JP4185590B2 - Brushless motor - Google Patents
Brushless motor Download PDFInfo
- Publication number
- JP4185590B2 JP4185590B2 JP23469098A JP23469098A JP4185590B2 JP 4185590 B2 JP4185590 B2 JP 4185590B2 JP 23469098 A JP23469098 A JP 23469098A JP 23469098 A JP23469098 A JP 23469098A JP 4185590 B2 JP4185590 B2 JP 4185590B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- motor
- advance
- angle
- advance angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 14
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 10
- 238000007664 blowing Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、車両用の送風機ファンの駆動などに好適なアウタロータ形のブラシレスDCモータにおいて、電機子コイルを流れる電流の切り替えタイミングを最適化したブラシレスモータに関する。
【0002】
【従来の技術】
従来、自動車などの車両に搭載されるモータ、例えば空調装置に用いられる送風機ファンの回転駆動用モータには、電機子コイルに流れる電流の方向を整流子とブラシを用いて切り替えるDCモータが用いられてきた。
【0003】
この従来の車両搭載のDCモータでは、電源に車両のバッテリーを用い、定電圧電源で駆動する。このためブラシを用いたDCモータの回転制御では、電源電圧を分圧抵抗によって分圧して用いる。例えばバッテリー電圧が12Vで、DCモータを3Vで駆動する場合、残りの9Vは分圧抵抗に印加され、熱となって消費される。このため、分圧抵抗で消費される電力が無駄になってエネルギー効率が良くない。さらにブラシによるしゅう動音が騒音発生の原因となっていた。
【0004】
【発明が解決しようとする課題】
しかしながら、DCモータをブラシレス構造とし、電源電圧のデューティを可変(パルス幅制御)して回転制御した場合、ロータ磁極の検出位置から電機子コイルを流れる電流を切り替えるタイミングによって、トルクの発生効率が変化する。またその切替タイミングによって、モータとその収納ケースとの共鳴によるうなり音の大きさも変化する。
【0005】
上記トルクの発生効率が最大となる切替タイミングと、うなり音が最小となる切替タイミングとは異なり、効率を優先すればうなり音が大きくなり、うなり音を小さくすれば、効率が低下する。
【0006】
そこで本発明は、送風機ファンなどに用いるDCモータをブラシレス構造とし、電機子コイル電流の切り替えタイミングを最適制御して省エネルギーかつ低騒音なブラシレスモータを提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の課題を解決するため、本発明のブラシレスモータは、送風機ファン駆動用に収納ケースに収めて用いられ、モータの内周側に電機子を配置したアウタロータ形のブラシレスDCモータにおいて、ステータ(3)に配置された電機子コイル(4)を流れる電流を切り替えるスイッチング素子(Q1〜Q6)と、ロータ(1)に取り付けられた界磁用永久磁石(2)に対し、モータと前記収納ケースとの共鳴音が最も小さくなる遅れ角にてロータ(1)と一体に取り付けられ、ロータ(1)の回転位置を示すセンサマグネット(5)と、前記ステータ(3)に取り付けられ、前記センサマグネット(5)による磁界の方向を検出する磁気センサ(IC1〜IC3)と、この磁気センサ(IC1〜IC3)からの磁界方向変化検出を受けて、ロータ(1)の回転速度を算出し、この回転速度があらかじめ決められた一定速度に達したら、前記センサマグネット(5)の界磁用永久磁石(2)に対する遅れ角を進める進角制御のための進角量を出力する進角制御手段(12a)と、前記磁気センサ(IC1〜IC3)からの磁界方向変化検出および前記進角量を受けて、その進角量に応じた進角制御を行い、スイッチング素子(Q1〜Q6)の電流切り替えタイミングを制御するタイミング制御手段(12b)とを具備し、前記進角制御手段(12a)及び前記タイミング制御手段(12b)は、モータの起動時における回転速度が安定しない間である一定の回転速度に達するまで、機構的に固定された遅れ角で前記スイッチング素子(Q1〜Q6)の出力をオンオフ制御し進角制御を行わないことを特徴とする。
【0008】
以上の構成によって、モータの回転速度が一定速度に達するまでは、界磁用永久磁石の回転位置に対し、モータとその収納ケースとの共鳴音が小さい遅れ角で、スイッチング素子の電流切り替えタイミングを制御し、一定速度到達後は進角制御する。
【0009】
さらに、前記進角制御手段(12a)が、前記ロータ(1)の回転速度が低速時には前記遅れ角の進角量を少なく制御し、高速時には前記遅れ角の進角量を多く制御することによって、モータが低速回転のとき、低騒音となることを優先し、モータが高速回転のとき、高効率であることを優先する制御を行う。
【0010】
また、前記進角制御手段(12a)が、前記ロータ(1)の回転速度に応じて前記遅れ角の進角量を滑らかに変化させることによって、モータの回転速度に応じて、スイッチング素子の電流切り替えタイミングを滑らかに変化させる。
【0011】
【発明の効果】
本発明の請求項1に記載のブラシレスモータは、モータの回転速度が一定速度に達するまでは、界磁用永久磁石の回転位置に対し、モータとその収納ケースとの共鳴音が小さい遅れ角で、スイッチング素子の電流切り替えタイミングを制御し、一定速度到達後は進角制御するので、モータ起動時などの回転の不安定なときは、低騒音で回転制御でき、一定速度以上の安定した回転数では、モータ効率や騒音を考慮して、電機子コイルを流れる電流の切り替えタイミングを最適制御できる。
【0012】
本発明の請求項2に記載のブラシレスモータは、相対的に騒音発生が問題となるモータが低速回転のとき、高効率であることよりも低騒音となることを優先し、相対的に効率が問題となるモータが高速回転のとき、低騒音であることよりも高効率であることを優先する制御を行うので、省エネルギーかつ低騒音なブラシレスモータを提供できる。
【0013】
本発明の請求項3に記載のブラシレスモータは、モータの回転速度に応じて、界磁用永久磁石の回転位置に対し、スイッチング素子の電流切り替えタイミングを滑らかに変化させるので、回転トルクの変化が穏やかで、滑らかな回転を得られる。
【0014】
本発明の請求項4または請求項5に記載のブラシレスモータは、センサマグネットがN極とS極とを複数対有するか、または磁気センサが複数個配置されているので、ロータが1回転する間に複数回磁界方向の変化を検出でき、ロータの回転速度が変化しても、その変化に追随して高速応答で、きめ細かくタイミング制御できる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0016】
図1は、本発明のブラシレスモータを下側から見た下面図であり、(a)はトルク発生効率が良くなる構成例、(b)は低騒音となる構成例を示す。本実施の形態のブラシレスモータは、車両用空調装置の送風機ファンの駆動に用いられ、三相2極巻線のアウタロータ形のブラシレスDCモータであり、内周側のステータに電機子コイル、外側のロータに界磁用永久磁石を備えたものである。
【0017】
ステータ3には、各突出部3a〜3fをコアとして電機子コイル4a〜4fが三相に配置され、その外側には、90度間隔でメインマグネット(界磁用永久磁石)2を備えたロータ1が配置されている。このロータ1の回転位置を示すセンサマグネット5は、N極とS極とが2対、ロータ1の回転中心に対し均等角度に配置され、ロータ1と一体に回転するシャフト6に取り付けられている。このセンサマグネット5による磁界の方向を検出するホールIC1〜3(磁気センサ)が、ステータ3の内周に120度間隔で均等配置されている。
【0018】
ブラシレスDCモータでは、メインマグネット2の検出位置から電機子コイル4a〜4fを流れる電流を切り替えるタイミングによって、発生するトルクが変化する。ロータ1の回転位置を示すセンサマグネット5を、図1(a)に示すようにメインマグネット2に対し遅れ角30度でシャフト6に取り付けた場合、最も発生トルクが大きくなり、効率が良くなる。図1(b)に示すように遅れ角42度のときは、モータの振動周波数とモータ収納ケースの固有振動周波数との共鳴によるうなり音(共鳴音)が最も小さくなる。本実施の形態では、センサマグネット2を、遅れ角42度でシャフト6に取り付けている。なお、▲1▼は電流経路が短く、他の電機子コイルに比べ2倍の電流が流れているコイルを示す。▲2▼は電機子コイル3c(3f)とメインマグネット2との反発力による正回転トルク発生位置、▲3▼は電機子コイル3a(3d)とメインマグネット2との反発力による逆トルク発生位置を示す。
【0019】
図2は、本実施の形態のブラシレスモータの制御回路部のブロック図である。センサ信号検出回路11は、ホールIC1〜3からセンサマグネット5の磁界方向変化検出を受けて、それぞれの反転信号を生成し、非反転信号と合わせて六信号からなるセンサ信号としてマイクロコンピュータ12に入力する。これは、本実施の形態で用いるマイクロコンピュータ12が、入力信号の立ち下がりエッジのみを検出するため、立ち上がりエッジを立ち下がりエッジに変換して検出するためである。このマイクロコンピュータ12内の処理では、進角制御手段12aにて、センサ信号を受けて、その磁界方向変化検出の周期からモータの回転速度を算出し、この回転速度があらかじめ決められた一定速度に達したら、センサマグネット5の界磁用永久磁石2に対する遅れ角を進める進角制御のための進角量を出力する。次にタイミング制御手段12bにて、センサ信号、進角量、および空調制御装置(図示せず)からモータを回転指示する回転指示信号(PWM信号)を受けて、進角量に応じた進角制御を行い、モータ駆動回路13を介してMOSFET(スイッチング素子)Q1〜Q6の電流切り替えタイミングを制御する。
【0020】
図3(a)は、本実施の形態のブラシレスモータの制御回路部の進角制御を行わない場合のタイミングチャートであり、(b)は、このタイミングで制御されるMOSFET(Q1〜Q6)の接続関係を示す。センサマグネット5は、N極とS極とが90度ごとに配置されるため、ホールICからの磁界方向変化検出信号は、ロータ1が1回転する間に2周期変化する。これによって、ロータの回転を2倍細かくタイミング制御することができる。また、ホールICを均等間隔で3個配置したことによって、ロータの回転を3倍細かくタイミング制御することができる。この均等間隔で配置されたホールIC1〜3からの磁界方向変化検出に基づき、ロータ1が1回転する間にMOSFET(Q1〜Q6)のオン/オフを計12回スイッチングし、オンとなるMOSFETの組み合わせによって、電機子コイル4a〜4fを流れる電流の方向を切り替える。
【0021】
図4は、(a)がロータ回転位置、(b)がそのときの制御に用いるホールIC信号およびMOSFETの導通状態との対応関係を示す。ロータ回転角0度のときはホールIC3からの信号を用い、MOSFET(Q1),(Q5)が導通状態となる。MOSFET(Q1)が電源側、MOSFET(Q5)が接地側となり、接続点Uと接続点Vとの間に電圧が印加される。
【0022】
図5は、ホールIC3切替時の各コイルの通電状態と、メインマグネット2に対するセンサマグネット5の遅れ角による位置を示す図である。MOSFET(Q1)と(Q5)がオンし、U側(Q1)が電源電圧となり、V側(Q5)が接地される。電流経路S1をU側(+)→コイル4f→コイル4c→V側(GND)とし、電流経路S2をU側(+)→コイル4e→コイル4b→コイル4a→コイル4d→V側(GND)とすると、電流経路S1は抵抗値が半分のため、電流値が2倍となる(図1の▲1▼)。この電流値が2倍となるコイルとメインマグネット2との間には、他のコイルと比べ特に強い反発力を生じ、逆トルクを打ち消す強い回転トルクを生じる。
【0023】
図6は、(a)がロータ回転角30度の場合を示し、(b)がそのときの制御に用いるホールIC信号およびMOSFETの導通状態との対応関係を示す。ロータ回転角30度のときはホールIC1からの信号を用い、MOSFET(Q3),(Q5)が導通状態となる。MOSFET(Q3)が電源側、MOSFET(Q5)が接地側となり、接続点Wと接続点Vとの間に電圧が印加される。
【0024】
図7は、ホールIC1切替時の各コイルの通電状態と、メインマグネット2に対するセンサマグネット5の遅れ角による位置を示す図である。MOSFET(Q3)と(Q5)がオンし、W側(Q3)が電源電圧となり、V側(Q5)が接地される。電流経路S3をU側(+)→コイル4a→コイル4d→V側(GND)とし、電流経路S4をU側(+)→コイル4b→コイル4e→コイル4f→コイル4c→V側(GND)とすると、電流経路S3は抵抗値が半分のため、電流値が2倍となる。
【0025】
図8は、ホールICからの信号に基づき、MOSFETの出力切替制御信号を出力するタイミングチャートであり、(a)はセンサ(ホールIC)からの入力信号、(b)はMOSFETのゲート信号を示す。
【0026】
(a)に示すSAH,SALは、それぞれホールIC1からの信号およびその反転信号を示す。同様にSBH,SBLは、それぞれホールIC2からの、SCH,SCLは、それぞれホールIC3からの信号およびその反転信号を示す。以上の6信号によって、ロータの30度回転ごとにきめ細かくタイミングを制御することができる。
【0027】
(b)は、進角制御時のMOSFETに出力するゲート信号を示し、AT,BT,CTはハイサイド(電源側)、AB,BB,CBはローサイド(接地側)のMOSFETに対するゲート信号を示す。本実施の形態では、上記センサ入力の6信号の立ち下がりによって、MOSFETのゲート信号をタイミング制御する。この場合、各センサ信号の立ち下がりに対応して、次の立ち下がりに相当するタイミング(ロータ1の30度回転相当)を予測して、MOSFETのゲート信号をオン/オフ制御する。その際、センサ信号の立ち下がりエッジ間の時間からロータの回転速度を算出し、その回転速度に対応した進角制御のための進角量を求める。そして、MOSFETのゲート信号をオン/オフ制御する際、その進角量に応じた進角制御を行い、タイミング制御する。なお、センサ信号の立ち上がりエッジを用いても同様の制御を行うことができる。
【0028】
図9は、モータの回転数に対する進角制御量の対応関係を示し、(a)は進角量を角度で表し、(b)は進角量を時間で表す。(a)に示すようにモータの回転数が1800rpmまでは進角量を0として、機構的に固定された遅れ角D(例えば42度)でMOSFETの出力をオン/オフ制御する。これは、モータの起動時などは、モータの回転速度が安定せず、センサ信号の立ち下がりエッジ間の時間からロータの回転速度を算出し、その回転速度に対応した進角制御を行うと、センサ信号の立ち下がり検出から次の立ち下がりを予測する予測制御が実際の回転数とずれを生じ、進角量が実際の回転数とは合わないものとなるからである。すなわち回転速度が安定しない間に進角制御を行うと、回転トルクに変動を生じ回転むらの原因となるので、一定の回転速度に達するまで、機構的に固定された遅れ角すなわち低騒音となる遅れ角でMOSFETの出力をオン/オフ制御し、進角制御を行わない。
【0029】
モータの回転数が1800rpmに達すると進角制御を開始し、2500rpmまでの間は遅れ角をDからD−8に直線的に滑らかに連続変化させる。遅れ角を急激に変化させると、回転トルクも急激に変化し、回転むらの原因とるので、これを避けるため、遅れ角を滑らかに連続変化させる。モータの回転数が2500rpm以上では、8度進角制御を行い、遅れ角をD−8(34度)とする。
【0030】
マイクロコンピュータのソフトウェア制御にて、上記回転数に応じた制御を行うために、(b)に示すモータ回転数に対応した進角時間制御を行う。まず、モータ回転数が1800rpmまでは進角制御を行わないので、センサ信号の立ち下がりエッジを検出すると、その検出からすぐにMOSFETの出力をオン/オフ制御する。
【0031】
モータ回転数が1800rpmに達すると進角制御を開始し、図8に示されたようにロータ1の30度回転ごとにセンサ信号を受けて、次の立ち下がりに相当するタイミング(ロータ1の30度回転相当)を予測してMOSFETのゲート信号をオン/オフ制御する。すなわちモータ回転数が1800rpm(周期:33.3msec)のとき、ロータが30度回転に要する時間は2.78msecであり、2500rpm(周期:24msec)のとき、ロータが30度回転に要する時間は2msecなので、センサ信号の立ち下がりエッジからこの30度回転に要する時間経過した後、MOSFETのゲート信号をオン/オフ制御する。2500rpmのとき、8度進角制御を行うためには、ソフトウェアによる進角時間を(2−0.533)msecとする。
【0032】
図10は、センサマグネット5のメインマグネット2に対する遅れ角と騒音レベルとの関係を示す。回転数が2400rpmでは、送風音による影響で遅れ角によるうなり音成分がマスクされてしまい、騒音レベルが一定となる。回転数が900rpmでは、送風音が小さくなるので、相対的にうなり音成分が大きくなり、遅れ角が大きくなるにつれ騒音が小さくなる。このことから、特に低回転数領域では、遅れ角を大きくすることによる低騒音化の効果が大きい。
【0033】
図11は、センサマグネット5のメインマグネット2に対する遅れ角とモータ効率との関係を示す。遅れ角30度程度でモータ効率が最大となり、その結果回転トルクが最大となる。上記の遅れ角と騒音レベルとの関係を考慮すると、高回転数領域では、遅れ角を変えても騒音が変化しないので、モータ効率を優先した遅れ角に設定することによって、高効率なモータを得ることができる。
【0034】
以上のことから、ロータの回転速度が低速時には遅れ角の進角量を少なく制御し、高速時には遅れ角の進角量を多く制御することによって、回転数によって低騒音と高効率とを最適な割合で両立した制御ができる。
【0035】
図12は、モータ回転数とその騒音の12次成分との遅れ角による関係の変化を示す。例えば1000rpmすなわち毎秒16.7回転のとき12次成分は200Hzとなり、モータとその収納ケースとの共鳴により、うなり音が極大となる。さらに回転数が高くなると、うなり音よりも送風音が大きくなりマスクされてしまう。
【0036】
図13は、モータ回転数とその騒音の24次成分との遅れ角による関係の変化を示す。例えば500rpmすなわち毎秒8.3回転のとき24次成分は200Hzとなり、モータとその収納ケースとの共鳴により、うなり音が極大となる。さらに回転数が高くなると、うなり音よりも送風音が大きくなりマスクされてしまう。
【0037】
以上述べたように本発明のブラシレスモータを車両用空調装置の送風機ファンの駆動用に用いることによって、空調開始時や低回転時すなわち送風量が少ないときは低騒音で、高回転時すなわち送風量が多いときは高効率運転によって省エネルギーでかつ高トルクな回転力を得ることができ、これを回転数によって最適な割合に制御して、快適な空調環境を得ることができる。
【0038】
なお、本実施の形態では、車両用空調装置の送風機ファンの駆動用ブラシレスモータとして説明したが、例えば、車両用エンジンのラジエータ冷却ファンにも同様に適用でき、さらに室内用空調装置の送風機ファンなどにも用いることができる。
【図面の簡単な説明】
【図1】本発明のブラシレスモータの下面図であり、(a)はトルク発生効率が良くなる構成例、(b)は低騒音となる構成例を示す図である。
【図2】本発明のブラシレスモータの制御回路部のブロック図である。
【図3】(a)は、ブラシレスモータの制御回路部のタイミングチャートであり、(b)は、MOSFETの接続関係を示す図である。
【図4】(a)がロータ回転位置、(b)がホールIC信号およびMOSFETの導通状態との対応関係を示す図である。
【図5】ホールIC3切替時の各コイルの通電状態と、メインマグネットに対するセンサマグネットの遅れ角による位置を示す図である。
【図6】(a)がロータ回転角30度の場合を示し、(b)がホールIC信号およびMOSFETの導通状態との対応関係を示す図である。
【図7】ホールIC1切替時の各コイルの通電状態と、メインマグネットに対するセンサマグネットの遅れ角による位置を示す図である。
【図8】(a)はセンサ(ホールIC)からの入力信号、(b)はMOSFETのゲート信号を示すタイミングチャートである。
【図9】モータの回転数に対する進角制御量を示す図であって、(a)は進角量を角度で表し、(b)は進角量を時間で表す図である。
【図10】センサマグネットのメインマグネットに対する遅れ角と騒音レベルとの関係を示す図である。
【図11】センサマグネットのメインマグネットに対する遅れ角とモータ効率との関係を示す図である。
【図12】モータ回転数とその騒音の12次成分との関係を示す図である。
【図13】モータ回転数とその騒音の24次成分との関係を示す図である。
【符号の説明】
1…ロータ,2…メインマグネット(界磁用永久磁石),3…ステータ,4a〜f…電機子コイル,5…センサマグネット,6…シャフト,11…センサ信号検出回路,12…マイクロコンピュータ,13…モータ駆動回路,IC1〜3…ホールIC(磁気センサ),▲1▼…2倍の電流が流れているコイル,▲2▼…正回転トルク発生位置,▲3▼…逆トルク発生位置。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brushless motor that optimizes the switching timing of a current flowing through an armature coil in an outer rotor type brushless DC motor suitable for driving a blower fan for a vehicle.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, DC motors that switch the direction of current flowing through an armature coil by using a commutator and a brush are used for motors mounted on vehicles such as automobiles, for example, rotational drive motors for blower fans used in air conditioners. I came.
[0003]
This conventional DC motor mounted on a vehicle uses a vehicle battery as a power source and is driven by a constant voltage power source. For this reason, in rotation control of a DC motor using a brush, the power supply voltage is divided by a voltage dividing resistor. For example, when the battery voltage is 12V and the DC motor is driven at 3V, the remaining 9V is applied to the voltage dividing resistor and consumed as heat. For this reason, the power consumed by the voltage dividing resistor is wasted and the energy efficiency is not good. Furthermore, the sliding noise caused by the brush was the cause of noise generation.
[0004]
[Problems to be solved by the invention]
However, when the DC motor has a brushless structure and rotation control is performed with the duty of the power supply voltage varied (pulse width control), the torque generation efficiency varies depending on the timing of switching the current flowing through the armature coil from the detection position of the rotor magnetic pole. To do. Also, depending on the switching timing, the loud sound due to resonance between the motor and the storage case also changes.
[0005]
Unlike the switching timing at which the torque generation efficiency is maximized and the switching timing at which the beat sound is minimized, if the priority is placed on efficiency, the beat sound increases, and if the beat sound is reduced, the efficiency decreases.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a brushless motor which has a brushless structure for a DC motor used for a fan or the like, and optimally controls the switching timing of the armature coil current, thereby saving energy and reducing noise.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a brushless motor of the present invention is used in a storage case for driving a fan fan, and is an outer rotor type brushless DC motor in which an armature is arranged on the inner peripheral side of the motor. The switching element (Q1 to Q6) for switching the current flowing through the armature coil (4) disposed in the armature coil (4), and the field permanent magnet (2) attached to the rotor (1), the motor and the storage case Is attached to the rotor (1) integrally with a delay angle at which the resonance sound of the rotor becomes the smallest, is attached to the sensor magnet (5) indicating the rotational position of the rotor (1), the stator (3), and the sensor magnet ( 5) In response to the magnetic sensors (IC1 to IC3) for detecting the direction of the magnetic field and the magnetic field direction change detection from the magnetic sensors (IC1 to IC3), When the rotational speed of the sensor (1) is calculated and the rotational speed reaches a predetermined constant speed, the advance angle control for advancing the delay angle of the sensor magnet (5) with respect to the field permanent magnet (2) is performed. Advance angle control means (12a) for outputting an advance angle amount for detecting the change in magnetic field direction from the magnetic sensors (IC1 to IC3) and the advance angle control in accordance with the advance angle amount. And a timing control means (12b) for controlling the current switching timing of the switching elements (Q1 to Q6), and the advance angle control means (12a) and the timing control means (12b) The output of the switching elements (Q1 to Q6) is controlled on / off by a mechanically fixed delay angle until a certain rotation speed is reached while the rotation speed is unstable. Characterized in that it does not take place.
[0008]
With the above configuration, until the rotational speed of the motor reaches a constant speed, the current switching timing of the switching element can be set with a small delay angle with respect to the rotational position of the field permanent magnet with a small resonance angle between the motor and its storage case. Control and advance angle control after reaching a certain speed.
[0009]
Further, the advance angle control means (12a) controls a small advance amount of the delay angle when the rotational speed of the rotor (1) is low, and controls a large advance amount of the delay angle when the rotational speed is high. When the motor rotates at a low speed, priority is given to low noise, and when the motor rotates at a high speed, priority is given to high efficiency.
[0010]
Further, the advance angle control means (12a) smoothly changes the advance amount of the delay angle in accordance with the rotational speed of the rotor (1), so that the current of the switching element depends on the rotational speed of the motor. Change the switching timing smoothly.
[0011]
【The invention's effect】
In the brushless motor according to the first aspect of the present invention, until the rotational speed of the motor reaches a constant speed, the resonance sound between the motor and its storage case is small with respect to the rotational position of the field permanent magnet. Since the current switching timing of the switching element is controlled and the advance angle control is performed after reaching a certain speed, the rotation can be controlled with low noise when the rotation is unstable, such as when the motor is started, and the stable rotation speed above a certain speed. Then, it is possible to optimally control the switching timing of the current flowing through the armature coil in consideration of motor efficiency and noise.
[0012]
In the brushless motor according to the second aspect of the present invention, when the motor that is relatively problematic in generating noise is rotating at a low speed, priority is given to low noise over high efficiency, and the efficiency is relatively low. When the motor in question rotates at high speed, control is performed with priority given to high efficiency over low noise, so that a brushless motor with energy saving and low noise can be provided.
[0013]
The brushless motor according to
[0014]
In the brushless motor according to
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a bottom view of a brushless motor according to the present invention as viewed from below. FIG. 1A shows a configuration example in which torque generation efficiency is improved, and FIG. 1B shows a configuration example in which noise is reduced. The brushless motor of this embodiment is a three-phase two-pole outer-rotor type brushless DC motor that is used for driving a fan of a vehicle air conditioner. A rotor is provided with a field permanent magnet.
[0017]
The
[0018]
In the brushless DC motor, the generated torque varies depending on the timing of switching the current flowing through the armature coils 4 a to 4 f from the detection position of the
[0019]
FIG. 2 is a block diagram of a control circuit unit of the brushless motor according to the present embodiment. The sensor
[0020]
FIG. 3A is a timing chart when the advance angle control of the control circuit unit of the brushless motor of this embodiment is not performed, and FIG. 3B is a diagram of MOSFETs (Q1 to Q6) controlled at this timing. Indicates the connection relationship. Since the
[0021]
FIG. 4 shows a correspondence relationship between (a) the rotor rotational position and (b) the Hall IC signal used for control at that time and the conduction state of the MOSFET. When the rotor rotation angle is 0 degree, a signal from the
[0022]
FIG. 5 is a diagram showing the energization state of each coil when the
[0023]
6A shows the case where the rotor rotation angle is 30 degrees, and FIG. 6B shows the correspondence between the Hall IC signal used for the control at that time and the conduction state of the MOSFET. When the rotor rotation angle is 30 degrees, the signal from the
[0024]
FIG. 7 is a diagram illustrating the energization state of each coil when the
[0025]
FIG. 8 is a timing chart for outputting a MOSFET output switching control signal based on a signal from the Hall IC. FIG. 8A shows an input signal from the sensor (Hall IC), and FIG. 8B shows a gate signal of the MOSFET. .
[0026]
SAH and SAL shown in (a) indicate a signal from the
[0027]
(B) shows the gate signal output to the MOSFET at the time of advance control, AT, BT, CT show the gate signal for the high side (power supply side), AB, BB, CB show the gate signal for the low side (ground side) MOSFET. . In the present embodiment, the timing of the gate signal of the MOSFET is controlled by the falling of the 6 signals of the sensor input. In this case, corresponding to the fall of each sensor signal, the timing corresponding to the next fall (corresponding to 30 ° rotation of the rotor 1) is predicted, and the gate signal of the MOSFET is controlled on / off. At that time, the rotational speed of the rotor is calculated from the time between the falling edges of the sensor signal, and the advance amount for the advance control corresponding to the rotational speed is obtained. When the gate signal of the MOSFET is turned on / off, advance control is performed according to the advance amount, and timing control is performed. The same control can be performed using the rising edge of the sensor signal.
[0028]
FIG. 9 shows the correspondence of the advance angle control amount with respect to the rotational speed of the motor, where (a) represents the advance amount in angle, and (b) represents the advance amount in time. As shown in (a), the advance amount is set to 0 until the rotational speed of the motor reaches 1800 rpm, and the output of the MOSFET is controlled on / off with a mechanically fixed delay angle D (for example, 42 degrees). This is because when the motor is started, the rotation speed of the motor is not stable, the rotation speed of the rotor is calculated from the time between the falling edges of the sensor signal, and the advance angle control corresponding to the rotation speed is performed. This is because the predictive control for predicting the next falling edge from the detection of the falling edge of the sensor signal causes a deviation from the actual rotational speed, and the advance angle amount does not match the actual rotational speed. In other words, if the advance angle control is performed while the rotational speed is not stable, the rotational torque fluctuates and causes uneven rotation. Therefore, a mechanically fixed delay angle, that is, low noise is obtained until a constant rotational speed is reached. The MOSFET output is on / off controlled by the delay angle, and the advance angle control is not performed.
[0029]
When the number of rotations of the motor reaches 1800 rpm, the advance angle control is started, and the delay angle is linearly and smoothly changed continuously from D to D-8 up to 2500 rpm. If the delay angle is changed suddenly, the rotational torque also changes suddenly, causing uneven rotation. To avoid this, the delay angle is changed smoothly and continuously. When the rotational speed of the motor is 2500 rpm or more, 8 degree advance control is performed and the delay angle is set to D-8 (34 degrees).
[0030]
In order to perform control according to the rotation speed by software control of the microcomputer, advance time control corresponding to the motor rotation speed shown in (b) is performed. First, since the advance angle control is not performed until the motor rotational speed reaches 1800 rpm, when the falling edge of the sensor signal is detected, the output of the MOSFET is controlled on / off immediately after the detection.
[0031]
When the motor rotational speed reaches 1800 rpm, the advance angle control is started. As shown in FIG. 8, a sensor signal is received every 30 degrees of rotation of the
[0032]
FIG. 10 shows the relationship between the delay angle of the
[0033]
FIG. 11 shows the relationship between the delay angle of the
[0034]
From the above, low noise and high efficiency are optimally controlled by the number of revolutions by controlling the amount of advance of the delay angle less when the rotational speed of the rotor is low and by controlling the amount of advance of the delay angle when the rotor speed is high. It is possible to control in proportion.
[0035]
FIG. 12 shows the change in the relationship between the motor speed and the twelfth component of the noise depending on the delay angle. For example, at 1000 rpm, that is, 16.7 revolutions per second, the 12th-order component is 200 Hz, and the beat noise is maximized due to resonance between the motor and its storage case. When the rotational speed is further increased, the blowing sound is larger than the roaring sound and masked.
[0036]
FIG. 13 shows a change in the relationship between the motor speed and the 24th order component of the noise depending on the delay angle. For example, at 500 rpm, that is, at 8.3 revolutions per second, the 24th-order component is 200 Hz, and the beat noise is maximized due to resonance between the motor and its storage case. When the rotational speed is further increased, the blowing sound is larger than the roaring sound and masked.
[0037]
As described above, by using the brushless motor of the present invention for driving the fan of a vehicle air conditioner, the noise is low at the start of air conditioning or at low rotation, that is, when the amount of air is small, and at high rotation, that is, the amount of air. When there is a large amount of energy, high-efficiency operation can provide energy-saving and high-torque rotational force, which can be controlled to an optimal ratio according to the rotational speed to obtain a comfortable air conditioning environment.
[0038]
Although the present embodiment has been described as a brushless motor for driving a blower fan of a vehicle air conditioner, it can be similarly applied to a radiator cooling fan of a vehicle engine, and further, a blower fan of an indoor air conditioner, etc. Can also be used.
[Brief description of the drawings]
1A and 1B are bottom views of a brushless motor according to the present invention, in which FIG. 1A is a configuration example in which torque generation efficiency is improved, and FIG.
FIG. 2 is a block diagram of a control circuit unit of the brushless motor of the present invention.
FIG. 3A is a timing chart of a control circuit unit of a brushless motor, and FIG. 3B is a diagram showing a connection relationship of MOSFETs.
4A is a diagram illustrating a correspondence relationship between a rotor rotational position and FIG. 4B is a Hall IC signal and a conduction state of a MOSFET.
FIG. 5 is a diagram showing a state of energization of each coil when the
6A shows a case where the rotor rotation angle is 30 degrees, and FIG. 6B shows a correspondence relationship between the Hall IC signal and the conduction state of the MOSFET.
FIG. 7 is a diagram showing a state of energization of each coil at the time of switching
8A is a timing chart showing an input signal from a sensor (Hall IC), and FIG. 8B is a timing chart showing a MOSFET gate signal.
FIGS. 9A and 9B are diagrams showing the amount of advance control with respect to the number of rotations of the motor, in which FIG. 9A shows the amount of advance, and FIG. 9B shows the amount of advance as time.
FIG. 10 is a diagram illustrating a relationship between a delay angle of a sensor magnet with respect to a main magnet and a noise level.
FIG. 11 is a diagram showing a relationship between a delay angle of a sensor magnet with respect to a main magnet and motor efficiency.
FIG. 12 is a diagram illustrating a relationship between a motor rotation speed and a twelfth component of noise.
FIG. 13 is a diagram showing the relationship between the motor rotation speed and the 24th order component of the noise.
[Explanation of symbols]
DESCRIPTION OF
Claims (5)
ステータ(3)に配置された電機子コイル(4)を流れる電流を切り替えるスイッチング素子(Q1〜Q6)と、
ロータ(1)に取り付けられた界磁用永久磁石(2)に対し、モータと前記収納ケースとの共鳴音が最も小さくなる遅れ角にてロータ(1)と一体に取り付けられ、ロータ(1)の回転位置を示すセンサマグネット(5)と、
前記ステータ(3)に取り付けられ、前記センサマグネット(5)による磁界の方向を検出する磁気センサ(IC1〜IC3)と、
この磁気センサ(IC1〜IC3)からの磁界方向変化検出を受けて、ロータ(1)の回転速度を算出し、この回転速度があらかじめ決められた一定速度に達したら、前記センサマグネット(5)の界磁用永久磁石(2)に対する遅れ角を進める進角制御のための進角量を出力する進角制御手段(12a)と、
前記磁気センサ(IC1〜IC3)からの磁界方向変化検出および前記進角量を受けて、その進角量に応じた進角制御を行い、スイッチング素子(Q1〜Q6)の電流切り替えタイミングを制御するタイミング制御手段(12b)とを具備し、
前記進角制御手段(12a)及び前記タイミング制御手段(12b)は、モータの起動時における回転速度が安定しない間である一定の回転速度に達するまで、機構的に固定された遅れ角で前記スイッチング素子(Q1〜Q6)の出力をオンオフ制御し進角制御を行わないことを特徴とするブラシレスモータ。In an outer rotor type brushless DC motor that is housed in a storage case for driving a fan fan and has an armature disposed on the inner peripheral side of the motor,
Switching elements (Q1 to Q6) for switching a current flowing through the armature coil (4) arranged in the stator (3);
With respect to the field permanent magnet (2) attached to the rotor (1), the rotor (1) is attached integrally with the rotor (1) at a delay angle at which the resonance noise between the motor and the storage case is minimized. A sensor magnet (5) indicating the rotational position of
Magnetic sensors (IC1 to IC3) attached to the stator (3) and detecting the direction of the magnetic field by the sensor magnet (5);
Upon receiving the magnetic field direction change detection from the magnetic sensors (IC1 to IC3), the rotational speed of the rotor (1) is calculated, and when this rotational speed reaches a predetermined constant speed, the sensor magnet (5) Advance angle control means (12a) for outputting an advance angle amount for advance angle control for advancing the delay angle with respect to the field permanent magnet (2);
In response to the detection of the change in the magnetic field direction from the magnetic sensors (IC1 to IC3) and the advance angle amount, the advance angle control according to the advance angle amount is performed, and the current switching timing of the switching elements (Q1 to Q6) is controlled. Timing control means (12b) ,
The advance angle control means (12a) and the timing control means (12b) perform the switching at a mechanically fixed delay angle until a certain rotation speed is reached while the rotation speed at the start of the motor is not stable. A brushless motor characterized in that the output of the elements (Q1 to Q6) is on / off controlled and the advance angle control is not performed .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23469098A JP4185590B2 (en) | 1998-08-20 | 1998-08-20 | Brushless motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23469098A JP4185590B2 (en) | 1998-08-20 | 1998-08-20 | Brushless motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000069788A JP2000069788A (en) | 2000-03-03 |
JP4185590B2 true JP4185590B2 (en) | 2008-11-26 |
Family
ID=16974907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23469098A Expired - Lifetime JP4185590B2 (en) | 1998-08-20 | 1998-08-20 | Brushless motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4185590B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100615878B1 (en) | 2000-06-02 | 2006-08-25 | 미츠비시 쥬고교 가부시키가이샤 | IPM motors, motor vehicles, electric cars and trams |
JP3993564B2 (en) | 2004-01-13 | 2007-10-17 | 三菱重工業株式会社 | Series hybrid electric vehicle |
JP2005224006A (en) | 2004-02-05 | 2005-08-18 | Mitsubishi Heavy Ind Ltd | Ipm rotary electric machine |
JP5410690B2 (en) * | 2008-04-24 | 2014-02-05 | アスモ株式会社 | Brushless motor control device and brushless motor |
WO2016100879A1 (en) | 2014-12-18 | 2016-06-23 | Black & Decker Inc. | Control scheme to increase power output of a power tool using conduction band and advance angle |
CN108076677B (en) * | 2015-10-30 | 2020-08-11 | 三菱电机株式会社 | Electric motors, blowers and air conditioners |
EP3370924B1 (en) | 2015-11-02 | 2021-05-05 | Black & Decker Inc. | Reducing noise and lowering harmonics in power tools using conduction band control schemes |
EP3806273A1 (en) | 2019-10-11 | 2021-04-14 | Black & Decker Inc. | Power tool receiving different capacity batttery packs |
-
1998
- 1998-08-20 JP JP23469098A patent/JP4185590B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000069788A (en) | 2000-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4173587B2 (en) | Air conditioning control device for brushless motor | |
JP2000125584A5 (en) | ||
JP4142803B2 (en) | Brushless motor | |
JP4141543B2 (en) | Brushless motor | |
JP4185590B2 (en) | Brushless motor | |
EP1393430B1 (en) | Motor driving device and apparatus including the same device | |
US8264178B2 (en) | Brushless motor control apparatus, brushless motor and control method of brushless motor | |
JP3243977B2 (en) | Control method of brushless DC motor for electric vehicle | |
JP4190628B2 (en) | Brushless motor | |
JP4102495B2 (en) | Brushless motor | |
JP4574898B2 (en) | Motor drive device and blower | |
US20050135794A1 (en) | Method and system for negative torque reduction in a brushless DC motor | |
JP2006109580A (en) | Brushless DC motor control device and ceiling fan equipped with the same | |
US7129661B2 (en) | Motor driver, motor driven by the motor driver, and apparatus employing the motor | |
JP3957161B2 (en) | Motor control device | |
JP2004072903A (en) | Brushless motor | |
JP4015308B2 (en) | Brushless motor | |
JP6002631B2 (en) | Control method of brushless motor for vehicle | |
JP4274626B2 (en) | DC brushless motor controller | |
JP2012235571A (en) | Brushless dc motor and blower mounted therewith | |
JP2005176529A (en) | Controller for brushless motor and fan motor device | |
JP2696394B2 (en) | Blower motor controller for automotive air conditioner | |
JPH04312386A (en) | Controller for brushless motor | |
JP2004260886A (en) | Refrigeration cycle controller | |
JP4335387B2 (en) | Car air conditioner drive control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080908 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130912 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |