[go: up one dir, main page]

JP4182324B2 - Production method of aromatic amine production catalyst - Google Patents

Production method of aromatic amine production catalyst Download PDF

Info

Publication number
JP4182324B2
JP4182324B2 JP2002145801A JP2002145801A JP4182324B2 JP 4182324 B2 JP4182324 B2 JP 4182324B2 JP 2002145801 A JP2002145801 A JP 2002145801A JP 2002145801 A JP2002145801 A JP 2002145801A JP 4182324 B2 JP4182324 B2 JP 4182324B2
Authority
JP
Japan
Prior art keywords
catalyst
precipitate
autoclave
aromatic amine
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002145801A
Other languages
Japanese (ja)
Other versions
JP2003038958A (en
Inventor
圭徳 金森
秀司 江端
建悟 塚原
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002145801A priority Critical patent/JP4182324B2/en
Publication of JP2003038958A publication Critical patent/JP2003038958A/en
Application granted granted Critical
Publication of JP4182324B2 publication Critical patent/JP4182324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は芳香族ニトリルを水素化することにより芳香族アミンを製造する際に用いられる触媒の製法に関する。芳香族アミンは、硬化剤、合成樹脂、イソシアネート等の製造原料として有用である。
【0002】
【従来の技術】
芳香族ニトリルの水素化には、種々の金属を用いた触媒系が提案されている。例えば、特開昭51−101930号公報には、ベンゾニトリルからベンジルアミンおよびジベンジルアミンを製造する方法が記載されている。このとき触媒には、ラネーニッケルペレット、珪藻土錠剤上に担持させたジルコニウム助触媒還元ニッケルおよびアルミナ錠剤上に担持させた白金が用いられる。特開昭62−129257号公報には、アンモニア共存下においてラネーニッケルもしくはラネーコバルトを用いてベンゾニトリルを水素化するベンジルアミンの製法が記載されている。また、特開平5−97776号公報では、実施例に、コバルト−アルミナ触媒を用いてベンゾニトリルを水素化してベンジルアミンを得る方法が記載されている。特開平9−40630号公報および特開平10−204048号公報には、ニッケルおよび/またはコバルトを含有するラネー触媒を用いて芳香族ジニトリルの2つのニトリル基の一方のみを水素化し、芳香族シアノメチルアミンを製造する方法が記載されている。
【0003】
これらの方法は、芳香族アミンの収率が高いという利点があるが、何れの触媒も反応中に生成した高沸点副生物が触媒に付着し、目的アミン収率は低下する。また、活性低下後に行う賦活再生操作としての水素化分解により、急激なメタンの発生、および液体アンモニアの蒸発に起因する触媒の崩壊が発生し、そのため反応差圧が上昇し、触媒の寿命は非常に短い。
【0004】
【発明が解決しようとする課題】
本発明の目的は、活性低下後に行う賦活再生操作としての水素化分解により、急激なメタンの発生、および液体アンモニアの蒸発に起因する崩壊がなく、長期間使用が可能な芳香族アミン製造触媒の製法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題を鋭意検討した結果、金属成分および担体の可溶性塩の水溶液をアルカリ水溶液に添加して得られた沈殿物を濾過後、乾燥させずにそのまま成形して調製された触媒が、活性低下後に行う賦活再生操作としての水素化分解による急激なメタンの発生、および液体アンモニアの蒸発に起因する崩壊がない触媒であることを見出し、本発明に到達した。すなわち本発明は、金属成分としてのNiおよび/またはCo、および担体としてのシリカ、アルミナ、シリカ−アルミナ、チタニアおよび/またはジルコニアの可溶性塩の混合水溶液をアルカリ水溶液に添加して得られた沈殿物、または金属成分と担体のそれぞれの可溶性塩水溶液を別々にアルカリ水溶液に添加して得られた沈殿物の混合物を濾過し、得られた含水率30〜90重量%の沈殿物を乾燥させずにそのまま成形し、乾燥、焼成後、水素還元することを特徴とする芳香族アミン製造触媒の製法に関するものである。
【0006】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明の触媒の金属成分としては、Niおよび/またはCoが用いられる。
更に追加の活性成分として、Li、Na、K、Rb、Cs、Be、Ca、Ba、Ti、Cu、Cr、Zn、Mn、Mg、Fe、Ga、Ge、Nb、Ru、Rh、Pd、Ir、Pt、Bi、Al、Si、In、Sr、CeおよびMoよりなる群から選ばれた少なくとも一種以上の金属成分を用いることができる。
【0007】
本発明の金属成分の可溶性塩としては、酸性塩が好適に用いられる。例えば、硝酸塩、硫酸塩、塩酸塩、酢酸塩およびギ酸塩等が用いられるが、好ましくは硝酸塩が用いられる。
【0008】
本発明の担体としては、容易にゲルを形成する担体、例えばシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニアおよびそれらを組み合わせたものが用いられ、これらは可溶性塩の形で触媒調製に供される。
【0009】
本発明のアルカリ水溶液には、アルカリ金属、アルカリ土類金属およびアンモニウムの水酸化アルカリ、炭酸アルカリおよび炭酸水素アルカリが用いられる。
【0010】
本発明の触媒は、金属成分および担体の可溶性塩の混合水溶液をアルカリ水溶液に添加して得られた沈殿物、または金属成分と担体のそれぞれの可溶性塩水溶液を別々にアルカリ水溶液に添加して得られた沈殿物の混合物を濾過し、得られた含水率30〜90重量%の沈殿物を乾燥させずにそのまま成形することで製造される。含水率がこれより大きいと、成形の際に触媒形状を保てず、これより少ないと担体の結合力を保持することができず、十分強固な触媒を得ることができないため、活性低下後に行う賦活再生操作としての水素化分解による急激なメタンの発生、および液体アンモニアの蒸発に起因する触媒崩壊が発生する。
乾燥させずに成形することにより、担体の結合力が保たれ、強固な触媒を得ることができる。乾燥後、バインダーもしくは水を添加して成形した場合、担体の結合力が保持されず、十分強固な触媒を得ることができないため、活性低下後に行う賦活再生操作としての水素化分解による急激なメタンの発生、および液体アンモニアの蒸発に起因する触媒崩壊が発生する。
【0011】
本発明において触媒中の担体の割合は20〜80重量%の範囲にある。担体の割合がこの範囲より少ないと、活性低下後に行う賦活再生操作としての水素化分解による急激なメタンの発生、および液体アンモニアの蒸発に起因する触媒の崩壊が発生し、多いと活性成分の量の減少により、十分なアミン収率が得られなくなる。
【0012】
本発明において触媒は共沈法もしくは各成分の沈殿の混練法により製造される。例えば、Niをジルコニア担体に担持させた触媒を調製する場合には、硝酸ニッケルおよび硫酸ニッケルなどのニッケル塩水溶液を炭酸水素アンモニウム水溶液に注下して炭酸ニッケルスラリーを得て、そのスラリーに硝酸ジルコニウムおよび硫酸ジルコニウムなどのジルコニウム塩水溶液と炭酸水素アンモニウム水溶液を同時に注下して炭酸ジルコニウムを沈着することにより、沈殿スラリーを得る。この沈殿スラリーを濾過して沈殿物を得る。
【0013】
本発明の触媒は、工業的に実用化されている湿式での造粒法で成形できる。例えば、ケミカルエンジニヤリング臨時増刊 工場操作シリーズ(造粒編)(化学工業社昭和43年発行)の18〜32項に記載の方法での押し出し成型品や押し出し成型品を解砕整粒機または球形整粒機で整粒した成形品などが用いられる。沈殿物を濾過後、含水率30〜90重量%の沈殿物をそのまま成形し、30〜150℃で乾燥後、焼成する。触媒の洗浄は、沈殿スラリーの濾過後もしくは乾燥後の何れでも行うことができる。
【0014】
焼成は成形した乾燥品を200〜500℃、好ましくは250〜450℃で空気雰囲気下、数時間以上実施する。上記方法で得られた成形体を水素還元する。還元は200〜600℃、好ましくは200〜500℃、SV=100〜1000Hr−1の1〜80%、好ましくは1〜60%水素ガス(残りは窒素ガス等不活性ガス)気流中で数時間行う。
【0015】
本発明の触媒は芳香族ニトリル化合物を水素化して芳香族アミンを製造する際に好適に使用できる。
芳香族ニトリル化合物は、芳香環上にシアノ基を一個あるいは複数個有するベンゾニトリル、フタロニトリル、イソフタロニトリル、テレフタロニトリルなどのような芳香族ニトリルである。原料の芳香族ニトリル化合物には反応に関与しない置換基を含んでいてもよい。反応に関与しない置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン基、アミノ基、アミド基、ヒドロキシル基などがある。芳香族ニトリルの水素化反応においては、芳香環上の置換基によって反応性が大きく変化するが、本発明の触媒を用いると、これらの置換基を有するものにおいても、効率よく反応が進行する。
反応は、回分式および流通式の何れの方法を用いることもできる。反応温度は、20〜200℃であり、好ましくは40〜180℃の範囲である。該範囲より反応温度が低いと原料ニトリル類の転化率が低く、一方、該範囲より高いと目的アミン類の高沸物の生成が増加するので、目的生成物の収率は低下する。
反応液と触媒との接触時間は、原料の種類、原料、溶媒および水素の仕込み組成、反応温度および反応圧力によって異なるが、通常0.1〜5.0時間の範囲である。
本発明において、反応生成物は、公知の方法を用いて溶媒と分離、回収される。例えば、反応系から気体成分と液成分を分離後、液成分を回収しそれを蒸留して回収される。
【0016】
【実施例】
次に実施例及び比較例により、本発明を更に具体的に説明する。但し本発明はこれらの実施例により制限されるものではない。
【0017】
実施例1
(触媒調製)炭酸水素アンモニウムNHHCO 251.6gを純水1.8kgに溶解し、よく撹拌しながら、40℃に昇温し保持した。硝酸ニッケル6水和物Ni(NO・6HO 255.1g、硝酸銅3水和物Cu(NO・3HO 15.0g、硝酸クロム9水和物Cr(NO・9HO30.3gおよびZrOとして25wt%含有する硝酸ジルコニウム水溶液189.3gを1.5kgの40℃の純水に溶解し、混合金属水溶液を調合した。この40℃に保持された混合金属水溶液を炭酸水素アンモニウム水溶液によく撹拌しながら加えて、沈殿スラリーを調合した。このスラリーを80℃まで昇温し、30分同温度で保持した。この沈殿スラリーを濾過洗浄し、含水率70重量%の沈殿物を得た。この沈殿物を3.0mmφで押し出し成形後110℃で1晩乾燥し、380℃18時間空気雰囲気下で焼成した。この成形品を水素気流中400℃で還元した。
【0018】
(触媒の崩壊試験)100mlのオートクレーブに上記触媒50個および液体アンモニア10gを仕込み、120℃に加熱して18時間放置した。その後触媒を抜き出したところ触媒の亀裂および割れは認められなかった。
【0019】
(触媒の活性試験)100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび上記触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、イソフタロニトリル転化率は、99.3mol%、メタキシリレンジアミン収率は78.6mol%であった。
【0020】
実施例2
(触媒の活性試験)100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび実施例で調製した触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、テレフタロニトリル転化率は、99.4mol%、パラキシリレンジアミン収率は81.2mol%であった。
【0021】
実施例3
(触媒調製)炭酸ナトリウムNaCO 168.7gを純水1.4kgに溶解し、よく撹拌しながら、40℃に昇温し保持した。硝酸ニッケル6水和物Ni(NO・6HO 255.1g、硝酸銅3水和物Cu(NO・3HO 15.0g、硝酸クロム9水和物Cr(NO・9HO 30.3gおよびZrOとして25wt%含有する硝酸ジルコニウム水溶液189.3gを1.5kgの40℃の純水に溶解し、混合金属水溶液を調合した。この40℃に保持された混合金属水溶液を炭酸ナトリウム水溶液によく撹拌しながら加えて、沈殿スラリーを調合した。このスラリーを80℃まで昇温し、30分同温度で保持した。この沈殿スラリーを濾過洗浄し、含水率74重量%の沈殿物を得た。この沈殿物を3.0mmφで押し出し成形後110℃で1晩乾燥し、380℃18時間空気雰囲気下で焼成した。この成形品を水素気流中400℃で還元した。
【0022】
(触媒の崩壊試験)100mlのオートクレーブに上記触媒50個および液体アンモニア10gを仕込み、120℃に加熱して18時間放置した。その後触媒を抜き出したところ触媒の亀裂および割れは認められなかった。
【0023】
(触媒の活性試験)100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび上記触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、イソフタロニトリル転化率は、99.0mol%、メタキシリレンジアミン収率は77.3mol%であった。
【0024】
実施例4
(触媒の活性試験)100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび実施例3で調製した触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、テレフタロニトリル転化率は、99.7mol%、パラキシリレンジアミン収率は80.6mol%であった。
【0025】
実施例5
(触媒調製)炭酸水素アンモニウムNHHCO 47.84gを純水1.0kgに溶解し、よく撹拌しながら、40℃に昇温し保持した。硝酸ニッケル6水和物Ni(NO・6HO 160.0gを1.0kgの40℃の純水に溶解し、金属水溶液を調合した。この40℃に保持された金属水溶液を炭酸水素アンモニウム水溶液によく撹拌しながら加えて、炭酸ニッケルの沈殿スラリーを調合し40℃で保持した。また、SiOとして56.0wt%およびNaOとして20.0wt%含有するケイ酸ナトリウム57.68gを40℃の純水608gに溶解しケイ酸ナトリウム水溶液を調合した。さらに、61.0wt%硝酸HNO38.21gを40℃の純水344gに溶解し硝酸水溶液を調合した。このケイ酸ナトリウム水溶液および硝酸水溶液を炭酸ニッケルの沈殿スラリーに同時に注下し、シリカを沈着させた。このスラリーを80℃まで昇温し、30分同温度で保持した。この沈殿スラリーを濾過洗浄し、含水率87重量%の沈殿物を得た。この沈殿物を3.0mmφで押し出し成形後110℃で1晩乾燥し、380℃18時間空気雰囲気下で焼成した。この成形品を水素気流中400℃で還元した。
【0026】
(触媒の崩壊試験)100mlのオートクレーブに上記触媒50個および液体アンモニア10gを仕込み、120℃に加熱して18時間放置した。その後触媒を抜き出したところ触媒の亀裂および割れは認められなかった。
【0027】
(触媒の活性試験)100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび上記触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、イソフタロニトリル転化率は、98.7mol%、メタキシリレンジアミン収率は79.6mol%であった。
【0028】
実施例6
(触媒の活性試験)100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび実施例で調製した触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、テレフタロニトリル転化率は、99.9mol%、パラキシリレンジアミン収率は81.2mol%であった。
【0029】
比較例1
(触媒調製)実施例1で調合した沈殿スラリーを濾過洗浄後、含水率20重量%となるように吸引濾過を行った。この沈殿物を3.0mmφで押し出し成形後110℃で1晩乾燥し、380℃18時間空気雰囲気下で焼成した。この成形品を水素気流中400℃で還元した。
【0030】
(触媒の崩壊試験)100mlのオートクレーブに上記触媒50個および液体アンモニア10gを仕込み、120℃に加熱して18時間放置した。その後触媒を抜き出したところ35個の触媒に亀裂および割れがみられた。
【0031】
(触媒の活性試験)100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび上記触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、イソフタロニトリル反応率は、99.3mol%、メタキシリレンジアミン収率は78.3mol%であった。
【0032】
比較例2
(触媒の活性試験)100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび比較例1で調製した触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、テレフタロニトリル転化率は、99.8mol%、パラキシリレンジアミン収率は82.3mol%であった。
【0033】
比較例3
(触媒調製)実施例1で調合した沈殿スラリーを濾過洗浄後、含水率10重量%となるまで乾燥した。この乾燥品に水を添加し、含水率70重量%とした。この沈殿物を3.0mmφで押し出し成形後110℃で1晩乾燥し、380℃18時間空気雰囲気下で焼成した。この成形品を水素気流中400℃で還元した。
【0034】
(触媒の崩壊試験)100mlのオートクレーブに上記触媒50個および液体アンモニア10gを仕込み、120℃に加熱して18時間放置した。その後触媒を抜き出したところ20個の触媒に亀裂および割れがみられた。
【0035】
(触媒の活性試験)100mlのオートクレーブにイソフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび上記触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、イソフタロニトリル反応率は、99.0mol%、メタキシリレンジアミン収率は79.2mol%であった。
【0036】
比較例4
(触媒の活性試験)100mlのオートクレーブにテレフタロニトリル3.2g、メシチレン10.4g、液体アンモニア10.0gおよび比較例で調製した触媒2.0gを仕込み、水素で10.8MPa(ゲージ)に加圧した。このオートクレーブを120℃で圧力の変化が認められなくなるまで振とうした。この生成液を分析したところ、テレフタロニトリル転化率は、99.9mol%、パラキシリレンジアミン収率は81.1mol%であった。
【0037】
【発明の効果】
芳香族アミンの製造を行う際に、本発明の触媒を用いることにより、賦活再生操作としての水素化分解に起因する触媒崩壊が抑制され、触媒を長期間用いることができる。
従って、本発明の触媒を用いることにより、極めて経済的に芳香族ニトリルから芳香族アミンを製造でき、本発明の工業的意義は大きい。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a catalyst used in producing an aromatic amine by hydrogenating an aromatic nitrile. Aromatic amines are useful as raw materials for producing curing agents, synthetic resins, isocyanates and the like.
[0002]
[Prior art]
For hydrogenation of aromatic nitriles, catalyst systems using various metals have been proposed. For example, JP-A-51-101930 describes a method for producing benzylamine and dibenzylamine from benzonitrile. At this time, Raney nickel pellets, zirconium-promoter-reduced nickel supported on diatomaceous earth tablets, and platinum supported on alumina tablets are used as the catalyst. Japanese Patent Application Laid-Open No. 62-129257 describes a process for producing benzylamine in which benzonitrile is hydrogenated using Raney nickel or Raney cobalt in the presence of ammonia. Japanese Patent Application Laid-Open No. 5-97776 describes a method for obtaining benzylamine by hydrogenating benzonitrile using a cobalt-alumina catalyst. In JP-A-9-40630 and JP-A-10-202048, Raney catalyst containing nickel and / or cobalt is used to hydrogenate only one of two nitrile groups of an aromatic dinitrile, and aromatic cyanomethyl. A method for producing amines is described.
[0003]
These methods have the advantage that the yield of aromatic amine is high, but in any catalyst, high boiling point by-products generated during the reaction adhere to the catalyst, and the target amine yield decreases. In addition, hydrocracking as an activation regeneration operation performed after the decrease in activity causes rapid methane generation and catalyst collapse due to evaporation of liquid ammonia, resulting in an increase in the reaction differential pressure and a very long catalyst life. Short.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an aromatic amine production catalyst that can be used for a long period of time without degradation due to rapid methane generation and liquid ammonia evaporation due to hydrocracking as an activation regeneration operation performed after a decrease in activity. It is to provide a manufacturing method.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have prepared a precipitate obtained by adding an aqueous solution of a soluble salt of a metal component and a carrier to an alkaline aqueous solution and then shaping the precipitate as it is without drying. The present inventors have found that the catalyst is a catalyst that has no rapid methane generation due to hydrocracking as an activation regeneration operation performed after a decrease in activity and no collapse due to evaporation of liquid ammonia. That is, the present invention provides a precipitate obtained by adding a mixed aqueous solution of Ni and / or Co as a metal component and a soluble salt of silica, alumina, silica-alumina, titania and / or zirconia as a support to an aqueous alkaline solution. Or by adding a soluble salt aqueous solution of each of the metal component and the carrier separately to the alkaline aqueous solution and filtering the resulting mixture of precipitates, without drying the resulting 30% to 90% by weight precipitate. The present invention relates to a process for producing an aromatic amine production catalyst, which is molded as it is, dried, calcined and then reduced with hydrogen .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
Ni and / or Co is used as the metal component of the catalyst of the present invention.
As additional active ingredients, Li, Na, K, Rb, Cs, Be, Ca, Ba, Ti, Cu, Cr, Zn, Mn, Mg, Fe, Ga, Ge, Nb, Ru, Rh, Pd, Ir At least one metal component selected from the group consisting of Pt, Bi, Al, Si, In, Sr, Ce, and Mo can be used.
[0007]
As the soluble salt of the metal component of the present invention, an acidic salt is preferably used. For example, nitrates, sulfates, hydrochlorides, acetates and formates are used, and nitrates are preferably used.
[0008]
As the carrier of the present invention, a carrier that easily forms a gel, for example, silica, alumina, silica-alumina, titania, zirconia, and a combination thereof is used, and these are used for catalyst preparation in the form of a soluble salt. .
[0009]
In the alkaline aqueous solution of the present invention, alkali metal, alkaline earth metal and ammonium alkali hydroxide, alkali carbonate and hydrogen carbonate alkali are used.
[0010]
The catalyst of the present invention is obtained by adding a mixed aqueous solution of a soluble salt of a metal component and a carrier to an aqueous alkaline solution, or separately adding an aqueous soluble salt solution of each of the metal component and the carrier to an aqueous alkaline solution. The precipitate mixture thus obtained is filtered, and the obtained precipitate having a water content of 30 to 90% by weight is formed as it is without being dried. If the water content is higher than this, the catalyst shape cannot be maintained during molding, and if it is lower than this, the binding force of the carrier cannot be maintained, and a sufficiently strong catalyst cannot be obtained. Sudden generation of methane due to hydrocracking as an activation regeneration operation and catalyst collapse due to evaporation of liquid ammonia occur.
By molding without drying, the binding strength of the carrier is maintained and a strong catalyst can be obtained. When dried and molded by adding a binder or water, the carrier binding strength is not maintained, and a sufficiently strong catalyst cannot be obtained. Therefore, rapid methane by hydrocracking as an activation regeneration operation performed after the activity is reduced. And catalyst collapse due to evaporation of liquid ammonia occurs.
[0011]
In the present invention, the proportion of the support in the catalyst is in the range of 20 to 80% by weight. If the ratio of the carrier is less than this range, rapid methane generation due to hydrocracking as an activation regeneration operation performed after the activity declines, and catalyst collapse due to evaporation of liquid ammonia occurs. As a result, a sufficient amine yield cannot be obtained.
[0012]
In the present invention, the catalyst is produced by a coprecipitation method or a kneading method for precipitation of each component. For example, when preparing a catalyst in which Ni is supported on a zirconia support, an aqueous nickel salt solution such as nickel nitrate and nickel sulfate is poured into an aqueous ammonium hydrogen carbonate solution to obtain a nickel carbonate slurry, and zirconium nitrate is added to the slurry. Then, an aqueous zirconium salt solution such as zirconium sulfate and an aqueous ammonium hydrogen carbonate solution are simultaneously poured to deposit zirconium carbonate to obtain a precipitated slurry. The precipitate slurry is filtered to obtain a precipitate.
[0013]
The catalyst of the present invention can be molded by a wet granulation method that has been put into practical use industrially. For example, an extrudate or extrudate produced by the method described in paragraphs 18 to 32 of the Chemical Engineering Special Issue Factory Operation Series (Granulation Edition) (issued in 1963 by Kagaku Kogyo Co., Ltd.) For example, a molded product that is sized with a sizing machine is used. After the precipitate is filtered, a precipitate having a water content of 30 to 90% by weight is formed as it is, dried at 30 to 150 ° C., and then fired. The catalyst can be washed either after filtration of the precipitated slurry or after drying.
[0014]
Firing is carried out for several hours or more in an air atmosphere at 200 to 500 ° C., preferably 250 to 450 ° C., on the molded dry product. The molded body obtained by the above method is subjected to hydrogen reduction. Reduction is 200 to 600 ° C., preferably 200 to 500 ° C., SV = 100 to 1000 Hr −1 , preferably 1 to 80%, preferably 1 to 60% in hydrogen gas (the rest is an inert gas such as nitrogen gas) for several hours. Do.
[0015]
The catalyst of the present invention can be suitably used when an aromatic nitrile compound is hydrogenated to produce an aromatic amine.
The aromatic nitrile compound is an aromatic nitrile such as benzonitrile, phthalonitrile, isophthalonitrile, terephthalonitrile or the like having one or more cyano groups on the aromatic ring. The raw material aromatic nitrile compound may contain a substituent not involved in the reaction. Examples of the substituent not involved in the reaction include an alkyl group, an alkoxy group, a halogen group, an amino group, an amide group, and a hydroxyl group. In the hydrogenation reaction of an aromatic nitrile, the reactivity varies greatly depending on the substituents on the aromatic ring. However, when the catalyst of the present invention is used, the reaction proceeds efficiently even for those having these substituents.
For the reaction, either a batch method or a flow method can be used. Reaction temperature is 20-200 degreeC, Preferably it is the range of 40-180 degreeC. If the reaction temperature is lower than this range, the conversion rate of the starting nitriles is low. On the other hand, if the reaction temperature is higher than this range, the production of high-boiling compounds of the target amines increases, so that the yield of the target products decreases.
The contact time between the reaction liquid and the catalyst varies depending on the type of raw material, the raw material, the solvent and hydrogen charging composition, the reaction temperature and the reaction pressure, but is usually in the range of 0.1 to 5.0 hours.
In the present invention, the reaction product is separated from the solvent and recovered using a known method. For example, after the gas component and the liquid component are separated from the reaction system, the liquid component is recovered and recovered by distillation.
[0016]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by these examples.
[0017]
Example 1
(Catalyst preparation) 251.6 g of ammonium hydrogen carbonate NH 4 HCO 3 was dissolved in 1.8 kg of pure water, and the temperature was raised to 40 ° C. and held well with stirring. Nickel nitrate hexahydrate Ni (NO 3 ) 2 · 6H 2 O 255.1 g, copper nitrate trihydrate Cu (NO 3 ) 2 · 3H 2 O 15.0 g, chromium nitrate nonahydrate Cr (NO 3 ) and 3 · 9H 2 O30.3g and zirconium nitrate aqueous solution 189.3g containing 25 wt% as ZrO 2 were dissolved in 40 ° C. pure water of 1.5 kg, the mixed metal solution was prepared. The mixed metal aqueous solution maintained at 40 ° C. was added to the aqueous ammonium hydrogen carbonate solution with good stirring to prepare a precipitation slurry. The slurry was heated to 80 ° C. and held at the same temperature for 30 minutes. The precipitate slurry was washed by filtration to obtain a precipitate having a water content of 70% by weight. This precipitate was extruded at 3.0 mmφ, dried at 110 ° C. overnight, and baked in an air atmosphere at 380 ° C. for 18 hours. This molded product was reduced at 400 ° C. in a hydrogen stream.
[0018]
(Catalyst decay test) In a 100 ml autoclave, 50 of the above catalyst and 10 g of liquid ammonia were charged, heated to 120 ° C. and allowed to stand for 18 hours. Thereafter, when the catalyst was extracted, no cracks or cracks were found in the catalyst.
[0019]
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the above catalyst, and pressurized to 10.8 MPa (gauge) with hydrogen. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion rate of isophthalonitrile was 99.3 mol%, and the yield of metaxylylenediamine was 78.6 mol%.
[0020]
Example 2
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the catalyst prepared in Example 1 , and hydrogen was added to 10.8 MPa (gauge). Pressurized. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion rate of terephthalonitrile was 99.4 mol%, and the yield of paraxylylenediamine was 81.2 mol%.
[0021]
Example 3
(Catalyst preparation) 168.7 g of sodium carbonate Na 2 CO 3 was dissolved in 1.4 kg of pure water, and the temperature was raised to 40 ° C. and held well with stirring. Nickel nitrate hexahydrate Ni (NO 3 ) 2 · 6H 2 O 255.1 g, copper nitrate trihydrate Cu (NO 3 ) 2 · 3H 2 O 15.0 g, chromium nitrate nonahydrate Cr (NO 3 ) and 3 · 9H 2 O 30.3g and zirconium nitrate aqueous solution 189.3g containing 25 wt% as ZrO 2 were dissolved in 40 ° C. pure water of 1.5 kg, the mixed metal solution was prepared. The mixed metal aqueous solution kept at 40 ° C. was added to the sodium carbonate aqueous solution with good stirring to prepare a precipitation slurry. The slurry was heated to 80 ° C. and held at the same temperature for 30 minutes. The precipitate slurry was washed by filtration to obtain a precipitate having a water content of 74% by weight. This precipitate was extruded at 3.0 mmφ, dried at 110 ° C. overnight, and baked in an air atmosphere at 380 ° C. for 18 hours. This molded product was reduced at 400 ° C. in a hydrogen stream.
[0022]
(Catalyst decay test) In a 100 ml autoclave, 50 of the above catalyst and 10 g of liquid ammonia were charged, heated to 120 ° C. and allowed to stand for 18 hours. Thereafter, when the catalyst was extracted, no cracks or cracks were found in the catalyst.
[0023]
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the above catalyst, and pressurized to 10.8 MPa (gauge) with hydrogen. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion rate of isophthalonitrile was 99.0 mol%, and the yield of metaxylylenediamine was 77.3 mol%.
[0024]
Example 4
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the catalyst prepared in Example 3, and the hydrogen was adjusted to 10.8 MPa (gauge). Pressurized. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion of terephthalonitrile was 99.7 mol%, and the yield of paraxylylenediamine was 80.6 mol%.
[0025]
Example 5
(Catalyst preparation) 47.84 g of ammonium hydrogen carbonate NH 4 HCO 3 was dissolved in 1.0 kg of pure water, and the temperature was raised to 40 ° C. and held well with stirring. 160.0 g of nickel nitrate hexahydrate Ni (NO 3 ) 2 .6H 2 O was dissolved in 1.0 kg of pure water at 40 ° C. to prepare a metal aqueous solution. The aqueous metal solution maintained at 40 ° C. was added to the aqueous ammonium hydrogen carbonate solution with good stirring to prepare a nickel carbonate precipitation slurry and maintained at 40 ° C. Further, 57.68 g of sodium silicate containing 56.0 wt% as SiO 2 and 20.0 wt% as Na 2 O was dissolved in 608 g of pure water at 40 ° C. to prepare a sodium silicate aqueous solution. Further, 38.21 g of 61.0 wt% nitric acid HNO 3 was dissolved in 344 g of pure water at 40 ° C. to prepare a nitric acid aqueous solution. The sodium silicate aqueous solution and the nitric acid aqueous solution were simultaneously poured into a nickel carbonate precipitation slurry to deposit silica. The slurry was heated to 80 ° C. and held at the same temperature for 30 minutes. The precipitate slurry was washed by filtration to obtain a precipitate having a water content of 87% by weight. This precipitate was extruded at 3.0 mmφ, dried at 110 ° C. overnight, and baked in an air atmosphere at 380 ° C. for 18 hours. This molded product was reduced at 400 ° C. in a hydrogen stream.
[0026]
(Catalyst decay test) In a 100 ml autoclave, 50 of the above catalyst and 10 g of liquid ammonia were charged, heated to 120 ° C. and allowed to stand for 18 hours. Thereafter, when the catalyst was extracted, no cracks or cracks were found in the catalyst.
[0027]
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the above catalyst, and pressurized to 10.8 MPa (gauge) with hydrogen. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion rate of isophthalonitrile was 98.7 mol%, and the yield of metaxylylenediamine was 79.6 mol%.
[0028]
Example 6
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the catalyst prepared in Example 5 , and hydrogen was added to 10.8 MPa (gauge). Pressurized. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion of terephthalonitrile was 99.9 mol%, and the yield of paraxylylenediamine was 81.2 mol%.
[0029]
Comparative Example 1
(Catalyst preparation) The precipitate slurry prepared in Example 1 was filtered and washed, and then subjected to suction filtration so that the water content was 20% by weight. This precipitate was extruded at 3.0 mmφ, dried at 110 ° C. overnight, and baked in an air atmosphere at 380 ° C. for 18 hours. This molded product was reduced at 400 ° C. in a hydrogen stream.
[0030]
(Catalyst decay test) In a 100 ml autoclave, 50 of the above catalyst and 10 g of liquid ammonia were charged, heated to 120 ° C. and allowed to stand for 18 hours. Thereafter, when the catalyst was extracted, cracks and cracks were found in 35 catalysts.
[0031]
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the above catalyst, and pressurized to 10.8 MPa (gauge) with hydrogen. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the reaction rate of isophthalonitrile was 99.3 mol%, and the yield of metaxylylenediamine was 78.3 mol%.
[0032]
Comparative Example 2
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the catalyst prepared in Comparative Example 1, and adjusted to 10.8 MPa (gauge) with hydrogen. Pressurized. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion of terephthalonitrile was 99.8 mol%, and the yield of paraxylylenediamine was 82.3 mol%.
[0033]
Comparative Example 3
(Catalyst preparation) The precipitate slurry prepared in Example 1 was filtered and washed, and then dried until the water content became 10% by weight. Water was added to the dried product to a moisture content of 70% by weight. This precipitate was extruded at 3.0 mmφ, dried at 110 ° C. overnight, and baked in an air atmosphere at 380 ° C. for 18 hours. This molded product was reduced at 400 ° C. in a hydrogen stream.
[0034]
(Catalyst decay test) In a 100 ml autoclave, 50 of the above catalyst and 10 g of liquid ammonia were charged, heated to 120 ° C. and allowed to stand for 18 hours. Thereafter, when the catalyst was extracted, cracks and cracks were observed in 20 catalysts.
[0035]
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of isophthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the above catalyst, and pressurized to 10.8 MPa (gauge) with hydrogen. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the isophthalonitrile reaction rate was 99.0 mol% and the metaxylylenediamine yield was 79.2 mol%.
[0036]
Comparative Example 4
(Catalyst activity test) A 100 ml autoclave was charged with 3.2 g of terephthalonitrile, 10.4 g of mesitylene, 10.0 g of liquid ammonia and 2.0 g of the catalyst prepared in Comparative Example 3 , and hydrogen was adjusted to 10.8 MPa (gauge). Pressurized. The autoclave was shaken at 120 ° C. until no change in pressure was observed. When this product solution was analyzed, the conversion of terephthalonitrile was 99.9 mol%, and the yield of paraxylylenediamine was 81.1 mol%.
[0037]
【The invention's effect】
When the aromatic amine is produced, by using the catalyst of the present invention, the catalyst collapse caused by hydrocracking as the activation regeneration operation is suppressed, and the catalyst can be used for a long period of time.
Therefore, by using the catalyst of the present invention, an aromatic amine can be produced from an aromatic nitrile very economically, and the industrial significance of the present invention is great.

Claims (3)

金属成分としてのNiおよび/またはCo、および担体としてのシリカ、アルミナ、シリカ−アルミナ、チタニアおよび/またはジルコニアの可溶性塩の混合水溶液をアルカリ水溶液に添加して得られた沈殿物、または金属成分と担体のそれぞれの可溶性塩水溶液を別々にアルカリ水溶液に添加して得られた沈殿物の混合物を濾過し、得られた含水率30〜90重量%の沈殿物を乾燥させずにそのまま成形し、乾燥、焼成後、水素還元することを特徴とする芳香族アミン製造触媒の製法。A precipitate obtained by adding a mixed aqueous solution of Ni and / or Co as a metal component and a soluble salt of silica, alumina, silica-alumina, titania and / or zirconia as a carrier to an alkaline aqueous solution, or a metal component The mixture of precipitates obtained by adding each soluble salt aqueous solution of the carrier separately to the aqueous alkaline solution is filtered, and the resulting precipitate having a water content of 30 to 90% by weight is molded as it is without drying, and dried. A method for producing an aromatic amine production catalyst, characterized by hydrogen reduction after calcination . 金属成分が(1)Niおよび/またはCo、および(2)Li、Na、K、Rb、Cs、Be、Ca、Ba、Ti、Cu、Cr、Zn、Mn、Mg、Fe、Ga、Ge、Nb、Ru、Rh、Pd、Ir、Pt、Bi、Al、Si、In、Sr、CeおよびMoよりなる群から選ばれた少なくとも一種以上である請求項1に記載の芳香族アミン製造触媒の製法。(1) Ni and / or Co, and (2) Li, Na, K, Rb, Cs, Be, Ca, Ba, Ti, Cu, Cr, Zn, Mn, Mg, Fe, Ga, Ge, 2. The process for producing an aromatic amine production catalyst according to claim 1, which is at least one selected from the group consisting of Nb, Ru, Rh, Pd, Ir, Pt, Bi, Al, Si, In, Sr, Ce and Mo. . 金属成分の可溶性塩が酸性塩である請求項1または2に記載の芳香族アミン製造触媒の製法。The process for producing an aromatic amine production catalyst according to claim 1 or 2, wherein the soluble salt of the metal component is an acidic salt.
JP2002145801A 2001-05-22 2002-05-21 Production method of aromatic amine production catalyst Expired - Lifetime JP4182324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145801A JP4182324B2 (en) 2001-05-22 2002-05-21 Production method of aromatic amine production catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001152013 2001-05-22
JP2001-152013 2001-05-22
JP2002145801A JP4182324B2 (en) 2001-05-22 2002-05-21 Production method of aromatic amine production catalyst

Publications (2)

Publication Number Publication Date
JP2003038958A JP2003038958A (en) 2003-02-12
JP4182324B2 true JP4182324B2 (en) 2008-11-19

Family

ID=26615464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145801A Expired - Lifetime JP4182324B2 (en) 2001-05-22 2002-05-21 Production method of aromatic amine production catalyst

Country Status (1)

Country Link
JP (1) JP4182324B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759588B2 (en) 2008-09-08 2014-06-24 Mitsubishi Gas Chemical Company, Inc. Process for producing xylylenediamine
JP2011001304A (en) * 2009-06-19 2011-01-06 Mitsubishi Gas Chemical Co Inc Process for producing primary amine
JP2011190148A (en) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd Composite ceramic powder and method for producing the same, and solid oxide fuel cell

Also Published As

Publication number Publication date
JP2003038958A (en) 2003-02-12

Similar Documents

Publication Publication Date Title
EP1262232B1 (en) Catalysts and process for producing aromatic amines
JP4017023B2 (en) Preparation of aliphatic α, ω-amino nitrile
JP4541706B2 (en) Catalyst and amine production method
CN102639231B (en) Catalyst and method for producing an amine
JP5124486B2 (en) Process for producing ethyleneamine and ethanolamine by hydroamination of monoethylene glycol and ammonia in the presence of a catalyst
JP4711513B2 (en) Catalyst for hydrogenating functional groups and process for its preparation
US20110313188A1 (en) Method for improving the catalytic activity of monolithic catalysts
JPH08299799A (en) Method and cobalt catalyst for hydrogenating organic nitrileand/or imine
JP2011506530A (en) Method for producing amine
KR100938300B1 (en) Process for the preparation of isophoronediamine (IPDA, 3-aminomethyl-3,5,5-trimethylcyclohexylamine)
JP2009526801A (en) Process for producing ethyleneamine and ethanolamine from monoethylene glycol (MEG)
US5321160A (en) Process for producing an ethylenamine
EP1409447A1 (en) A process for the manufacture of diethylenetriamine and higher polyethylenepolyamines
JP6671350B2 (en) Method for producing primary amines using cobalt complete catalytic catalyst
JP2003192647A (en) Method for producing primary amine
US5248827A (en) Process for producing an ethylenamine
JP4182324B2 (en) Production method of aromatic amine production catalyst
CN110072839A (en) The method for producing ethanol amine and/or ethylene amines
JP3092230B2 (en) Method for producing ethyleneamine
JPH0585216B2 (en)
JP2003038956A (en) Catalyst useful for producing aromatic amine and method for producing the amine
US8962508B2 (en) Process for treating shaped catalyst bodies and shaped catalyst bodies having increased mechanical strength
JP3066429B2 (en) Method for producing ethyleneamine
JPH10511669A (en) Method for producing aliphatic α, ω-aminonitrile in gas phase
JP4561963B2 (en) Highly selective production method of di (aminomethyl) -substituted aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4182324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

EXPY Cancellation because of completion of term