zh not_active Expired - Fee Related
- 1999-08-20 AT AT99943846T patent/ATE507787T1/de not_active IP Right Cessation
- 1999-08-20 PL PL99346217A patent/PL346217A1/xx unknown
- 1999-08-20 BR BR9913212-5A patent/BR9913212A/pt not_active Application Discontinuation
- 1999-08-20 CA CA2341251A patent/CA2341251C/en not_active Expired - Fee Related
- 1999-08-20 WO PCT/US1999/019193 patent/WO2000010475A1/en not_active Application Discontinuation
- 1999-08-20 JP JP2000565801A patent/JP4187931B2/ja not_active Expired - Fee Related
-
2000
- 2000-11-17 US US09/716,561 patent/US6682526B1/en not_active Expired - Fee Related
-
2001
- 2001-02-21 NO NO20010886A patent/NO20010886L/no not_active Application Discontinuation
-
2002
- 2002-05-15 HK HK02103676.3A patent/HK1042029B/zh not_active IP Right Cessation
-
2003
- 2003-12-16 US US10/738,488 patent/US20040254621A1/en not_active Abandoned
-
2004
- 2004-06-11 AU AU2004202569A patent/AU2004202569B2/en not_active Ceased
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210085391A1 (en) * | 2014-12-23 | 2021-03-25 | Mark Whiteley | Medical device for treating a vein |
US11039881B2 (en) * | 2014-12-23 | 2021-06-22 | Mark Steven Whiteley | Medical device for treating a vein |
US11596473B2 (en) * | 2014-12-23 | 2023-03-07 | Mark Steven Whiteley | Medical device for treating a vein |
Also Published As
Publication number | Publication date |
---|---|
CN1297239C (zh) | 2007-01-31 |
NZ510036A (en) | 2004-04-30 |
DE69943410D1 (de) | 2011-06-16 |
EP1105060B1 (en) | 2011-05-04 |
AU2004202569A1 (en) | 2004-07-08 |
NO20010886D0 (no) | 2001-02-21 |
US20040254621A1 (en) | 2004-12-16 |
WO2000010475A1 (en) | 2000-03-02 |
CA2341251C (en) | 2010-08-10 |
CN1323180A (zh) | 2001-11-21 |
IL141484A (en) | 2007-03-08 |
RU2207823C2 (ru) | 2003-07-10 |
NO20010886L (no) | 2001-04-20 |
US6682526B1 (en) | 2004-01-27 |
EP1105060A1 (en) | 2001-06-13 |
MXPA01001890A (es) | 2002-04-24 |
CA2341251A1 (en) | 2000-03-02 |
KR20010099627A (ko) | 2001-11-09 |
AU770951B2 (en) | 2004-03-11 |
NZ531919A (en) | 2006-02-24 |
JP2002523130A (ja) | 2002-07-30 |
BR9913212A (pt) | 2001-09-18 |
HK1042029B (zh) | 2007-05-11 |
PL346217A1 (en) | 2002-01-28 |
IL141484A0 (en) | 2002-03-10 |
AU2004202569B2 (en) | 2007-05-24 |
ATE507787T1 (de) | 2011-05-15 |
HK1042029A1 (en) | 2002-08-02 |
US6179832B1 (en) | 2001-01-30 |
AU5686399A (en) | 2000-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4187931B2 (ja) | 2組の電極を備えた膨張可能なカテーテルとその使用方法 | |
US7901402B2 (en) | Expandable catheter having two sets of electrodes | |
US6401719B1 (en) | Method of ligating hollow anatomical structures | |
EP0921765B1 (en) | Vascular catheter-based system for heating tissue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060818 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071112 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080212 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080811 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080910 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |