[go: up one dir, main page]

JP4185478B2 - 歪検出器およびその製造方法 - Google Patents

歪検出器およびその製造方法 Download PDF

Info

Publication number
JP4185478B2
JP4185478B2 JP2004216651A JP2004216651A JP4185478B2 JP 4185478 B2 JP4185478 B2 JP 4185478B2 JP 2004216651 A JP2004216651 A JP 2004216651A JP 2004216651 A JP2004216651 A JP 2004216651A JP 4185478 B2 JP4185478 B2 JP 4185478B2
Authority
JP
Japan
Prior art keywords
strain
silicon oxide
oxide film
thin
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004216651A
Other languages
English (en)
Other versions
JP2006038540A (ja
Inventor
宏 長坂
毅 阿部
嘉一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Co Ltd
Original Assignee
Nagano Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Co Ltd filed Critical Nagano Keiki Co Ltd
Priority to JP2004216651A priority Critical patent/JP4185478B2/ja
Priority to US11/182,341 priority patent/US7263895B2/en
Priority to DE602005000859T priority patent/DE602005000859T2/de
Priority to EP05254490A priority patent/EP1619487B8/en
Priority to ES05254490T priority patent/ES2284135T3/es
Publication of JP2006038540A publication Critical patent/JP2006038540A/ja
Application granted granted Critical
Publication of JP4185478B2 publication Critical patent/JP4185478B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0055Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Force In General (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、起歪体に発生する歪を電気信号に変換して外部応力の計測を行う歪検出器およびその製造方法に関する。
従来、外部応力の計測を行うために、外部応力によって部材が歪む起歪体と前記起歪体の歪量を電気信号に変換する歪ゲージとを用いて、様々な歪検出器が開発されている。例えば、気体や液体などの流体の圧力を計測するためには、流体圧力によって起歪体を歪ませ、この歪量を電気信号に変換して流体の圧力を計測する歪検出器が利用されている。
この流体圧力測定用の歪検出器としては、例えば、特許文献1記載の歪検出器が挙げられる。すなわち、この歪検出器は、流体の圧力により歪みを発生するダイアフラム部と、発生した歪量を電気信号として検出する歪ゲージとを含んで構成され、配管内を流通する流体の圧力を計測する。前記ダイアフラム部は17−4ステンレス鋼からなり、流体の圧力により弾性変形して歪を発生する薄肉部を有している。前記歪ゲージは、複数の抵抗線歪ゲージが前記薄肉部上にガラス材料でそれぞれ固着され、回路として形成されたものである。このガラス材料は、前記薄肉部と前記抵抗線歪ゲージとの接着剤となり、かつ、前記薄肉部と前記抵抗線歪ゲージとの電気伝導を遮断する絶縁体となる。以上の構成の前記歪検出器において、被計測体である流体が前記ダイアフラム部の前記薄肉部に作用すると、この流体の圧力によって前記薄肉部が歪み、前記抵抗線歪ゲージはこの歪み量を電気信号として検出し、この電気信号を増幅、変換することにより前記流体の圧力値が得られる。
ここで、より高い精度で流体の圧力値を検出しようとする場合、より高い歪量を発生させることが好ましく、そのためには、前記ダイアフラム部の薄肉部は、より薄く形成されることが好ましい。また、この薄肉部は、被計測体である流体から強い圧力を受けるため、前記ダイアフラム部に用いる材料には高い引っ張り強度を有すことが要求される。この点、前記ダイアフラムの材料にはマルテンサイト系析出硬化型ステンレス鋼である17−4ステンレス鋼が採用されており、この材料は1300MPa以上の引っ張り強度を有するため、高い精度と信頼性のある圧力値が得られ、歪検出器用のダイアフラム材料としては非常に良く適している。
特開2001−242031号公報
しかしながら、このマルテンサイト系析出硬化型ステンレス鋼は、機械強度には優れているが耐食性に関して劣っており、このため、特許文献1記載の前記歪検出器は、腐食性の高い酸性ガスや薬液、脆化の原因となる水素ガスなどの流体においては、限定的にしか使用できない。
また、前記ダイアフラム部にマルテンサイト系析出硬化型ステンレス鋼のような高い引っ張り強度を有する材料を用いて前記薄肉部をより薄く形成した場合、前記薄肉部は大きな歪を発生する反面、前記薄肉部と前記抵抗線歪ゲージとを結合する前記ガラス材料は、前記薄肉部から大きな応力を受ける。
ここで、前記歪ゲージを含めた従来の一般的な歪ゲージ技術において、抵抗線歪ゲージとダイアフラムとの接合には、前記ガラス材料やポリイミド系の接着剤などが用いられるが、これら接着剤を前記ダイアフラム部に適用して歪検出器を構成し、この歪検出器を長期的に使用していくうちに、前記ダイアフラムと抵抗線歪ゲージとの結合が劣化し、ダイアフラムの歪量を電気信号として正確に検知できない、つまり信頼性の高い圧力値が得られなくなる問題がある。また、前記歪検出器においては、複数の抵抗線歪ゲージを個別に接着剤で接着する作業を伴うため、歪検出器の製造に時間と手間がかかるなどの問題が一例として挙げられる。
なお、これらの諸問題は上記の流体圧力測定用歪検出器だけにとどまらず、その他一般的な歪検出器における問題となっている。
ここで、本発明の目的は、高い精度と信頼性を確保し、耐食性に優れた歪検出器および歪検出器の製造方法を提供することである。
そのため、本発明は、マルテンサイト系析出硬化型ステンレス鋼と同程度の機械強度を有し、かつ耐食性に優れたオーステナイト系の析出硬化型Fe−Ni(鉄−ニッケル)耐熱鋼を使用して起歪体を形成し、この起歪体上に内部応力を調整したシリコン酸化膜を含んだ絶縁膜を設けることにより、前記目的を達成しようとするものである。具体的には、本発明の歪検出器は、外部応力により歪みが発生する起歪体と、前記起歪体の少なくとも一部に形成される絶縁膜と、前記絶縁膜上に形成され、前記起歪体により発生した歪みを電気信号として検出する歪ゲージと、を備えた歪検出器であって、前記起歪体は、オーステナイト系の析出硬化型Fe−Ni耐熱鋼で形成され、前記絶縁膜は、シリコン酸化膜で形成されることを特徴とする。
この発明によれば、歪みを発生させる起歪体に機械強度に優れたオーステナイト系の析出硬化型Fe−Ni耐熱鋼を用いるために、高い精度と信頼性を確保した歪検出器を提供することができる。また、このオーステナイト系の析出硬化型Fe−Ni耐熱鋼は耐食性にも優れているため、本発明の歪検出器は、これまで圧力計測が困難であった酸性ガス、腐食性の高い被計測体の応力を計測でき、また、脆化の原因となる水素ガスに曝される環境においても応力測定が行える。
また、前記絶縁膜は、シリコン酸化膜とオーステナイト系の析出硬化型Fe−Ni耐熱鋼との熱膨張率差および弾性係数差とを考慮して、前記絶縁膜の内部応力を調整できる前記シリコン酸化膜を含んで形成されるため、前記歪検出器を長期的に使用することによって前記絶縁膜が前記起歪体から大きな応力を受け続けたとしても、前記絶縁膜の内部応力を調整することで前記起歪体と前記絶縁膜との結合が劣化することがなくなり、信頼性の高い圧力値を得られる。また、前記絶縁膜は、従来の膜形成技術により一度に全て形成することができるため、従来に比べて、歪検出器の製造に時間と手間がかからない。
また、以上の構成の本発明では、前記シリコン酸化膜は、その内部応力が−150〜130MPaに調整された構成であることが好ましい。これによって、前記歪検出器が−40〜550℃の温度雰囲気に曝されたとしても、前記シリコン酸化膜の組織にクラックが生じることがなく、前記起歪体と前記絶縁膜との結合が劣化することがない。
また、以上の構成の本発明では、前記シリコン酸化膜は、その厚さが2〜15μmに調整された構成であることが好ましい。これによって、前記シリコン酸化膜の絶縁性を確保し、かつ、膜厚が大きすぎることによって前記シリコン酸化膜の組織にクラックが生じることがない。
また、以上の構成の本発明では、前記歪ゲージは、結晶性シリコン薄膜であることが好ましい。これによって、接着剤を用いずに前記シリコン酸化膜上に結晶性シリコン薄膜を形成でき、また、この結晶性シリコン薄膜は従来の膜形成技術により一度に全て形成することができるため、従来に比べて、歪検出器の製造に時間と手間がかからない。
また、上記目的を達成するための歪検出器の製造方法は、Ni(ニッケル)を24〜27重量%、Cr(クロム)を13.5〜16重量%含有する材料に溶体化熱処理を施し更に第1時効処理を施すことにより形成したオーステナイト系の析出硬化型Fe−Ni耐熱鋼で起歪体を形成し、前記起歪体の一部に絶縁膜としてシリコン酸化膜を形成し、このシリコン酸化膜上に歪ゲージとして結晶性シリコン薄膜を形成し、前記シリコン酸化膜および前記結晶性シリコン薄膜を形成する工程において前記起体に第2時効処理を施すことを特徴とする。
この製造方法により製造された歪検出器は、前記起歪体が機械強度および耐食性に優れた前記オーステナイト系の析出硬化型Fe−Ni耐熱鋼で形成されているため、高い精度と信頼性を確保し、かつ腐食性の高い被計測体の応力を測定できる。また、前記シリコン酸化膜は例えばプラズマCVD法等により形成するため、シリコン酸化膜の原料ガスの流量を適宜調整することにより、形成されたシリコン酸化膜の内部応力を任意の値に設定できる。また、これら前記シリコン酸化膜および前記結晶性シリコン薄膜を形成する工程において、前記起歪体は、所定の時間、所定の温度雰囲気に曝され、これにより前記起歪体に第2時効処理としての効果が生じるため、前記起歪体の機械強度が更に向上し、かつ、製造工程が簡略化される。
〔第1の実施形態〕
以下、本発明に係る第1の実施形態を図面に基づいて説明する。図1は、第1の実施形態である流体圧力センサ1を示した断面図である。図2は、前実施形態である流体圧力センサ1の要部を拡大して示した断面図である。この流体圧力センサ1は、配管内を流通する気体、液体、その他様々な流体の圧力を計測でき、特に、腐食性の高い酸性ガスや薬液、脆化の原因となる水素ガスなどの流体圧力をも計測することができる。図1において、流体圧力センサ1は、継手部材11、歪ゲージ20、回路部30およびハウジング40とを備えて構成されている。
〔継手部材11の構成〕
継手部材11は、被測定流体が流通する配管(図示せず)に接続される略円筒形の継手部材11、この継手部材11の一端に形成される有底円筒形のダイアフラム部12、および継手部材11の外周面の一部に形成される略円盤形のディスクフランジ部13が一体的に形成された部材であり、オーステナイト系の析出硬化型Fe−Ni耐熱鋼により形成される。
このオーステナイト系の析出硬化型Fe−Ni耐熱鋼としては、例えば、SUH660鋼などが挙げられる。SUH660鋼は、高い機械的強度を有し、かつ優れた耐食性も併せ持つ材料で、Ni24〜27重量%、 Cr13.5〜16重量% 、Al(アルミニウム)0.35重量%以下、Ti(チタン)1.9〜2.35重量%を含む。SUH660鋼は、溶体化処理および第1時効処理(700℃以上で16時間保持後、室温まで徐々に降温する処理)を施すことにより、オーステナイト相(γ相)中に金属間化合物である Ni[Al、 Ti]相(γ’ 相)を析出させて機械強度を上げたもので、1060MPa以上の引張り強さを有す。なお、このオーステナイト系の析出硬化型Fe−Ni耐熱鋼としては、上記のSUH660鋼に限らない。
略円筒形の継手部材11内部の円柱状の空間は流体が流通する流路110となっており、継手部材11の一端側の外周面には図示しない配管と螺合するねじ部111が形成され、また、継手部材11の他端側には起歪体であるダイアフラム部12が設けられている。流路110において、ねじ部111側の一端は、圧力導入口110Aとなっており、ここから図示しない配管から供給される流体が流入する。
図2において、ダイアフラム部12は、略円盤状の薄肉部120の外周部に円筒部121が一体的に形成された構造である。
薄肉部120は、流体が作用すると流体の圧力により弾性変形が生じ、この弾性変形による歪み量が大きい程、歪ゲージ20はより大きな電気信号を発生させ、より正確な圧力値を検出することができる。設計上、この薄肉部120に用いる材料には、大きな歪みを発生させても十分耐え得る強度を有することが求められ、具体的には800MPa以上、より好ましくは1000MPa以上の引っ張り強度が要求される。この点、薄肉部120を含む継手部材11は、1060MPa以上の引張り強さを有するオーステナイト系の析出硬化型Fe−Ni耐熱鋼により形成されており、薄肉部120をより薄く形成したとしても流体の圧力に十分に耐え、大きな歪み量を確保できる。
ディスクフランジ部13は、継手部材11の外周面上の一端、すなわちダイアフラム部12が形成される側に、この継手部材11の半径方向外方へ向けて円盤状に延びて形成されている。このディスクフランジ部13において、ダイアフラム部12が形成される側の面上には、その周縁部に環状の溝である嵌合部130が形成され、ここにハウジング40が嵌合する。また、ディスクフランジ部13は、外形が二方取りまたは六角形状となっており、ねじ部111を図示しない配管に螺合する際のスパナ掛けとしても使用される。
〔歪ゲージ20の構成〕
歪ゲージ20は、薄肉部120の歪み量を電気信号に変換出力する素子であり、薄肉部120の外面上にシリコン酸化膜21を形成(薄膜形成工程I)した後、さらにこのシリコン酸化膜21上の所定の4箇所に直接形成される(薄膜形成工程II)。これら歪ゲージ20は、結晶性シリコン薄膜であり、この薄膜はプラズマCVD法による薄膜形成工程IIにおいて一度に全て形成される。それぞれの歪ゲージ20の両端には電極が設けられ、これら電極をブリッジ状に接続してブリッジ回路を形成し、さらに薄肉部120上にはこれら歪ゲージ20への電圧印加用および電気信号出力用のパッドが設けられる。
シリコン酸化膜21は、歪ゲージ20とダイアフラム部12との間の通電を遮断する目的で設けられ、プラズマCVD法による薄膜形成工程Iにおいて、ダイアフラム部12の薄肉部120外面上全面に形成される。このため、シリコン酸化膜21は、薄肉部120上に強固に結合され、かつシリコン酸化膜21の組織は緻密に形成される。
ここで、薄肉部120上にシリコン酸化膜21を形成する工程(薄膜形成工程I)およびシリコン酸化膜21上に歪ゲージ20を形成する工程(薄膜形成工程II)について説明する。
まず、薄膜形成工程Iについて説明する。プラズマCVD装置(図示せず)内に、薄肉部120の外表面全面を剥き出しにした状態で、圧力導入継手10を設置する。プラズマCVD装置内の温度を410℃に設定し、原料ガスとなる亜酸化窒素ガスおよびモノシランガスを所定の流量で導入しながら、プラズマを発生させる。プラズマが照射されると、亜酸化窒素ガスおよびモノシランガスは、薄肉部120上で化学反応しシリコン酸化物が形成される。このシリコン酸化物の形成反応を所望の時間行うことにより、薄肉部120上には所望の厚さのシリコン酸化膜21が一様に形成される。
この場合、シリコン酸化膜21の厚さは、2〜15μm、より好ましくは5〜12μmの範囲で調整されている。これは、シリコン酸化膜21の厚さは、実質的な絶縁性(1000MΩ/50VDC)を考慮すると2μm以上の厚さが必要であり、また、シリコン酸化膜21に印加される応力による割れも考慮すると15μm以下の厚さであることが要されるためである。
また、形成されたシリコン酸化膜21の内部応力は、原料ガスとなるモノシランガスの流量を調整することにより、室温において−150〜130MPa、より好ましくは−120〜110MPaに設定される。これにより、−40℃〜550℃の温度環境においても薄肉部120上に形成されたシリコン酸化膜21にクラックが生じない。
この薄膜形成工程Iにおいて、形成されたシリコン酸化膜の内部応力とその原料ガスであるモノシランガスの流量との関係について、図面に基づいて説明する。図3は、モノシランガスの流量と形成されたシリコン酸化膜の内部応力との関係を示す図である。図4は、シリコン酸化膜の内部応力の安全域を示す図である。
図3において、プラズマCVD法によってシリコン酸化膜21を形成する際、成膜温度を410℃としてモノシランガスの流量を50〜230sccmの範囲で変化させると、形成されたシリコン酸化膜21の内部応力(真性応力)は−200〜400MPaの範囲で、図に示した曲線C1を描いて変化する。つまり、この図から、原料ガス流量を適宜調整することでシリコン酸化膜21の内部応力を所望の値に調整できることが分かる。
ここで、形成したシリコン酸化膜の熱膨張率は約1ppm/℃であり、起歪体であるダイアフラム部12(Ni24〜27重量%、Cr13.5〜16重量%を含有するオーステナイト系の析出硬化型Fe−Ni耐熱鋼)の熱膨張率は約16ppm /℃であり、また、シリコン酸化膜の弾性係数は73GPaである。
図4において、本実施形態のシリコン酸化膜21は、シリコン酸化膜21にかかる応力が−640MPa以下、または280MPaを超えるとクラックが発生する(歪ゲージ20に印加される応力は別に考慮)。つまり、シリコン酸化膜にかかる応力が、図中二点鎖線で示した上限値および下限値の間の範囲Lに収まっている場合、シリコン酸化膜は安全となる。シリコン酸化膜にかかる応力は、温度によって変化し、図に示すように高温になるほど曲線C1は上側にシフトし、低温になるほど曲線C1は下側にシフトする。
シリコン酸化膜21をダイアフラム部12上に形成した後これらの部材を−40℃に曝した場合、シリコン酸化膜に加わる応力は約−490MPaとなり、曲線C1は曲線C2へとシフトする。室温においてシリコン酸化膜に−150MPaの応力が係っていた場合(図中A点)、−40℃においてはシリコン酸化膜に範囲Lの下限値である−640MPaの応力が係ることになる(図中A’点)。
また、これらの部材を550℃に曝した場合、シリコン酸化膜に加わる応力は約150MPaとなり、曲線C1は曲線C3へとシフトする。室温においてシリコン酸化膜に130MPaの応力が係っていた場合(図中B点)、550℃においてはシリコン酸化膜に範囲Lの上限値である280MPaの応力が係ることになる(図中B’点)。
よって、温度範囲−40℃から550℃において、ダイアフラム部12に形成されたシリコン酸化膜21が安全に使用されるには、シリコン酸化膜21の内部応力が図中A点からB点の間の範囲Sにあるとき、つまり−150〜130MPaであることが望ましい。
なお、温度範囲を−40℃から550℃としたのは、流体圧力センサ1を通常環境で使用する場合、最低でも−40℃を下回ることはないという前提で下限を−40℃とし、薄膜形成工程IIにおいて結晶性シリコン薄膜を形成する際、シリコン酸化膜21およびダイアフラム部12が曝される温度は550℃であるため、上限を550℃とした。
次に、薄膜形成工程IIについて説明する。プラズマCVD装置(図示せず)内に、シリコン酸化膜21の一部位のみを剥き出しにし、膜形成を行わない部位には保護材等でシールした状態で、圧力導入継手10を設置する。プラズマCVD装置内の温度を550℃に設定し、原料ガスとなるモノシランガスと水酸化硼素ガスなどのドーピングガスを所定の流量で導入しながらプラズマを発生させると、シリコン酸化膜21上においてモノシランガスがプラズマによって熱分解され、結晶性シリコンが生成する。この成膜処理を所望の時間行うことにより、薄肉部120上には所望の厚さの結晶性シリコン薄膜が一様に形成される。
なお、これら薄膜形成工程Iおよび薄膜形成工程IIを行うことによって、同時に、オーステナイト系の析出硬化型Fe−Ni耐熱鋼で形成される圧力導入継手10には第2時効処理を施すことになる。つまり、圧力導入継手10は、薄膜形成工程Iにおいて410℃下で所定時間曝され、また、薄膜形成工程IIにおいて550℃下で所定時間曝されることにより、圧力導入継手10の強度は更に上がり、その引っ張り強度は1230MPaとなり、これはマルテンサイト系析出硬化型ステンレス鋼の引っ張り強度1300MPaとほぼ同様の値となる。このことは、後述する実験により確認されている。
〔回路部30の構成〕
回路部30は、増幅回路基板31、ワイヤーボンド32および入出力端子33を含んで構成され、歪ゲージ20で発生した電気信号を増幅し、増幅した電気信号を外部に伝達する機能を有する。増幅回路基板31上には、回路部品および電極が設けられている。この回路部品は、歪ゲージ20に対して電圧印加処理をし、歪ゲージ20から伝達された微弱な電気信号を増幅する処理を行う。増幅回路基板31における電極は、増幅回路基板31の内側において歪ゲージ20の前記パッドとワイヤーボンド32で接続されている。入出力端子33は、図示しない外部端末と回路部30とを連絡する3本の端子であり、外部端末には前記回路部品により増幅された歪ゲージ20の電気信号を出力し、外部端末からは電源を回路部30に供給する。スペーサ34は、継手部材11に増幅回路基板31を固定する円筒状の部材であり、増幅回路基板31の外周縁を支持するように設けられる。
〔ハウジング40の構成〕
ハウジング40は、歪ゲージ20および回路部30を外部より侵入する水分や塵埃から保護する略筒状の保護ケースであり、その一端にはディスクフランジ部13の嵌合部130と係合するガスケット41が設けられている。
〔第1の実施形態の作用効果〕
このように、本発明の歪検出器に係る第1の実施形態の流体圧力センサ1によれば、以下の作用効果が期待できる。
(1)本発明では、起歪体であるダイアフラム部12にマルテンサイト系析出硬化型ステンレス鋼と同程度の機械強度を有したオーステナイト系の析出硬化型Fe−Ni耐熱鋼を使用したため、高い精度と信頼性を確保した歪検出器を提供することができる。
(2)この歪検出器を流体圧力センサ1に応用したので、流体圧力センサ1は、従来圧力計測が困難であった酸性ガス、腐食性の高い薬液、脆化の原因となる水素ガスなどの流体圧力を測定できる。
(3)本実施形態では、絶縁膜であるシリコン酸化膜21は、ダイアフラム部12の薄肉部120上に、接着剤を使用せずに直接形成されるため、材料の膨張係数が16ppm/℃に達するダイアフラム部12においても、その内部応力および膜厚を適切に制御することで信頼性の高い歪検出器を提供することができる。
(4)本実施形態では、シリコン酸化膜21は、シリコン酸化膜21とオーステナイト系の析出硬化型Fe−Ni耐熱鋼との熱膨張率差および弾性係数差とを考慮して、薄肉部120上にシリコン酸化膜21の内部応力を−150〜130MPaに調整して形成される。このため、流体圧力センサ1を長期的に使用しても、薄肉部120とシリコン酸化膜21との結合が劣化することがない。また、流体圧力センサ1が−40〜550℃の温度雰囲気に曝されたとしても、シリコン酸化膜21の組織にクラックが生じることがなく、信頼性の高い圧力値を得られる。
また、シリコン酸化膜21は、その厚さが2〜15μmに調整されているため、シリコン酸化膜21の絶縁性を確保し、かつ、膜厚が大きすぎることによってシリコン酸化膜21の組織にクラックが生じることがない。
(5)本実施形態において、歪ゲージ20は、結晶性シリコン薄膜であり、接着剤を用いずにプラズマCVD法によりシリコン酸化膜21上に直接形成されるため、歪ゲージ20とシリコン酸化膜21とは強固に結合され、ダイアフラム部12の歪量を確実に歪ゲージ20に伝えられ、高精度の流体圧力を検出できる。
(6)本実施形態では、シリコン酸化膜21はプラズマCVD法により一度に全て形成されるため、従来に比べて、流体圧力センサ1の製造に時間と手間がかからない。
また、結晶性シリコン薄膜である歪ゲージ20も、プラズマCVD法によりシリコン酸化膜21上に一度に全て形成し、かつ接着剤も用いないため、従来に比べて、流体圧力センサ1の製造に時間と手間がかからない。
(7)薄膜形成工程Iにおいて、シリコン酸化膜21の形成は、低温で成膜可能なプラズマCVD法により行われるため、薄膜形成中に温度によってダイアフラム部12の金属材料組織を劣化させることがない。
また、薄膜形成工程IIにおいても同様に、結晶性シリコン薄膜の形成は、低温で成膜可能なプラズマCVD法により行われるため、薄膜形成中に温度によってシリコン酸化膜21を損傷することもなく、ダイアフラム部12の金属材料組織を劣化させることもない。
(8)薄膜形成工程Iにおいて、プラズマCVD法で原料ガスの流量を適宜変更するだけで、シリコン酸化膜21の内部応力を−150〜130MPaに自由に調整することができる。このため、シリコン酸化膜21の内部応力は簡単な構成で任意に設定できる。
(9)本実施形態では、薄膜形成工程Iおよび薄膜形成工程IIを行うことによって、オーステナイト系の析出硬化型Fe−Ni耐熱鋼で形成されるダイアフラム部12に第2時効処理を施す。このため、ダイアフラム部12の引っ張り強度は約1230MPaにまで向上し、この値は、マルテンサイト系析出硬化型ステンレス鋼の引っ張り強度1300MPaとほぼ同値であり、流体圧力センサ1は高い精度と信頼性を確保できる。
また、薄膜形成工程Iおよび薄膜形成工程IIが第2時効処理であることから、これにより熱処理工程を別個設ける必要がなく、製造工程が簡略化され、流体圧力センサ1の製造を比較的安価に行える。
〔実験例〕
次に、本実施形態の効果を確認する実験例について説明する。オーステナイト系の析出硬化型Fe−Ni耐熱鋼に対する第2時効処理の効果について図面に基づいて説明する。図5は、ダイアフラム12の引張り強さと第2時効処理温度との関係を示した図である。
本実施形態では、薄膜形成工程Iおよび薄膜形成工程IIを行うことによって、オーステナイト系の析出硬化型Fe−Ni耐熱鋼のダイアフラム部12、略円盤状の薄肉部120および円筒部121に第2時効処理を施す。この第2時効処理による効果を検証するために以下の実験を行った。
図5において、第2時効処理を施す前は、オーステナイト系の析出硬化型Fe−Ni耐熱鋼には溶体化処理および第1時効処理(700℃以上で16時間保持後、室温まで徐々に降温する処理)が施されており、この材料は1060MPa以上の引張り強さを有し、この状態の上記材料をサンプルAとする。複数のサンプルAに、第2時効処理として650℃で1時間保持後、室温まで徐々に降温する熱処理を施すと、複数のサンプルの引張り強さは約1200MPaに向上した(サンプルB)。同様にして、複数のサンプルAに、第2時効処理として550℃で1時間保持後、室温まで徐々に降温する熱処理を施すと、複数のサンプルの引張り強さは約1230MPaまで向上した(サンプルC)。
これは、第2時効処理によって、第1時効処理の際に析出しなかったより微細な金属間化合物Ni[Al、Ti]相(γ’ 相)が、オーステナイト相(γ相)中に分散して析出したことによる。一般に、母相であるγ相中に金属間化合物相(γ’ 相)が微小に分散して析出するほど、材料の機械強度が向上する。ここでは、第2時効処理の最適な温度条件としては、第2時効処理温度が550℃のとき(サンプルC)であることが分かった。このことは、薄膜形成工程IIにおける温度条件のとき、最も高い効果が得られることを意味する。
〔第2の実施形態〕
次に、本発明に係る第2の実施形態を図面に基づいて説明する。図6は、第2の実施形態である歪検出器50を示しており、(A)はその平面図であり、(B)はその正面図である。この歪検出器50は、片持ち梁状の起歪体51の先端に荷重がかかることにより起歪体51が撓み、この発生した歪量を歪ゲージ53によって電気信号として検出し、荷重を測定する。なお、この歪検出器50は、重量計などとして使用することができる。
図6において、歪検出器50は、片持ち梁状の起歪体51、絶縁層であるシリコン酸化膜52および歪ゲージ53を備えている。起歪体51は、所定の厚みを持って形成された略矩形状のブロック体であり、その基端側は固定部材60に固定され、その先端側は自由端となり荷重がかかることにより揺動する。この起歪体51の一面は先端側と基端側の略中間位置において凹部510が形成されており、このため起歪体51は、その先端側と基端側の略中間位置において薄肉部511が形成される。起歪体51の先端側に荷重が加わると、この薄肉部511が大きく撓み、大きな歪量が発生する。起歪体51の材料としては、機械強度および耐食性に優れたオーステナイト系の析出硬化型Fe−Ni耐熱鋼が用いられ、例えばSUH660などが用いられる。
シリコン酸化膜52は、起歪体51のテーパ状の凹部510が形成された一面と反対側の面上に、全面に亘り形成されている。このシリコン酸化膜52の形成法(薄膜形成工程I)は、上記第1の実施形態と同様であり、プラズマCVD法によりその内部応力は−150〜130MPaに設定され、その薄膜厚さは2〜15μmに設定されている。
歪ゲージ53は、薄肉部511の歪み量を電気信号に変換出力する素子であり、シリコン酸化膜52上の所定の4箇所に直接形成される(薄膜形成工程II)。これら歪ゲージ53は、結晶性シリコン薄膜であり、この薄膜はプラズマCVD法によって、上記第1の実施形態と同様の方法で一度に全て形成される。それぞれの歪ゲージ53の両端には電極が設けられ、これら電極をブリッジ状に接続してブリッジ回路を形成し、さらにシリコン酸化膜52上にはこれら歪ゲージ53への電圧印加用および電気信号出力用のパッドが設けられる。
第2の実施形態では、前記第1の実施形態と同様に、薄膜形成工程Iおよび薄膜形成工程IIを行うことによって、同時に、オーステナイト系の析出硬化型Fe−Ni耐熱鋼で形成される起歪体51には第2時効処理を施すことになる。つまり、起歪体51は、薄膜形成工程Iにおいて410℃下で所定時間曝され、また、薄膜形成工程IIにおいて550℃下で所定時間曝されることにより、起歪体51の強度は更に上がり、その引っ張り強度は1230MPaとなり、これはマルテンサイト系析出硬化型ステンレス鋼の引っ張り強度1300MPaとほぼ同様の値となる。このことは、前述した実験により確認されている。
〔第2実施形態の作用効果〕
このように、本発明の第2の実施形態に係る歪検出器50によれば、上記(1)および(3)〜(9)の作用効果に加えて、以下の作用効果が期待できる。
(10)本実施形態では、起歪体51に耐食性に優れたオーステナイト系の析出硬化型Fe−Ni耐熱鋼を使用したため、歪検出器50は、腐食性の環境や、脆化の原因となる高濃度の水素ガスが充満した環境などにおいても、荷重を測定できる。
〔変形例〕
なお、本発明は前述の第1の実施形態および第2の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前記第1、第2の実施形態において起歪体の一部に形成したシリコン酸化膜の製法はプラズマCVD法に限られるものではなく、他のCVD法、スパッタリング法などによって形成しても良い。また、前記第1の実施形態では、起歪体である薄肉部120は円形であったが、これに限らず、薄肉部120は方形であってもよい。また、前記第2の実施形態では、起歪体51は略矩形状のブロック体の片持ち梁であったが、棒状または板状の片持ち梁または両持ち梁であっても良い。
また、第1の実施形態では、薄肉部120の外面上にシリコン酸化膜21を形成した後、このシリコン酸化膜21上に歪ゲージ20を形成し、それぞれの歪ゲージ20の両端には電極を設けブリッジ回路を形成し、さらに歪ゲージ20への電圧印加用および電気信号出力用のパッドが設ける構成であるが、さらにこれら全体を覆う保護層を設けても良い。この保護層としては、例えば、シリコン窒化膜などが挙げられる。
同様に、第2の実施形態においても、薄肉部511の外面上にシリコン酸化膜52、歪ゲージ53を順に形成して、それぞれの歪ゲージ53に電極およびパッドを設ける構成であるが、さらにこれら全体を覆うシリコン窒化膜などの保護層を設けても良い。
また、第1の実施形態における継手部材11、および第2の実施形態における起歪体51は、それぞれ単一の材料により形成される構成であるが、これに限らない。例えば、それぞれの部材の表面に他の材料を被覆するなどした積層構造であっても良い。
本発明は、流体圧力センサ、片持ち梁状歪検出器、その他のセンサに利用できる。流体圧力センサとして利用する場合には、特に腐食性の高い酸性ガスや薬液、脆化の原因となる水素ガスなどの流体の圧力も計測することができる。また、片持ち梁状歪検出器として利用する場合には、腐食性の環境や、脆化の原因となる高濃度の水素ガスが充満した環境などにおいても、荷重を計測できる。
本発明の第1の実施形態にかかる流体圧力センサを示した断面図。 前実施形態にかかる流体圧力センサの要部を拡大して示した断面図。 モノシランガスの流量と形成されたシリコン酸化膜の内部応力との関係を示す図。 シリコン酸化膜の内部応力の安全領域を示す図。 前実施形態にかかる起歪体の引張り強さと第2時効処理温度との関係を示した図。 本発明の第2の実施形態にかかる歪検出器を示す(A)平面図(B)正面図。
符号の説明
1 流体圧力センサ
10 圧力導入継手
11 継手部材
12 ダイアフラム部
20 歪ゲージ
21 シリコン酸化膜
30 回路部
40 ハウジング
50 歪検出器
51 起歪体
52 シリコン酸化膜
53 歪ゲージ

Claims (6)

  1. 外部応力により歪みが発生する起歪体と、
    前記起歪体の少なくとも一部に形成される絶縁膜と、
    前記絶縁膜上に形成され、前記起歪体により発生した歪みを電気信号として検出する歪ゲージと、を備えた歪検出器であって、
    前記起歪体は、オーステナイト系の析出硬化型Fe−Ni耐熱鋼で形成され、
    前記絶縁膜は、シリコン酸化膜で形成される
    ことを特徴とする歪検出器。
  2. 請求項1記載の歪検出器において、
    前記起歪体は、Niを24〜27重量%、Crを13.5〜16重量%含有する材料に溶体化熱処理を施し更に第1時効処理を施すことにより形成したオーステナイト系の析出硬化型Fe−Ni耐熱鋼で形成される
    ことを特徴とする歪検出器。
  3. 請求項1または請求項2記載の歪検出器において、
    前記シリコン酸化膜は、その内部応力が−150〜130MPaである
    ことを特徴とする歪検出器。
  4. 請求項3記載の歪検出器において、
    前記シリコン酸化膜は、その厚さが2〜15μmである
    ことを特徴とする歪検出器。
  5. 請求項1から請求項4記載のいずれかの歪検出器において、
    前記歪ゲージは、結晶性シリコン薄膜である
    ことを特徴とする歪検出器。
  6. Niを24〜27重量%、Crを13.5〜16重量%含有する材料に溶体化熱処理を施し更に第1時効処理を施すことにより形成したオーステナイト系の析出硬化型Fe−Ni耐熱鋼で起歪体を形成し、
    前記起歪体の一部に絶縁膜としてシリコン酸化膜を内部応力を調整して形成し、
    このシリコン酸化膜上に歪ゲージとして結晶性シリコン薄膜を形成し、
    前記シリコン酸化膜および前記結晶性シリコン薄膜を形成する工程において前記起歪体に第2時効処理を施す
    ことを特徴とした歪検出器の製造方法。
JP2004216651A 2004-07-23 2004-07-23 歪検出器およびその製造方法 Expired - Lifetime JP4185478B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004216651A JP4185478B2 (ja) 2004-07-23 2004-07-23 歪検出器およびその製造方法
US11/182,341 US7263895B2 (en) 2004-07-23 2005-07-15 Strain detector and method of manufacturing the same
DE602005000859T DE602005000859T2 (de) 2004-07-23 2005-07-19 Dehnungssensor und entsprechendes Herstellungsverfahren.
EP05254490A EP1619487B8 (en) 2004-07-23 2005-07-19 Strain Detector and method of manufacturing the same
ES05254490T ES2284135T3 (es) 2004-07-23 2005-07-19 Un detector de deformacion y metodo de fabricarlo.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216651A JP4185478B2 (ja) 2004-07-23 2004-07-23 歪検出器およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006038540A JP2006038540A (ja) 2006-02-09
JP4185478B2 true JP4185478B2 (ja) 2008-11-26

Family

ID=35079308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216651A Expired - Lifetime JP4185478B2 (ja) 2004-07-23 2004-07-23 歪検出器およびその製造方法

Country Status (5)

Country Link
US (1) US7263895B2 (ja)
EP (1) EP1619487B8 (ja)
JP (1) JP4185478B2 (ja)
DE (1) DE602005000859T2 (ja)
ES (1) ES2284135T3 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156776A2 (en) 2015-09-25 2017-04-19 Nagano Keiki Co., Ltd. Pressure sensor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271280A (ja) * 2006-03-30 2007-10-18 Denso Corp 圧力センサ
JP4230500B2 (ja) * 2006-09-07 2009-02-25 豊田鉄工株式会社 荷重検出装置
US7437939B1 (en) * 2007-04-13 2008-10-21 Rosemount Inc. Pressure and mechanical sensors using titanium-based superelastic alloy
JP5240019B2 (ja) * 2009-04-03 2013-07-17 株式会社デンソー 燃料噴射弁及び燃料噴射弁の内部電気接続方法
DE102009026477A1 (de) * 2009-05-26 2010-12-02 Robert Bosch Gmbh Druckregelventil, insbesondere für einen Hochdruckspeicherkörper eines Kraftstoffeinspritzsystems
JP5867688B2 (ja) 2011-09-22 2016-02-24 国立大学法人 東京大学 触覚センサ及び多軸触覚センサ
JP2015184100A (ja) * 2014-03-24 2015-10-22 セイコーエプソン株式会社 物理量センサー、物理量センサーの製造方法、圧力センサー、高度計、電子機器および移動体
TWI664356B (zh) * 2017-03-24 2019-07-01 中國氣動工業股份有限公司 感應螺栓的電源與訊號傳輸裝置及感應螺栓裝置
JP2018178995A (ja) * 2017-04-14 2018-11-15 株式会社デンソー 流体制御装置
JP7226385B2 (ja) * 2019-04-26 2023-02-21 長野計器株式会社 圧力センサ
EP4202392B1 (de) * 2021-12-23 2025-01-29 Kistler Holding AG Aufnehmer mit einer membran zur verwendung mit wasserstoffhaltigen fluiden medien
DE102022203330A1 (de) * 2022-04-04 2023-10-05 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorvorrichtung zum Kontaktieren von Wasserstoff, Verwendung einer solchen Sensorvorrichtung in einem Brennstoffzellensystem, in einem Wasserstoff-Hochdruckspeichersystem, in einem Wasserstoff-Verbrennungsmotorsystem oder in einem Wasserstoff-Verteilersystem, Verfahren zum Herstellen einer solchen Sensorvorrichtung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711461B2 (ja) * 1986-06-13 1995-02-08 株式会社日本自動車部品総合研究所 圧力検出器
JP2556029B2 (ja) 1987-04-22 1996-11-20 住友金属工業株式会社 高耐食性鉄基析出硬化型合金の製造方法
DE3736999A1 (de) 1987-10-31 1989-06-01 Rosenstock Hans G Verfahren zur walzkraftmessung an walzwerkswalzen
US5059556A (en) * 1988-09-28 1991-10-22 Siemens-Bendix Automotive Electronics, L.P. Low stress polysilicon microstructures
JP3084304B2 (ja) 1991-07-04 2000-09-04 長野計器株式会社 圧力センサの金属製ダイヤフラム
JPH06213612A (ja) * 1993-01-14 1994-08-05 Sumitomo Electric Ind Ltd 歪抵抗材料とその製造方法および薄膜歪センサ
JPH08201200A (ja) * 1995-01-20 1996-08-09 Nippon Soken Inc 薄膜歪ゲージの形成方法
JP2000164716A (ja) * 1998-11-26 2000-06-16 Seiko Epson Corp 半導体装置及びその製造方法
KR20010041219A (ko) * 1998-12-24 2001-05-15 다니구찌 이찌로오, 기타오카 다카시 압력 센서
JP4623776B2 (ja) 1999-03-25 2011-02-02 株式会社デンソー 圧力センサの製造方法
US6453747B1 (en) 2000-01-12 2002-09-24 Peter A. Weise Hermetic pressure transducer
JP3480416B2 (ja) * 2000-03-27 2003-12-22 セイコーエプソン株式会社 半導体装置
JP3675312B2 (ja) * 2000-07-10 2005-07-27 松下電器産業株式会社 薄膜構造体、及びその応力調整方法
JP2002164428A (ja) * 2000-11-29 2002-06-07 Hitachi Ltd 半導体装置およびその製造方法
JP3713008B2 (ja) * 2002-09-30 2005-11-02 長野計器株式会社 歪み量検出装置の製造方法
JP4075776B2 (ja) * 2003-11-13 2008-04-16 株式会社デンソー 物理量センサおよび圧力センサ
DE102005009351B4 (de) * 2004-03-03 2013-05-23 Denso Corporation Drucksensor und Verfahren zu seinem Zusammenbau
DE102005022087B4 (de) * 2004-05-17 2013-10-31 Denso Corporation Druckerfassungsvorrichtung
JP4337656B2 (ja) * 2004-06-29 2009-09-30 株式会社デンソー 圧力センサ
JP4419847B2 (ja) * 2004-09-16 2010-02-24 株式会社デンソー 圧力センサ
US7302855B2 (en) * 2004-10-28 2007-12-04 Denso Corporation Pressure detection device
JP4742593B2 (ja) * 2005-01-19 2011-08-10 株式会社デンソー 圧力検出装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156776A2 (en) 2015-09-25 2017-04-19 Nagano Keiki Co., Ltd. Pressure sensor
US10151656B2 (en) 2015-09-25 2018-12-11 Nagano Keiki Co., Ltd. Pressure sensor configured to detect pressure of fluid to be measured that embrittles material

Also Published As

Publication number Publication date
DE602005000859T2 (de) 2007-09-06
JP2006038540A (ja) 2006-02-09
ES2284135T3 (es) 2007-11-01
DE602005000859D1 (de) 2007-05-24
EP1619487A1 (en) 2006-01-25
EP1619487B1 (en) 2007-04-11
EP1619487B8 (en) 2007-09-05
US7263895B2 (en) 2007-09-04
US20060016268A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4185478B2 (ja) 歪検出器およびその製造方法
US3697917A (en) Semiconductor strain gage pressure transducer
JP5153126B2 (ja) 流体の圧力および温度を測定するセンサ装置
US10345180B2 (en) Pressure sensor
JP4014006B2 (ja) 圧力センサ
CN104956194B (zh) 压力传感器、使用该压力传感器的质量流量计以及质量流量控制器
KR102552452B1 (ko) 밀폐형 압력 센서
TWI306503B (en) Pressure sensor device and method
US8763467B2 (en) Pressure sensor device
JP7157477B2 (ja) 圧力センサ
EP3088859B1 (en) Pressure measurement device
JP2014074661A (ja) 歪ゲージ
EP1719981A1 (en) Fluid sensor of anticorrosive metal and fluid supply device using same
KR20170053678A (ko) 압력 센서 및 차압 센서 및 그것들을 사용한 질량 유량 제어 장치
JP4353251B2 (ja) 圧力センサ
JP2001296198A (ja) 圧力センサ
JPS6135264B2 (ja)
JP3370593B2 (ja) 圧力検出器の取付け構造
JP2007212197A (ja) センサの取付構造及びフローセンサの取付構造
RU2293955C1 (ru) Тензопреобразователь давления
JP2008164637A (ja) 超音波振動子の製造方法および超音波流量計
US20240094078A1 (en) Pressure sensor
JPS5936835B2 (ja) 半導体圧力・差圧伝送器
CN119023130A (zh) 一种高温差压传感器
JPWO2019220710A1 (ja) 物理量測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4185478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term