[go: up one dir, main page]

JP4178236B2 - Silicon carbide-based low friction sliding material and manufacturing method thereof - Google Patents

Silicon carbide-based low friction sliding material and manufacturing method thereof Download PDF

Info

Publication number
JP4178236B2
JP4178236B2 JP2003196881A JP2003196881A JP4178236B2 JP 4178236 B2 JP4178236 B2 JP 4178236B2 JP 2003196881 A JP2003196881 A JP 2003196881A JP 2003196881 A JP2003196881 A JP 2003196881A JP 4178236 B2 JP4178236 B2 JP 4178236B2
Authority
JP
Japan
Prior art keywords
silicon carbide
friction coefficient
low friction
sliding material
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003196881A
Other languages
Japanese (ja)
Other versions
JP2005036815A (en
Inventor
游 周
喜代司 平尾
幸彦 山内
修三 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003196881A priority Critical patent/JP4178236B2/en
Publication of JP2005036815A publication Critical patent/JP2005036815A/en
Application granted granted Critical
Publication of JP4178236B2 publication Critical patent/JP4178236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化ケイ素質低摩擦摺動材料に関するものであり、更に詳しくは、機械用摺動部材として用いられる、高い強度、高い靭性、低い固体摩擦係数を合わせ持つ炭化ケイ素−炭素複合材料、その製造方法及び該複合材料を用いた機械用摺動部材に関するものである。本発明は、近年、金属材料では適用が困難な条件下での摺動材料として注目されている構造用セラミックスの分野において、従来、摺動開始後に摩擦係数が経時的に変化し、安定性に欠けるという問題があった炭化ケイ素−炭素複合材料について、それらの問題点を抜本的に改善した、新規な炭化ケイ素質低摩擦摺動材料を提供するものである。本発明は、従来技術では作製することが難しかった、0.2以下の低摩擦係数を安定して発現し、かつ構造材料としての高い強度と靭性を同時に有する炭化ケイ素質低摩擦摺動材料を提供するものとして有用である。
【0002】
【従来の技術】
一般に、構造用セラミックスは、金属と比べて高い硬度、耐熱性、化学的安定性を持つことから、金属材料では適用が困難な条件下での摺動材料として適用することが検討されてきた。構造用セラミックスのなかでも、特に、炭化ケイ素セラミックスは、高い硬度、耐食性、耐熱性をバランスよく兼ね備えており、例えば、液体搬送ポンプ用のメカニカルシ−ル材料、軸受け材料などとして一部実用化されている。しかし、炭化ケイ素セラミックスは、自己潤滑性に乏しく、気体や蒸気のドライ環境下で用いた場合、摩擦係数が増加してしまい、摺動相手材や自身の摩耗、損傷あるいは摺動面に焼き付きを生じる場合がある。また、炭化ケイ素セラミックスは、過負荷での始動、停止時あるいは熱水の流入など一時的にドライ環境となる場合も、同様な損傷を招く恐れがある。
【0003】
このため、例えば、ドライ環境下での潤滑性を向上させるべく炭化ケイ素に自己潤滑性に優れたグラファイトを分散させた複合材料の開発が行われてきた。この場合、それらの複合化技術には、(1)樹脂をセラミックス中に混合し、複合体を仮焼することによりグラファイト化する手法、及び(2)直接グラファイト粉末をセラミックス粉末と混合し、焼結する手法、という大きく分けて二種類の方法がある。
これらの方法のうち、先ず、前者の方法に関しては、例えば、先行技術文献(特許文献1及び2)において、炭化ケイ素原料粉末と焼結助剤に、炭素源としてのフラン樹脂、フェノ−ル樹脂、コ−ルタ−ルピッチなどを添加した混合粉末を、仮焼して樹脂を炭素に転換した後、高温で焼結することにより炭化ケイ素−炭素複合セラミックスとする方法が開示されている。更に、他の先行技術文献(特許文献3)には、炭化ケイ素原料粉末に炭素源としての樹脂と炭化ケイ素の前駆体樹脂とを同時に加え、成形体となし、仮焼、焼結することにより高い破壊靭性と低摩擦係数を実現させた炭化ケイ素質セラミックスの製造方法が開示されている。
【0004】
しかし、これらの方法においては、炭素源に主として有機樹脂を用いているので、仮焼時にタ−ルや有害ガスが発生するため、これらを取り除く専用焼結炉が必要であるという欠点を有する。更に、これらの方法では、加熱処理温度を炭化ケイ素の焼結温度以下に抑える必要があることから、炭素中のグラファイト構造含有率が低くなり、得られた複合体の摩擦係数は、これらの文献に記載されている実施例から見ると、前者の先行技術文献(特許文献1及び2)において0.28〜0.55、後者の先行技術文献(特許文献3)において0.26〜3.0であり、いずれの場合も0.2以下の摩擦係数を実現することは困難であった。
【0005】
一方、後者の方法に関しては、例えば、先行技術文献(特許文献4)において、炭化ケイ素原料粉末に60〜250メッシュのグラファイト粉末を10〜30容量%添加し、焼結する方法が開示されている。しかし、グラファイトの添加量とともに摩擦係数は0.2以下にまで小さくなるものの、多量のグラファイトの添加が必要であり、しかも摩擦係数の低下に伴ない著しい強度低下をもたらすという欠点があった。このような問題に対処するために、例えば、先行技術文献(特許文献5)には、20μm以下の粒径を有するグラファイト粒子をエマルジョン液とし、炭化ケイ素粉末に対し、グラファイト換算で3〜20重量%添加して焼結体を作製する方法が開示されている。この方法で得られた複合体は、0.2以下の摩擦係数と550MPa以上の高強度が実現されているが、経時的な安定性に欠けるという問題があった。これは、炭化ケイ素にグラファイトを単純に添加したのでは、後記する比較例4において示すように、グラファイトが効果的に摺動面に供給されず、摺動時間(又は距離)の増加に伴ない固体潤滑材が一時的に枯渇した状況となり、再び潤滑材が摺動面に供給されるまで一時的に摩擦係数が上昇するためであると考えられる。一般に、グラファイトは、高い固体潤滑性を有することが知られている。しかしながら、単純にグラファイトを炭化ケイ素に分散させたのでは、グラファイトが効果的に摺動面に供給されないので、摩擦係数が低下するのに時間を要し、また、一旦摩擦係数が低くなっても、摺動時間の増加につれ再び摩擦係数が増加する現象が生起し、問題となる。
【0006】
【特許文献1】
特開平6-206771号公報
【特許文献2】
特開平11-171648号公報
【特許文献3】
特開2002-255651号公報
【特許文献4】
特開昭63-260861号公報
【特許文献5】
特開平10-203871号公報
【0007】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、低摩擦係数、高い強度及び靭性を同時に有する炭化ケイ素−炭素複合材料を開発することを目標として鋭意研究を進めた結果、炭化ケイ素の粒子が等軸状であると炭化ケイ素−炭素複合材料の摩擦係数は安定せず、一方、炭化ケイ素を板状に発達させることにより炭化ケイ素−炭素複合材料は安定して低い摩擦係数を維持できることを見出し、本発明に至った。
即ち、本発明は、0.2以下の低摩擦係数を安定して発現し、かつ構造材料としての高い強度と靭性を同時に有する炭化ケイ素質セラミック摺動材料及びその製造方法を提供することを目的とするものである。更に、本発明は、該炭化ケイ素質セラミック摺動材料を構造要素として含む機械用摺動部材を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)炭化ケイ素粒子を板状に発達させて、低い摩擦係数を経時変化なく安定して維持できるようにした炭化ケイ素−炭素複合材料であって、
(a)グラファイトの含有量が5〜20重量%の範囲にある、
(b)炭化ケイ素粒子が板状の形を有している、
(c)強度が少なくとも500MPa、破壊靭性が少なくとも4MPam1/ ある、
(d)摩擦係数が0.2又はそれより低い値であり、摩擦係数の経時変化がなく低摩擦係数を安定して維持するものである、
ことを特徴とする炭化ケイ素質低摩擦摺動材料。
(2)前記(1)に記載の炭化ケイ素質低摩擦摺動材料を製造する方法であって、炭化ケイ素粉末に、炭化アルミニウムと炭化ホウ素とがモル比で1:1〜4:1の割合で混合された非酸化物系焼結助剤1.5〜10.0重量%及び固体潤滑材としての粒径が大きくても20μmのグラファイト粒子5〜20重量%を添加した混合粉末を、不活性雰囲気下で焼結することにより、炭化ケイ素粒子を板状に発達させることを特徴とする、炭化ケイ素質低摩擦摺動材料の製造方法。
)炭化ケイ素の結晶型が、β型である、前記(2)に記載の炭化ケイ素質低摩擦摺動材料の製造方法。
)不活性雰囲気下で1800℃〜2100℃の温度で焼結する、前記(2)に記載の炭化ケイ素質低摩擦摺動材料の製造方法。
)前記(1)に記載の炭化ケイ素質低摩擦摺動材料を構成要素として含むことを特徴とする機械用摺動部材。
【0009】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。本発明においては、炭化ケイ素を板状に発達させるために、炭化ケイ素粉末に、炭化アルミニウムと炭化ホウ素とがモル比で2:1を最適とする割合で混合された非酸化物系焼結助剤1.5〜10.0重量%及び固体潤滑材としての粒径20μm以下のグラファイト粒子5〜20重量%を添加する。この組成は、焼結時1800℃付近で液相を生成し、焼結を促進するとともに、いわゆる溶解・再析出により炭化ケイ素粒子を板状に発達させる役割を持つ。このとき、添加した板状グラファイト近傍の炭化ケイ素はグラファイトに沿った形で板状に発達するので、摺動時にグラファイト粒子は容易にヘキ開し、摺動面へ効果的にグラファイトを供給する。同時に、板状の炭化ケイ素粒子は、キ裂偏向や架橋効果によりクラックの進展を阻害するので靭性の向上に寄与する。
本発明において使用される炭化ケイ素粉末は、板状粒子を効果的に発現させるために、平均粒径3ミクロン以下、好ましくは1ミクロン以下の微粉末である。
また、炭化ケイ素の結晶型は、α型、β型どちらでも良いが、好ましくは板状化をより促進するために、β型粉末を用いることが望ましい。
【0010】
本発明においては、上記の炭化ケイ素粉末に、焼結助剤と固体潤滑材としてのグラファイトを添加する。焼結助剤はモル比で2:1を最適とする炭化アルミニウムと炭化ホウ素との混合物を1.5〜10.0重量%添加する。この場合、1.5重量%以下では、焼結温度を高めても緻密な焼結体を製造することができず、一方、10.0重量%以上では、焼結密度が高い焼結体を得ることはできるが、炭化ケイ素結晶粒界を埋める非晶質粒界相が増加するために、製造された焼結体の耐摩耗性が低下する。炭化アルミニウム及び炭化ホウ素からなる非酸化物系焼結助剤は、一般に試薬として販売されている炭化アルミニウム及び炭化ホウ素のそれぞれの高純度、微細粉末を所定量混合することによって調製することができる。
炭化アルミニウムと炭化ホウ素とのモル比は、2:1とすると、緻密化が容易であるとともに、炭化ケイ素粒子の板状化も促進されことから最適であるが、該モル比は、1:1〜4:1の範囲で変動させることができる。炭化アルミニウムの割合がそれよりも多くなると異常粒子成長が生じ、著しい機械特性の低下をもたらす傾向が現れ、また、炭化アルミニウムの割合がそれよりも少なくなると、焼結時に生成する液相の量が少なくなり、充分に緻密な焼結体を得ることが難しくなる傾向が現れる。しかし、両者の比は、2:1から大幅に離れなければ、それ程注意をしなくともよい。
【0011】
プロセス時の安定性を考えると、焼結助剤は、炭化アルミニウムと炭化ホウ素の組み合わせが好ましいが、アルミニウム、ホウ素、炭素の単体を上記の組成となるように調整することも可能である。
また、添加するグラファイトの量は5〜20重量%が好ましく、この範囲より少ないと十分な潤滑効果が得られず、一方、この範囲より多いと緻密化が困難となり焼結体の強度低下をもたらす。更に、グラファイトの粒子径は、20ミクロン以下の微細粒子が好ましく、これ以上の大きさであると焼結体の強度低下をもたらす。
【0012】
本発明では、上記の割合で秤量された炭化ケイ素粉末、非酸化物焼結助剤粉末、グラファイト粉末をポットミルなどを用いて混合する。混合は乾式、湿式何れの方法でも良いが、湿式の場合、原料粉末の酸化を防ぐために、メタノ−ル、エタノ−ル、トルエンなどの非水溶媒中で行うことが好ましい。溶媒を除去し、成形した後、不活性雰囲気中1800℃〜2100℃の温度で焼結を行う。1800℃以下の焼結では十分な緻密化を行うことができず、一方、2100℃以上の高温で焼結を行うと異常粒成長が生じ、焼結体の強度が著しく低下する。なお、十分な緻密化を行うためには、ホットプレスなど外部から負荷をかけながら焼結することが好ましい。
【0013】
本発明は、炭化ケイ素微粉末に、焼結助剤として炭化アルミニウムと炭化ホウ素とがモル比で2:1を最適とする割合で混合された非酸化物系焼結助剤を1.5から10.0重量%添加し、更に、固体潤滑材として粒径20μm以下のグラファイト粒子を5〜20重量%添加した混合粉末を、成形し、不活性雰囲気で焼結し、板状に発達した炭化ケイ素マトリックス粒子中にグラファイトを分散させた構造をとすることで、高い強度、高い破壊靭性、安定した低摩擦係数を同時に合わせ持つ炭化ケイ素質セラミックスを製造することを可能とするものである。本発明により、500MPa以上の高い強度と4.0MPam1/2以上の高い破壊靭性と0.2以下の低い摩擦係数とを持つ炭化ケイ素質セラミックス材料を提供することができる。
【0014】
【実施例】
次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
(1)焼結体の製造
平均粒子径0.3μmのβ型炭化ケイ素粉末に、4.2重量%の炭化アルミニウム(Al4C3)粉末、0.8重量%の炭化ホウ素(B4C)粉末及び10重量%のグラファイト粉末(平均粒子径5μm)を添加し、炭化ケイ素ポットと炭化ケイ素ボ−ルを用いてメタノ−ルを溶媒として遊星ミル混合を行った。エバポレ−タで溶媒を除去した後、100メッシュのフルイを通過させた。このようにして得られた混合粉末を黒鉛ダイスに投入し、アルゴン雰囲気中、40MPaの加圧下、1950℃で1時間ホットプレス焼結を行った。得られた焼結体は、添付写真(図1)に示すように、板状に発達した炭化ケイ素中にグラファイト粒子が分散した微構造を有していた。
【0015】
(2)試験方法及び結果
得られた焼結体について、JIS-R1601に基づく4点曲げ強度測定、JIS-R1607に基づく破壊靭性測定を行った。その結果、上記焼結体は、520MPの強度と4.3 MPam1/2の破壊靭性を有していた(表1参照)。
摺動試験は、ボ−ルオンディスク法により行った。焼結体から直径30mm、厚さ5mmのディスク試験片を切り出し、表面を鏡面に研摩した。このようにして作製したディスク試験片と市販の高純度炭化ケイ素ボ−ルを用いて摺動特性を評価した。
静止させた炭化ケイ素ボ−ルに対して回転ディスクを押し付け、押付荷重とトルクを連続的にモニタ−することで摩擦係数の経時変化を記録した。摺動試験は、摺動速度0.18m/s、荷重5N、温度25℃、湿度25%の条件で行った。摺動開始直後0.6程度であった摩擦係数は、極めて短時間に0.2以下に低下し、それ以降、安定して低摩擦係数を維持していた(図2参照)。摩擦係数が安定した後の摩擦係数の平均値は0.15であった。
【0016】
実施例2
実施例1と同じ方法で、グラファイト粉末を増量して20重量%添加した焼結体を作製した。得られた焼結体について、JIS-R1601に基づく4点曲げ強度測定、JIS-R1607に基づく破壊靭性測定を行った。その結果、上記焼結体は、510MPの強度と4.1 MPam1/2の破壊靭性を有していた(表1参照)。また、実施例1と同様な方法で摺動試験を行った結果、摺動開始直後0.6程度であった摩擦係数は、極めて短時間に0.2以下に低下し、それ以降、安定して低摩擦係数を維持していた(図3参照)。摩擦係数が安定した後の摩擦係数の平均値は0.14であった。
【0017】
比較例1及び2
実施例1と同じ方法で、グラファイト粉末を添加しない焼結体及び30重量%添加した焼結体を作製した。グラファイトを添加しない焼結体では、560MPの強度と4.1 MPam1/2の破壊靭性を有していたが、固体潤滑材を含まないため摩擦係数は0.3と高めであった。一方、グラファイトを30重量%添加試料では摩擦係数は0.12まで低下したが、多量のグラファイトを含むため、強度は350MPaまで低下した(表1参照)。
【0018】
比較例3及び4
平均粒子径0.3μmのα型炭化ケイ素粉末に、焼結助剤として0.4重量%の炭化ホウ素(B4C)と、2重量%のカ−ボンブラックとを添加し、炭化ケイ素ポットと炭化ケイ素ボ−ルを用いてメタノ−ルを溶媒として遊星ミル混合を行った。エバポレ−タで溶媒を除去した後、100メッシュのフルイを通過させた。このようにして得られた混合粉末を黒鉛ダイスに投入し、アルゴン雰囲気中、40MPaの加圧下、2000℃で1時間ホットプレス焼結を行った(比較例3)。更に、同様な方法でグラファイトを10重量%添加した焼結体も作製した(比較例4)。
いずれの焼結体においても、炭化ケイ素粒子は等軸状であり、粒子径は数ミクロン程度であった。表1に示すように、比較例3の焼結体は破壊靭性が低く、また、摩擦係数は0.72と高かった(図4参照)。比較例4の焼結体においても、摩擦係数は0.36とグラファイトを添加したにも拘わらず大きな改善は見られなかった。この焼結体は、一旦低下した摩擦係数がある段階で上昇し、再び下降するという不安定な挙動を示し(図4参照)、このことが低摩擦係数化を阻害していると考えられる。
【0019】
【表1】

Figure 0004178236
【0020】
【発明の効果】
以上詳述したように、本発明は、炭化ケイ素質低摩擦摺動材料及びその製造方法等に係るものであり、本発明により、(1)従来技術では作製することが難しかった、0.2以下の低摩擦係数を安定して発現する炭化ケイ素−炭素複合体を製造し、提供することができる、(2)添加した板状グラファイト近傍の炭化ケイ素粒子を板状に発達させることにより、低い摩擦係数を安定して維持できる炭化ケイ素−炭素複合体を製造することができる、(3)摺動開始直後に摩擦係数が0.2以下に低下し、それ以降において経時変化を伴うことなく安定して低い摩擦係数を維持し、かつ高い強度と高い靭性を有している炭化ケイ素質低摩擦摺動材料が得られる、(4)液体搬送ポンプ用のメカニカルシ−ル材料、軸受け材料、更には固形物を含む液体搬送ポンプやドライ環境下など過酷な環境下での摺動部材として有用な炭化ケイ素質低摩擦摺動材料が得られる、という効果が奏される。
【図面の簡単な説明】
【図1】図1は、実施例1の焼結体の組織写真(矢印部はグラファイト粒子)である。
【図2】図2は、実施例1の焼結体の、摺動時の摩擦係数の経時変化を示す図である。
【図3】図3は、実施例2の焼結体の、摺動時の摩擦係数の経時変化を示す図である。
【図4】図4は、比較例3及び4の焼結体の、摺動時の摩擦係数の経時変化を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon carbide-based low friction sliding material, and more specifically, a silicon carbide-carbon composite material having high strength, high toughness, and a low solid friction coefficient, used as a sliding member for a machine. The present invention relates to a manufacturing method and a machine sliding member using the composite material. In the field of structural ceramics, which has recently been attracting attention as a sliding material under conditions that are difficult to apply with metallic materials, the friction coefficient has changed over time after the start of sliding, and stability has been improved. It is an object of the present invention to provide a novel silicon carbide-based low-friction sliding material that drastically improves those problems with respect to a silicon carbide-carbon composite material that has a problem of lacking. The present invention provides a silicon carbide low-friction sliding material that stably expresses a low friction coefficient of 0.2 or less and that has high strength and toughness at the same time as a structural material, which is difficult to produce by the prior art. Useful as a thing.
[0002]
[Prior art]
In general, structural ceramics have higher hardness, heat resistance, and chemical stability than metals, and therefore have been studied for application as sliding materials under conditions that are difficult to apply with metal materials. Among structural ceramics, in particular, silicon carbide ceramics have a good balance of high hardness, corrosion resistance, and heat resistance. ing. However, silicon carbide ceramics have poor self-lubricating properties, and when used in a dry environment of gas or steam, the coefficient of friction increases, and the sliding counterpart material, its own wear, damage or sliding surface is seized. May occur. Further, silicon carbide ceramics may cause similar damage even in a dry environment such as when starting or stopping under overload or when hot water flows in.
[0003]
For this reason, for example, in order to improve the lubricity in a dry environment, a composite material in which graphite having excellent self-lubricating properties is dispersed in silicon carbide has been developed. In this case, these composite technologies include (1) a method of graphitizing by mixing a resin in ceramics and calcining the composite, and (2) directly mixing graphite powder with ceramic powders and firing. There are two main types of methods:
Among these methods, first, regarding the former method, for example, in the prior art documents (Patent Documents 1 and 2), a silicon carbide raw material powder and a sintering aid, a furan resin as a carbon source, and a phenol resin. A method is disclosed in which a mixed powder to which a coal pitch is added is calcined to convert the resin into carbon and then sintered at a high temperature to obtain a silicon carbide-carbon composite ceramic. Furthermore, in another prior art document (Patent Document 3), a resin as a carbon source and a silicon carbide precursor resin are simultaneously added to a silicon carbide raw material powder to form a molded body, which is calcined and sintered. A method for producing silicon carbide ceramics realizing high fracture toughness and a low friction coefficient is disclosed.
[0004]
However, in these methods, since organic resin is mainly used as the carbon source, tar and harmful gas are generated during calcination, so that a dedicated sintering furnace for removing them is necessary. Furthermore, in these methods, it is necessary to keep the heat treatment temperature below the sintering temperature of silicon carbide, so the graphite structure content in the carbon is low, and the friction coefficient of the resulting composite is In the former prior art documents (Patent Documents 1 and 2), 0.28 to 0.55, in the latter prior art document (Patent Document 3), 0.26 to 3.0. It was difficult to realize the following friction coefficient.
[0005]
On the other hand, with respect to the latter method, for example, in the prior art document (Patent Document 4), a method of adding 60 to 250 volume% of graphite powder of 60 to 250 mesh to silicon carbide raw material powder and sintering is disclosed. . However, although the friction coefficient decreases to 0.2 or less with the addition amount of graphite, there is a disadvantage that a large amount of graphite is necessary and that the strength is significantly reduced with the reduction of the friction coefficient. In order to deal with such a problem, for example, in the prior art document (Patent Document 5), graphite particles having a particle diameter of 20 μm or less are used as an emulsion liquid, and 3 to 20 weight in terms of graphite with respect to silicon carbide powder. A method of producing a sintered body by adding% is disclosed. The composite obtained by this method has a friction coefficient of 0.2 or less and a high strength of 550 MPa or more, but has a problem of lacking stability over time. This is because when graphite is simply added to silicon carbide, as shown in Comparative Example 4 to be described later, graphite is not effectively supplied to the sliding surface, and the sliding time (or distance) increases. This is probably because the solid lubricant is temporarily depleted and the friction coefficient temporarily increases until the lubricant is supplied to the sliding surface again. In general, graphite is known to have high solid lubricity. However, if graphite is simply dispersed in silicon carbide, graphite is not effectively supplied to the sliding surface, so it takes time to reduce the friction coefficient, and even if the friction coefficient is once lowered. As the sliding time increases, the friction coefficient increases again, which becomes a problem.
[0006]
[Patent Document 1]
JP-A-6-206771 [Patent Document 2]
JP 11-171648 A [Patent Document 3]
JP 2002-255651 A [Patent Document 4]
JP 63-260861 A [Patent Document 5]
JP-A-10-203871 [0007]
[Problems to be solved by the invention]
Under such circumstances, the present inventors have conducted earnest research with the goal of developing a silicon carbide-carbon composite material having a low friction coefficient, high strength and toughness at the same time, in view of the above-described prior art. As a result, the friction coefficient of the silicon carbide-carbon composite material is not stable when the silicon carbide particles are equiaxed, while the silicon carbide-carbon composite material is stably low by developing silicon carbide into a plate shape. The inventors have found that the coefficient of friction can be maintained, and have reached the present invention.
That is, it is an object of the present invention to provide a silicon carbide ceramic sliding material that stably expresses a low friction coefficient of 0.2 or less and has high strength and toughness as a structural material and a method for producing the same. Is. Furthermore, an object of the present invention is to provide a sliding member for a machine containing the silicon carbide ceramic sliding material as a structural element.
[0008]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A silicon carbide-carbon composite material in which silicon carbide particles are developed in a plate shape so that a low friction coefficient can be stably maintained without change over time,
(A) The graphite content is in the range of 5 to 20% by weight,
(B) the silicon carbide particles have a plate-like shape,
(C) strength of at least 500 mP a, fracture toughness is at least 4MPam 1/2,
(D) The friction coefficient is a value of 0.2 or lower , and the friction coefficient does not change with time, and the low friction coefficient is stably maintained.
A silicon carbide low friction sliding material characterized by the above.
(2) The method for producing the silicon carbide based low friction sliding material according to (1), wherein the silicon carbide powder has a molar ratio of aluminum carbide to boron carbide of 1: 1 to 4: 1. mixed with non-oxide sintering aid 1.5 to 10.0 wt%, and mixed powder particle size was added 5-20 wt% of graphite particles 20 [mu] m be larger as a solid lubricant in, A method for producing a silicon carbide-based low-friction sliding material, wherein silicon carbide particles are developed into a plate shape by sintering in an inert atmosphere.
( 3 ) The method for producing a silicon carbide based low friction sliding material according to (2), wherein the silicon carbide crystal type is β type.
( 4 ) The method for producing a silicon carbide based low friction sliding material according to (2), wherein sintering is performed at a temperature of 1800 ° C. to 2100 ° C. in an inert atmosphere.
(5) Mechanical sliding element, which comprises a silicon carbide low friction sliding material described as components (1).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail. In the present invention, in order to develop silicon carbide into a plate shape, non-oxide-based sintering aid in which aluminum carbide and boron carbide are mixed with silicon carbide powder in an optimal ratio of 2: 1 in molar ratio. 1.5 to 10.0% by weight of the agent and 5 to 20% by weight of graphite particles having a particle size of 20 μm or less as a solid lubricant are added. This composition has a role of generating a liquid phase around 1800 ° C. during sintering, promoting sintering, and developing silicon carbide particles into a plate shape by so-called dissolution / reprecipitation. At this time, the added silicon carbide in the vicinity of the plate-like graphite develops into a plate shape along the graphite, so that the graphite particles are easily cleaved during sliding and effectively supply the graphite to the sliding surface. At the same time, the plate-like silicon carbide particles contribute to the improvement of toughness because the crack propagation is inhibited by crack deflection and the crosslinking effect.
The silicon carbide powder used in the present invention is a fine powder having an average particle size of 3 microns or less, preferably 1 micron or less, in order to effectively express plate-like particles.
The crystal form of silicon carbide may be either α-type or β-type, but preferably β-type powder is used in order to further promote plate formation.
[0010]
In the present invention, a sintering aid and graphite as a solid lubricant are added to the silicon carbide powder. As the sintering aid, 1.5 to 10.0% by weight of a mixture of aluminum carbide and boron carbide that optimizes a molar ratio of 2: 1 is added. In this case, if it is 1.5% by weight or less, a dense sintered body cannot be produced even if the sintering temperature is increased, while if it is 10.0% by weight or more, a sintered body having a high sintered density can be obtained. However, since the amorphous grain boundary phase filling the silicon carbide crystal grain boundaries increases, the wear resistance of the manufactured sintered body is lowered. The non-oxide-based sintering aid composed of aluminum carbide and boron carbide can be prepared by mixing predetermined amounts of high purity and fine powders of aluminum carbide and boron carbide, which are generally sold as reagents.
A molar ratio of aluminum carbide to boron carbide of 2: 1 is optimal because it is easy to densify and promotes plate formation of silicon carbide particles, but the molar ratio is 1: 1. It can be varied in the range of ˜4: 1. When the proportion of aluminum carbide is higher than that, abnormal particle growth occurs, which tends to cause a significant decrease in mechanical properties, and when the proportion of aluminum carbide is lower than that, the amount of liquid phase produced during sintering is reduced. There is a tendency that it becomes less and it becomes difficult to obtain a sufficiently dense sintered body. However, as long as the ratio of the two is not significantly different from 2: 1, it is not necessary to pay much attention.
[0011]
Considering the stability during the process, the sintering aid is preferably a combination of aluminum carbide and boron carbide, but it is also possible to adjust the simple substance of aluminum, boron and carbon to have the above composition.
Further, the amount of graphite to be added is preferably 5 to 20% by weight, and if it is less than this range, a sufficient lubricating effect cannot be obtained. On the other hand, if it exceeds this range, densification becomes difficult and the strength of the sintered body is reduced. . Furthermore, the particle diameter of graphite is preferably fine particles of 20 microns or less, and if it is larger than this, the strength of the sintered body is lowered.
[0012]
In the present invention, silicon carbide powder, non-oxide sintering aid powder, and graphite powder weighed in the above proportion are mixed using a pot mill or the like. Mixing may be either dry or wet, but in the case of wet, it is preferably performed in a non-aqueous solvent such as methanol, ethanol, toluene or the like in order to prevent oxidation of the raw material powder. After removing the solvent and molding, sintering is performed at a temperature of 1800 ° C. to 2100 ° C. in an inert atmosphere. When sintering at 1800 ° C. or lower, sufficient densification cannot be performed. On the other hand, when sintering is performed at a high temperature of 2100 ° C. or higher, abnormal grain growth occurs and the strength of the sintered body is significantly reduced. In order to perform sufficient densification, it is preferable to sinter while applying a load from the outside such as hot pressing.
[0013]
In the present invention, 1.5 to 10.0 weight of non-oxide-based sintering aid, in which aluminum carbide and boron carbide are mixed as a sintering aid in a molar ratio of 2: 1 in the optimum ratio to silicon carbide fine powder. In the silicon carbide matrix particles developed into a plate-like shape, a mixed powder containing 5 to 20% by weight of graphite particles having a particle size of 20 μm or less as a solid lubricant is formed, sintered in an inert atmosphere, and developed into a plate shape. By making the structure in which graphite is dispersed, it is possible to produce silicon carbide ceramics having high strength, high fracture toughness, and stable low friction coefficient at the same time. According to the present invention, a silicon carbide ceramic material having a high strength of 500 MPa or more, a high fracture toughness of 4.0 MPa 1/2 or more, and a low friction coefficient of 0.2 or less can be provided.
[0014]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example 1
(1) Production of sintered body β-type silicon carbide powder with an average particle size of 0.3 μm, 4.2 wt% aluminum carbide (Al 4 C 3 ) powder, 0.8 wt% boron carbide (B 4 C) powder and 10 wt% % Graphite powder (average particle size 5 μm) was added, and planetary mill mixing was performed using methanol as a solvent using a silicon carbide pot and a silicon carbide ball. After removing the solvent with an evaporator, it was passed through a 100 mesh sieve. The mixed powder thus obtained was put into a graphite die and subjected to hot press sintering at 1950 ° C. for 1 hour in an argon atmosphere under a pressure of 40 MPa. As shown in the attached photograph (FIG. 1), the obtained sintered body had a microstructure in which graphite particles were dispersed in silicon carbide developed into a plate shape.
[0015]
(2) The test method and the resulting sintered body were subjected to 4-point bending strength measurement based on JIS-R1601 and fracture toughness measurement based on JIS-R1607. As a result, the sintered body had a strength of 520 MP and a fracture toughness of 4.3 MPam 1/2 (see Table 1).
The sliding test was performed by the ball-on-disk method. A disk specimen having a diameter of 30 mm and a thickness of 5 mm was cut out from the sintered body, and the surface was polished to a mirror surface. The sliding characteristics were evaluated using the disk test piece thus produced and a commercially available high-purity silicon carbide ball.
The rotating disk was pressed against the stationary silicon carbide ball, and the change in friction coefficient with time was recorded by continuously monitoring the pressing load and torque. The sliding test was performed under the conditions of a sliding speed of 0.18 m / s, a load of 5 N, a temperature of 25 ° C., and a humidity of 25%. The coefficient of friction, which was about 0.6 immediately after the start of sliding, decreased to 0.2 or less in a very short time, and thereafter, the coefficient of friction was stably maintained (see FIG. 2). After the friction coefficient was stabilized, the average value of the friction coefficient was 0.15.
[0016]
Example 2
In the same manner as in Example 1, a sintered body was prepared by adding 20% by weight of graphite powder. The obtained sintered body was subjected to four-point bending strength measurement based on JIS-R1601 and fracture toughness measurement based on JIS-R1607. As a result, the sintered body had a strength of 510 MP and a fracture toughness of 4.1 MPam 1/2 (see Table 1). In addition, as a result of conducting a sliding test in the same manner as in Example 1, the friction coefficient that was about 0.6 immediately after the start of sliding decreased to 0.2 or less in a very short time, and thereafter, the friction coefficient was stably reduced. (See Fig. 3). After the friction coefficient was stabilized, the average value of the friction coefficient was 0.14.
[0017]
Comparative Examples 1 and 2
In the same manner as in Example 1, a sintered body to which no graphite powder was added and a sintered body to which 30 wt% was added were produced. The sintered body to which graphite was not added had a strength of 560 MP and a fracture toughness of 4.1 MPam 1/2 , but the friction coefficient was as high as 0.3 because it did not contain a solid lubricant. On the other hand, in the sample containing 30% by weight of graphite, the friction coefficient decreased to 0.12, but the strength decreased to 350 MPa because of the large amount of graphite (see Table 1).
[0018]
Comparative Examples 3 and 4
Add 0.4 wt% boron carbide (B 4 C) and 2 wt% carbon black as a sintering aid to α-type silicon carbide powder with an average particle size of 0.3 µm, and then add silicon carbide pot and silicon carbide Planetary mill mixing was performed using methanol as a solvent using a ball. After removing the solvent with an evaporator, it was passed through a 100 mesh sieve. The mixed powder thus obtained was put into a graphite die and subjected to hot press sintering at 2000 ° C. for 1 hour in an argon atmosphere under a pressure of 40 MPa (Comparative Example 3). Further, a sintered body to which 10% by weight of graphite was added was prepared in the same manner (Comparative Example 4).
In any of the sintered bodies, the silicon carbide particles were equiaxed and the particle diameter was about several microns. As shown in Table 1, the sintered body of Comparative Example 3 had a low fracture toughness and a high friction coefficient of 0.72 (see FIG. 4). Even in the sintered body of Comparative Example 4, the friction coefficient was 0.36, and no significant improvement was observed despite the addition of graphite. This sintered body shows an unstable behavior in which the lowered friction coefficient rises at a certain stage and then falls again (see FIG. 4), and this is considered to inhibit the lowering of the friction coefficient.
[0019]
[Table 1]
Figure 0004178236
[0020]
【The invention's effect】
As described above in detail, the present invention relates to a silicon carbide-based low friction sliding material and a method for producing the same, and according to the present invention, (1) it was difficult to produce by the prior art, 0.2 A silicon carbide-carbon composite that stably expresses the following low friction coefficient can be produced and provided. (2) By developing the silicon carbide particles in the vicinity of the added plate-like graphite into a plate shape, it is low. A silicon carbide-carbon composite capable of stably maintaining the friction coefficient can be produced. (3) Immediately after the start of sliding, the friction coefficient decreases to 0.2 or less, and thereafter, without being accompanied by a change with time. A silicon carbide low friction sliding material that maintains a low coefficient of friction and has high strength and high toughness can be obtained. (4) Mechanical seal materials, bearing materials, and solids for liquid transfer pumps Liquid containing things Useful silicon carbide low friction sliding material as the sliding member in harsh environments such as conveying pumps or dry environment is obtained, the effect is exhibited that.
[Brief description of the drawings]
FIG. 1 is a structural photograph of a sintered body of Example 1 (arrow portions are graphite particles).
FIG. 2 is a view showing a change with time of a friction coefficient during sliding of the sintered body of Example 1. FIG.
FIG. 3 is a graph showing the change over time in the coefficient of friction during sliding of the sintered body of Example 2.
FIG. 4 is a diagram showing the change with time of the friction coefficient during sliding of the sintered bodies of Comparative Examples 3 and 4. FIG.

Claims (5)

炭化ケイ素粒子を板状に発達させて、低い摩擦係数を経時変化なく安定して維持できるようにした炭化ケイ素−炭素複合材料であって、
(1)グラファイトの含有量が5〜20重量%の範囲にある、
(2)炭化ケイ素粒子が板状の形を有している、
(3)強度が少なくとも500MPa、破壊靭性が少なくとも4MPam1/ ある、
(4)摩擦係数が0.2又はそれより低い値であり、摩擦係数の経時変化がなく低摩擦係数を安定して維持するものである、
ことを特徴とする炭化ケイ素質低摩擦摺動材料。
A silicon carbide-carbon composite material in which silicon carbide particles are developed in a plate shape so that a low friction coefficient can be stably maintained without change over time,
(1) The graphite content is in the range of 5 to 20% by weight,
(2) The silicon carbide particles have a plate-like shape,
(3) strength of at least 500 mP a, fracture toughness is at least 4MPam 1/2,
(4) The friction coefficient is a value of 0.2 or lower , and there is no change over time in the friction coefficient, and the low friction coefficient is stably maintained.
A silicon carbide low friction sliding material characterized by the above.
請求項1に記載の炭化ケイ素質低摩擦摺動材料を製造する方法であって、炭化ケイ素粉末に、炭化アルミニウムと炭化ホウ素とがモル比で1:1〜4:1の割合で混合された非酸化物系焼結助剤1.5〜10.0重量%及び固体潤滑材としての粒径が大きくても20μmのグラファイト粒子5〜20重量%を添加した混合粉末を、不活性雰囲気下で焼結することにより、炭化ケイ素粒子を板状に発達させることを特徴とする、炭化ケイ素質低摩擦摺動材料の製造方法。A method for producing a silicon carbide-based low friction sliding material according to claim 1, wherein aluminum carbide and boron carbide are mixed with silicon carbide powder in a molar ratio of 1: 1 to 4: 1 . the non-oxide sintering aid 1.5 to 10.0 wt%, and mixed powder particle size was added 5-20 wt% of graphite particles 20 [mu] m be larger as a solid lubricant, inert atmosphere A method for producing a silicon carbide-based low-friction sliding material, characterized in that silicon carbide particles are developed into a plate shape by sintering. 炭化ケイ素の結晶型が、β型である、請求項2に記載の炭化ケイ素質低摩擦摺動材料の製造方法。  The method for producing a silicon carbide low-friction sliding material according to claim 2, wherein the crystal type of silicon carbide is β-type. 不活性雰囲気下で1800℃〜2100℃の温度で焼結する、請求項2に記載の炭化ケイ素質低摩擦摺動材料の製造方法。  The method for producing a silicon carbide based low friction sliding material according to claim 2, wherein sintering is performed at a temperature of 1800C to 2100C in an inert atmosphere. 請求項1に記載の炭化ケイ素質低摩擦摺動材料を構成要素として含むことを特徴とする機械用摺動部材。  A mechanical sliding member comprising the silicon carbide-based low friction sliding material according to claim 1 as a constituent element.
JP2003196881A 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof Expired - Lifetime JP4178236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196881A JP4178236B2 (en) 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196881A JP4178236B2 (en) 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005036815A JP2005036815A (en) 2005-02-10
JP4178236B2 true JP4178236B2 (en) 2008-11-12

Family

ID=34207184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196881A Expired - Lifetime JP4178236B2 (en) 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4178236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108774065B (en) * 2018-06-19 2021-03-16 中国科学院上海硅酸盐研究所 A kind of SiC/MCMBs composite material and its preparation method and application
CN113526960B (en) * 2021-07-20 2022-07-15 宁波东联密封件有限公司 Silicon carbide ceramic and hot isostatic pressing sintering process thereof

Also Published As

Publication number Publication date
JP2005036815A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP3624219B2 (en) Polycrystalline SiC molded body, manufacturing method thereof and applied product comprising the same
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
Zhu et al. Enhanced densification and mechanical properties of ZrB2–SiC processed by a preceramic polymer coating route
JPH0662338B2 (en) Silicon carbide / Graphite / Carbon composite ceramic body
WO2014038459A1 (en) Metal-carbon composite material, method for producing metal-carbon composite material and sliding member
WO2008019182A2 (en) Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
Rangaraj et al. Low-temperature processing of ZrB 2-ZrC composites by reactive hot pressing
Sciti et al. Spark plasma sintering of ultra refractory compounds
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US10703679B2 (en) Polycrystalline abrasive constructions
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
WO2006038489A1 (en) Conductive silicon nitride material and process for producing the same
JP2851717B2 (en) Sliding member
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JP2902796B2 (en) Ceramic composite sintered body and sliding member using the same
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
KR920006807B1 (en) Preparation method of calcined body made by al2o3-ticx
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPH1143372A (en) Silicon nitride ceramics and method for producing the same
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JPS62138377A (en) Silicon carbide base composite material
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4178236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term