[go: up one dir, main page]

JP4178396B2 - Antifouling method and antifouling structure - Google Patents

Antifouling method and antifouling structure Download PDF

Info

Publication number
JP4178396B2
JP4178396B2 JP2003175860A JP2003175860A JP4178396B2 JP 4178396 B2 JP4178396 B2 JP 4178396B2 JP 2003175860 A JP2003175860 A JP 2003175860A JP 2003175860 A JP2003175860 A JP 2003175860A JP 4178396 B2 JP4178396 B2 JP 4178396B2
Authority
JP
Japan
Prior art keywords
group
antifouling
organohydrogenpolysiloxane
mol
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003175860A
Other languages
Japanese (ja)
Other versions
JP2005007331A (en
Inventor
隆文 坂本
方也 上野
恒雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003175860A priority Critical patent/JP4178396B2/en
Publication of JP2005007331A publication Critical patent/JP2005007331A/en
Application granted granted Critical
Publication of JP4178396B2 publication Critical patent/JP4178396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に、船舶、港湾施設、ブイ、パイプライン、橋梁、海底基地、海底油田掘削設備、発電所の導水路管、養殖網、定置網等(以下、「水中構造物」という)に塗装して、これらの表面への水生生物の付着・生育を防止するために好適な防汚塗膜を与える防汚方法及び防汚性構造物に関する。
【0002】
【従来の技術】
室温でゴム状弾性体を与える室温硬化性シリコーンゴム組成物は種々のものが知られており、室温硬化性シリコーンゴム組成物(以下、「RTV」という)から得られる硬化ゴムは、他の有機系ゴムに比較して優れた耐候性、耐久性、耐熱性、耐寒性等を具備することから種々の分野で使用され、建築分野においては、ガラス同士の接着用、金属とガラスとの接着用、コンクリート目地のシール用等に多用されており、近年では、建築物、プラント類、水中構造物等のコーティング材として広く利用されている。
【0003】
ここで、水中構造物は、設置され又は就航すると、その飛沫部から没水部表面に亘って、海、河川等の水中に棲息しているフジツボ、ホヤ、セルプラ、ムラサキイガイ、カラスガイ、フサコケムシ、アオノリ、アオサ等の水生生物が付着・生育して種々の被害が発生する。例えば、船体に生物が付着した場合、水との摩擦抵抗が増大し、航行速度の低下が生じ、一定の速度を維持するためには燃料消費量が増加し、経済的に不利である。また、港湾施設等の水中又は水面に固定させておく構造物に生物が付着すると、これらが有する個々の機能を十分に発揮することが困難となり、基材を侵食することもある。更に、養殖網、定置網等に生物が付着すると網目が閉塞して魚類が死亡してしまうことがある。
【0004】
水中構造物への水生生物の付着・生育の防止対策としては、有機錫化合物、亜酸化銅等の毒性防汚剤を配合した防汚塗料を構造物に塗装して対応していたが、水生生物の付着・生育はほぼ防止できたものの、毒性防汚剤を用いているために、塗料の製造や塗装時において環境安全衛生上好ましくなく、しかも水中において塗膜から毒性の防汚剤が徐々に溶出し、長期的にみれば水域を汚染するおそれがあることから、その使用が法的に禁止されることとなった。
【0005】
一方、水生生物の付着・生育の防止効果があり、毒性防汚剤を含有しない塗料としては、塗膜の表面張力を低くして防汚性を付与させるものとして、RTVに流動パラフィン又はペトロラクタムを配合した無毒性防汚塗科が提案されている(例えば、特許文献1,2:特開昭58−13673号公報、特開昭62−84166号公報参照)。また、反応硬化型シリコーン樹脂の硬化に伴う体積収縮によって、相溶性が乏しく非反応性の極性基含有シリコーン樹脂が表面へ滲み出し、反応硬化型シリコーン樹脂のもつ低表面張力と相俟って防汚性を示す無毒性防汚塗料組成物(例えば、特許文献3,4:特許第2503986号公報、特許第2952375号公報参照)も提案されている。しかしながら、防汚性の持続性という面では十分な性能が得られず、溶出する化合物の安全性に関しても問題があった。
【0006】
一方、構造体の表面防汚処理としては、防汚性反応性官能基を有する有機ポリマーを主成分とする前処理組成物を基材表面に処理し、その上に該反応性官能基と反応し得る反応性官能基を有する撥水性防汚剤を主成分とする防汚性組成物を前処理層と反応させる表面防汚処理構造体が記載され、更にアリル基含有アクリル樹脂を前処理し、その上に側鎖のみにSiH基を有するハイドロジェンポリシロキサン(KF−99(信越化学工業(株)製))をハイドロシリレーション反応させることが例示されている(例えば、特許文献5:特開平5−169011号公報参照)。
【0007】
しかし、この方法では前処理に使用しているアクリル樹脂と上層に使用しているシロキサンの濡れ性が悪いため、ハイドロシリレーションによる結合が十分ではなく、防汚性の持続性が不十分であった。
【0008】
【特許文献1】
特開昭58−13673号公報
【特許文献2】
特開昭62−84166号公報
【特許文献3】
特許第2503986号公報
【特許文献4】
特許第2952375号公報
【特許文献5】
特開平5−169011号公報
【0009】
【発明が解決しようとする課題】
従って、本発明は、特には水中構造物に塗装され、水中構造物の表面への水生生物の付着・生育を防止するために好適であり、その効果の持続性が良好な防汚塗膜を与える防汚方法及び防汚性構造物を提供することを目的とする。
【0010】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため鋭意検討を行った結果、縮合硬化型シリコーンゴム組成物において、ベースポリマーのジオルガノポリシロキサンの珪素原子に直結する全置換基のうち、2モル%以上が炭素数2以上の置換もしくは非置換の一価炭化水素基である特定のジオルガノポリシロキサンを用いた組成物の硬化被膜に、オルガノハイドロジェンポリシロキサンと白金族金属系触媒の混合物をコーティングし、硬化させること、この場合、より好ましくは、更にその上に脂肪族不飽和炭化水素基及びオキシアルキレン基を含有する化合物をコーティングし、硬化させることにより、著しい防汚性向上を達成でき、極めて良好な防汚性及びその持続性を得ることができ、更に安全性にも優れることを見出し、本発明をなすに至った。
【0011】
従って、本発明は、
[I]基材、好ましくは水中構造物の表面に、(A)分子中に少なくとも2個の珪素原子に結合した水酸基又は加水分解性基を有し、珪素原子に結合する全置換基の2モル%以上がアルケニル基であり、珪素原子に結合するその他の基がメチル基である下記一般式(1)又は(2)
【化7】

Figure 0004178396
(式中、Rはメチル基又はアルケニル基であり、Rの2モル%以上がアルケニル基である。Xは酸素原子又は炭素数1〜8の二価炭化水素基であり、nはこのジオルガノポリシロキサンの25℃における粘度を100〜1,000,000mPa・sとする数である。)
【化8】
Figure 0004178396
(式中、Yは加水分解性基であり、aは2又は3であり、Rはメチル基又はアルケニル基であり、Rの2モル%以上がアルケニル基である。Xは酸素原子又は炭素数1〜8の二価炭化水素基であり、nはこのジオルガノポリシロキサンの25℃における粘度を100〜1,000,000mPa・sとする数である。)
で表されるジオルガノポリシロキサンをベースポリマーとし、加水分解性基を1分子中に2個以上有するシラン又はその部分加水分解物を配合してなる縮合硬化型シリコーンゴム組成物の硬化被膜を形成すると共に、この硬化被膜上に、(B)オルガノハイドロジェンポリシロキサンと白金族金属系触媒との混合物をこのオルガノハイドロジェンポリシロキサンが上記硬化被膜中のアルケニル基と付加反応した際に残存するような量で塗布し、上記硬化被膜中のアルケニル基とオルガノハイドロジェンポリシロキサンとを付加反応させて上記硬化被膜との間で第1の表面硬化層を形成し、更に、この第1の表面硬化層上に、(C)脂肪族不飽和炭化水素基及びオキシアルキレン基を含有する化合物を塗布し、上記第1の表面硬化層中の上記残存したオルガノハイドロジェンポリシロキサンと脂肪族不飽和炭化水素基とを付加反応させて、上記第1の表面硬化層との間で第2の表面硬化層を形成することを特徴とする基材の防汚方法、及
II]上記防汚方法により防汚性被膜が形成された防汚性構造物
を提供する。
【0012】
以下、本発明につき更に詳しく説明する。
本発明にかかる防汚方法及び防汚性構造物は、まず、構造物(基材)、特に水中構造物の表面に縮合硬化型シリコーンゴム組成物の硬化被膜が形成される。
この場合、このシリコーンゴム組成物の第一成分は、ジオルガノポリシロキサンであり、これをベースポリマーとするものである。
第一成分で使用されるベースポリマーのジオルガノポリシロキサンとしては、縮合反応で硬化するため、分子中に少なくとも2個の珪素原子に直結した水酸基又は加水分解性基を有し、全珪素原子に結合した置換基の2モル%以上が炭素数2以上の置換もしくは非置換の一価炭化水素基を有するものである。
【0013】
従来使用されている縮合硬化型シリコーンゴム(RTVゴム)組成物のベースポリマーにおいて、縮合反応に関与する水酸基又は加水分解性基以外の置換基は、ほとんどがメチル基であるが、第一成分においては、この加水分解性基以外の置換基に縮合反応(架橋)に関与しない炭素数2以上の置換もしくは非置換の一価炭化水素基を特定量導入したものであり、硬化後は炭素数2以上の置換もしくは非置換の一価炭化水素基が硬化物に残存していることが必要である。
このジオルガノポリシロキサンは実質的に直鎖状であるが、ゲル化を起こさないあるいはゴム弾性を損なわない範囲において分岐していてもよい。分岐量は、通常10モル%以下、好ましくは5モル%以下である。
具体的には下記一般式(1)又は(2)で表されるジオルガノポリシロキサシが好ましい。
【0014】
【化3】
Figure 0004178396
(式中、Rは置換又は非置換の一価炭化水素基であり、Rの2モル%以上が炭素数2以上の置換又は非置換の一価炭化水素基である。Xは酸素原子又は炭素数1〜8の二価炭化水素基であり、Yは加水分解性基であり、nはこのジオルガノポリシロキサンの25℃における粘度を100〜1,000,000mPa・sとする数であり、aは2又は3である。)
【0015】
ここで、Rはメチル基、エチル基、プロピル基、ブチル基、2−エチルブチル基、オクチル基などのアルキル基、シクロヘキシル基、シクロペンチル基などのシクロアルキル基、ビニル基、プロペニル基、ブテニル基、ヘプテニル基、ヘキセニル基、アリル基などのアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基、ジフェニル基などのアリール基、ベンジル基、フェニルエチル基などのアラルキル基あるいはこれらの基の炭素原子に結合している水素原子の一部又は全部をハロゲン原子、シアノ基などで置換したクロロメチル基、トリフロロプロピル基、2−シアノエチル基、3−シアノプロピル基などから選択される同一又は異種の非置換もしくは置換の好ましくは炭素数1〜12、特に1〜10の一価炭化水素基である。
【0016】
また、Rのうち2モル%以上、好ましくは2.5モル%以上が炭素数2以上の置換もしくは非置換の一価炭化水素基であることが必要である。上限としては特に制限されないが、製造しやすさからすると50モル%以下である。
【0017】
炭素数2以上の置換もしくは非置換の一価炭化水素基としては、上述したRのメチル基以外の一価炭化水素基が挙げられるが、ビニル基、アリル基、プロペニル基、ブテニル基、ヘプテニル基、へキセニル基等のアルケニル基、エチル基、プロピル基、フェニル基等が好ましく、中でも(B)成分のオルガノハイドロジェンポリシロキサンとヒドロシリル化反応可能なアルケニル基が好ましく、特にビニル基が好ましい。これらは2種以上であってもよい。
また、上記Rにおいて、炭素数2以上の一価炭化水素基以外の置換基としては、メチル基が好ましい。
【0018】
Xは酸素原子又は炭素数1〜8の二価炭化水素基であり、二価炭化水素基としては−(CH2m(mは1〜8を表す)で表される。これらの中でも酸素原子、−CH2CH2−が好ましい。nはジオルガノポリシロキサンの25℃における粘度を100〜1,000,000mPa・s、好ましくは500〜500,000mPa・sとする数である。
【0019】
Yは加水分解性基であり、具体的には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、ジメチルケトオキシム基、メチルエチルケトオキシム基などのケトオキシム基、アセトキシ基などのアシルオキシ基、イソプロペニルオキシ基、イソブテニルオキシ基などのアルケニルオキシ基等が挙げられ、アルコキシ基、ケトオキシム基が好ましく、特にメトキシ基、エトキシ基が好ましい。
【0020】
このようなジオルガノポリシロキサンは、各種オルガノポリシロキサンの単量体である環状シロキサンもしくは線状オリゴマーを酸もしくは塩基触媒による平衡反応によって得る等の公知の方法により製造することができる。
また、このジオルガノポリシロキサンに分岐構造を導入する場合は、上記平衡化重合中にSiO3/2単位及び/又はSiO4/2単位を含むシランもしくはシロキサンをジオルガノポリシロキサンがゲル化しないレベルで添加するのが常法である。更に、このジオルガノポリシロキサンは、ストリップや洗浄等により低分子シロキサンを除去しておくことが望ましい。
【0021】
上記縮合硬化型シリコーンゴム組成物には、架橋剤が使用される。架橋剤としては、加水分解性の基を1分子中に2個以上、好ましくは3個以上有するシランあるいはその部分加水分解縮合物が使用される。この場合、その加水分解性の基としては、メトキシ基、エトキシ基、ブトキシ基などのアルコキシ基、ジメチルケトオキシム基、メチルエチルケトオキシム基などのケトオキシム基、アセトキシ基などのアシルオキシ基、イソプロペニルオキシ基、イソブテニルオキシ基などのアルケニルオキシ基、N−ブチルアミノ基、N,N−ジエチルアミノ基などのアミノ基,N−メチルアセトアミド基などのアミド基等が挙げられる。これらの中でもアルコキシ基、ケトオキシム基、アシルオキシ基、アルケニルオキシ基が好ましい。
【0022】
架橋剤の配合量は、上記ジオルガノポリシロキサン100部(質量部、以下同様)に対して1〜50部、好ましくは2〜30部、より好ましくは5〜20部とすることが望ましい。
【0023】
また、縮合硬化型シリコーンゴム組成物には、基本的には硬化触媒を使用しないほうが好ましいが、硬化触媒を使用する場合は、以下のものが例示できる。ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート等のアルキル錫エステル化合物、テトライソプロポキシチタン、テトラn−ブトキシチタン、テトラキス(2−エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナ)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛−2−エチルオクトエート、鉄−2−エチルヘキソエート、コバルト−2−エチルヘキソエート、マンガン−2−エチルヘキソエート、ナフテン酸コバルト、アルコキシアルミニウム化合物等の有機金属化合物、3−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン、ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物及びその塩、ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩、酢酸カリウム、酢酸ナトリウム、蓚酸リチウム等のアルカリ金属の低級脂肪酸塩、ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン等が例示され、これらはその1種に限定されず、2種もしくはそれ以上の混合物として使用してもよい。なお、これら硬化触媒の配合量は、上記ジオルガノポリシロキサン100部に対して0〜20部、好ましくは0.001〜10部、より好ましくは0.01〜5部である。
【0024】
また、縮合硬化型シリコーンゴム組成物には、上記成分以外に補強等の目的で1種以上の充填剤を用いることが好ましい。このような充填剤としては、例えば、煙霧質シリカ、沈降性シリカ、これらのシリカ表面を有機珪素化合物で疎水化処理したシリカ、石英粉末、カーボンブラック、タルク、ゼオライト及びベントナイト等の補強剤、アスベスト、ガラス繊維、炭素繊維及び有機繊維などの繊維質充填剤、炭酸カルシウム、炭酸亜鉛、珪酸カルシウム、酸化亜鉛、酸化マグネシウム、珪藻土等の塩基性充填剤、酸化チタンなどの光触媒活性を有する充填剤等が例示される。これらの充填剤のうち、炭酸カルシウム、珪酸カルシウム、表面を疎水化処理したシリカ、ゼオライト等が好ましく、特に表面を疎水化処理した煙霧質シリカ、炭酸カルシウムが好ましい。
【0025】
上記充填剤の配合量は、目的や充填剤の種類により選択すればよいが、ベースポリマーのジオルガノポリシロキサン成分100部に対して1〜500部、特に5〜100部であることが好ましい。
【0026】
更に、縮合硬化型シリコーンゴム組成物には、防汚性を阻害しない範囲において種々の化合物を添加することは任意であり、例えばポリエチレングリコール又はその誘導体からなるチクソトロピー性付与剤、ベンガラ及び酸化セリウムなどの耐熱性向上剤、耐寒性向上剤、脱水剤、防錆剤、γ−アミノプロピルトリエトキシシランなどの接着性向上剤、トリオルガノシロキシ単位及びSiO2単位及び/又はモノオルガノシロキシ単位よりなる網状ポリシロキサンなどの液状補強剤などを必要に応じてその所定量を添加することができる。
上記縮合硬化型シリコーンゴム組成物は、室温で湿気により硬化するが、その成形方法、硬化条件などは、組成物の種類に応じた公知の方法、条件を採用することができる。
【0027】
この場合、この組成物の硬化被膜の厚さは、基材の種類や用途により選択すればよいが、50μm〜2mmであることが好ましく、特に100μm〜1mmが好ましい。薄すぎると膜強度が不十分となることがあり、厚すぎるとコスト的に不利となることがある。
【0028】
本発明においては、上記縮合硬化型シリコーンゴム組成物の硬化被膜上にオルガノハイドロジェンポリシロキサンと白金族金属系触媒との混合物を塗布し、上記硬化被膜との間で表面硬化層を形成する。
この場合、オルガノハイドロジェンポリシロキサンと白金族金属系触媒の混合物中のオルガノハイドロジェンポリシロキサンとしては、1分子中に1個以上、好ましくは1〜50個の≡SiH基を含有するものであり、直鎖状、分岐状、環状あるいは二次元網状構造の樹脂状物のいずれでもよい。このようなオルガノハイドロジェンポリシロキサンの代表例としては、例えば、下記式
a1 bSiO(4-a-b)/2
(式中、R1は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、a及びbは、0<a<3、0≦b<3かつ0<a+b≦3となる数であり、好ましくは0<a<2、0.8≦b≦2かつ0.8<a+b≦3となる数であり、特に好ましくは0.05≦a≦1、1.5≦b≦2かつ1.8≦a+b≦2.7となる数である。)
で表されるオルガノハイドロジェンポリシロキサンが挙げられる。
【0029】
上記式中、R1の脂肪族不飽和結合を含有しない非置換又は置換の一価炭化水素基としては、炭素原子数が1〜10、特に炭素原子数が1〜7のものであり、好ましくはメチル基等の炭素原子数1〜3の低級アルキル基、フェニル基、3,3,3−トリフルオロプロピル基である。
【0030】
このようなオルガノハイドロジェンポリシロキサンの例としては、例えば、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルテトラシクロシロキサン、1,3,5,7,8−ペンタメチルペンタシクロシロキサン等のシロキサンオリゴマー、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端シラノール基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体等、R’2(H)SiO1/2単位とSiO4/2単位からなり、任意にR’3SiO1/2単位、R’2SiO2/2単位、R’(H)SiO2/2単位、(H)SiO3/2単位又はR’SiO3/2単位を含み得るシリコーンレジン(但し、式中R’はR1と同様の一価炭化水素基である)などが挙げられる。
【0031】
また、分子鎖片末端ジメチルハイドロジェンシロキシ基封鎖・片末端オキシアルキレン基含有ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖側鎖オキシアルキレン基含有ジメチルポリシロキサン等のオキシアルキレン基含有オルガノハイドロジェンポリシロキサンが挙げられる。これらは1種単独でも2種以上組み合わせても使用することができる。
【0032】
本発明の組成物に用いるオルガノハイドロジェンポリシロキサンは、公知の方法で得ることができ、例えば、下記一般式:
1SiHCl2及びR1 2SiHCl
(式中、R1は前記と同じである。)
から選ばれる少なくとも1種のクロロシランを(共)加水分解し、あるいは該クロロシランと下記一般式:
1 3SiCl及びR1 2SiCl2
(式中、R1は前記と同様である。)
から選ばれる少なくとも1種のクロロシランを組み合わせて共加水分解して得ることができる。また、オルガノハイドロジェンポリシロキサンは、このように共加水分解して得られたポリシロキサンを平衡化したものでもよい。
【0033】
なお、オルガノハイドロジェンポリシロキサンとしては、25℃の粘度が1〜1,000mPa・s、特に5〜500mPa・sであることが好ましい。
【0034】
白金族金属系触媒としては、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体;
2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2
(但し、式中、nは0〜6の整数であり、好ましくは0又は6である。)
等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3220972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3159601号明細書、同第3159662号明細書、同第3775452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。また、白金微粉末やアルミナ、シリカゲル、アスベストなどの担体に白金粉末を担持させたもの、塩化白金酸あるいは塩化白金酸とアルコール、エーテル、アルデヒドなどとの錯体も例示される。この白金又は白金化合物は組成物中への分散をよくするためにイソプロパノール、エタノール、ベンゼン、トルエン、キシレンなどの有機溶媒あるいはオルガノポリシロキサンオイルに溶解乃至分散させて使用してもよい。使用量はオルガノハイドロジェンポリシロキサン100部に対して白金金属として1〜100,000ppmであり、第一成分と第二成分を結合するために必須とされる成分である。
【0035】
また、防汚性向上の目的で、従来から使用されているポリエーテル変性シリコーンオイル、ジメチルジフェニルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイルや流動パラフィン、イソパラフィン等のパラフィンオイル等を本発明の目的を損なわない範囲で更に添加してもよい。
【0036】
上記オルガノハイドロジェンポリシロキサンと白金族金属系触媒との混合物の層厚さは50μm〜1mm、特に100〜500μmであることが好ましい。薄すぎると膜強度が不十分となることがあり、厚すぎるとコスト的に不利となることがある。
また、この混合物の硬化は、(A)成分の炭素数2以上の置換基がアルケニル基の場合は、室温硬化でも加熱硬化でもよく、それ以外の置換基の場合は加熱硬化が必要である。前者の加熱温度は50〜250℃、特に80〜200℃であることが好ましく、後者の加熱温度は100〜400℃であることが好ましい。
この場合、縮合硬化型シリコーンゴム組成物のジオルガノポリシロキサンにおける炭素数2以上の一価炭化水素基がアルケニル基であると、上記混合物中の白金族金属系触媒の存在下にオルガノハイドロジェンポリシロキサンと付加反応し、付加反応硬化物が得られるものである。
【0037】
更に、本発明においては、上記表面硬化層(第1の表面硬化層)上に、脂肪族不飽和炭化水素基及びオキシアルキレン基を含有する化合物を塗布し、第2の表面硬化層を形成することができる。この場合は、前の反応で(B)成分のオルガノハイドロジェンポリシロキサンが残存するようにしておく必要がある。脂肪族不飽和基としては、ビニル基、アリル基等の炭素数2〜6、特に2〜4のアルケニル基が好ましく、オキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基等の炭素数2〜8、特に2〜4のオキシアルキレン基が好ましく、この場合、アルキレンオキシド付加モル数が1〜60、特に3〜50であることが好ましい。具体的にかかる化合物としては、
【化4】
Figure 0004178396
が挙げられる。
この化合物による層厚さは50μm〜1mm、特に100〜500μmとすることが好ましい。
【0038】
また、この層の硬化方法としては、室温硬化でも加熱硬化でもよいが、加熱硬化が好ましい。なお、この層は、上記オルガノハイドロジェンポリシロキサンと白金族金属系触媒との混合物による第1の表面硬化層のオルガノハイドロジェンポリシロキサンと上記化合物の脂肪族不飽和基とが白金族金属系触媒の存在下に付加反応し、付加反応硬化物が形成されるものである。
【0039】
なお、本発明が適用される構造物(基材)としては、特に制限されないが、金属、セメント、ガラス等の無機材質や有機樹脂等が例示され、少なくとも一部が水中に没した水中構造物、例えば、船舶、港湾施設、ブイ、パイプライン、橋梁、海底基地、海底油田掘削設備、発電所の導水路管、養殖網、定置網等に好適に適用される。
【0040】
【実施例】
以下、合成例及び実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、粘度は25℃での測定値を示す。また、部は質量部を示す。
【0041】
[合成例1]
ポリマーAの製造
温度計、撹拌機、冷却器を備えた内容積5リットルの三つロフラスコに2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン2,752g、蒸留水1.8g、水酸化カリウム0.08gを仕込み、150℃で5時間反応させた。反応後、80℃まで冷却してエチレンクロロヒドリン4.0gを加え、更に80℃で3時間反応させた後、減圧加熱により低揮発分を留去して、粘度100,000mPa・s、不揮発分95.8%の無色透明液体(両末端水酸基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:50モル%)を2,400g得た。
【0042】
[合成例2]
ポリマーBの製造
合成例1の2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン2,752gの代わりに、2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン1,376g、オクタメチルシクロテトラシロキサン1,184gを用いた以外は合成例1と同様にして、粘度62,000mPa・s、不揮発分96.8%の無色透明液体(両末端水酸基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:25モル%)を2,300g得た。
【0043】
[合成例3]
ポリマーCの製造
合成例1の2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン2,752gの代わりに、2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン688g、オクタメチルシクロテトラシロキサン1,776gを用いた以外は合成例1と同様にして、粘度50,000mPa・s、不揮発分96.6%の無色透明液体(両末端水酸基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:12.5モル%)を2,250g得た。
【0044】
[合成例4]
ポリマーDの製造
合成例1の2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン2,752gの代わりに、2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン275g、オクタメチルシクロテトラシロキサン2,131gを用いた以外は合成例1と同様にして、粘度80,000mPa・s、不揮発分95.7%の無色透明液体(両末端水酸基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:5モル%)を2,100g得た。
【0045】
[合成例5]
ポリマーEの製造
合成例1の2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサシ2,752gの代わりに、2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン138g、オクタメチルシクロテトラシロキサン2,250gを用いた以外は合成例1と同様にして、粘度150,000mPa・s、不揮発分99.2%の無色透明液体(両末端水酸基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:2.5モル%)を2,150g得た。
【0046】
[合成例6]
ポリマーFの製造
合成例1の2,4,6,8−テトラビニル−2,4,6,8−テトラメチルシクロテトラシロキサン2,752gの代わりに、オクタメチルシクロテトラシロキサン2,368gを用いた以外は合成例1と同様にして、粘度81,000mPa・s、不揮発分96.3%の無色透明液体(両末端水酸基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:0モル%)を2,100g得た。
【0047】
[合成例7]
ポリマーGの製造
温度計、撹拌機、冷却器を備えた内容積2リットルの三つ口フラスコにポリマ−Aを1,000g、テトラメトキシシランを76g仕込み、120℃で24時間反応させた。反応後、減圧加熱によりメタノールと過剰のテトラメトキシシランを留去して、粘度108,000mPa・s、不揮発分96.3%の無色透明液体(両末端トリメトキシ基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:50モル%)を975g得た。
【0048】
[合成例8]
ポリマーHの製造
合成例7のポリマーAの代わりにポリマーFを用いた以外は、合成例7と同様にして、粘度90,000mPa・s、不揮発分98.2%の無色透明液体(両末端トリメトキシ基封鎖ポリメチルビニルシロキサン、珪素原子に結合した全置換基に対する炭素数2以上の置換基の割合:0モル%)を950g得た。
【0049】
処方例1]
ポリマーAを100部と表面がジメチルジクロロシランで処理された乾式シリカ(エロジルR972(日本アエロジル(株)製))5部を均一に混合し、これにビニルトリスメチルエチルケトオキシムシラン6部、γ−アミノプロピルトリエトキシシラン0.5部を減圧下で均一になるまで混合して、縮合硬化型シリコーンゴム組成物を調製した。
【0050】
処方例2]
処方例1において、ポリマーAの代わりにポリマーBを用いた以外は処方例1と同様の手法で組成物を調製した。
【0051】
処方例3]
処方例1において、ポリマーAの代わりにポリマーCを用いた以外は処方例1と同様の手法で組成物を調製した。
【0052】
処方例4]
処方例1において、ポリマーAの代わりにポリマーDを用いた以外は処方例1と同様の手法で組成物を調製した。
【0053】
処方例5]
処方例1において、ポリマーAの代わりにポリマーEを用いた以外は処方例1と同様の手法で組成物を調製した。
【0054】
処方例6]
ポリマーAを100部とコロイダル炭酸カルシウム50部を均一に混合し、これにビニルトリスイソプロペノキシシラン8部、テトラメチルグアニジルプロピルトリメトキシシラン1.0部を減圧下で均一になるまで混合して、組成物を調製した。
【0055】
処方例7]
ポリマーGを100部とコロイダル炭酸カルシウム50部を均一に混合し、これにメチルトリメトキシシラン6部、テトラブチルチタネート1.0部を減圧下で均一になるまで混合して、組成物を調製した。
【0056】
[比較例1]
処方例1において、ポリマーAの代わりにポリマーFを用いた以外は処方例1と同様の手法で組成物を調製した。
【0057】
[比例2]
処方例6において、ポリマーAの代わりにポリマーFを用いた以外は処方例6と同様の手法で組成物を調製した。
【0058】
[比較例3]
処方例7において、ポリマーGの代わりにポリマーHを用いた以外は処方例7と同様の手法で組成物を調製した。
【0059】
次に、これら組成物を23℃,50%RHの条件で7日間かけて硬化させた(初期)。更に、100℃の乾燥機で1時間加熱した(加熱)。また、初期の硬化物表面に下記オルガノハイドロジェンポリシロキサン(M−DH 38−M)を厚さ200μmにコーティングし、100℃の乾燥機で1時間加熱した(HDM)。更に、初期の硬化物表面にオルガノハイドロジェンポリシロキサン(M−DH 38−M)100gと白金−ジビニルテトラメチルジシロキサン錯体/トルエン溶液(白金元素含有量0.5wt%)1gの混合物を厚さ200μmにコーティングし、100℃の乾燥機で1時間加熱した(HDM(1)/Pt)。
【0060】
【化5】
Figure 0004178396
【0061】
上記それぞれの条件で作製したシート表面の接触角を以下の通り測定した。結果を表1に示す。
<初期接触角>
水接触角:協和界面化学(株)製、接触角計CA−X150を使用(液滴量)して測定した。
<耐久接触角>
キシレンを浸した脱脂綿で100往復ラビングした後の接触角を初期と同様に測定した。
【0062】
【表1】
Figure 0004178396
【0063】
<水滴転落角>
シート表面に水滴を1滴たらし、シートの角度を0°(水平)から徐々に上げていき、90°(垂直)に立てた時、水滴が流れ落ちた角度を読みとった。
初期の硬化物表面に下記に示すオルガノハイドロジェンポリシロキサン100gと白金−ジビニルテトラメチルジシロキサン錯体/トルエン溶液(白金元素含有量0.5wt%)1gの混合物を厚さ200μmにコーティングし、100℃の乾燥機で1時間加熱した(HDM(1)〜(4)/Pt)。
また、初期の硬化物表面にオルガノハイドロジェンポリシロキサン(M−DH 38−M)100gと白金−ジビニルテトラメチルジシロキサン錯体/トルエン溶液(白金元素含有量0.5wt%)1gの混合物を厚さ200μmにコーティングし、100℃の乾燥機で1時間加熱した後、更に両末端にアリル基とOH基を有する8個のオキシエチレン基を有する化合物(EO)100gとジビニルテトラメチルジシロキサン錯体/トルエン溶液(白金元素含有量0.5wt%)1gの混合物を厚さ200μmにコーティングし、100℃の乾燥機で1時間加熱した(HDM(1)/Pt/EO)。
得られた結果を表2に示す。
【0064】
【化6】
Figure 0004178396
【0065】
【表2】
Figure 0004178396
【0066】
<防汚性能試験結果>
上記の組成物を、エポキシ系防食塗料(膜厚200μm)を用いて予め塗装した被塗板に、硬化膜厚が300μmになるように塗装して試験塗板とした。このように作製した試験塗板を、23℃,50%RHの条件で7日間かけて硬化させた。
これらの硬化後の試験塗板につき、表3に示す硬化層処理を上記と同様にして行った後、三重県海岸の沖合いに1.5mの深さで12ヶ月間にわたって懸垂試験を行い、フジツボ等の貝類、海藻類の付着状況を観察した。その結果を表3に示す。
【0067】
【表3】
Figure 0004178396
【0068】
【発明の効果】
本発明の防汚方法によれば、無毒であり、環境面において何ら問題もなく、かつ長期間に亘って水生生物の付着・生育を防止し、優れた防汚性を示すものである。[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention is applied to ships, harbor facilities, buoys, pipelines, bridges, submarine bases, submarine oil field drilling equipment, powerhouse conduit pipes, aquaculture nets, stationary nets, etc. (hereinafter referred to as “underwater structures”). The present invention also relates to an antifouling method and an antifouling structure that provide an antifouling coating film suitable for preventing adhesion and growth of aquatic organisms on these surfaces.
[0002]
[Prior art]
Various room temperature curable silicone rubber compositions that give rubbery elastic bodies at room temperature are known, and cured rubbers obtained from room temperature curable silicone rubber compositions (hereinafter referred to as “RTV”) are other organic materials. It is used in various fields because it has superior weather resistance, durability, heat resistance, cold resistance, etc. compared to rubber, and in the construction field, it is used for bonding between glasses and between metal and glass. In recent years, it is widely used as a coating material for buildings, plants, underwater structures and the like.
[0003]
Here, when an underwater structure is installed or put into service, barnacles, sea squirts, cell plastics, blue mussels, crows guys, chrysanthemum bugs, aonoris that live in the water of the sea, rivers, etc. from the splashed part to the surface of the submerged part Aquatic organisms such as Aosa attach and grow, causing various damage. For example, when organisms adhere to the hull, the frictional resistance with water increases, the navigation speed decreases, and fuel consumption increases to maintain a constant speed, which is economically disadvantageous. Moreover, if a living thing adheres to the structure fixed to the water or the water surface of a port facility etc., it will become difficult to fully exhibit each function which these have, and a base material may be eroded. Furthermore, if organisms adhere to aquaculture nets, stationary nets, etc., the nets may be blocked and fish may die.
[0004]
As measures to prevent the attachment and growth of aquatic organisms to underwater structures, antifouling paints containing toxic antifouling agents such as organotin compounds and cuprous oxide were applied to the structures. Although adherence and growth of living organisms were almost prevented, a toxic antifouling agent was used, which is undesirable for environmental safety and hygiene during the manufacture and painting of paints. In the long term, there is a risk of contaminating the water area, so its use is legally prohibited.
[0005]
On the other hand, as a paint which has an effect of preventing adhesion and growth of aquatic organisms and does not contain a toxic antifouling agent, RTV can be supplied with liquid paraffin or petrolactam as an antifouling property by lowering the surface tension of the coating film. Has been proposed (see, for example, Japanese Patent Application Laid-Open Nos. 58-13673 and 62-84166). In addition, volumetric shrinkage associated with the curing of the reactive curable silicone resin causes the poorly compatible and non-reactive polar group-containing silicone resin to ooze out to the surface, preventing the combination with the low surface tension of the reactive curable silicone resin. Non-toxic antifouling paint compositions exhibiting soiling properties (see, for example, Patent Documents 3 and 4: Patent Nos. 2503986 and 295375) have also been proposed. However, sufficient performance cannot be obtained in terms of sustainability of the antifouling property, and there is a problem with respect to the safety of the eluted compound.
[0006]
On the other hand, as the surface antifouling treatment of the structure, a pretreatment composition mainly composed of an organic polymer having an antifouling reactive functional group is treated on the surface of the substrate, and then reacted with the reactive functional group. A surface antifouling treatment structure is described in which an antifouling composition comprising a water-repellent antifouling agent having a reactive functional group as a main component is reacted with a pretreatment layer, and further an allyl group-containing acrylic resin is pretreated. Further, it is exemplified that hydrogen polysiloxane having a SiH group only on the side chain (KF-99 (manufactured by Shin-Etsu Chemical Co., Ltd.)) is subjected to a hydrosilylation reaction (for example, Patent Document 5: Special (See Kaihei 5-16901).
[0007]
However, this method has poor wettability between the acrylic resin used for the pretreatment and the siloxane used in the upper layer, so that the bonding by hydrosilylation is not sufficient, and the durability of the antifouling property is insufficient. It was.
[0008]
[Patent Document 1]
JP 58-13673 A
[Patent Document 2]
JP-A-62-84166
[Patent Document 3]
Japanese Patent No. 2503986
[Patent Document 4]
Japanese Patent No. 2952375
[Patent Document 5]
Japanese Patent Laid-Open No. 5-169011
[0009]
[Problems to be solved by the invention]
Therefore, the present invention is particularly suitable for preventing adhesion and growth of aquatic organisms on the surface of an underwater structure, which is coated on an underwater structure, and is a stain resistant coating film with good durability. An object is to provide an antifouling method and an antifouling structure.
[0010]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventors have found that in the condensation curable silicone rubber composition, 2 mol% of all substituents directly bonded to the silicon atom of the diorganopolysiloxane of the base polymer. Coated with a mixture of an organohydrogenpolysiloxane and a platinum group metal catalyst on a cured film of a composition using a specific diorganopolysiloxane which is a substituted or unsubstituted monovalent hydrocarbon group having 2 or more carbon atoms. And, in this case, more preferably, by further coating and curing a compound containing an aliphatic unsaturated hydrocarbon group and an oxyalkylene group thereon, a significant improvement in antifouling property can be achieved, It was found that it was possible to obtain extremely good antifouling properties and sustainability, and that it was also excellent in safety, leading to the present invention.
[0011]
  Therefore, the present invention
[I] On the surface of a substrate, preferably an underwater structure, (A) 2 of all substituents having a hydroxyl group or hydrolyzable group bonded to a silicon atom in the molecule and bonded to a silicon atom More than mol%An alkenyl group in which the other group bonded to the silicon atom is a methyl groupIsThe following general formula (1) or (2)
[Chemical 7]
Figure 0004178396
(In the formula, R is a methyl group or an alkenyl group, and 2 mol% or more of R is an alkenyl group. X is an oxygen atom or a divalent hydrocarbon group having 1 to 8 carbon atoms, and n is the diorgano group. (This is a number that sets the viscosity of polysiloxane at 25 ° C. to 100 to 1,000,000 mPa · s.)
[Chemical 8]
Figure 0004178396
Wherein Y is a hydrolyzable group, a is 2 or 3, R is a methyl group or an alkenyl group, and 2 mol% or more of R is an alkenyl group. X is an oxygen atom or a carbon number 1 to 8 divalent hydrocarbon groups, and n is a number that makes the viscosity of this diorganopolysiloxane at 25 ° C. 100 to 1,000,000 mPa · s.)
Represented byIn addition to forming a cured film of a condensation curable silicone rubber composition comprising diorganopolysiloxane as a base polymer and blending a silane having two or more hydrolyzable groups in one molecule or a partial hydrolyzate thereof, (B) Mixture of organohydrogenpolysiloxane and platinum group metal catalyst on the cured coatingThe organohydrogenpolysiloxane is applied in such an amount that it remains when it undergoes an addition reaction with the alkenyl group in the cured coating, and the alkenyl group in the cured coating and the organohydrogenpolysiloxane are reacted by addition reaction. A first hardened layer is formed with the coating, and (C) a compound containing an aliphatic unsaturated hydrocarbon group and an oxyalkylene group is applied onto the first hardened layer, and The remaining organohydrogenpolysiloxane and the aliphatic unsaturated hydrocarbon group in the first hardened surface layer are subjected to an addition reaction to form a second between the first hardened surface layer and the first hardened surface layer.Antifouling method for base material characterized by forming a hardened surface layer, AndAnd
[II] An antifouling structure having an antifouling film formed by the above antifouling method
I will provide a.
[0012]
Hereinafter, the present invention will be described in more detail.
In the antifouling method and antifouling structure according to the present invention, first, a cured film of a condensation curable silicone rubber composition is formed on the surface of a structure (base material), particularly an underwater structure.
In this case, the first component of the silicone rubber composition is diorganopolysiloxane, which is a base polymer.
The diorganopolysiloxane of the base polymer used in the first component has a hydroxyl group or hydrolyzable group directly bonded to at least two silicon atoms in the molecule in order to be cured by a condensation reaction. 2 mol% or more of the bonded substituents have a substituted or unsubstituted monovalent hydrocarbon group having 2 or more carbon atoms.
[0013]
In the base polymer of the conventionally used condensation curable silicone rubber (RTV rubber) composition, most of the substituents other than the hydroxyl group or hydrolyzable group involved in the condensation reaction are methyl groups. Is obtained by introducing a specific amount of a substituted or unsubstituted monovalent hydrocarbon group having 2 or more carbon atoms that does not participate in the condensation reaction (crosslinking) to a substituent other than the hydrolyzable group, and has 2 carbon atoms after curing. It is necessary that the above substituted or unsubstituted monovalent hydrocarbon group remains in the cured product.
This diorganopolysiloxane is substantially linear, but may be branched as long as it does not cause gelation or impair rubber elasticity. The amount of branching is usually 10 mol% or less, preferably 5 mol% or less.
Specifically, diorganopolysiloxane represented by the following general formula (1) or (2) is preferable.
[0014]
[Chemical 3]
Figure 0004178396
(In the formula, R is a substituted or unsubstituted monovalent hydrocarbon group, and 2 mol% or more of R is a substituted or unsubstituted monovalent hydrocarbon group having 2 or more carbon atoms. X is an oxygen atom or carbon. A divalent hydrocarbon group of 1 to 8; Y is a hydrolyzable group; n is a number that sets the viscosity of this diorganopolysiloxane at 25 ° C. to 100 to 1,000,000 mPa · s; a is 2 or 3.)
[0015]
Here, R is an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a 2-ethylbutyl group or an octyl group, a cycloalkyl group such as a cyclohexyl group or a cyclopentyl group, a vinyl group, a propenyl group, a butenyl group, or a heptenyl. Group, hexenyl group, alkenyl group such as allyl group, phenyl group, tolyl group, xylyl group, naphthyl group, aryl group such as diphenyl group, aralkyl group such as benzyl group, phenylethyl group or the carbon atom of these groups The same or different unsubstituted selected from a chloromethyl group, a trifluoropropyl group, a 2-cyanoethyl group, a 3-cyanopropyl group, etc., in which some or all of the hydrogen atoms are substituted with a halogen atom, a cyano group, or the like Alternatively, the substitution is preferably a monovalent hydrocarbon group having 1 to 12 carbon atoms, particularly 1 to 10 carbon atoms.
[0016]
Further, 2 mol% or more, preferably 2.5 mol% or more of R is required to be a substituted or unsubstituted monovalent hydrocarbon group having 2 or more carbon atoms. Although it does not restrict | limit especially as an upper limit, From the ease of manufacture, it is 50 mol% or less.
[0017]
Examples of the substituted or unsubstituted monovalent hydrocarbon group having 2 or more carbon atoms include monovalent hydrocarbon groups other than the above-described methyl group of R, vinyl group, allyl group, propenyl group, butenyl group, heptenyl group. An alkenyl group such as a hexenyl group, an ethyl group, a propyl group, a phenyl group, and the like are preferable. Among them, an alkenyl group that can be hydrosilylated with the organohydrogenpolysiloxane of the component (B) is preferable, and a vinyl group is particularly preferable. Two or more of these may be used.
In R, a methyl group is preferable as the substituent other than the monovalent hydrocarbon group having 2 or more carbon atoms.
[0018]
X is an oxygen atom or a divalent hydrocarbon group having 1 to 8 carbon atoms. As the divalent hydrocarbon group, — (CH2)m(M represents 1 to 8). Among these, oxygen atom, -CH2CH2-Is preferred. n is a number that sets the viscosity of the diorganopolysiloxane at 25 ° C. to 100 to 1,000,000 mPa · s, preferably 500 to 500,000 mPa · s.
[0019]
Y is a hydrolyzable group, specifically, an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group or a butoxy group, a ketoxime group such as a dimethyl ketoxime group or a methylethyl ketoxime group, an acyloxy group such as an acetoxy group, Examples thereof include alkenyloxy groups such as isopropenyloxy group and isobutenyloxy group, with alkoxy and ketoxime groups being preferred, and methoxy and ethoxy groups being particularly preferred.
[0020]
Such a diorganopolysiloxane can be produced by a known method such as obtaining a cyclic siloxane or linear oligomer which is a monomer of various organopolysiloxanes by an equilibrium reaction with an acid or base catalyst.
In addition, when a branched structure is introduced into the diorganopolysiloxane, SiO 2 is added during the equilibration polymerization.3/2Unit and / or SiO4/2It is usual to add silane or siloxane containing units at a level at which the diorganopolysiloxane does not gel. Further, it is desirable that the low molecular weight siloxane is removed from the diorganopolysiloxane by stripping or washing.
[0021]
A crosslinking agent is used in the condensation curable silicone rubber composition. As the crosslinking agent, a silane having 2 or more, preferably 3 or more hydrolyzable groups in one molecule, or a partially hydrolyzed condensate thereof is used. In this case, the hydrolyzable group includes an alkoxy group such as a methoxy group, an ethoxy group, and a butoxy group, a ketoxime group such as a dimethyl ketoxime group and a methyl ethyl ketoxime group, an acyloxy group such as an acetoxy group, an isopropenyloxy group, Examples include alkenyloxy groups such as isobutenyloxy group, amino groups such as N-butylamino group and N, N-diethylamino group, and amide groups such as N-methylacetamide group. Among these, an alkoxy group, a ketoxime group, an acyloxy group, and an alkenyloxy group are preferable.
[0022]
The blending amount of the crosslinking agent is desirably 1 to 50 parts, preferably 2 to 30 parts, more preferably 5 to 20 parts with respect to 100 parts (parts by mass, the same applies hereinafter) of the diorganopolysiloxane.
[0023]
In addition, it is preferable that the condensation curable silicone rubber composition basically does not use a curing catalyst, but when a curing catalyst is used, the following can be exemplified. Alkyl tin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate, tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, dipropoxy bis (acetylacetona) titanium, titanium iso Titanic acid ester or titanium chelate compound such as propoxyoctylene glycol, zinc naphthenate, zinc stearate, zinc-2-ethyl octoate, iron-2-ethylhexoate, cobalt-2-ethylhexoate, manganese- Organometallic compounds such as 2-ethylhexoate, cobalt naphthenate and alkoxyaluminum compounds, amino acids such as 3-aminopropyltriethoxysilane and N-β (aminoethyl) γ-aminopropyltrimethoxysilane Amine compounds such as alkyl group-substituted alkoxysilanes, hexylamines, dodecylamine phosphates and salts thereof, quaternary ammonium salts such as benzyltriethylammonium acetate, lower fatty acid salts of alkali metals such as potassium acetate, sodium acetate, lithium oxalate, Dialkylhydroxylamine such as dimethylhydroxylamine and diethylhydroxylamine, guanidyl groups such as tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane and tetramethylguanidylpropyltris (trimethylsiloxy) silane Examples thereof include silane, siloxane and the like, which are not limited to one of them, and may be used as a mixture of two or more. In addition, the compounding quantity of these curing catalysts is 0-20 parts with respect to 100 parts of said diorganopolysiloxane, Preferably it is 0.001-10 parts, More preferably, it is 0.01-5 parts.
[0024]
In addition to the above components, it is preferable to use one or more fillers for the purpose of reinforcement in the condensation curable silicone rubber composition. Examples of such fillers include fumed silica, precipitated silica, silica whose surface is hydrophobized with an organosilicon compound, quartz powder, carbon black, talc, zeolite, bentonite and other reinforcing agents, asbestos Fiber fillers such as glass fiber, carbon fiber and organic fiber, basic fillers such as calcium carbonate, zinc carbonate, calcium silicate, zinc oxide, magnesium oxide and diatomaceous earth, fillers having photocatalytic activity such as titanium oxide, etc. Is exemplified. Of these fillers, calcium carbonate, calcium silicate, silica whose surface has been hydrophobized, zeolite, and the like are preferable, and fumed silica and calcium carbonate whose surface has been hydrophobized are particularly preferable.
[0025]
The blending amount of the filler may be selected depending on the purpose and the kind of the filler, but is preferably 1 to 500 parts, particularly preferably 5 to 100 parts with respect to 100 parts of the diorganopolysiloxane component of the base polymer.
[0026]
Furthermore, it is optional to add various compounds to the condensation curable silicone rubber composition as long as they do not inhibit the antifouling property. For example, thixotropy-imparting agents composed of polyethylene glycol or its derivatives, bengara, cerium oxide, etc. Heat resistance improver, cold resistance improver, dehydrating agent, rust preventive agent, adhesion improver such as γ-aminopropyltriethoxysilane, triorganosiloxy unit and SiO2A predetermined amount of a liquid reinforcing agent such as a reticulated polysiloxane composed of units and / or monoorganosiloxy units can be added as necessary.
The condensation curable silicone rubber composition is cured by moisture at room temperature, and a known method and conditions according to the type of the composition can be adopted as the molding method and curing conditions.
[0027]
In this case, the thickness of the cured coating film of this composition may be selected depending on the type and use of the substrate, but is preferably 50 μm to 2 mm, particularly preferably 100 μm to 1 mm. If it is too thin, the film strength may be insufficient, and if it is too thick, it may be disadvantageous in terms of cost.
[0028]
In the present invention, a mixture of an organohydrogenpolysiloxane and a platinum group metal catalyst is applied onto the cured film of the condensation curable silicone rubber composition, and a surface cured layer is formed between the cured film.
In this case, the organohydrogenpolysiloxane in the mixture of the organohydrogenpolysiloxane and the platinum group metal catalyst contains one or more, preferably 1 to 50 ≡SiH groups in one molecule. Any of linear, branched, cyclic, or two-dimensional network resinous materials may be used. Representative examples of such organohydrogenpolysiloxanes include, for example, the following formula:
HaR1 bSiO(4-ab) / 2
(Wherein R1Is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond, and a and b are numbers satisfying 0 <a <3, 0 ≦ b <3 and 0 <a + b ≦ 3 Yes, preferably 0 <a <2, 0.8 ≦ b ≦ 2, and 0.8 <a + b ≦ 3, particularly preferably 0.05 ≦ a ≦ 1, 1.5 ≦ b ≦ 2, and It is a number that satisfies 1.8 ≦ a + b ≦ 2.7. )
The organohydrogen polysiloxane represented by these is mentioned.
[0029]
In the above formula, R1The unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond is one having 1 to 10 carbon atoms, particularly 1 to 7 carbon atoms, preferably a carbon such as a methyl group. A lower alkyl group having 1 to 3 atoms, a phenyl group, and a 3,3,3-trifluoropropyl group.
[0030]
Examples of such organohydrogenpolysiloxanes include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyltetracyclosiloxane, 1,3,5,7, Siloxane oligomers such as 8-pentamethylpentacyclosiloxane, trimethylsiloxy group-capped methylhydrogen polysiloxane with molecular chain terminals, trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer with molecular chain terminals, and silanols with both molecular chains Blocked methyl hydrogen polysiloxane, Molecular chain both ends silanol group blocked dimethyl siloxane / methyl hydrogen siloxane copolymer, Molecular chain both ends dimethyl hydrogen siloxy group blocked dimethyl polysiloxane, Molecular chain both ends dimethyl hydrogen Siloxy group methylhydrogenpolysiloxane capped at both molecular chain terminals blocked with dimethylhydrogensiloxy groups dimethylsiloxane-methylhydrogensiloxane copolymer, R '2(H) SiO1/2Unit and SiO4/2Unit, optionally R 'ThreeSiO1/2Unit, R '2SiO2/2Unit, R '(H) SiO2/2Unit, (H) SiO3/2Unit or R'SiO3/2A silicone resin that can contain units, where R 'is R1And the same monovalent hydrocarbon group).
[0031]
In addition, oxyalkylene group-containing organohydrocarbons such as dimethylpolysiloxanes containing dimethylhydrogensiloxy group-blocked / single-end oxyalkylene groups and dimethylpolysiloxanes containing dimethylhydrogensiloxy group-blocked side-chain oxyalkylene groups are also included. Genpolysiloxane may be mentioned. These can be used singly or in combination of two or more.
[0032]
The organohydrogenpolysiloxane used in the composition of the present invention can be obtained by a known method, for example, the following general formula:
R1SiHCl2And R1 2SiHCl
(Wherein R1Is the same as above. )
(Co) hydrolysis of at least one chlorosilane selected from: or the chlorosilane and the following general formula:
R1 ThreeSiCl and R1 2SiCl2
(Wherein R1Is the same as described above. )
It can be obtained by combining and co-hydrolyzing at least one chlorosilane selected from. In addition, the organohydrogenpolysiloxane may be one obtained by equilibrating the polysiloxane obtained by cohydrolysis.
[0033]
The organohydrogenpolysiloxane preferably has a viscosity at 25 ° C. of 1 to 1,000 mPa · s, particularly 5 to 500 mPa · s.
[0034]
As the platinum group metal catalyst, a catalyst known as a catalyst used in the hydrosilylation reaction may be mentioned. Specific examples thereof include, for example, platinum group metals such as platinum (including platinum black), rhodium, and palladium;
H2PtClFour・ NH2O, H2PtCl6・ NH2O, NaHPtCl6・ NH2O, KHPtCl6・ NH2O, Na2PtCl6・ NH2O, K2PtClFour・ NH2O, PtClFour・ NH2O, PtCl2, Na2HPtClFour・ NH2O
(However, in the formula, n is an integer of 0 to 6, preferably 0 or 6.)
Platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (see US Pat. No. 3,220,972), chloroplatinic acid and olefin complex (US Pat. Nos. 3,159,601 and 3,159,662) No. specification, see No. 3775452), a platinum group metal such as platinum black and palladium supported on a support such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson's catalyst), platinum chloride, chloroplatinic acid, or a chloroplatinate and a vinyl group-containing siloxane, particularly a vinyl group-containing cyclic siloxane. Also exemplified are platinum fine powder, those obtained by supporting platinum powder on a carrier such as alumina, silica gel and asbestos, and chloroplatinic acid or a complex of chloroplatinic acid and alcohol, ether, aldehyde or the like. This platinum or platinum compound may be used by dissolving or dispersing in an organic solvent such as isopropanol, ethanol, benzene, toluene, xylene or an organopolysiloxane oil in order to improve dispersion in the composition. The amount used is 1 to 100,000 ppm as platinum metal with respect to 100 parts of the organohydrogenpolysiloxane, and is an essential component for bonding the first component and the second component.
[0035]
In addition, for the purpose of improving the antifouling property, conventionally used polyether-modified silicone oil, dimethyldiphenyl silicone oil, silicone oil such as methylphenyl silicone oil, paraffin oil such as liquid paraffin and isoparaffin, etc. You may add further in the range which does not impair.
[0036]
The layer thickness of the mixture of the organohydrogenpolysiloxane and the platinum group metal catalyst is preferably 50 μm to 1 mm, particularly preferably 100 to 500 μm. If it is too thin, the film strength may be insufficient, and if it is too thick, it may be disadvantageous in terms of cost.
In addition, the curing of the mixture may be room temperature curing or heat curing when the substituent having 2 or more carbon atoms of the component (A) is an alkenyl group, and heat curing is necessary in the case of other substituents. The former heating temperature is preferably 50 to 250 ° C., particularly preferably 80 to 200 ° C., and the latter heating temperature is preferably 100 to 400 ° C.
In this case, if the monovalent hydrocarbon group having 2 or more carbon atoms in the diorganopolysiloxane of the condensation curable silicone rubber composition is an alkenyl group, the organohydrogenpolysiloxane is present in the presence of the platinum group metal catalyst in the mixture. Addition reaction with siloxane gives an addition reaction cured product.
[0037]
Furthermore, in this invention, the compound containing an aliphatic unsaturated hydrocarbon group and an oxyalkylene group is apply | coated on the said surface hardening layer (1st surface hardening layer), and a 2nd surface hardening layer is formed. be able to. In this case, it is necessary that the organohydrogenpolysiloxane of the component (B) remains in the previous reaction. The aliphatic unsaturated group is preferably an alkenyl group having 2 to 6 carbon atoms, particularly 2 to 4 carbon atoms such as a vinyl group or an allyl group. The oxyalkylene group may be an oxyethylene group, an oxypropylene group, an oxybutylene group, or the like. An oxyalkylene group having 2 to 8 carbon atoms, particularly 2 to 4 carbon atoms is preferred. In this case, the number of added alkylene oxides is preferably 1 to 60, particularly 3 to 50. Specifically, as such a compound,
[Formula 4]
Figure 0004178396
Is mentioned.
The layer thickness of this compound is preferably 50 μm to 1 mm, particularly preferably 100 to 500 μm.
[0038]
The curing method for this layer may be room temperature curing or heat curing, but heat curing is preferred. In this layer, the organohydrogenpolysiloxane of the first surface hardened layer by the mixture of the organohydrogenpolysiloxane and the platinum group metal catalyst and the aliphatic unsaturated group of the compound are a platinum group metal catalyst. In the presence of, an addition reaction is performed to form an addition reaction cured product.
[0039]
In addition, the structure (base material) to which the present invention is applied is not particularly limited, but examples thereof include inorganic materials such as metals, cement, and glass, organic resins, and the like, and at least a part of the structure is submerged in water. For example, it is suitably applied to ships, port facilities, buoys, pipelines, bridges, submarine bases, subsea oil field drilling equipment, waterway conduit pipes, aquaculture nets, stationary nets, and the like.
[0040]
【Example】
EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In addition, a viscosity shows the measured value in 25 degreeC. Moreover, a part shows a mass part.
[0041]
[Synthesis Example 1]
Production of polymer A
2,752, g of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane, distilled water in a three-liter flask having an internal volume of 5 liters equipped with a thermometer, a stirrer and a condenser 1.8 g and 0.08 g of potassium hydroxide were charged and reacted at 150 ° C. for 5 hours. After the reaction, the mixture was cooled to 80 ° C., 4.0 g of ethylene chlorohydrin was added, and further reacted at 80 ° C. for 3 hours, and then the low volatile matter was distilled off by heating under reduced pressure to obtain a viscosity of 100,000 mPa · s, non-volatile. 2,400 g of 95.8% colorless transparent liquid (both end hydroxyl-blocked polymethylvinylsiloxane, ratio of substituents having 2 or more carbon atoms to all substituents bonded to silicon atoms: 50 mol%) was obtained.
[0042]
[Synthesis Example 2]
Production of polymer B
Instead of 2,752, g of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane in Synthesis Example 1, 2,4,6,8-tetravinyl-2,4, Colorless and transparent with a viscosity of 62,000 mPa · s and a non-volatile content of 96.8% in the same manner as in Synthesis Example 1 except that 1,376 g of 6,8-tetramethylcyclotetrasiloxane and 1,184 g of octamethylcyclotetrasiloxane were used. 2,300 g of liquid (both terminal hydroxyl-blocked polymethylvinylsiloxane, ratio of substituents having 2 or more carbon atoms to all substituents bonded to silicon atoms: 25 mol%) was obtained.
[0043]
[Synthesis Example 3]
Production of polymer C
Instead of 2,752, g of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane in Synthesis Example 1, 2,4,6,8-tetravinyl-2,4, A colorless transparent liquid having a viscosity of 50,000 mPa · s and a non-volatile content of 96.6% (similar to Synthesis Example 1 except that 688 g of 6,8-tetramethylcyclotetrasiloxane and 1,776 g of octamethylcyclotetrasiloxane were used) 2,250 g of polymethylvinylsiloxane blocked with hydroxyl groups at both ends and the ratio of substituents having 2 or more carbon atoms to all substituents bonded to silicon atoms (12.5 mol%) were obtained.
[0044]
[Synthesis Example 4]
Production of polymer D
Instead of 2,752, g of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane in Synthesis Example 1, 2,4,6,8-tetravinyl-2,4, A colorless transparent liquid having a viscosity of 80,000 mPa · s and a non-volatile content of 95.7% (similar to Synthesis Example 1 except that 275 g of 6,8-tetramethylcyclotetrasiloxane and 2,131 g of octamethylcyclotetrasiloxane were used) 2,100 g of hydroxyl group-blocked polymethylvinylsiloxane at both ends and the ratio of substituents having 2 or more carbon atoms to all substituents bonded to silicon atoms: 5 mol%) were obtained.
[0045]
[Synthesis Example 5]
Production of polymer E
Instead of 2,752, g of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxaci of Synthesis Example 1, 2,4,6,8-tetravinyl-2,4 , 6,8-tetramethylcyclotetrasiloxane, colorless transparent liquid having a viscosity of 150,000 mPa · s and a non-volatile content of 99.2% in the same manner as in Synthesis Example 1 except for using 138 g of octamethylcyclotetrasiloxane and 2,250 g of octamethylcyclotetrasiloxane. 2,150 g of (both terminal hydroxyl-blocked polymethylvinylsiloxane, ratio of substituents having 2 or more carbon atoms to all substituents bonded to silicon atoms: 2.5 mol%) was obtained.
[0046]
[Synthesis Example 6]
Production of polymer F
Synthesis example except that 2,368 g of octamethylcyclotetrasiloxane was used instead of 2,752 g of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane in Synthesis Example 1 1, a colorless transparent liquid having a viscosity of 81,000 mPa · s and a non-volatile content of 96.3% (both end-terminated hydroxyl-blocked polymethylvinylsiloxane, a substituent having 2 or more carbon atoms with respect to all substituents bonded to silicon atoms) 2,100 g of a ratio: 0 mol%) was obtained.
[0047]
[Synthesis Example 7]
Production of polymer G
1,000 g of polymer A and 76 g of tetramethoxysilane were charged into a 2-neck three-necked flask equipped with a thermometer, a stirrer, and a condenser, and reacted at 120 ° C. for 24 hours. After the reaction, methanol and excess tetramethoxysilane are distilled off by heating under reduced pressure, and a colorless transparent liquid having a viscosity of 108,000 mPa · s and a non-volatile content of 96.3% (both end-terminated trimethoxy group-blocked polymethylvinylsiloxane, silicon atoms) 975 g of a ratio of substituents having 2 or more carbon atoms to all bonded substituents: 50 mol% was obtained.
[0048]
[Synthesis Example 8]
Production of polymer H
A colorless transparent liquid having a viscosity of 90,000 mPa · s and a non-volatile content of 98.2% (both end-terminated trimethoxy group-blocked polymethyl) except that the polymer F was used instead of the polymer A of Synthesis Example 7 950 g of vinyl siloxane and a ratio of substituents having 2 or more carbon atoms to all substituents bonded to silicon atoms (0 mol%) were obtained.
[0049]
    [PrescriptionExample 1]
  100 parts of polymer A and 5 parts of dry silica (EROSIL R972 (manufactured by Nippon Aerosil Co., Ltd.)), the surface of which was treated with dimethyldichlorosilane, were uniformly mixed, and this was mixed with 6 parts of vinyltrismethylethylketoxime silane and γ-amino. A condensation curable silicone rubber composition was prepared by mixing 0.5 parts of propyltriethoxysilane under reduced pressure until uniform.
[0050]
    [PrescriptionExample 2]
  PrescriptionIn Example 1, except that polymer B was used instead of polymer APrescriptionA composition was prepared in the same manner as in Example 1.
[0051]
    [PrescriptionExample 3]
  PrescriptionExample 1 except that polymer C was used instead of polymer APrescriptionA composition was prepared in the same manner as in Example 1.
[0052]
    [PrescriptionExample 4]
  PrescriptionIn Example 1, except that polymer D was used instead of polymer APrescriptionA composition was prepared in the same manner as in Example 1.
[0053]
    [PrescriptionExample 5]
  PrescriptionIn Example 1, except that polymer E was used instead of polymer A,PrescriptionA composition was prepared in the same manner as in Example 1.
[0054]
    [PrescriptionExample 6]
  100 parts of Polymer A and 50 parts of colloidal calcium carbonate are mixed uniformly, and 8 parts of vinyltrisisopropenoxysilane and 1.0 part of tetramethylguanidylpropyltrimethoxysilane are mixed under reduced pressure until uniform. Thus, a composition was prepared.
[0055]
    [PrescriptionExample 7]
  100 parts of polymer G and 50 parts of colloidal calcium carbonate were uniformly mixed, and 6 parts of methyltrimethoxysilane and 1.0 part of tetrabutyl titanate were mixed under reduced pressure until uniform, to prepare a composition. .
[0056]
    [Comparative Example 1]
  PrescriptionIn Example 1, except that polymer F was used instead of polymer A,PrescriptionA composition was prepared in the same manner as in Example 1.
[0057]
    [ratioComparisonExample 2]
  PrescriptionIn Example 6, except that polymer F was used instead of polymer APrescriptionA composition was prepared in the same manner as in Example 6.
[0058]
    [Comparative Example 3]
  PrescriptionIn Example 7, except that polymer H was used instead of polymer GPrescriptionA composition was prepared in the same manner as in Example 7.
[0059]
Next, these compositions were cured for 7 days under the conditions of 23 ° C. and 50% RH (initial stage). Furthermore, it heated for 1 hour with a 100 degreeC drying machine (heating). Further, the following organohydrogenpolysiloxane (MD) is formed on the surface of the initial cured product.H 38-M) was coated to a thickness of 200 μm and heated in a dryer at 100 ° C. for 1 hour (HDM). Furthermore, an organohydrogenpolysiloxane (MD) is formed on the surface of the initial cured product.H 38-M) A mixture of 100 g and 1 g of a platinum-divinyltetramethyldisiloxane complex / toluene solution (platinum element content 0.5 wt%) was coated to a thickness of 200 μm and heated in a dryer at 100 ° C. for 1 hour (HDM ( 1) / Pt).
[0060]
[Chemical formula 5]
Figure 0004178396
[0061]
The contact angle of the sheet surface produced under each of the above conditions was measured as follows. The results are shown in Table 1.
<Initial contact angle>
Water contact angle: Measured using a contact angle meter CA-X150 manufactured by Kyowa Interface Chemical Co., Ltd. (droplet amount).
<Durable contact angle>
The contact angle after 100 reciprocating rubs with absorbent cotton soaked in xylene was measured in the same manner as in the initial stage.
[0062]
[Table 1]
Figure 0004178396
[0063]
<Water drop falling angle>
One drop of water was dropped on the surface of the sheet, and the angle of the sheet was gradually increased from 0 ° (horizontal), and the angle at which the water droplets flowed down was read when the sheet was raised to 90 ° (vertical).
A mixture of 100 g of the organohydrogenpolysiloxane shown below and 1 g of a platinum-divinyltetramethyldisiloxane complex / toluene solution (platinum element content 0.5 wt%) as shown below was coated on the surface of the initial cured product to a thickness of 200 μm, and 100 ° C. For 1 hour (HDM (1) to (4) / Pt).
In addition, an organohydrogenpolysiloxane (MD) is formed on the surface of the initial cured product.H 38-M) A mixture of 100 g and a platinum-divinyltetramethyldisiloxane complex / toluene solution (platinum element content 0.5 wt%) 1 g was coated to a thickness of 200 μm, heated for 1 hour with a dryer at 100 ° C., and then further 200 μm thick mixture of 100 g of compound (EO) having 8 oxyethylene groups having allyl groups and OH groups at both ends and 1 g of divinyltetramethyldisiloxane complex / toluene solution (platinum element content 0.5 wt%) And heated in a dryer at 100 ° C. for 1 hour (HDM (1) / Pt / EO).
The obtained results are shown in Table 2.
[0064]
[Chemical 6]
Figure 0004178396
[0065]
[Table 2]
Figure 0004178396
[0066]
<Anti-fouling performance test results>
  the aboveSet ofThe composition was applied to a coated plate previously coated with an epoxy anticorrosive paint (film thickness 200 μm) so as to have a cured film thickness of 300 μm to obtain a test coated plate. The test coated plate thus produced was cured for 7 days under the conditions of 23 ° C. and 50% RH.
  About these test coating plates after hardening, after performing the hardened layer process shown in Table 3 in the same manner as described above, a suspension test was carried out for 12 months at a depth of 1.5 m off the coast of Mie Prefecture. The state of adhesion of shellfish and seaweed was observed. The results are shown in Table 3.
[0067]
[Table 3]
Figure 0004178396
[0068]
【The invention's effect】
According to the antifouling method of the present invention, it is non-toxic, has no environmental problems, prevents adhesion and growth of aquatic organisms over a long period of time, and exhibits excellent antifouling properties.

Claims (4)

基材の表面に、(A)分子中に少なくとも2個の珪素原子に結合した水酸基又は加水分解性基を有し、珪素原子に結合する全置換基の2モル%以上がアルケニル基であり、珪素原子に結合するその他の基がメチル基である下記一般式(1)又は(2)
Figure 0004178396
(式中、Rはメチル基又はアルケニル基であり、Rの2モル%以上がアルケニル基である。Xは酸素原子又は炭素数1〜8の二価炭化水素基であり、nはこのジオルガノポリシロキサンの25℃における粘度を100〜1,000,000mPa・sとする数である。)
Figure 0004178396
(式中、Yは加水分解性基であり、aは2又は3であり、Rはメチル基又はアルケニル基であり、Rの2モル%以上がアルケニル基である。Xは酸素原子又は炭素数1〜8の二価炭化水素基であり、nはこのジオルガノポリシロキサンの25℃における粘度を100〜1,000,000mPa・sとする数である。)
で表されるジオルガノポリシロキサンをベースポリマーとし、加水分解性基を1分子中に2個以上有するシラン又はその部分加水分解物を配合してなる縮合硬化型シリコーンゴム組成物の硬化被膜を形成すると共に、この硬化被膜上に、(B)オルガノハイドロジェンポリシロキサンと白金族金属系触媒との混合物をこのオルガノハイドロジェンポリシロキサンが上記硬化被膜中のアルケニル基と付加反応した際に残存するような量で塗布し、上記硬化被膜中のアルケニル基とオルガノハイドロジェンポリシロキサンとを付加反応させて上記硬化被膜との間で第1の表面硬化層を形成し、更に、この第1の表面硬化層上に、(C)脂肪族不飽和炭化水素基及びオキシアルキレン基を含有する化合物を塗布し、上記第1の表面硬化層中の上記残存したオルガノハイドロジェンポリシロキサンと脂肪族不飽和炭化水素基とを付加反応させて、上記第1の表面硬化層との間で第2の表面硬化層を形成することを特徴とする基材の防汚方法。
On the surface of the substrate, (A) the molecule has a hydroxyl group or hydrolyzable group bonded to at least two silicon atoms, and 2 mol% or more of all substituents bonded to the silicon atom are alkenyl groups, The following general formula (1) or (2), wherein the other group bonded to the silicon atom is a methyl group
Figure 0004178396
(In the formula, R is a methyl group or an alkenyl group, and 2 mol% or more of R is an alkenyl group. X is an oxygen atom or a divalent hydrocarbon group having 1 to 8 carbon atoms, and n is the diorgano group. (This is a number that sets the viscosity of polysiloxane at 25 ° C. to 100 to 1,000,000 mPa · s.)
Figure 0004178396
Wherein Y is a hydrolyzable group, a is 2 or 3, R is a methyl group or an alkenyl group, and 2 mol% or more of R is an alkenyl group. X is an oxygen atom or a carbon number 1 to 8 divalent hydrocarbon groups, and n is a number that makes the viscosity of this diorganopolysiloxane at 25 ° C. 100 to 1,000,000 mPa · s.)
A cured coating of a condensation curable silicone rubber composition comprising a diorganopolysiloxane represented by the formula, and a silane having two or more hydrolyzable groups in one molecule or a partial hydrolyzate thereof is formed. In addition, a mixture of (B) an organohydrogenpolysiloxane and a platinum group metal catalyst is left on the cured coating when the organohydrogenpolysiloxane undergoes an addition reaction with the alkenyl group in the cured coating. The first surface-cured layer is formed between the cured film and the alkenyl group in the cured film by addition reaction with the organohydrogenpolysiloxane. On the layer, (C) a compound containing an aliphatic unsaturated hydrocarbon group and an oxyalkylene group is applied, and the residue in the first surface hardened layer is applied. The organohydrogen with a polysiloxane and unsaturated aliphatic hydrocarbon groups by addition reaction, the first explosion of the substrate and forming a second hardfacing layer between the surface hardened layer Dirty way.
縮合硬化型シリコーンゴム組成物(A)が、充填剤として炭酸カルシウム、珪酸カルシウム、及び表面を疎水化処理したシリカゼオライトのいずれかを含有することを特徴とする請求項1記載の防汚方法。Condensation-curable silicone rubber composition (A) is calcium carbonate as a filler, an antifouling method of claim 1 Symbol mounting, characterized in that it contains either a calcium silicate-silica zeolite and a surface hydrophobic treatment, . 基材が水中構造物である請求項1又は2記載の防汚方法。The antifouling method according to claim 1 or 2 , wherein the substrate is an underwater structure. 請求項1乃至のいずれか1項記載の防汚方法により防汚性被膜が形成された防汚性構造物。An antifouling structure in which an antifouling film is formed by the antifouling method according to any one of claims 1 to 3 .
JP2003175860A 2003-06-20 2003-06-20 Antifouling method and antifouling structure Expired - Fee Related JP4178396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175860A JP4178396B2 (en) 2003-06-20 2003-06-20 Antifouling method and antifouling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175860A JP4178396B2 (en) 2003-06-20 2003-06-20 Antifouling method and antifouling structure

Publications (2)

Publication Number Publication Date
JP2005007331A JP2005007331A (en) 2005-01-13
JP4178396B2 true JP4178396B2 (en) 2008-11-12

Family

ID=34098890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175860A Expired - Fee Related JP4178396B2 (en) 2003-06-20 2003-06-20 Antifouling method and antifouling structure

Country Status (1)

Country Link
JP (1) JP4178396B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246007B1 (en) * 2008-05-29 2013-03-21 블루스타 실리콘즈 프랑스 에스에이에스 Article having antifouling properties for aquatic and particularly sea use
JP4798396B2 (en) * 2008-07-07 2011-10-19 信越化学工業株式会社 Underwater biological adhesion prevention coating composition and underwater structure using the same
JP7419251B2 (en) 2018-10-30 2024-01-22 ダウ・東レ株式会社 Curing reactive silicone compositions, cured products thereof, and their uses
JP7644604B2 (en) 2018-12-27 2025-03-12 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same
TWI843786B (en) 2018-12-27 2024-06-01 日商陶氏東麗股份有限公司 Curable silicone composition, its cured body and manufacturing process thereof
US12172357B2 (en) 2018-12-27 2024-12-24 Dow Toray Co., Ltd. Method for producing curable silicone sheet having hot melt properties
CN113631659B (en) 2019-03-29 2023-05-05 陶氏东丽株式会社 Curable silicone composition, cured product thereof, and method for producing same
JP7599291B2 (en) 2019-08-09 2024-12-13 中国塗料株式会社 Underwater cable and method for protecting underwater cable
US12134697B2 (en) 2019-12-27 2024-11-05 Dow Toray Co., Ltd. Curable hot-melt silicone composition, cured material thereof, and laminate containing curable hot-melt silicone composition or cured material thereof
EP4130157A4 (en) * 2020-03-30 2024-01-17 Dow Toray Co., Ltd. CURABLE HOT-MELT SILICONE COMPOSITION, CURED PRODUCT BASED ON SAME, AND LAMINATE CONTAINING CURABLE HOT-MELT SILICONE COMPOSITION OR CURED PRODUCT BASED ON SAME

Also Published As

Publication number Publication date
JP2005007331A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP3835796B2 (en) Room temperature curable organopolysiloxane composition
JP5997778B2 (en) Novel alkoxysilyl-ethylene group-terminated silicon-containing compound, room temperature curable organopolysiloxane composition, and molded product obtained by curing the composition
JP5432124B2 (en) Antifouling coating composition based on curable polyorganosiloxane polyoxyalkylene copolymer
DK2172523T3 (en) PROCEDURE FOR THE PREPARATION OF ORGANOPOLYSILOXAN COMPOSITION VULCANIZABLE AT ROOM TEMPERATURE AND BASIC MATERIAL COATED WITH THE COMPOSITION OBTAINED IN THE PROCEDURE
EP0467406B1 (en) Film-forming organopolysiloxane composition
JP4777591B2 (en) Room temperature curable organopolysiloxane composition
JP2009185169A (en) Novel polyorganosiloxane and room temperature curable silicone composition containing it as a cross-linking agent
JP2007238820A (en) Organopolysiloxane hydrophilic composition, coating film thereof, cured product thereof, and use thereof
EP3608367B1 (en) Room-temperature-curable organopolysiloxane composition and base material
EP2055750B1 (en) Method of preparing an antifouling condensation curing organopolysiloxane composition
JP2002241695A (en) Water-repellent silicone coating agent composition
CN102056996A (en) Article having antisoiling properties and intended to be employed in aquatic uses, in particular marine uses
JP2004531600A (en) Anti-adhesion compositions containing fluorinated alkyl- or alkoxy-containing polymers or oligomers
JP2011122156A (en) Article comprising weather resistant silicone coating
JP4178396B2 (en) Antifouling method and antifouling structure
JP2522854B2 (en) Curable organopolysiloxane composition and cured product thereof
EP1518905B1 (en) Antifouling condensation curing organopolysiloxane composition and underwater structure
TW202104439A (en) Room-temperature curable organopolysiloxane composition and protective or adhesive composition for electric/electronic articles
JP5186079B2 (en) Organopolysiloxane composition, paint additive and antifouling paint composition
JP3104545B2 (en) Organopolysiloxane composition and rubber part
CN114026186A (en) Silicone elastomer coating
JP4711072B2 (en) Algae-proof condensation-curing organopolysiloxane composition, coating method thereof, and structure
JP3179005B2 (en) Room temperature foaming-curable silicone composition
JP4386190B2 (en) Antifouling condensation-curing organopolysiloxane composition and underwater structure
JP3476368B2 (en) Room temperature curable organopolysiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Ref document number: 4178396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees