JP4178988B2 - 圧縮着火内燃機関の始動制御装置 - Google Patents
圧縮着火内燃機関の始動制御装置 Download PDFInfo
- Publication number
- JP4178988B2 JP4178988B2 JP2003038644A JP2003038644A JP4178988B2 JP 4178988 B2 JP4178988 B2 JP 4178988B2 JP 2003038644 A JP2003038644 A JP 2003038644A JP 2003038644 A JP2003038644 A JP 2003038644A JP 4178988 B2 JP4178988 B2 JP 4178988B2
- Authority
- JP
- Japan
- Prior art keywords
- internal combustion
- combustion engine
- ignition internal
- compression ignition
- injection timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000006835 compression Effects 0.000 title claims description 185
- 238000007906 compression Methods 0.000 title claims description 185
- 238000002485 combustion reaction Methods 0.000 title claims description 168
- 239000000446 fuel Substances 0.000 claims description 152
- 238000002347 injection Methods 0.000 claims description 146
- 239000007924 injection Substances 0.000 claims description 146
- 230000007423 decrease Effects 0.000 claims description 33
- 230000008859 change Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 description 33
- 230000008569 process Effects 0.000 description 33
- 230000006870 function Effects 0.000 description 16
- 239000000498 cooling water Substances 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の属する技術分野】
本発明は、圧縮着火内燃機関における始動時の燃料噴射時期を制御する始動制御装置に関する。
【0002】
【従来の技術】
圧縮着火内燃機関において、始動時の燃料噴射時期は圧縮着火内燃機関の冷却水温度と機関回転数に応じて、燃料噴射時期を進角側に進める制御が行われている。そして、これにより、始動時における燃料の着火時期を調整することで、始動性の向上が図られている(例えば、特許文献1参照)。
【0003】
しかし、このような制御を行う場合、始動時における圧縮着火内燃機関の機関回転数の増加に伴い、燃料噴射時期がより進角側へと進むことになる。本来、圧縮着火内燃機関において噴射された燃料は、圧縮行程上死点近傍において着火し爆発膨張することで、効率よく機関出力となっていくが、先述の通り燃料噴射時期がより進角側へと進むことで、噴射された燃料が圧縮行程の途中において着火する場合がある。そのような場合、圧縮着火内燃機関におけるピストンの圧縮仕事を妨げる結果となるため、圧縮着火内燃機関の機関回転数が低下もしくは停滞し、円滑な内燃機関の始動を行えない虞がある。
【0004】
【特許文献1】
特開平10−103129号公報
【特許文献2】
特開平8−296477号公報
【0005】
【発明が解決しようとする課題】
圧縮着火内燃機関の始動時における燃料噴射時期の制御において、内燃機関の始動を円滑に行うには、燃料噴射を適正な時期に行う必要がある。特に燃料噴射時期が進角側に進みすぎた場合、噴射された燃料が圧縮上死点近傍で着火せずに、圧縮行程の途中で着火してしまい、却って円滑な圧縮着火内燃機関の始動を妨げる。そこで、本発明では、圧縮着火内燃機関の始動時において、噴射された燃料が圧縮着火上死点近傍で着火すべく燃料噴射時期を調整することで、圧縮着火内燃機関の円滑な始動を行う噴射制御装置の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記した課題を解決するために、圧縮着火内燃機関の始動期間における機関回転数の変動に着目した。即ち、圧縮着火内燃機関の始動期間において、該圧縮着火内燃機関における燃料の着火時期が圧縮行程上死点近傍となるように、少なくとも機関回転数の上昇に従って該燃料の噴射時期を進角側に制御する始動制御装置であって、前記圧縮着火内燃機関の始動期間において、前記燃料の噴射時期が進角側に進みすぎ燃料が圧縮行程の途中で着火することに起因して機関回転数が低下もしくは停滞するときは、該機関回転数の変化量に基づいて前記圧縮着火内燃機関における燃料の噴射時期を遅角側に補正する噴射時期補正手段を備え、前記噴射時期補正手段は、前記機関回転数の低下量が大きくなるに従い、前記圧縮着火内燃機関における燃料の噴射時期の遅角側への補正量を大きくすることを特徴とする。
【0007】
前記始動制御装置は、圧縮着火内燃機関の始動を行う場合、噴射された燃料が着火するまでの時間を考慮して、圧縮着火内燃機関の機関回転数に基づいて燃料の噴射時期の制御を行う。具体的には、始動期間中の機関回転数の上昇に従い燃料の噴射時期を進角側へと進めていくことで、噴射された燃料の着火時間を確保し、圧縮着火内燃機関の始動を行う。ここで、前記始動期間とは、先述のような圧縮着火内燃機関の始動制御が行われることによって、該内燃機関の機関回転数を所定の機関回転数へと上昇させることが目的の一つである期間である。また、圧縮着火内燃機関の始動においては、機関回転数のみならず該内燃機関の冷却水温度等に基づいて、燃料噴射時期の制御を行う場合もある。
【0008】
このように前記始動期間において燃料噴射時期が制御されるが、それにもかかわらず圧縮着火内燃機関の機関回転数が上昇せずに、低下もしくは停滞し円滑な始動が行われない虞がある。これは、先述したように燃料の噴射時期を進角側に進めることで、噴射された燃料が圧縮上死点近傍ではなく、圧縮行程の途中で着火し爆発膨張することで、圧縮着火内燃機関におけるピストンの圧縮仕事を妨げてしまい、その結果、圧縮着火内燃機関の平均有効圧が低下し、その結果円滑機関回転数の上昇が妨げられことに依る。
【0009】
そこで、圧縮着火内燃機関の機関回転数が上昇せず、低下もしくは停滞して円滑な始動が行われないときは燃料の噴射時期を遅角側に補正する。このように補正することで、進角側に進みすぎている燃料噴射時期に起因する燃料の着火時期を圧縮行程上死点近傍とすることができる。
【0010】
また、その遅角側への補正量は圧縮着火内燃機関の機関回転数の変化量、即ち、機関回転数が低下している場合はその低下量であり停滞している場合は機関回転数の上昇が零であることに基づいて決定される。即ち、圧縮着火内燃機関の機関回転数の変化量(低下量)が大きいということは、燃料噴射時期が進角側に過度に進みすぎているためと考えられ、そこで燃料噴射時期の遅角側への補正量を、圧縮着火内燃機関の機関回転数の変化量(低下量)に基づいて決定するものである。その結果、圧縮着火内燃機関の平均有効圧が低下することなく、以て円滑な機関回転数の上昇を図ることが可能となる。
【0011】
ここで、圧縮着火内燃機関の機関回転数に基づいて燃料の噴射時期を制御するにあたり、該機関回転数の取得を圧縮着火内燃機関の運転状態などから推定された機関回転数に基づいて行う場合と検出装置等から検出された機関回転数に基づいて行う場合とが考えられる。
【0012】
まず、圧縮着火内燃機関の運転状態などから推定された機関回転数に基づいて燃料噴射時期の制御を行う場合は、まず該圧縮着火内燃機関が始動を開始してから経過した時間等に基づいて推定する。また、そのような場合、該機関回転数の低下は、該圧縮着火内燃機関の運転状態が予め定めた所定の条件に合致したときに発生するものとして、先述した燃料噴射時期の遅角側への補正を行えばよい。
【0013】
次に、検出装置等から検出された機関回転数に基づいて燃料噴射時期の制御を行う場合について述べる。先述した圧縮着火内燃機関の始動制御装置であって、更に、前記圧縮着火内燃機関の機関回転数を検出する機関回転数検出手段を備え、前記噴射時期補正手段は、前記圧縮着火内燃機関の始動期間において前記機関回転数検出手段によって検出される機関回転数が低下もしくは停滞するときは、該機関回転数の変化量に基づいて前記圧縮着火内燃機関における燃料の噴射時期を遅角側に補正することを特徴とする。
【0014】
このように機関回転数検出手段によって検出された圧縮着火内燃機関の機関回転数に基づくことで、より正確に燃料噴射時期を制御できる。そして、圧縮着火内燃機関の機関回転数が上昇せず、低下もしくは停滞して円滑な始動が行われないときに、燃料噴射時期を遅角側に補正することで、進角側に進みすぎている燃料噴射時期に起因する燃料の着火時期を圧縮行程上死点近傍とすることができる。その結果、圧縮着火内燃機関の平均有効圧が低下することなく、以て円滑な機関回転数の上昇を図ることが可能となる。
【0015】
また、先述したように圧縮着火内燃機関の機関回転数が上昇せず、低下もしくは停滞して円滑な始動が行われないときに行われる燃料噴射時期の遅角側への補正は、該機関回転数の変化量に基づくものである。例えば、前記機関回転数の低下量が大きくなるに従い、前記圧縮着火内燃機関における燃料の噴射時期の遅角側への補正量を大きくする補正である。
【0016】
このように、圧縮着火内燃機関の燃料の噴射時期が補正されることで、該機関回転数の低下量が大きいとき、即ち圧縮行程中の比較的早い時期に燃料が着火したのは燃料噴射時期の進角側への進みが大きいためであると考えられるときは、その補正による燃料噴射時期の補正量が大きくなる。一方で、該機関回転数の低下量が小さいとき、即ち圧縮行程後期であって圧縮行程上死点近傍よりは早い時期に燃料が着火したのは燃料噴射時期の進角側への進みは、それほど大きくないためであると考えられるときは、その補正による燃料噴射時期の補正量を燃料噴射時期の進角側への進みに併せて変更し、先述した補正量より少ない補正量とする。このような補正により、燃料の着火時期が圧縮行程上死点近傍となり、圧縮着火内燃機関の平均有効圧が低下することなく、以て円滑な機関回転数の上昇を図ることが可能となる。
【0017】
更に、先述した課題を解決するために、圧縮着火内燃機関の始動期間における該圧縮着火内燃機関の平均有効圧の変動に着目した。即ち、圧縮着火内燃機関の始動時において、該圧縮着火内燃機関における燃料の着火時期が圧縮行程上死点近傍となるように、少なくとも機関回転数の上昇に従って該燃料の噴射時期を進角側に制御する始動制御装置であって、前記圧縮着火内燃機関の平均有効圧を検出する平均有効圧検出手段と、該圧縮着火内燃機関の始動時において、前記燃料の噴射時期が進角側に進みすぎ燃料が圧縮行程の途中で着火することに起因して該圧縮着火内燃機関の平均有効圧が低下もしくは停滞するときは、該平均有効圧の変化量に基づいて該圧縮着火内燃機関における燃料の噴射時期を遅角側に補正する噴射時期補正手段と、を備え、前記噴射時期補正手段は、前記平均有効圧の低下量が大きくなるに従い、前記圧縮着火内燃機関における燃料の噴射時期の遅角側への補正量を大きくすることを特徴とする。
【0018】
先述した燃料噴射時期の補正は、圧縮着火内燃機関の始動機関において機関回転数が低下もしくは停滞するときに該機関回転数の変化量に基づいて行われるが、上記の圧縮着火内燃機関の始動制御装置においては、該機関回転数の低下等の要因である該圧縮着火内燃機関の平均有効圧の変化量に基づいて燃料噴射時期の補正が行われる。尚、該圧縮着火内燃機関の平均有効圧は、平均有効圧検出手段によって検出される。また、燃料の噴射時期の補正については、先述した機関回転数に基づく補正の場合と同様である。この圧縮着火内燃機関の平均有効圧は、該圧縮着火内燃機関の燃焼室に設けられた検出装置によって得られる該燃焼室内の圧力から導出される場合や、また該圧縮着火内燃機関の運転状態に基づいて推定される場合がある。
【0019】
従って、圧縮着火内燃機関の平均有効圧が上昇せず、低下もしくは停滞して円滑な始動が行われないときに、燃料噴射時期を遅角側に補正することで、進角側に進みすぎている燃料噴射時期に起因する燃料の着火時期を圧縮行程上死点近傍とすることができる。その結果、圧縮着火内燃機関の平均有効圧が低下することなく、以て円滑な始動を図ることが可能となる。
【0020】
【発明の実施の形態】
<第1の実施例>
ここで、本発明に係る圧縮着火内燃機関の排気浄化装置における実施の形態について図面に基づいて説明する。図1は、本発明が適用される圧縮着火内燃機関およびその排気浄化装置の概略構成およびその制御系統の概略構成を示す図である。
【0021】
圧縮着火内燃機関1は、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。各燃料噴射弁3は、燃料を所定圧に蓄圧する蓄圧室4と接続されている。前記蓄圧室4は、燃料供給管5を介して燃料ポンプ6と連通している。この燃料ポンプ6は、圧縮着火内燃機関1の出力軸(クランクシャフト)の回転トルクを駆動源として作動するポンプであり、該燃料ポンプ6の入力軸に取り付けられたポンププーリ6aが圧縮着火内燃機関1の出力軸(クランクシャフト)に取り付けられたクランクプーリ1aとベルト7を介して連結されている。このように構成された燃料噴射系では、クランクシャフトの回転トルクが燃料ポンプ6の入力軸へ伝達されると、燃料ポンプ6は、クランクシャフトから該燃料ポンプ6の入力軸へ伝達された回転トルクに応じた圧力で燃料を吐出する。
【0022】
前記燃料ポンプ6から吐出された燃料は、燃料供給管5を介して蓄圧室4へ供給され、蓄圧室4にて所定圧に蓄圧されて各気筒2の燃料噴射弁3へ分配される。そして、燃料噴射弁3に駆動電流が印加されると、燃料噴射弁3が開弁し、その結果、燃料噴射弁3から気筒2内へ燃料が噴射される。
【0023】
次に、圧縮着火内燃機関1には、吸気枝管8が接続されており、吸気枝管8の各枝管は、各気筒2の燃焼室と吸気ポート(図示省略)を介して連通している。前記吸気枝管8は吸気管9に接続されている。吸気管9には、該吸気管9内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ10が取り付けられている。前記吸気管9における吸気枝管8の直上流に位置する部位には、該吸気管9内を流通する吸気の流量を調節する吸気絞り弁13が設けられている。この吸気絞り弁13には、ステップモータ等で構成されて該吸気絞り弁13を開閉駆動する吸気絞り用アクチュエータ14が取り付けられている。
【0024】
ここで、エアフローメータ10と吸気絞り弁13との間に位置する吸気管9には、排気のエネルギーを駆動源として作動する遠心過給機(ターボチャージャ)11のコンプレッサハウジング11aが設けられ、コンプレッサハウジング11aより下流の吸気管9には、前記コンプレッサハウジング11a内で圧縮されて高温となった吸気を冷却するためのインタークーラ12が設けられている。このように構成された吸気系では、吸気は、吸気管9を介してコンプレッサハウジング11aに流入する。
【0025】
コンプレッサハウジング11aに流入した吸気は、該コンプレッサハウジング11aに内装されたコンプレッサホイールの回転によって圧縮される。前記コンプレッサハウジング11a内で圧縮されて高温となった吸気は、インタークーラ12にて冷却された後、必要に応じて吸気絞り弁13によって流量を調節されて吸気枝管8に流入する。吸気枝管8に流入した吸気は、各枝管を介して各気筒2の燃焼室へ分配され、各気筒2の燃料噴射弁3から噴射された燃料を着火源として燃焼される。
【0026】
一方、圧縮着火内燃機関1には、排気枝管17が接続され、排気枝管17の各枝管が排気ポート(図示省略)を介して各気筒2の燃焼室と連通している。前記排気枝管17は、前記遠心過給機11の排気タービンハウジング11bと接続されている。前記排気タービンハウジング11bは、排気管18と接続され、この排気管18は、下流にてマフラー(図示省略)に接続されている。前記排気管18の途中には、圧縮着火内燃機関1より排出される排気を浄化する排気浄化触媒19が設けられている。排気浄化触媒19には、吸蔵還元型NOx触媒、の吸蔵還元型NOx触媒を担持したパティキュレートフィルタ、選択還元型NOx触媒、三元触媒等が挙げられる。
【0027】
更に、前記した排気浄化触媒19の下流に位置する排気管18には、該排気管18内を流通する排気の流量を調節する排気絞り弁15が設けられている。この排気絞り弁15には、ステップモータ等で構成されて該排気絞り弁15を開閉駆動する排気絞り用アクチュエータ16が取り付けられている。
【0028】
このように構成された排気系では、圧縮着火内燃機関1の各気筒2で燃焼された混合気(既燃ガス)が排気ポートを介して排気枝管17へ排気として排出され、次いで排気枝管17から遠心過給機11の排気タービンハウジング11bへ流入する。排気タービンハウジング11bに流入した排気は、排気が持つエネルギーを利用して排気タービンハウジング11b内に回転自在に支持されたタービンホイールを回転させる。その際、タービンホイールの回転トルクは、前述したコンプレッサハウジング11aのコンプレッサホイールへ伝達される。更に、タービンハウジング24bから排出された排気は、排気浄化触媒19に流入することで、排気中に含まれるNOx等が除去される。そして、排気浄化触媒19を経過した排気は、必要に応じて排気絞り弁15によって流量を調節された後にマフラーを介して大気中に放出される。
【0029】
次に、圧縮着火内燃機関1の制御系統の説明を行う。ECU50は、デジタルコンピュータからなり、双方向性バス51を介して相互に接続されたCPU(マイクロプロセッサ)52、ROM(リードオンリメモリ)53、RAM(ランダムアクセスメモリ)54、入力ポート56および出力ポート57を備えている。更に、ECU50の外部から入力されるアナログ信号をデジタル変換して入力ポート56へ入力するA/D変換器55が入力ポート56に接続されている。
【0030】
このECU50に対して、アクセルペダルの踏み込み量に比例した電圧を出力するアクセル開度センサ20が、A/D変換器55を介して入力ポート56に入力している。また圧縮着火内燃機関1に設けられているクランクポジションセンサ21は、例えばクランクシャフトが30°回転する毎に出力パルスを発生し、この出力パルスが入力ポート56に入力される。CPU52ではクランクポジションセンサ21の出力パルス等を基に、圧縮着火内燃機関1の機関回転数Neや、その機関回転数を積算することにより総機関回転角や圧縮着火内燃機関1を搭載する車両における走行距離が算出される。
【0031】
また、圧縮着火内燃機関1には、圧縮着火内燃機関1を循環している冷却水の温度を検出する冷却水温度センサ22が設けられており、該センサは冷却水の温度に応じた出力電圧を入力ポート56に入力している。更に気筒2(本実施例においては4番目の気筒、以下「気筒2#4」と称する)には、その内部の燃焼室内の筒内圧力を検出する筒内圧力センサ23が設けられており、該センサは気筒2#4の筒内圧力に応じた出力電圧を入力ポート56に入力している。そしてこの筒内圧力センサ23からの信号を基に、CPU52は圧縮着火内燃機関1の平均有効圧力等を算出する。なお、これ以外にも入力ポート56には、各種の信号が入力されているが、本実施例では説明上重要ではないので図示を省略している。
【0032】
出力ポート57は、各気筒2の燃料噴射弁3に電気的に接続され、ECU50は圧縮着火内燃機関1の運転状態に応じて各燃料噴射弁3の開弁制御を行い、燃料噴射時期や燃料噴射量の制御を行う。なお、これ以外に出力ポート57からは、各種の信号が出力されているが、本実施例では説明上重要ではないので図示を省略している。
【0033】
ここで、本実施例における圧縮着火内燃機関1の始動について説明をする。内燃機関の始動とは、圧縮着火内燃機関1の機関回転が停止している状態から次第に機械回転数を高め、所定の機械回転数とすることをいい、それに要する期間を始動期間という。
【0034】
始動期間においては、圧縮着火内燃機関1で燃料の噴射が行われ、次第に機関回転数が上昇する。この際、燃料噴射弁3から気筒2内の燃焼室に噴射された燃料は、噴射から着火するまでにほぼ一定の時間(以下、「着火遅れ時間」という)を要する。そこで、始動開始からの時間経過とともに機関回転数が上昇することを考慮して、燃料の噴射時期を燃焼サイクルにおいてより進角側に進め、着火遅れ時間に相当する時間を確保することで、気筒2内の燃焼室に噴射された燃料が圧縮行程上死点近傍において着火、燃焼爆発し、圧縮着火内燃機関1の効率よい始動を行う。
【0035】
しかし、燃料噴射弁3から噴射される時期が進角側に進むにつれて、圧縮着火内燃機関1の機関回転数が円滑に上昇しない虞がある。これを図2(a)および(b)に基づいてそれを説明する。図2(a)は、圧縮着火内燃機関1の始動期間における機関回転数の時間推移を、図2(b)は、圧縮着火内燃機関1の始動期間における平均有効圧の時間推移を、それぞれ示す図である。尚、図2(a)の縦軸は、圧縮着火内燃機関1の機関回転数を、図2(b)の縦軸は、圧縮着火内燃機関1の平均有効圧を示している。また、図2(a)および(b)の横軸は、圧縮着火内燃機関1において始動開始からの経過時間を示し、両図において経過時間は対応しており、同一経過時間における機関回転数と平均有効圧の推移を示すものである。
【0036】
ここで、燃料噴射弁3からの燃料噴射時期が過度に進角側に進んでしまう場合、結果的に噴射された燃料の着火時期が圧縮行程上死点近傍とならず、圧縮行程の途中となる場合がある。圧縮行程上死点近傍以前の圧縮行程において燃料が着火し、爆発燃焼した場合、燃焼室内の混合気の圧縮仕事を行っているピストンに対して負荷となる仕事が発生することになる。従って、圧縮着火内燃機関1の平均有効圧が減少し、それに従うように始動期間において上昇中であった機関回転数が低下、もしくは停滞し、円滑な機関回転数の上昇が阻害される。ここで、図2の区間Bで表される期間においては、上記の燃料噴射時期の過度の進角による機関回転数等の低下等が生じている。また、図2の区間Aで表される期間においては、燃料噴射時期が適正に進角側に進められているため、噴射された燃料が圧縮行程上死点近傍にて着火することで、圧縮着火内燃機関1の平均有効圧が上昇し、以て機関回転数が円滑に上昇している。
【0037】
そこで、圧縮着火内燃機関1の始動を行う始動期間において、円滑な機関回転数の上昇を行うべく燃料噴射弁3による燃料噴射時期の制御について、図3に基づいて説明する。ここで、図3は圧縮着火内燃機関1の始動期間における燃料噴射時期の制御を示すフローチャートである。図3における始動制御は、ECU50によって実行される制御であり、本発明に係る圧縮着火内燃機関の始動装置における噴射時期補正手段を含むものである。
【0038】
S101においては、ECU50が圧縮着火内燃機関1の機関回転数Neを取得する。具体的には、クランクポジションセンサ21からの信号を基にクランクシャフトの角速度を検出し、それより機関回転数Neを取得する。S101の処理が終了すると、S102へ進む。
【0039】
S102では、ECU50が圧縮着火内燃機関1を循環して流れる冷却水の温度Thwを取得する。この冷却水は主に圧縮着火内燃機関1において発生する熱を除去することで、熱による圧縮着火内燃機関1の運転への弊害を取り除くものであるが、逆に冷却水の温度を検出することによって圧縮着火内燃機関1の暖機がどの程度進行したか等を検出することも可能となる。冷却水の温度の取得については、具体的には、冷却水温度センサ22からの信号を基にECU50が取得する。S102の処理が終了すると、S103へ進む。
【0040】
S103では、圧縮着火内燃機関1の機関回転数Neの機関回転数変動ΔNeを算出する。即ち、S101において取得した機関回転数Neと、前回のS101において既に取得した機関回転数Neとの差をΔNeとして算出する。S103の処理が終了すると、S104へ進む。
【0041】
S104では、ベース噴射時期Binjの算出を行う。ベース噴射時期Binjは、燃料噴射弁3から燃料を噴射する基本的な噴射時期であって、本実施例においては、図4に示すマップの形式でROM53に格納されており、S104において該マップにアクセスすることで、ベース噴射時期Binjの算出が行われる。図4に示すマップは、冷却水の温度Thwと機関回転数Neをパラメータとする二次元のマップであり、それぞれS102およびS101において取得した値に基づいて該マップにアクセスし、対応するベース噴射時期Binjを算出する。尚、先述したように、圧縮着火内燃機関1の始動においては、機関回転数の上昇に従って燃料噴射時期を進角側に進める。従って、例えば機関回転数が50と100の場合を比較すると、図4中のベース噴射時期Binjの値は、機関回転数が100の場合の方が進角側に進んだ燃料噴射時期の値となっている。尚、図4に示す値は例示あって、示されていない冷却水温度Thwと機関回転数Neについても、適宜作成される。S104の処理が終了すると、S105へ進む。
【0042】
S105では、S103において算出したΔNeの値が0以下か否かが判断される。ΔNeの値が0以下である場合は、始動期間において機関回転数が低下、もしくは停滞し、円滑な機関回転数の上昇が行われていないことを意味し、ΔNeの値が0を越える場合は円滑な機関回転数が行われていることを意味する。即ち、S105においては、始動が行われている圧縮着火内燃機関1の機関回転数の推移が、図2に示すところの期間Aのような推移となっているのか、もしくは期間Bのような推移となっているのか、機関回転数変動ΔNeの値に基づいて行われることになる。ΔNeの値が0を越える場合、即ち機関回転数が円滑に上昇している場合は、S106へ進む。一方、ΔNeの値が0以下である場合、即ち機関回転数が円滑に上昇していない場合は、S107へ進む。
【0043】
S106では、補正噴射時期ΔINJの値を0と設定する。補正噴射時期ΔINJとは、S104において算出したベース噴射時期Binjの燃料噴射時期を補正する値である。S106においては、S105で機関回転数変動ΔNeの値が0を越えると判断されていることから、圧縮内燃機関1の機関回転数は円滑に上昇している。従って、ベース燃料噴射時期Binjを補正する必要は無いと考えられるため、その補正値である補正噴射時期ΔINJに0を設定する。S106の処理が終了すると、S108へ進む。
【0044】
S107では、補正噴射時期ΔINJの算出を行う。ここで、補正噴射時期ΔINJの算出について、図5に基づいて説明をする。図5は、先述したS106において設定された補正噴射時期ΔINJを含む補正噴射時期ΔINJを算出するための関数を示す図である。図5の横軸は、S103において算出した機関回転数変動ΔNEであって、図5の縦軸は算出されるべき補正噴射時期ΔINJである。従って、図5に示す関数は、機関回転数変動ΔNeの値より、補正噴射時期ΔINJを算出する関数である。
【0045】
ここで、S107においては、S105で機関回転数変動ΔNeが0以下である場合であると判断されていることから、補正噴射時期ΔINJを算出する関数は、直線L1で表される関数である。図5中の直線L1で表される関数は、機関回転数変動ΔNeが0以下の値であってその絶対値が大きいほど、噴射補正時期ΔINJの値は負の値であってその絶対値は大きくなる。尚、ΔINJの値について、その値が負の値であることは、燃料噴射時期を遅角側に移す補正値であることを意味する。尚、直線L2で表される関数は、S106において補正噴射時期ΔINJの値を0と設定することを意味する関数である。S107の処理が終了すると、S108へ進む。
【0046】
S108では、最終的な燃料噴射時期INJが算出される。ここで、最終的な燃料噴射時期INJは、S104で算出されたベース噴射時期BinjとS106又はS107で設定・算出された補正噴射時期ΔINJの和で算出される。即ち、基本的な燃料噴射時期であるベース噴射時期Binjの値を、圧縮着火内燃機関1の機関回転数変動ΔNeに基づいて補正することになる。例えば、機関回転数変動ΔNeの値が0以下である場合は、S107において補正噴射時期ΔINJに負の値が算出され、その結果、最終的な燃料噴射時期INJはベース噴射時期Binjより遅角側に移った値となる。
【0047】
また、S107において補正噴射時期ΔINJを算出する際に使用した図5中の直線L1で表される関数においては、機関回転数変動ΔNeが負の値であってその絶対値が大きいほど、即ち圧縮着火内燃機関1の機関回転数の低下量が大きくなるほど、補正噴射時期ΔINJの値が燃料噴射時期をより遅角側に移すことになる補正量となる。これは、機関回転数Neの低下量が大きいということは、噴射された燃料が圧縮行程中の比較的早い時期に着火、爆発燃焼することで、圧縮着火内燃機関1の平均有効圧の低下が比較的大きくなることに依る。従って、圧縮着火内燃機関1の機関回転数が大きく低下した場合は、燃料噴射時期をより大きく遅角側へ補正することで、噴射された燃料の着火時期を圧縮上死点近傍とするものである。S108の処理が終了すると、S109へ進む。
【0048】
S109では、S108において算出された最終的な燃料噴射時期INJに従って、燃料噴射弁3より燃料が噴射される。S109の処理が終了すると、S110へ進む。
【0049】
S110では、機関回転数Neが所定の機関回転数Ne1を越えるか否かが判断される。ここで、所定の機関回転数Ne1は、圧縮着火内燃機関1における始動制御を終了させるための判断となる機関回転数をいう。従って、機関回転数Neが所定の機関回転数Ne1を越える場合は、S111へ進んで本制御を終了する。また、機関回転数Neが所定の機関回転数を越えない場合は、圧縮着火内燃機関1の始動制御は続けられることになり、再びS101以降の処理が行われる。
【0050】
本実施例では、圧縮着火内燃機関の始動において、機関回転数の上昇に従って燃料噴射時期を進角側へと進めることで、噴射された燃料の着火遅れ時間を確保し、該燃料の着火時期が圧縮行程上死点近傍となるようにすることで、機関回転数を上昇させる。その際に、機関回転数が低下もしくは停滞した場合は、その機関回転数の変化量に基づいて、燃料の噴射時期を遅角側へと補正することで、噴射された燃料が圧縮行程上死点近傍で着火させ、圧縮着火内燃機関の円滑な始動が可能となる。
【0051】
また、本実施例の、図3に示す始動制御のフローチャートのS104において、基本的な燃料噴射時期であるベース噴射時期Binjの算出するにあたり、冷却水の温度Thwと機関回転数Neをパラメータとする二次元のマップへのアクセスを行うが、該マップは少なくとも機関回転数Neをパラメータする一次元のマップであればよく、また冷却水の温度以外の要素をパラメータとした複数次元のマップであってもよい。
【0052】
更に、本実施例の、図3に示す始動制御のフローチャートのS107において、補正噴射時期ΔINJは、図5に直線L1で示される関数に従って算出されるが、補正噴射時期ΔINJを算出する関数は直線L1に限られず、圧縮着火内燃機関1の特性に応じて任意の関数によって補正噴射時期ΔINJを算出してもよい。
【0053】
また、本実施例においては、圧縮着火内燃機関1の機関回転数をクランクポジションセンサ21によって検出される信号を基に算出し、図3に示す始動制御において使用しているが、圧縮着火内燃機関1の運転状態やその他の機関要素等の状態から機関回転数を推定し、その推定された機関回転数を基に図3に示す始動制御を行うことも可能である。例えば、圧縮着火内燃機関1の始動が開始されてからの経過時間をパラメータとして、機関回転数を推定する。このような場合、圧縮着火内燃機関1の機関回転数の変動、特に機関回転数の低下や停滞は、これらを推定することが可能な機関要素、例えばクランクシャフトに連結されている機関要素の出力等から圧縮着火内燃機関1の機関回転数が円滑に上昇していないことを推定し、推定された機関回転数の変化量に基づいて燃料噴射時期を遅角側へと補正する。尚、燃料噴射時期の遅角側への補正量は、その推定された機関回転数変動に基づいて決定される。
【0054】
<第2の実施例>
ここで、圧縮着火内燃機関1の始動制御について別の実施例を、図6に基づいて説明する。図6は圧縮着火内燃機関1の始動期間における燃料噴射時期の制御を示すフローチャートである。図6における始動制御は、ECU50によって実行される制御であり、本発明に係る圧縮着火内燃機関の始動装置における噴射時期補正手段を含むものである。以下に本実施例における始動制御の説明を行う。尚、図6に示すフローチャートにおいて、図3に示す始動制御のフローチャートと同一の処理については、図3と同一の参照番号を付することにより、その説明を省略する。
【0055】
本実施例においては、S102の処理が終了すると、S201へ進む。S201では、圧縮着火内燃機関1の平均有効圧Mepを取得する。具体的には、気筒2#4に設けられた筒内圧力センサ23によって検出される気筒2#4内の燃焼室内の圧力に基づいてECU50によって算出される。尚、圧縮着火内燃機関1の機関出力から算出するようにしてもよい。S201の処理が終了すると、S202へ進む。
【0056】
S202では、圧縮着火内燃機関1の平均有効圧Mepの平均有効圧変動ΔMepを算出する。即ち、S201において取得した平均有効圧Mepと、前回のS201において既に取得した平均有効圧Mepとの差をΔMepとして算出する。S202の処理が終了すると、S104へ進む。S104における処理については、先述の通りである。そして、S104の処理が終了すると、本実施例においてはS203へ進む。
【0057】
S203では、S202において算出したΔMepの値が0以下か否かが判断される。ΔMepの値が0以下である場合は、始動期間において機関回転数が低下、もしくは停滞し、円滑な機関回転数の上昇が行われていないことを意味し、ΔMepの値が0を越える場合は円滑な機関回転数が行われていることを意味する。即ち、S203においては、始動が行われている圧縮着火内燃機関1の機関回転数の推移が、図2に示すところの期間Aのような推移となっているのか、もしくは期間Bのような推移となっているのかの判断が、平均有効圧変動ΔMepの値に基づいて行われることになる。ΔMepの値が0を越える場合、即ち機関回転数が円滑に上昇している場合は、S204へ進む。一方、ΔMepの値が0以下である場合、即ち機関回転数が円滑に上昇していない場合は、S205へ進む。
【0058】
S204における処理およびS205における処理は、それぞれ図3に示すS106における処理およびS107における処理と本質的に同一であって、補正噴射時期ΔINJを算出する際に、S202において算出した平均有効圧変動ΔMepの値を基準とする点が異なる。従って、補正噴射時期ΔINJを算出する関数は、図5において横軸が機関回転数変動ΔNeで表される関数に代えて、横軸を平均有効圧変動ΔMepとした関数で表すことができる。S204又はS205の処理が終了すると、S108へ進む。S108以降の処理については、図3において説明したとおりである。
【0059】
本実施例では、圧縮着火内燃機関の始動において、該圧縮着火内燃機関の平均有効圧が低下もしくは停滞した場合は、その平均有効圧の変化量に基づいて、燃料の噴射時期を遅角側へと補正することで、噴射された燃料を圧縮行程上死点近傍で着火させ、圧縮着火内燃機関の円滑な始動が可能となる。
【0060】
【発明の効果】
圧縮着火内燃機関の始動時において、機関回転数が円滑に上昇せず、機関回転数の低下もしくは停滞が生じた場合は、その機関回転数の変動に応じて、燃料の噴射時期を遅角側に補正することで、噴射された燃料を圧縮行程上死点近傍で着火させ、圧縮着火内燃機関の円滑な始動が可能となる。
【図面の簡単な説明】
【図1】本実施の形態に係る内燃機関の排気浄化装置を有する内燃機関およびその制御系統の概略構成を示す図である。
【図2】圧縮着火内燃機関の始動制御装置において、始動期間における機関回転数の時間推移および圧縮着火内燃機関の平均有効圧の時間推移を示す図である。
【図3】本実施の形態に係る圧縮着火内燃機関の始動制御装置において、始動期間に行われる始動制御を示すフロー図である。
【図4】本実施の形態に係る圧縮着火内燃機関の始動制御装置において、ベース噴射時期を格納するマップを示す図である。
【図5】本実施の形態に係る圧縮着火内燃機関の始動制御装置において、燃料噴射時期の補正量を決定する関数を示す図である。
【図6】本実施の形態に係る圧縮着火内燃機関の始動制御装置において、始動期間に行われる始動制御を示す第2のフロー図である。
【符号の説明】
1・・・・圧縮着火内燃機関
3・・・・燃料噴射弁
21・・・・クランクポジションセンサ
23・・・・筒内圧力センサ
50・・・・ECU
Claims (2)
- 圧縮着火内燃機関の始動期間において、該圧縮着火内燃機関における燃料の着火時期が圧縮行程上死点近傍となるように、少なくとも機関回転数の上昇に従って該燃料の噴射時期を進角側に制御する始動制御装置であって、
前記圧縮着火内燃機関の始動期間において、前記燃料の噴射時期が進角側に進みすぎ燃料が圧縮行程の途中で着火することに起因して機関回転数が低下もしくは停滞するときは、該機関回転数の変化量に基づいて前記圧縮着火内燃機関における燃料の噴射時期を遅角側に補正する噴射時期補正手段を備え、
前記噴射時期補正手段は、前記機関回転数の低下量が大きくなるに従い、前記圧縮着火内燃機関における燃料の噴射時期の遅角側への補正量を大きくすることを特徴とする圧縮着火内燃機関の始動制御装置。 - 圧縮着火内燃機関の始動時において、該圧縮着火内燃機関における燃料の着火時期が圧縮行程上死点近傍となるように、少なくとも機関回転数の上昇に従って該燃料の噴射時期を進角側に制御する始動制御装置であって、
前記圧縮着火内燃機関の平均有効圧を検出する平均有効圧検出手段と、
該圧縮着火内燃機関の始動時において、前記燃料の噴射時期が進角側に進みすぎ燃料が圧縮行程の途中で着火することに起因して該圧縮着火内燃機関の平均有効圧が低下もしくは停滞するときは、該平均有効圧の変化量に基づいて該圧縮着火内燃機関における燃料の噴射時期を遅角側に補正する噴射時期補正手段と、を備え、
前記噴射時期補正手段は、前記平均有効圧の低下量が大きくなるに従い、前記圧縮着火内燃機関における燃料の噴射時期の遅角側への補正量を大きくすることを特徴とする圧縮着火内燃機関の始動制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003038644A JP4178988B2 (ja) | 2003-02-17 | 2003-02-17 | 圧縮着火内燃機関の始動制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003038644A JP4178988B2 (ja) | 2003-02-17 | 2003-02-17 | 圧縮着火内燃機関の始動制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004245196A JP2004245196A (ja) | 2004-09-02 |
JP4178988B2 true JP4178988B2 (ja) | 2008-11-12 |
Family
ID=33023112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003038644A Expired - Fee Related JP4178988B2 (ja) | 2003-02-17 | 2003-02-17 | 圧縮着火内燃機関の始動制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4178988B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007032382A (ja) | 2005-07-26 | 2007-02-08 | Toyota Motor Corp | 筒内直噴内燃機関の制御装置 |
JP5994722B2 (ja) * | 2013-05-08 | 2016-09-21 | マツダ株式会社 | 予混合圧縮着火式エンジンの始動制御装置 |
JP5991263B2 (ja) * | 2013-05-10 | 2016-09-14 | マツダ株式会社 | 予混合圧縮着火式エンジンの始動制御装置 |
-
2003
- 2003-02-17 JP JP2003038644A patent/JP4178988B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004245196A (ja) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7614229B2 (en) | Control system for supercharged internal combustion engine | |
US9797325B2 (en) | Apparatus for controlling an internal combustion engine | |
JP5152135B2 (ja) | 過給式エンジンの吸気量制御装置 | |
US8443591B2 (en) | Exhaust gas oxygen concentration control system and method | |
JP5155974B2 (ja) | 内燃機関の制御装置 | |
EP2087230A2 (en) | Ignition control system for internal combustion engines | |
EP3205865B1 (en) | Control device for vehicle | |
CN104093959A (zh) | 内燃机的控制装置 | |
JP6319254B2 (ja) | エンジンの制御装置 | |
JP2008208784A (ja) | 内燃機関の制御システム | |
JP4733003B2 (ja) | 内燃機関の排ガス浄化装置 | |
JP3966243B2 (ja) | 内燃機関 | |
JP5639387B2 (ja) | ディーゼルエンジンの始動制御装置 | |
JP6127903B2 (ja) | ターボ過給機付きエンジンの制御装置 | |
JP4346118B2 (ja) | 内燃機関の触媒温制御装置 | |
JP5024129B2 (ja) | 内燃機関の制御装置及び燃料性状判定装置 | |
JP4178988B2 (ja) | 圧縮着火内燃機関の始動制御装置 | |
JPH1047039A (ja) | エンジンの触媒活性化方法及び触媒活性化装置 | |
JP5061972B2 (ja) | 内燃機関の制御装置及び燃料性状判定装置 | |
JP5029059B2 (ja) | 内燃機関の制御システム | |
JP4415803B2 (ja) | 内燃機関の制御装置 | |
JP2017008770A (ja) | 内燃機関の制御装置 | |
JP2005016396A (ja) | 内燃機関の触媒暖機システム | |
JP2005030253A (ja) | 可変圧縮比機構付き内燃機関の制御装置 | |
JP2009156153A (ja) | 内燃機関の燃料噴射制御システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080818 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |