JP4178178B1 - Operation method of water purification membrane filtration equipment - Google Patents
Operation method of water purification membrane filtration equipment Download PDFInfo
- Publication number
- JP4178178B1 JP4178178B1 JP2008039500A JP2008039500A JP4178178B1 JP 4178178 B1 JP4178178 B1 JP 4178178B1 JP 2008039500 A JP2008039500 A JP 2008039500A JP 2008039500 A JP2008039500 A JP 2008039500A JP 4178178 B1 JP4178178 B1 JP 4178178B1
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- filtration
- raw water
- time
- differential pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
【課題】
本発明は、原水や設備の運転状況に応じて膜ろ過設備の運転条件を適正化し、膜ろ過設備の運転状況を容易に把握できる浄水膜ろ過設備の運転方法を提供することにある。
【解決手段】
膜ろ過制御手段8は、原水水質計5で計測された原水濁度と、1次側の圧力計測手段6と2次側の圧力計測手段7で計測された膜差圧の計測値から、予め設定されている原水濁度毎の膜差圧とろ過時間の関係を元にろ過時間を設定し、原水濁度毎の膜差圧とろ過時間の関係を表示手段9に表示し、ろ過時間の現状値と過去値をプロットする。
【選択図】図1【Task】
An object of the present invention is to provide an operation method of a water purification membrane filtration facility that can optimize the operation conditions of the membrane filtration facility according to the raw water and the operation state of the facility and can easily grasp the operation state of the membrane filtration facility.
[Solution]
The membrane filtration control means 8 preliminarily calculates the raw water turbidity measured by the raw water quality meter 5 and the measured values of the membrane differential pressure measured by the primary pressure measuring means 6 and the secondary pressure measuring means 7. The filtration time is set based on the relationship between the membrane pressure difference and the filtration time for each raw water turbidity, the relationship between the membrane pressure difference and the filtration time for each raw water turbidity is displayed on the display means 9, and the filtration time Plot current and past values.
[Selection] Figure 1
Description
本発明は、原水に含まれる濁質や病原性原虫などの分離除去のために設置される膜ろ過処理装置を含んだ浄水を製造するための浄水膜ろ過設備の運転方法に関する。 The present invention relates to a method for operating a water purification membrane filtration facility for producing purified water including a membrane filtration treatment device installed for separating and removing turbidity and pathogenic protozoa contained in raw water.
濁質や病原性原虫を除去でき、維持管理が容易なため、浄水施設への膜ろ過装置の導入が増加している。ろ過に伴い膜モジュールの1次側に目詰まり物質が付着し、ろ過の抵抗となるので、所定量のろ過水量を維持するためには、膜ろ過制御手段は、ろ過圧力を増加させる。 Since turbidity and pathogenic protozoa can be removed and maintenance is easy, the introduction of membrane filtration devices to water purification facilities is increasing. A clogging substance adheres to the primary side of the membrane module along with filtration, resulting in resistance to filtration. Therefore, in order to maintain a predetermined amount of filtered water, the membrane filtration control means increases the filtration pressure.
そこで、膜ろ過制御手段は、定期的にろ過水を2次側から1次側に圧送する逆洗工程により、目詰まり物質を除去している。河川水を原水とする膜ろ過装置では、降雨などにより原水の水質が変動し、膜モジュールの目詰まり量が変化する。一定条件の逆洗工程では、ろ過時の目詰まり量の蓄積に洗浄が追いつかず、ろ過圧力、すなわち膜差圧が急激に増加する可能性がある。 Therefore, the membrane filtration control means removes clogging substances by a backwash process in which filtered water is periodically pumped from the secondary side to the primary side. In a membrane filtration apparatus that uses river water as raw water, the quality of the raw water changes due to rainfall and the like, and the amount of clogging of the membrane module changes. In the backwashing process under certain conditions, the washing cannot catch up with the accumulation of the clogging amount at the time of filtration, and the filtration pressure, that is, the membrane differential pressure may increase rapidly.
このため、〔特許文献1〕,〔特許文献2〕に記載のように、原水水質や膜差圧に応じて、逆洗間隔すなわちろ過時間を変更する方法がある。 For this reason, as described in [Patent Document 1] and [Patent Document 2], there is a method of changing the backwash interval, that is, the filtration time, according to the raw water quality and the membrane differential pressure.
〔特許文献1〕,〔特許文献2〕に記載の方法では、自動でろ過時間が変更されるが、運転条件変更の履歴を表示する機能を備えていない。このため、運転員が容易に運転状況を把握できる仕組みになっておらず、確認作業に時間を要する恐れがある。 In the methods described in [Patent Document 1] and [Patent Document 2], the filtration time is automatically changed, but the function of displaying the history of operation condition change is not provided. For this reason, it is not a mechanism that allows the operator to easily grasp the driving situation, and there is a possibility that it takes time for the confirmation work.
また、複数の膜モジュールを備えた膜ろ過施設では、建設費を削減するために、膜モジュールを1本ずつ順次逆洗して1つの逆洗手段の設置で済むような運転方式が採用される。この場合、ろ過時間の下限値は、逆洗する膜モジュールの本数、すなわち逆洗工程の数と、逆洗時間の積となる。膜モジュールの一部を稼動または休止すると、逆洗する膜モジュール数が変化し、ろ過時間の下限値が変化する。 Further, in a membrane filtration facility equipped with a plurality of membrane modules, in order to reduce the construction cost, an operation method is adopted in which the membrane modules are backwashed one by one in sequence and one backwashing means is installed. . In this case, the lower limit of the filtration time is the product of the number of membrane modules to be backwashed, that is, the number of backwashing steps, and the backwash time. When a part of the membrane module is operated or stopped, the number of membrane modules to be backwashed changes, and the lower limit value of the filtration time changes.
〔特許文献1〕,〔特許文献2〕に記載の方法では、ろ過時間の下限値の設定や稼動中の膜モジュール数を考慮しておらず、ろ過時間が適正化できない恐れがある。 In the methods described in [Patent Document 1] and [Patent Document 2], the setting of the lower limit value of the filtration time and the number of operating membrane modules are not taken into account, and there is a possibility that the filtration time cannot be optimized.
本発明の目的は、原水や設備の運転状況に応じて膜ろ過設備の運転条件を適正化できる浄水膜ろ過設備の運転方法を提供することにある。 An object of the present invention is to provide an operation method of a water purification membrane filtration facility capable of optimizing the operation conditions of the membrane filtration facility according to raw water and the operation state of the facility.
本発明の他の目的は、膜ろ過設備の運転状況を容易に把握できる浄水膜ろ過設備の運転方法を提供することにある。 Another object of the present invention is to provide a method for operating a water purification membrane filtration facility that can easily grasp the operation status of the membrane filtration facility.
上記目的を達成するために、本発明は、原水をろ過する膜モジュールを含む膜ろ過手段と、前記膜モジュールの膜差圧を計測する膜差圧計測手段と原水の水質を計測する原水水質計測手段の少なくとも一方と、前記膜モジュールのろ過時間,ろ過流量,逆洗時間,逆洗流量を制御する膜ろ過制御手段とを備え、前記膜差圧計測手段と前記原水水質計測手段の少なくとも一方の計測値を指標に、前記ろ過時間を変更する浄水膜ろ過設備の運転方法であって、予め設定された計測値とろ過時間の関係を示す線図からろ過時間を求め、前記線図上に現状値と過去値を表示し、前記過去値から前記現状値への変化量に応じてプロットの色,プロットの形状,ガイダンスを表示するものである。 In order to achieve the above object, the present invention provides a membrane filtration means including a membrane module for filtering raw water, a membrane differential pressure measuring means for measuring a membrane differential pressure of the membrane module, and a raw water quality measurement for measuring the quality of raw water. At least one of the means, and membrane filtration control means for controlling the filtration time, filtration flow rate, backwash time, and backwash flow rate of the membrane module, and at least one of the membrane differential pressure measurement means and the raw water quality measurement means It is an operation method of a water purification membrane filtration facility that changes the filtration time using a measurement value as an index, and obtains the filtration time from a diagram showing a relationship between a preset measurement value and the filtration time, and the current state on the diagram A value and a past value are displayed, and a plot color, a plot shape, and guidance are displayed according to the amount of change from the past value to the current value.
又、前記膜ろ過手段の上流に薬剤を注入する前処理手段を設け、前記膜ろ過制御手段は、前記変化量に応じて、該膜ろ過制御手段は、前記前処理手段の運転条件を変更するものである。 In addition, pretreatment means for injecting a drug is provided upstream of the membrane filtration means, and the membrane filtration control means changes operating conditions of the pretreatment means according to the amount of change. Is.
原水をろ過する膜モジュールを含む膜ろ過手段と、前記膜モジュールの膜差圧を計測する膜差圧計測手段と、原水の水質を計測する原水水質計測手段と、該膜モジュールのろ過時間,ろ過流量,逆洗時間,逆洗流量を制御する膜ろ過制御手段とを備え、前記膜差圧計測手段と前記原水水質計測手段の計測値を指標に前記ろ過時間を変更する浄水膜ろ過設備の運転方法であって、前記計測値と前記ろ過時間の関係を前記原水水質をパラメータとして示した線図からろ過時間を求め、前記線図上に現状値と過去値を表示するものである。また、前記過去値から現状値への変化量と変化方向に応じてプロットの色,プロットの形状,ガイダンスのうち、少なくとも1つ以上を変更して表示するものである。 Membrane filtration means including a membrane module for filtering raw water, membrane differential pressure measuring means for measuring the membrane differential pressure of the membrane module, raw water quality measuring means for measuring the quality of raw water, filtration time of the membrane module, filtration A membrane filtration control means for controlling the flow rate, the backwash time, and the backwash flow rate, and the operation of the water purification membrane filtration equipment for changing the filtration time using the measured values of the membrane differential pressure measuring means and the raw water quality measuring means as indicators. In this method, the filtration time is obtained from a diagram showing the relationship between the measured value and the filtration time using the raw water quality as a parameter, and the current value and the past value are displayed on the diagram. Further, at least one of the plot color, the plot shape, and the guidance is changed and displayed according to the change amount and the change direction from the past value to the current value.
又、前記膜ろ過手段の上流に薬剤を注入する前処理手段を設け、前記変化量と前記変化方向に応じて、前記膜ろ過制御手段が前記前処理手段の運転条件を変更するものである。 In addition, pretreatment means for injecting a drug is provided upstream of the membrane filtration means, and the membrane filtration control means changes operating conditions of the pretreatment means in accordance with the amount of change and the change direction.
原水をろ過する複数の膜モジュールを含んだ膜ろ過手段と、前記膜モジュールのろ過時間,ろ過流量,逆洗時間,逆洗流量を制御する膜ろ過制御手段とを備え、順次前記膜モジュールを逆洗する浄水膜ろ過設備の運転方法であって、前記ろ過時間の下限値を稼動中の前記膜モジュール数と前記逆洗時間の積として表示するものである。 A membrane filtration means including a plurality of membrane modules for filtering the raw water; and a membrane filtration control means for controlling the filtration time, filtration flow rate, backwash time, and backwash flow rate of the membrane module, and sequentially reverse the membrane modules. It is an operation method of the water purification membrane filtration equipment to be washed, and displays the lower limit value of the filtration time as a product of the number of the membrane modules in operation and the backwash time.
本発明によれば、原水の水質や膜差圧,膜モジュールの稼動数に応じて膜ろ過設備の運転条件を適正化できる。又、運転履歴を表示するため、膜ろ過設備の運転状況を容易に把握できる浄水設備の運転方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the driving | running condition of a membrane filtration equipment can be optimized according to the quality of raw | natural water, a membrane differential pressure | voltage, and the number of operation | movement of a membrane module. Moreover, since the operation history is displayed, it is possible to provide an operation method of the water purification facility that can easily grasp the operation state of the membrane filtration facility.
本発明の各実施例を図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の実施例1である膜ろ過装置の構成図である。本実施例の膜ろ過装置は、河川などの表流水に代表される原水を浄化する浄化施設等に設置される。
FIG. 1 is a configuration diagram of a membrane filtration apparatus that is
膜モジュール1には、中空糸のMF膜(精密ろ過膜)やUF膜(限外ろ過膜)が組み込まれており、原水中の濁質や微粒子などを除去する。
The
膜モジュール1の上流側には、ろ過ポンプ2が設置され、ろ過ポンプ2は、膜モジュール1のろ過水量を変更できる。ろ過水は、膜モジュール1の下流側に設置されたろ過水タンク3に貯留され、膜モジュール1とろ過水タンク3との間に設置された逆洗ポンプ4によって膜モジュール1の2次側から逆洗水が供給され、膜面に蓄積した濁質などを剥離させる。剥離した濁質を含む懸濁液は、バルブ13付きの配管12から、逆洗排水として系外に排水される。
A
ろ過と逆洗の切り替えは、ろ過ポンプ2と逆洗ポンプ4の運転を切り替え、配管12に設けた弁13を閉から開に切り替える。ろ過ポンプ2の上流には、原水の水質を計測する原水水質計5が設置されている。原水水質計5は、濁度,有機物濃度,水温,pH,マンガン濃度,浮遊物質濃度などの1つ以上を計測する。ろ過ポンプ2と膜モジュール1の間には1次側の圧力計測手段6が、膜モジュール1とろ過水タンク3の間には2次側の圧力計測手段7が設置されている。原水水質計5,1次側の圧力計測手段6,2次側の圧力計測手段7での計測信号は、膜ろ過制御手段8に入力され、膜ろ過制御手段8は必要に応じて、1次側の圧力計測手段6と2次側の圧力計測手段7の差分から膜モジュール1の膜差圧を算出する。ここで、原水水質計5,1次側の圧力計測手段6,2次側の圧力計測手段7を膜差圧計測手段という。
Switching between filtration and backwashing switches the operation of the
膜ろ過制御手段8は、ろ過ポンプ2,逆洗ポンプ4の運転を制御する信号を出力し、ろ過水量,逆洗水量,ろ過時間,逆洗時間を変更する。膜ろ過制御手段8の入力信号や出力信号は表示手段9に入力され、ろ過時間や膜差圧,原水水質などが表示される。
The membrane filtration control means 8 outputs a signal for controlling the operation of the
次に、本実施例の上水膜ろ過設備の運転方法について説明する。膜ろ過制御手段8には、予めろ過時間と膜差圧または原水水質の関係が入力されており、表示手段9に表示される。一例として、ろ過時間と膜差圧の関係を図2に示す。図2では、ろ過時間と膜差圧の関係を示しているが、ろ過時間と原水水質の関係でもよい。また、横軸と縦軸は入替えてもよい。 Next, the operation method of the water membrane filtration equipment of the present embodiment will be described. The relationship between the filtration time and the membrane differential pressure or the raw water quality is input to the membrane filtration control means 8 in advance and displayed on the display means 9. As an example, the relationship between filtration time and membrane differential pressure is shown in FIG. Although FIG. 2 shows the relationship between the filtration time and the membrane differential pressure, the relationship between the filtration time and the raw water quality may be used. Further, the horizontal axis and the vertical axis may be interchanged.
図2に示す例では、ろ過時間は、膜差圧が30kPa以下では最大の100分となり、膜差圧が30kPaから100kPaまでは、膜差圧が増加するとろ過時間が短縮され、膜差圧が100kPa以上では、最小のろ過時間20分に設定されている。膜差圧を指標にする場合には、ろ過流束を変更しても膜差圧が変化するため、ろ過流束に応じてろ過時間と膜差圧の関係を変更するとよい。ろ過時間と膜差圧の関係は、直線近似でも曲線近似でも良い。 In the example shown in FIG. 2, the filtration time is a maximum of 100 minutes when the membrane differential pressure is 30 kPa or less. When the membrane differential pressure increases from 30 kPa to 100 kPa, the filtration time is shortened and the membrane differential pressure is reduced. Above 100 kPa, the minimum filtration time is set to 20 minutes. When the membrane differential pressure is used as an index, the membrane differential pressure changes even if the filtration flux is changed. Therefore, the relationship between the filtration time and the membrane differential pressure may be changed according to the filtration flux. The relationship between the filtration time and the membrane differential pressure may be linear approximation or curve approximation.
膜ろ過制御手段8は、膜差圧の情報から、膜差圧に対応するろ過時間を設定する。図2の線図上にプロットされている白丸は、現状の膜差圧とろ過時間の関係を示している。膜ろ過制御手段8は、膜差圧情報の更新を、例えば設定された時間、逆洗後のろ過再開時の膜差圧が安定している時点、逆洗直前に行う。
The membrane filtration control means 8 sets the filtration time corresponding to the membrane differential pressure from the information on the membrane differential pressure. The white circles plotted on the diagram of FIG. 2 indicate the relationship between the current membrane differential pressure and the filtration time. The membrane
膜差圧の情報が更新されると、更新後に膜差圧が上昇し、プロットAとなったと仮定すると、膜ろ過制御手段8は、図2に示す関係にしたがって、ろ過時間を短縮する。ろ過時間が短縮されると、逆洗頻度が多くなるため、膜差圧の上昇を抑制できる。また、膜差圧が低下し、プロットBとなって場合は、膜ろ過制御手段8は、図2に示す関係にしたがって、ろ過時間を延長する。逆洗頻度が少なくなるので、ろ過水量を増加できる。 When the information on the membrane differential pressure is updated, the membrane filtration control means 8 shortens the filtration time according to the relationship shown in FIG. When the filtration time is shortened, the frequency of backwashing increases, so that an increase in membrane differential pressure can be suppressed. Moreover, when the membrane differential pressure decreases and becomes plot B, the membrane filtration control means 8 extends the filtration time according to the relationship shown in FIG. Since the frequency of backwashing is reduced, the amount of filtered water can be increased.
ここで、図2に示す白丸プロットを過去値、黒丸プロットを現状値と定義する。過去値から現状値への変化量が大きいと膜差圧の変動量が大きいことになり、原水水質が大きく変化していると推測される。そこで、膜ろ過制御手段8は、変化量の大きさに対応して、表示手段9に表示するプロット色,プロット形状,ガイダンスを変更する。ガイダンスは「膜差圧増加大」「膜差圧増加中」「膜差圧増加小」「膜差圧減少小」「膜差圧減少中」「膜差圧減少大」などである。このように、運転条件の履歴と膜差圧または原水水質と、ろ過時間の関係をまとめて表示しているので、運転員は設備の状態を把握しやすい。 Here, the white circle plot shown in FIG. 2 is defined as the past value, and the black circle plot is defined as the current value. If the amount of change from the past value to the current value is large, the amount of fluctuation in the membrane differential pressure will be large, and it is assumed that the quality of the raw water has changed greatly. Therefore, the membrane filtration control means 8 changes the plot color, plot shape, and guidance displayed on the display means 9 in accordance with the magnitude of the change amount. Guidance includes "Membrane differential pressure increase large", "Membrane differential pressure increase small", "Membrane differential pressure increase small", "Membrane differential pressure decrease small", "Membrane differential pressure decrease small", etc. Thus, since the history of operation conditions, the membrane differential pressure or raw water quality, and the relationship between the filtration times are displayed together, the operator can easily grasp the state of the equipment.
なお、逆洗時間は一定でも、原水水質や膜差圧に応じて変更しても良い。変更する場合は膜差圧の増加で逆洗時間を増加させるとよい。ろ過時間の短縮や逆洗時間の増加は回収率や造水量を低下させる。そのため、逆洗排水を被処理水とした第2のろ過装置を備えることで回収率や造水量を回復できる。 The backwash time may be constant or may be changed according to the raw water quality and the membrane differential pressure. When changing, the backwash time should be increased by increasing the membrane differential pressure. Shortening the filtration time and increasing the backwash time decrease the recovery rate and the amount of fresh water. Therefore, the recovery rate and the amount of fresh water can be recovered by providing a second filtration device using backwash wastewater as treated water.
本実施例によれば、原水の水質や膜差圧に応じて膜ろ過設備のろ過時間を適正化でき、又、運転履歴を表示するため膜ろ過設備の運転状況を容易に把握できる。 According to the present embodiment, the filtration time of the membrane filtration equipment can be optimized according to the quality of raw water and the membrane differential pressure, and the operation status of the membrane filtration equipment can be easily grasped because the operation history is displayed.
本発明の実施例2を図3に示す。実施例2は、実施例1と同様に構成されているが、本実施例では、図3に示すように、前処理タンク11が、原水水質計5とろ過ポンプ2の間に設置され、前処理手段10が、前処理タンク11に接続されている。
A second embodiment of the present invention is shown in FIG. Example 2 is configured in the same manner as Example 1, but in this example, as shown in FIG. 3, a
前処理手段10により、前処理タンク11に凝集剤などが注入され、前処理タンク11で原水と凝集剤とが混合される。前処理手段10の凝集剤の注入量は、膜ろ過制御手段8によって制御される。凝集剤の注入は、濁質の粒径を大きくし、凝集した濁質内に有機物などを取り込むため膜差圧を抑制する場合が多い。一方で、凝集剤の注入は、懸濁物質を増加させ排水処理での負担が増大するため、適正化が望まれる。
A flocculant or the like is injected into the
本実施例の上水膜ろ過設備の運転方法を説明する。膜ろ過制御手段8は、1次側の圧力計測手段6と2次側の圧力計測手段7の情報から膜差圧を算出し、図2に示す線図上に過去値と現状値をプロットして表示手段9で表示する。 The operation method of the water membrane filtration equipment of the present embodiment will be described. The membrane filtration control means 8 calculates the membrane differential pressure from the information of the primary side pressure measurement means 6 and the secondary side pressure measurement means 7, and plots the past value and the current value on the diagram shown in FIG. Display on the display means 9.
過去値から現状値への変化量によって凝集剤注入率の増減量を制御する。例えば変化量を「増加大」「増加中」「増加小」「減少小」「減少中」「減少大」の6段階に分類し、「増加大」では凝集剤注入率を10mg/L、「増加中」では5mg/L、「増加小」では2mg/L増加させる。例えば、「減少大」では凝集剤注入率を10mg/L、「減少中」では5mg/L、「減少小」では2mg/L減少させる。このように、過去値から現状値への変化量、すなわち膜差圧の変動に応じて凝集剤注入率を変更でき、その状況を表示手段9で把握できる。 The increase / decrease amount of the flocculant injection rate is controlled by the amount of change from the past value to the current value. For example, the amount of change is classified into six stages of “large increase”, “increase”, “small increase”, “small decrease”, “decreasing”, “large decrease”, and “large increase” has a coagulant injection rate of 10 mg / L, “ “Increase” increases by 5 mg / L, and “Increase” increases by 2 mg / L. For example, the coagulant injection rate is reduced by 10 mg / L for “large reduction”, 5 mg / L for “decreasing”, and 2 mg / L for “small reduction”. Thus, the flocculant injection rate can be changed in accordance with the amount of change from the past value to the current value, that is, the fluctuation of the membrane differential pressure, and the status can be grasped by the display means 9.
本実施例によれば、原水の水質や膜差圧に応じて前処理手段10の薬剤注入量を適正化でき、膜ろ過設備のろ過時間の変更履歴を表示するため、膜ろ過設備の運転状況を容易に把握できる。 According to the present embodiment, the chemical injection amount of the pretreatment means 10 can be optimized according to the quality of raw water and the membrane differential pressure, and the change history of the filtration time of the membrane filtration equipment is displayed. Can be easily grasped.
図4に本発明の実施例4である運転方法を実施するための線図を示す。本実施例である図4に示す線図と図2の線図との違いは、本実施例では、原水水質によって膜差圧とろ過時間の関係を分類している点にある。なお、図4に示す線図では、原水水質として濁度を用いているが、浮遊物質濃度,有機物濃度,マンガン濃度などでも良い。実施例1と同様に、図4に示す線図が、表示手段9に表示される。
FIG. 4 shows a diagram for carrying out an operation method that is
次に、膜ろ過制御手段8の運転方法について説明する。膜ろ過制御手段8は、原水水質計5から原水の濁度と、1次側の圧力計測手段6と2次側の圧力計測手段7から膜差圧の計測値を得る。得られた原水の濁度と膜差圧を図4に示す線図にプロットし、ろ過時間を決定する。 Next, the operation method of the membrane filtration control means 8 will be described. The membrane filtration control means 8 obtains the measured value of the raw water turbidity from the raw water quality meter 5 and the measured value of the membrane differential pressure from the primary side pressure measurement means 6 and the secondary side pressure measurement means 7. The turbidity and membrane pressure difference of the raw water obtained are plotted on the diagram shown in FIG. 4 to determine the filtration time.
膜ろ過制御手段8は、設定された時間後に、原水水質計5から原水の濁度と、1次側の圧力計測手段6と2次側の圧力計測手段7から膜差圧の計測値を得る。更新後のプロットを現状値とし、得られた原水の濁度と膜差圧からろ過時間を更新する。図4では現状値を黒丸、過去値を白丸で示した。これらのプロットにより、白丸から黒丸へ原水濁度や膜差圧が変更し、運転条件が変更された履歴を示すことができる。 The membrane filtration control means 8 obtains the measured values of the raw water turbidity from the raw water quality meter 5 and the measured value of the membrane differential pressure from the primary pressure measuring means 6 and the secondary pressure measuring means 7 after the set time. . Use the updated plot as the current value, and update the filtration time from the turbidity and membrane pressure difference of the raw water obtained. In FIG. 4, the current value is indicated by a black circle and the past value is indicated by a white circle. With these plots, it is possible to show the history that the raw water turbidity and the membrane differential pressure are changed from white circles to black circles, and the operating conditions are changed.
原水濁度が同じで膜差圧が増加した場合はプロットAとなり、ろ過時間が短縮され逆洗を増加できる。また、原水濁度が同じで膜差圧が減少した場合は、プロットEとなりろ過時間が延長される。膜差圧の低下は、逆洗が十分に効果があったと推測されるため、ろ過時間の延長が可能である。 When the raw water turbidity is the same and the membrane differential pressure increases, it becomes plot A, and the filtration time is shortened and backwashing can be increased. Moreover, when the raw water turbidity is the same and the membrane differential pressure is reduced, the plot E is obtained and the filtration time is extended. The decrease in the membrane pressure difference is presumed that backwashing was sufficiently effective, so the filtration time can be extended.
膜差圧が同じで原水濁度が増加するとプロットBとなり、ろ過時間が短縮される。原水濁度の増加により目詰まりが進行することが予想される。ろ過時間を短縮することで膜差圧の増加を防止できる。膜差圧が同じで原水濁度が低下するとプロットFとなり、ろ過時間が延長される。原水濁度の低下により目詰まり物質が低減したので、ろ過時間の延長が可能と判断できる。 When the membrane differential pressure is the same and the raw water turbidity increases, plot B is obtained, and the filtration time is shortened. It is expected that clogging will progress due to an increase in raw water turbidity. By shortening the filtration time, an increase in the membrane pressure difference can be prevented. When the membrane differential pressure is the same and the raw water turbidity decreases, the plot F is obtained, and the filtration time is extended. Since clogging substances are reduced due to a decrease in raw water turbidity, it can be determined that the filtration time can be extended.
膜差圧と原水濁度の両方が増加するとプロットCとなり、ろ過時間をプロットAやプロットBに比べ短縮でき、逆洗による洗浄を強化できる。膜差圧と原水濁度の両方が低下するとプロットGとなり、ろ過時間をプロットEやプロットFに比べ延長でき、ろ過水量を増加できる。 When both the membrane differential pressure and the raw water turbidity increase, plot C is obtained, and the filtration time can be shortened compared to plot A and plot B, and the washing by backwashing can be enhanced. When both the membrane differential pressure and the raw water turbidity decrease, the plot G is obtained, and the filtration time can be extended as compared with the plot E and the plot F, and the amount of filtered water can be increased.
原水濁度が増加したが膜差圧が減少した場合はプロットHとなり、膜ろ過制御手段8は、ろ過時間を変更しない。膜差圧が減少しているため、現状のろ過時間を維持する。また、膜差圧が増加したが原水濁度が減少した場合は、プロットDとなり、膜ろ過制御手段8は、ろ過時間を変更しない。原水濁度が減少しているため現状のろ過時間を維持する。 When the raw water turbidity increases but the membrane differential pressure decreases, it becomes a plot H, and the membrane filtration control means 8 does not change the filtration time. Since the membrane pressure difference is decreasing, the current filtration time is maintained. Further, when the membrane differential pressure increases but the raw water turbidity decreases, the plot D is obtained, and the membrane filtration control means 8 does not change the filtration time. The current filtration time is maintained because the raw water turbidity is decreasing.
図4で、過去値から現在値への方向すなわち変化方向によって、膜差圧と原水濁度の増減を分類できる。図5に分類結果を示すが、「領域ア」では膜差圧と原水濁度の両方が増加、「領域イ」では膜差圧が増加し原水濁度が低下、「領域ウ」では膜差圧と原水濁度の両方が減少、「領域エ」では膜差圧が減少し、原水濁度が増加している。膜ろ過装置への負荷や危険度の順位は、「領域ア」>「領域イ」>「領域エ」>「領域ウ」となる。 In FIG. 4, the increase / decrease in membrane differential pressure and raw water turbidity can be classified according to the direction from the past value to the current value, that is, the change direction. The classification results are shown in FIG. 5. In “Region A”, both the membrane differential pressure and the raw water turbidity increase, in “Region A” the membrane differential pressure increases and the raw water turbidity decreases, and in “Region C”, the membrane difference Both the pressure and raw water turbidity decreased, and in "Region D", the membrane differential pressure decreased and the raw water turbidity increased. The order of the load on the membrane filtration apparatus and the degree of danger is “region a”> “region a”> “region d”> “region c”.
膜ろ過制御手段8は、変化量と変化方向に対応して表示手段9に、プロットの色,形状,ガイダンスを変更して表示する。変化量が大きいことは、原水水質や膜差圧の急激に変動していることを表し、変化方向によって運転の危険度を判定できる。膜ろ過制御手段8は、変化量を3つに分類し、変化方向、すなわち領域毎に重み付けすることで、ろ過時間を適正化できる。危険度順にプロットの色や形を予め決定しておくことで、運転員が設備の状況を容易に把握できる。また、危険度結果をガイダンスとして示しても良い。運転条件の履歴と膜差圧または原水水質の関係をまとめて表示できるため、運転員は設備の状態を把握しやすい。 The membrane filtration control means 8 changes and displays the plot color, shape and guidance on the display means 9 corresponding to the change amount and change direction. A large change amount indicates that the raw water quality and the membrane differential pressure are changing rapidly, and the driving risk can be determined by the change direction. The membrane filtration control means 8 classifies the amount of change into three, and weights each change direction, that is, for each region, so that the filtration time can be optimized. By determining the color and shape of the plot in order of the degree of risk, the operator can easily grasp the state of the equipment. Moreover, you may show a risk degree result as guidance. Since the history of operating conditions and the relationship between membrane differential pressure or raw water quality can be displayed together, the operator can easily understand the state of the equipment.
本実施例によれば、原水の水質や膜差圧に応じて膜ろ過設備のろ過時間を適正化できる。又、運転履歴を表示するため膜ろ過設備の運転状況を容易に把握できる。 According to this embodiment, the filtration time of the membrane filtration equipment can be optimized according to the quality of raw water and the membrane differential pressure. Moreover, since the operation history is displayed, the operation status of the membrane filtration equipment can be easily grasped.
本発明の実施例4を説明する。浄水膜ろ過設備には、図3と同様に、薬剤注入等の前処理を施す前処理手段12が設置され、図4に示す線図が表示手段9に表示される。
膜ろ過制御手段8は、図4と図5を用い、過去値から現在値への変化量と変化方向、すなわち領域に応じて前処理手段12の薬剤注入量を制御する。一例として、変化量を膜差圧の増加と減少で「大」「中」「小」とした6段階に分類し、図5に示すように4つの領域に分類した場合を説明する。 The membrane filtration control means 8 uses FIG. 4 and FIG. 5 to control the drug injection amount of the pretreatment means 12 in accordance with the change amount and change direction from the past value to the current value, that is, the region. As an example, a case will be described in which the amount of change is classified into six stages of “large”, “medium”, and “small” by increasing and decreasing the membrane differential pressure, and classified into four regions as shown in FIG.
薬剤注入率を「大」が±10mg/L、「中」が±5mg/L、「小」が±2mg/Lとし、領域毎に重み付けする。「領域ア」と「領域ウ」を1.5倍、「領域イ」と「領域エ」を1.0倍とする。これらの結果を表1に示す。 The drug injection rate is set to ± 10 mg / L for “large”, ± 5 mg / L for “medium”, and ± 2 mg / L for “small”, and weighted for each region. “Region A” and “Region C” are 1.5 times, and “Region A” and “Region D” are 1.0 times. These results are shown in Table 1.
表1の内容の全部または一部は、表示手段9に表示される。この結果、膜ろ過制御手段8は、薬剤注入率の増減を変化量と変化方向に応じて適正化でき、かつ制御量を表示できる。 All or part of the contents of Table 1 are displayed on the display means 9. As a result, the membrane filtration control means 8 can optimize the increase and decrease of the drug injection rate according to the change amount and the change direction, and can display the control amount.
本実施例によれば、原水の水質や膜差圧に応じて前処理の薬剤注入量を適正化でき、膜ろ過設備のろ過時間の履歴や凝集剤注入量を表示するため、膜ろ過設備の運転状況を容易に把握できる。 According to this example, the pretreatment chemical injection amount can be optimized according to the raw water quality and the membrane differential pressure, and the filtration time history of the membrane filtration facility and the flocculant injection amount can be displayed. The driving situation can be easily grasped.
本発明の実施例5を図6を用いて説明する。本実施例は、実施例1と同様に構成されているが、実施例1では膜モジュールであるが、本実施例では、複数の膜モジュールからなる膜モジュールユニットとしている。複数の膜モジュール1−1〜1−4に対応して、ろ過ポンプ2−1〜2−4,1次側の圧力計測手段6−1〜6−4,2次側の圧力計測手段7−1〜7−4が追加されている。逆洗ポンプ4は、各膜モジュールの逆洗を順次行うように制御されるため、1台設置されている。
A fifth embodiment of the present invention will be described with reference to FIG. The present embodiment is configured in the same manner as in the first embodiment, but in the first embodiment, it is a membrane module, but in this embodiment, the membrane module unit is composed of a plurality of membrane modules. Corresponding to the plurality of membrane modules 1-1 to 1-4, filtration pumps 2-1 to 2-4, primary-side pressure measuring means 6-1 to 6-4, and secondary-side pressure measuring means 7- 1-7-4 are added. One
この場合、ろ過時間の下限値は、逆洗時間と逆洗する膜モジュール数の積となる。膜モジュールの一部を休止させている場合もあり、稼動している膜モジュール数でろ過時間の下限値を変更する必要がある。 In this case, the lower limit of the filtration time is the product of the backwash time and the number of membrane modules to be backwashed. In some cases, a part of the membrane module is stopped, and it is necessary to change the lower limit of the filtration time depending on the number of membrane modules in operation.
膜ろ過制御手段8の運転方法について説明する。膜ろ過制御手段8は、ろ過ポンプ2−1〜2−4の運転状態から稼動中の膜モジュール数と、予め設定されている逆洗時間の情報を入手する。次に、稼動中の膜モジュール数と逆洗時間との積を求め、図2または図4に示す線図中に表示する。 The operation method of the membrane filtration control means 8 will be described. The membrane filtration control means 8 obtains information on the number of membrane modules in operation and preset backwash time from the operation state of the filtration pumps 2-1 to 2-4. Next, the product of the number of membrane modules in operation and the backwash time is obtained and displayed in the diagram shown in FIG. 2 or FIG.
膜モジュール1−1〜1−4の4つの膜モジュールが稼動しているとし、逆洗時間が6分の場合は、ろ過時間の下限値は24分となる。なお、逆洗時間は、逆洗ポンプの起動時間と配管のバルブの開閉時間等を含めた時間となる。ろ過時間の下限値を追記した結果を図7に示す。膜ろ過制御手段8は、ろ過時間の下限値を更新した図7によりろ過時間を設定する。 When four membrane modules 1-1 to 1-4 are operating, and the backwash time is 6 minutes, the lower limit of the filtration time is 24 minutes. The backwash time is a time including the start time of the backwash pump and the opening / closing time of the valve of the pipe. The result of adding the lower limit of the filtration time is shown in FIG. The membrane filtration control means 8 sets the filtration time according to FIG. 7 in which the lower limit value of the filtration time is updated.
本実施例によれば、原水の水質や膜差圧,膜モジュールの稼動数に応じて膜ろ過設備の運転条件を自動で変更できる。又、運転履歴を表示するため膜ろ過設備の運転状況を容易に把握できる浄水設備の運転方法を提供できる。 According to the present embodiment, the operating conditions of the membrane filtration equipment can be automatically changed according to the quality of raw water, the membrane differential pressure, and the number of operating membrane modules. Moreover, since the operation history is displayed, it is possible to provide an operation method of the water purification facility that can easily grasp the operation status of the membrane filtration facility.
1 膜モジュール
2 ろ過ポンプ
3 ろ過水タンク
4 逆洗ポンプ
5 原水水質計
6 1次側の圧力計測手段
7 2次側の圧力計測手段
8 膜ろ過制御手段
9 表示手段
10 前処理手段
11 前処理タンク
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008039500A JP4178178B1 (en) | 2008-02-21 | 2008-02-21 | Operation method of water purification membrane filtration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008039500A JP4178178B1 (en) | 2008-02-21 | 2008-02-21 | Operation method of water purification membrane filtration equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008180861A Division JP2009195893A (en) | 2008-07-11 | 2008-07-11 | Operation method of water purification membrane filtration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4178178B1 true JP4178178B1 (en) | 2008-11-12 |
JP2009195818A JP2009195818A (en) | 2009-09-03 |
Family
ID=40056092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008039500A Expired - Fee Related JP4178178B1 (en) | 2008-02-21 | 2008-02-21 | Operation method of water purification membrane filtration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4178178B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7421414B2 (en) | 2020-05-12 | 2024-01-24 | 株式会社クボタ | History management method and history management system for water treatment components |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101635231B1 (en) * | 2011-03-17 | 2016-06-30 | 엘지전자 주식회사 | A water purifier and filter cleanning method for the same |
JP2014057926A (en) * | 2012-09-19 | 2014-04-03 | Takagi Co Ltd | Water purifier and production method of purified water |
JP7233338B2 (en) * | 2019-08-01 | 2023-03-06 | メタウォーター株式会社 | Filter membrane cleaning method |
KR102545236B1 (en) * | 2021-10-21 | 2023-06-19 | 두산에너빌리티 주식회사 | Apparatus for controlling reverse osmosis membrane desalination plant and method therefor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08126882A (en) * | 1994-10-28 | 1996-05-21 | Toshiba Corp | Device for controlling operation of water generating plant |
JPH08229554A (en) * | 1995-02-28 | 1996-09-10 | Toshiba Corp | Device for controlling operation of reverse-osmosis membrane water generating plant |
JPH1015307A (en) * | 1996-06-28 | 1998-01-20 | Tohoku Electric Power Co Inc | Coagulating filtration method of water and water treatment device |
JP3924919B2 (en) * | 1998-05-21 | 2007-06-06 | Jfeエンジニアリング株式会社 | Water filtration equipment |
JP2003126855A (en) * | 2001-10-26 | 2003-05-07 | Toshiba Corp | Membrane filter system |
JP3565818B2 (en) * | 2002-02-27 | 2004-09-15 | 名古屋大学長 | Method and apparatus for determining treatment water supply method for membrane filtration device |
JP2003311261A (en) * | 2002-04-19 | 2003-11-05 | Hitachi Plant Eng & Constr Co Ltd | Membrane water purification equipment operation support service server |
JP4094584B2 (en) * | 2004-07-07 | 2008-06-04 | 株式会社日立製作所 | Operation support device for membrane filtration equipment |
-
2008
- 2008-02-21 JP JP2008039500A patent/JP4178178B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7421414B2 (en) | 2020-05-12 | 2024-01-24 | 株式会社クボタ | History management method and history management system for water treatment components |
Also Published As
Publication number | Publication date |
---|---|
JP2009195818A (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1998876B1 (en) | Controls of a filtration system | |
Cingolani et al. | Pilot-scale multi-stage reverse osmosis (DT-RO) for water recovery from landfill leachate | |
KR101478878B1 (en) | Membrane filtration process system using of relative fouling index ratio and the method | |
KR100979096B1 (en) | Optimal Operation Control System and Method for Membrane Separation Process Using Intermittent Aeration Air Cleaning Method | |
KR101542617B1 (en) | Cleaning system of separation membrane and method using the same | |
EP2253594A2 (en) | Water purification apparatus and method for using pressure filter and pore-control fiber filter | |
JP4178178B1 (en) | Operation method of water purification membrane filtration equipment | |
Suarez et al. | Dead-end microfiltration as advanced treatment for wastewater | |
JPH11319516A (en) | Water filtration apparatus and method for operating the same | |
US20100032373A1 (en) | Method for the optimised management of a membrane filtration unit and equipment for realising the same | |
KR20120001845A (en) | Water treatment device | |
KR20080101588A (en) | Operation and design method of membrane filtration water treatment device | |
JP3473309B2 (en) | Operation control device for membrane separation device | |
JP2009195893A (en) | Operation method of water purification membrane filtration system | |
AU2021361509B2 (en) | Support device, support method, and support program | |
KR101786821B1 (en) | Water treatment apparatus with gravity-driven type | |
Monclús et al. | Knowledge-based control module for start-up of flat sheet MBRs | |
KR100720139B1 (en) | Apparatus and method for controlling coagulation pretreatment by continuous monitoring of membrane fouling index in advanced water treatment system using membrane separation | |
JPH11169851A (en) | Water filter and its operation | |
KR101693100B1 (en) | Smart Membrane-Filteration Water Treating System | |
KR101692789B1 (en) | Water-treatment apparatus using membrane unit and Method thereof | |
KR101418738B1 (en) | Immersion type-pressure type hybrid membrane filtration system | |
JP2006272218A (en) | Two-stage membrane filtration system and operation method of two-stage membrane filtration system | |
JPH1157739A (en) | Water treatment method | |
JP2007117947A (en) | Water purification equipment and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080825 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4178178 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |