JP4173927B2 - Water-soluble vitamin composition - Google Patents
Water-soluble vitamin composition Download PDFInfo
- Publication number
- JP4173927B2 JP4173927B2 JP22534398A JP22534398A JP4173927B2 JP 4173927 B2 JP4173927 B2 JP 4173927B2 JP 22534398 A JP22534398 A JP 22534398A JP 22534398 A JP22534398 A JP 22534398A JP 4173927 B2 JP4173927 B2 JP 4173927B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- weight
- vitamin
- parts
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水溶性ビタミン類及びその誘導体を生理活性成分として含有する組成物、及び該組成物を用いた食品、医薬品、化粧品に関するものである。
【0002】
【従来の技術】
水溶性ビタミン類及びその誘導体はその生理作用により医薬品や化粧品、食品の栄養強化、または酸化防止剤として広範な用途に供されている。しかしながら、これらの化合物は特異な味を有するため、食品用途での利用に制限を受ける事やL−アスコルビン酸に代表される様に酸化、熱、光に対して不安定という欠点がある。
【0003】
水溶性ビタミンの安定化法としては、脂肪酸とのエステル化(特公昭55−45546等)やリン酸エステル化及び錯塩化(特開平7−53581等)といったビタミン分子の一部の官能基を適当な置換基で置き換える方法、またはアミノ酸や有機酸を安定化剤として併用する方法(特公昭57−48050)等が提案されているが、これらの誘導体はビタミンの薬理効果の低下や副作用の発現等の問題点が残る。
【0004】
アミノ酸や有機酸を安定化剤として併用する場合においては、水溶性ビタミン自体の酸化やpH条件によってアンモニア等が発生したり、安定化剤自体の呈味性が使用上好ましくない影響を及ぼす等の問題がある。
【0005】
その他、ビタミン及びその塩類単体を融点50〜80℃の油脂と乳化剤との混合物に混合して被覆する方法(特公昭57−48050)やビタミン及びその塩類の水溶液を親油性のソルビタン脂肪酸エステル、ショ糖脂肪酸エステル及びポリグリセリン縮合リシノレイン酸エステル等を添加した油脂中に乳化させて油中水滴型(W/O)乳化油脂組成物とする方法(特公昭63−96727,特開平6−343400等)等が提案されている。
【0006】
しかしながら前者では、水溶性ビタミン類の結晶表面を高融点の固体油脂で被覆してW/O分散型の固体/固体界面を形成させる方法であり、ビタミン類の安定性には優れるものの、使用するビタミン結晶が数十μm以上の粗大結晶であり、高融点の固体油脂で被覆された0.2〜2mm程度の粒状形態であるためにその応用範囲が限定され、特に液状製品への応用は極めて難しくなる。
【0007】
後者においては、内部水相が0.2〜5μm程度のW/O乳化組成物が得られ、応用範囲は広がるもののビタミン類が水溶液状態であるために乳化界面の物理的強度が弱く、殺菌等の加熱工程を経ると分解等が生じ易くなり、且つW/O乳化型の液体/液体界面である事から攪拌やポンプ輸送等の物理的応力にさらされると乳化状態が転相破壊し易い欠点がある。
【0008】
【発明が解決しようとする課題】
本発明の目的は、水溶性ビタミンを長期間安定に保ち、且つ呈味性に優れた水溶性ビタミン組成物を提供する事にある。
【0009】
【課題を解決するための手段】
本発明者らは、前期の目的を達成するために鋭意検討を行った結果、水溶性ビタミン、グリセリン脂肪酸エステル及び中性脂質を含有する水溶性ビタミン組成物が、水溶性ビタミン特有の異味をマスキングでき、且つ安定性に優れる事を見出し、本発明を完成するに至った。
【0010】
即ち本発明は、物理的破砕によって平均粒径1μm以下に超微粒子化した水溶性ビタミンをHLB4以下のグリセリン脂肪酸エステル及び融点が45℃以下の中性脂質中にW/O分散させたビタミン組成物に関する。
【0011】
【発明の実施の形態】
本発明における水溶性ビタミンは特に限定するものではないが、ビタミンC及びその誘導体であるアスコルビン酸−2−リン酸エステルやアスコルビン酸−2−グルコシド類,ビタミンB1 及びその誘導体であるチアミンプロピルジスルフィド、チアミンテトラフルフリルジスルフィド、チアミン−8−メチル−6−アセチルジヒドロチオクテートジスルフィド、O,S−ジカルボエトキシチアミン塩酸塩、S−ベンゾイルチアミン−O−モノフォスフェート、O−ベンゾイルチアミンジスルフィド,ビタミンB2 及びその誘導体である5−デアザ−7,8−ジデメチル−8−ヒドロキシリボフラビン等やフラビンモノヌクレオチド、フラビンアデニンジヌクレオチド等の補酵素型リボフラビン,ピリドキシン、ピリドキサール、ピリドキサミン等の遊離型ビタミンB6 及びそのリン酸エステル型又はグルコシド型誘導体,ビタミンB12,ナイアシン,パントテン酸及び葉酸、から選ばれる1種又は2種以上の混合物であるが、好ましくは中性脂質に不溶で且つ物理的破砕によってレーザー回折型粒度分布測定による平均粒径が1μm以下の超微粒子化する事ができる性質の水溶性ビタミンである。物理的破砕方法に関しては、コボールミル等の湿式摩砕機やジェットミル等の乾式破砕機、又は液体窒素を利用する凍結粉砕等の使用が挙げられるが、レーザー回折型粒度分布測定により平均粒径1μm以下の超微粒子化ができる性能のものであれば何れを使用しても差し支えない。平均粒径が1μmより大きくなると中性脂質中での分散安定性が低下し、ビタミンの微粒子が沈殿分離する。
【0012】
本発明の水溶性ビタミンの含有量は特に限定するものではないが、該組成物中1〜70重量%である事が好ましく、更に好ましくは15〜50重量%である。ビタミン量が1重量%より少ない場合は、主剤であるビタミン量が微量となりビタミン組成物としての用を成さない。また、ビタミン量が70重量%より多い場合には、構造粘度が極度に高まり流動性を失ってしまう為に後の加工特性及び応用範囲を著しく狭める事となる。
【0013】
本発明に用いるグリセリン脂肪酸エステルは特に限定するものではないが、HLB4以下の有機酸モノグリセリド,ポリグリセリン脂肪酸エステル及びポリグリセリン縮合リシノレイン酸エステル、好ましくはクエン酸グリセリド、リンゴ酸グリセリド、酢酸グリセリド、コハク酸グリセリド、ジアセチル酒石酸グリセリド、平均重合度2〜10のポリグリセリンと炭素数6〜22の脂肪酸エステル及び平均重合度2〜10のポリグリセリンと縮合度2〜4のポリリシノレイン酸のエステルから選ばれる1種または2種以上の混合物であり、グリセリン脂肪酸エステルは中性脂質に対して1〜100重量%配合するが、添加量が1重量%未満の場合はビタミン微粒子結晶を十分に分散させる事が不可能であり、100重量%より多い場合には該組成物を改めて水系に分散させる際、乳化転相により内包する水溶性ビタミン微粒子の溶出が生じ易くなり、安定なW/O/W乳化系を構成するに支障を来たす。
【0014】
本発明に用いる中性脂質は特に限定するものではないが、中鎖脂肪酸トリグリセリド等の合成油脂や大豆、米、菜種、カカオ、椰子等の油糧種子から得られる一般的な植物性油脂及び牛脂、乳脂、豚脂等の動物性油脂の何れでも使用でき、これらに本来含まれているリン脂質、ステロール類、ワックス類及び油溶性ビタミン類等が共存しても一向に差し支えないが、融点が45℃以下の加温域で使用できる油成分が好ましく、更に好ましくは融点が常温以下である。融点が45℃より高い中性脂質を用いると水溶性ビタミン組成物の調製及び食品等への添加時に複数の加熱工程が必要となる為、強度の熱履歴を水溶性ビタミンに与える事となり、応用範囲も極めて狭められる事となる。
以下に実施例及び試験例によって本発明を説明するが、その内容に制限されるものではない。
【0015】
【実施例】
実施例1
中鎖脂肪酸トリグリセリド50重量部(融点−11℃,太陽化学株式会社製)、ポリグリセリン縮合リシノレイン酸エステル10重量部(サンソフト818H;HLB1,太陽化学株式会社製)を混合し、L−アスコルビン酸結晶40重量部(平均粒子径約100μm、日本ロシュ株式会社製)を加えた油性懸濁液を調製し、これをコボールミル(神鋼パンテック株式会社製)に掛け、レーザー回折型粒度分布測定によりL−アスコルビン酸の平均粒子径が0.4μmとなったW/O分散組成物を得た。
【0016】
実施例2
菜種白絞油70重量部(融点12℃)、ポリグリセリン縮合リシノレイン酸エステル5重量部(サンソフト818H;HLB1,太陽化学株式会社製)及びポリグリセリンステアリン酸エステル5重量部(サンファットPS−68;HLB3.5,太陽化学株式会社製)を混合し、リボフラビン結晶20重量部(平均粒子径約100μm、武田薬品工業株式会社製)を加えた油性懸濁液を調製し、これをコボールミル(神鋼パンテック株式会社製)に掛け、レーザー回折型粒度分布測定によりリボフラビン結晶の平均粒子径が0.35μmとなったW/O分散組成物を得た。
【0017】
実施例3
中鎖脂肪酸トリグリセリド50重量部(融点−11℃,太陽化学株式会社製)、ポリグリセリン縮合リシノレイン酸エステル5重量部(サンソフト818SX;HLB0.5,太陽化学株式会社製)、クエン酸モノグリセリド5重量部(サンソフト623M;HLB4,太陽化学株式会社製)を混合し、L−アスコルビン酸結晶40重量部(平均粒子径約100μm、日本ロシュ株式会社製)を加えた油性懸濁液を調製し、これをコボールミル(神鋼パンテック株式会社製)に掛け、レーザー回折型粒度分布測定によりL−アスコルビン酸の平均粒子径が0.4μmとなったW/O分散組成物を得た。
【0018】
試験例1
中鎖脂肪酸トリグリセリド50重量部(融点−11℃,太陽化学株式会社製)、ポリグリセリン縮合リシノレイン酸エステル10重量部(サンソフト818H;HLB1,太陽化学株式会社製)を混合し、10%L−アスコルビン酸水溶液40重量部(pH2.0)を加えながらホモミキサー(特殊機化工業株式会社製)にて高速攪拌を行い、レーザー回折型粒度分布測定により内部水相の平均粒子径が0.4μmとなったW/O乳化液を調製した。これを対照として実施例1のW/O分散組成物中におけるL−アスコルビン酸の酸化状態を比較した。
【0019】
両者各200gをそれぞれ耐圧ビンに封じて121℃、30分間の加熱殺菌を行い、放冷後に20gを分取し、2%メタリン酸水溶液200mlとn−へキサン200mlを加えて室温下に振盪抽出を実施し、得られた水層部分を回収して0.45μmのメンブレンフィルターにて濾過して試験液とし、アミド結合型逆相カラム(アミド80、東ソー株式会社製)を設置したHPLCによりL−アスコルビン酸量を測定した。溶出溶媒はアセトニトリル/2.5mMリン酸カリウム溶液(50/50)を用い、検出は254nmの吸光度により測定した。その後、両者を50℃で3ヶ月間保存し、1ヶ月毎に上記と同様の測定を行うと共に乳化状態を観察した。
【0020】
L−アスコルビン酸は水存在下で2位及び3位のエノール基より水素原子を容易に失い、ケト型異性体であるデヒドロアスコルビン酸となり、更に酸化が進むと2,3−ジケトグロン酸をへてシュウ酸等に分解する。これらの化合物中L−アスコルビン酸のみが254nmの波長に特異的な吸収を呈する性質があるため、これを指標としてL−アスコルビン酸の残存率を求めて、ビタミンCとしての安定性を比較した。
【0021】
その結果、表1に示すように実施例1のW/O分散組成物においてはL−アスコルビン酸の減衰が殆ど生じず、優れた安定化性を示した。
【0022】
【表1】
【0023】
試験例2
菜種白絞油70重量部(融点12℃)、ポリグリセリン縮合リシノレイン酸エステル10重量部(サンソフト818H;HLB1,太陽化学株式会社製)を混合し、2%リボフラビン水溶液20重量部(武田薬品工業株式会社製)を加えながらホモミキサー(特殊機化工業株式会社製)にて高速攪拌を行い、レーザー回折型粒度分布測定により内部水相の平均粒子径が0.35μmとなったW/O乳化液を調製した。これを対照として実施例2のW/O分散組成物を10人のパネラーにより官能試験を実施してリボフラビンの特異な風味のマスキング性を比較した。
【0024】
その結果、表2に示すように実施例2のW/O分散組成物においてはリボフラビンの特異な風味を殆ど感じさせない、優れた呈味性を示した。
【0025】
【表2】
【0026】
試験例3
中鎖脂肪酸トリグリセリド50重量部(融点−11℃,太陽化学株式会社製)、ポリグリセリン縮合リシノレイン酸エステル10重量部(サンソフト818H;HLB1,太陽化学株式会社製)を混合し、10%L−アスコルビン酸水溶液40重量部(pH2.0)を加えながらホモミキサー(特殊機化工業株式会社製)にて高速攪拌を行い、レーザー回折型粒度分布測定により内部水相の平均粒子径が0.4μmとなったW/O乳化液を調製した。これをショ糖脂肪酸エステル5重量部(リョートーシュガーエステルS−1670,三菱化学株式会社製)を溶解させた水1000重量部中に加えて攪拌してW/O/W乳化液を調製した。
【0027】
同様に実施例3のW/O分散組成物もショ糖脂肪酸エステル5重量部(リョートーシュガーエステルS−1670,三菱化学株式会社製)を溶解させた水1000重量部中に加えて攪拌してW/O/W乳化液を調製し、両者各200gをそれぞれ耐圧ビンに封じて121℃、15分間の加熱殺菌を行い、放冷後に50gを分取し、2%メタリン酸水溶液200mlとn−へキサン200mlを加えて室温下に振盪抽出を実施し、得られた水層部分を回収して0.45μmのメンブレンフィルターにて濾過して試験液とし、アミド結合型逆相カラム(アミド80、東ソー株式会社製)を設置したHPLCによりL−アスコルビン酸量を測定した。溶出溶媒はアセトニトリル/2.5mMリン酸カリウム溶液(50/50)を用い、検出は254nmの吸光度により測定した。その後、両者を40℃で3週間保存し、1週間毎に上記と同様の測定を行うと共に乳化状態を観察した。
【0028】
その結果、表3に示すように実施例3のW/O分散組成物は、W/O/W型の不安定な乳化条件下においてもL−アスコルビン酸の減衰が殆ど生じず、優れた安定化性を示した。
【0029】
【表3】
【0030】
応用例1
実施例3のL−アスコルビン酸W/O分散組成物3重量部を市販のプレーンヨーグルト100重量部に添加して攪拌混合し、1200mg/gのビタミンC強化ヨーグルトを調製した。対照としてL−アスコルビン酸1.2重量部を同様のプレーンヨーグルト100重量部に添加溶解したヨーグルトを調製して、両者における風味、製品形態及びL−アスコルビン酸の残存率について比較したところ、対照品においてはL−アスコルビン酸の酸味が著しく顕著であり、pHの低下による乳蛋白質の溶解が生じてヨーグルトの形態を逸脱した状態となったが、実施例3のW/O分散組成物を添加したものでは、本来の風味を殆ど損なう事はなかった。
【0031】
また、両者のL−アスコルビン酸残存率を試験例3の測定法に準拠して分析したところ、対照品では残存率45.0%であったに対し、実施例3のW/O分散組成物を添加したものでの残存率は94.3%であり、水系の酸性食品中における本発明の効果を十分に確認できた。
【0032】
応用例2
実施例1のL−アスコルビン酸W/O分散組成物3重量部を市販のケーキプレミックス100重量部に添加して攪拌混合し、160℃、30分間焼成してパウンドケーキを調製した。対照としてL−アスコルビン酸1.2重量部を同様のケーキプレミックス100重量部に添加溶解したパウンドケーキを調製して、両者における風味、製品形態及びL−アスコルビン酸の残存率について比較したところ、対照品においてはL−アスコルビン酸の酸味が著しく顕著であり、ケーキの起泡性が低下して嵩の低い状態となったが、実施例3のW/O分散組成物を添加したものでは、本来の風味及び起泡性を殆ど損なう事はなかった。
【0033】
また、両者のL−アスコルビン酸残存率を試験例3の測定法に準拠して分析したところ、対照品では残存率30.0%であったに対し、実施例3のW/O分散組成物を添加したものでの残存率は87.3%であり、加熱工程下での本発明の効果を十分に確認できた。
【0034】
【発明の効果】
ビタミン類の効果的な供給が健康維持に必要である事は言うまでもないが、水溶性ビタミンにおいては自身の分解性及び特異な風味を有する事から従来糖衣錠、打錠剤及びドリンク剤等の医薬品的な供給形態が一般化されていた。最近になり清涼飲料水及びビスケット等の食品中に配合される形態が多く見受けられるが、殺菌工程や焼成工程等の厳しい熱履歴を必須とする食品中においてはビタミン本来の生理活性が著しく損なわれている現状にある。
本発明の水溶性ビタミン組成物を水溶液中、好ましくは乳飲料、清涼飲料、果汁飲料、茶飲料、コーヒー飲料等の嗜好飲料、ヨーグルト、アイスクリーム、ホィップクリーム等の乳加工製品、プリン、ゼリー等のデザート類等の水系食品、または化粧乳液やローション等の水系化粧品中に分散させる時、乳化転相により内包する水溶性ビタミンが溶出する事なく、安定なW/O/W乳化系を構成する事を特徴とする。ここで言うW/O/W乳化系は、水中に分散する中性脂質の油滴の中に水溶性ビタミンの超微粒子結晶が安定分散する2重乳化構造を示す。本発明は、我々人間に必須の水溶性ビタミンを多様な食品加工に適応しうる形態を与えるものであり、特定のビタミンに限定される事無く全ての水溶性ビタミンに応用されるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composition containing water-soluble vitamins and derivatives thereof as physiologically active ingredients, and foods, pharmaceuticals, and cosmetics using the composition.
[0002]
[Prior art]
Water-soluble vitamins and derivatives thereof are used for a wide range of uses as pharmaceuticals, cosmetics, food fortification, or antioxidants due to their physiological effects. However, since these compounds have a unique taste, they are disadvantageous in that they are restricted in use in food applications and are unstable to oxidation, heat, and light as represented by L-ascorbic acid.
[0003]
As a method for stabilizing water-soluble vitamins, some functional groups of vitamin molecules such as esterification with fatty acids (JP-B-55-45546 etc.), phosphoric esterification and complex chlorination (JP-A-7-53581 etc.) are suitable. There have been proposed a method of replacing with various substituents, or a method of using an amino acid or an organic acid in combination as a stabilizer (Japanese Patent Publication No. 57-48050). The problem remains.
[0004]
When amino acids and organic acids are used as stabilizers, ammonia may be generated due to oxidation of the water-soluble vitamin itself or pH conditions, and the taste of the stabilizer itself may have an undesirable effect on use. There's a problem.
[0005]
In addition, a method in which vitamins and salts thereof alone are mixed with a mixture of fats and oils and an emulsifier having a melting point of 50 to 80 ° C. (JP-B-57-48050) or an aqueous solution of vitamins and salts thereof with lipophilic sorbitan fatty acid ester, salt Method of emulsifying in a fat / oil added with sugar fatty acid ester and polyglycerin condensed ricinoleic acid ester, etc. to form a water-in-oil (W / O) emulsified oil / fat composition (JP-B 63-96727, JP-A-6-343400, etc.) Etc. have been proposed.
[0006]
However, the former is a method of forming a W / O dispersion type solid / solid interface by coating the crystal surface of water-soluble vitamins with a high melting point solid oil and fat, which is excellent in the stability of vitamins but is used. Vitamin crystals are coarse crystals of several tens of μm or more, and are in a granular form of about 0.2 to 2 mm coated with a high melting point solid fat, so the application range is limited, especially for liquid products It becomes difficult.
[0007]
In the latter case, a W / O emulsified composition having an internal aqueous phase of about 0.2 to 5 μm is obtained, and although the range of application is widened, the physical strength of the emulsified interface is weak because the vitamins are in an aqueous solution state, sterilization, etc. Decomposition etc. is likely to occur through the heating step, and since it is a W / O emulsification type liquid / liquid interface, the emulsified state is liable to undergo phase inversion breakage when exposed to physical stress such as stirring and pumping. There is.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a water-soluble vitamin composition that keeps a water-soluble vitamin stable for a long period of time and is excellent in taste.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the objective of the previous period, the present inventors have found that a water-soluble vitamin composition containing a water-soluble vitamin, a glycerin fatty acid ester and a neutral lipid masks the peculiar taste unique to water-soluble vitamins. It was found that it was excellent in stability and the present invention was completed.
[0010]
That is, the present invention relates to a vitamin composition in which water-soluble vitamins that have been made into ultrafine particles having an average particle size of 1 μm or less by physical crushing are W / O dispersed in glycerol fatty acid esters having an HLB of 4 or less and neutral lipids having a melting point of 45 ° C. About.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The water-soluble vitamin in the present invention is not particularly limited, but vitamin C and its derivatives ascorbic acid-2-phosphate ester, ascorbic acid-2-glucoside, vitamin B 1 and thiamine propyl disulfide which is a derivative thereof , Thiaminetetrafurfuryl disulfide, thiamine-8-methyl-6-acetyldihydrothiooctate disulfide, O, S-dicarboethoxythiamine hydrochloride, S-benzoylthiamine-O-monophosphate, O-benzoylthiamine disulfide, Vitamin B 2 and its derivatives 5-deaza-7,8-didemethyl-8-hydroxyriboflavin etc. and flavin mononucleotide, flavin adenine dinucleotide coenzyme type riboflavin, pyridoxine, pyridoxal, pyridoxami 1 type or a mixture of 2 or more types selected from free vitamin B 6 and its phosphate ester type or glucoside type derivative, vitamin B 12 , niacin, pantothenic acid and folic acid, preferably neutral lipids It is a water-soluble vitamin that is insoluble in water and can be made into ultrafine particles having an average particle diameter of 1 μm or less by laser diffraction type particle size distribution measurement by physical crushing. Examples of physical crushing methods include the use of a wet crusher such as a coball mill, a dry crusher such as a jet mill, or freeze crushing using liquid nitrogen, but an average particle size of 1 μm or less by laser diffraction particle size distribution measurement. Any material can be used as long as it is capable of forming ultrafine particles. When the average particle size is larger than 1 μm, the dispersion stability in the neutral lipid is lowered, and vitamin fine particles are precipitated and separated.
[0012]
Although content of the water-soluble vitamin of this invention is not specifically limited, It is preferable that it is 1 to 70 weight% in this composition, More preferably, it is 15 to 50 weight%. When the amount of vitamin is less than 1% by weight, the amount of the main ingredient vitamin is so small that it is not used as a vitamin composition. On the other hand, when the amount of vitamin is more than 70% by weight, the structural viscosity becomes extremely high and the fluidity is lost, so that the subsequent processing characteristics and application range are significantly narrowed.
[0013]
The glycerin fatty acid ester used in the present invention is not particularly limited, but an organic acid monoglyceride having an HLB of 4 or less, polyglycerin fatty acid ester and polyglycerin condensed ricinoleic acid ester, preferably citric acid glyceride, malic acid glyceride, acetic acid glyceride, succinic acid 1 selected from glycerides, diacetyltartaric acid glycerides, polyglycerin having an average polymerization degree of 2 to 10 and fatty acid ester having 6 to 22 carbon atoms, polyglycerin having an average polymerization degree of 2 to 10 and polyricinoleic acid having a condensation degree of 2 to 4 It is a seed or a mixture of two or more. The glycerin fatty acid ester is blended in an amount of 1 to 100% by weight based on the neutral lipid. However, when the amount added is less than 1% by weight, it is impossible to sufficiently disperse the vitamin fine particle crystals. Yes, if more than 100% by weight When dispersing the composition again in an aqueous, tends to occur elution of water-soluble vitamins microparticles encapsulating by phase inversion emulsification, hindered constitutes a stable W / O / W emulsion system.
[0014]
The neutral lipid used in the present invention is not particularly limited, but general vegetable oils and beef fats obtained from synthetic oils and fats such as medium-chain fatty acid triglycerides and oily seeds such as soybeans, rice, rapeseed, cacao, and eggplant Any of animal fats such as milk fat and pork fat can be used, and even if phospholipids, sterols, waxes, oil-soluble vitamins and the like originally contained therein can coexist, the melting point is 45. An oil component that can be used in a warming region of 0 ° C. or lower is preferable, and a melting point is preferably normal temperature or lower. If neutral lipids with melting points higher than 45 ° C are used, multiple heating steps are required when preparing water-soluble vitamin compositions and adding them to foods. The range will be very narrow.
The present invention will be described below with reference to examples and test examples, but the present invention is not limited thereto.
[0015]
【Example】
Example 1
50 parts by weight of medium chain fatty acid triglyceride (melting point −11 ° C., manufactured by Taiyo Kagaku Co., Ltd.) and 10 parts by weight of polyglycerin condensed ricinoleic acid ester (Sunsoft 818H; HLB1, manufactured by Taiyo Kagaku Co., Ltd.) are mixed together to prepare L-ascorbic acid. An oily suspension to which 40 parts by weight of crystals (average particle size of about 100 μm, manufactured by Nippon Roche Co., Ltd.) was added was applied to a coball mill (manufactured by Shinko Pantech Co., Ltd.) and measured by laser diffraction particle size distribution measurement. -A W / O dispersion composition having an ascorbic acid average particle size of 0.4 m was obtained.
[0016]
Example 2
Rapeseed white squeezed oil 70 parts by weight (melting point 12 ° C.), polyglycerin condensed ricinoleate 5 parts by weight (Sunsoft 818H; HLB1, manufactured by Taiyo Chemical Co., Ltd.) and polyglycerin stearate 5 parts by weight (Sunfat PS-68 HLB3.5, manufactured by Taiyo Kagaku Co., Ltd.), and an oily suspension prepared by adding 20 parts by weight of riboflavin crystals (average particle size of about 100 μm, manufactured by Takeda Pharmaceutical Co., Ltd.) was prepared. Pantech Co., Ltd.) to obtain a W / O dispersion composition having an average particle size of riboflavin crystals of 0.35 μm by laser diffraction particle size distribution measurement.
[0017]
Example 3
50 parts by weight of medium chain fatty acid triglyceride (melting point −11 ° C., manufactured by Taiyo Kagaku Co., Ltd.), 5 parts by weight of polyglycerol condensed ricinoleic acid ester (Sunsoft 818SX; HLB0.5, manufactured by Taiyo Chemical Co., Ltd.), 5 wt. Part (Sunsoft 623M; HLB4, manufactured by Taiyo Kagaku Co., Ltd.), and an oily suspension added with 40 parts by weight of L-ascorbic acid crystals (average particle size of about 100 μm, manufactured by Nippon Roche Co., Ltd.) This was applied to a coball mill (manufactured by Shinko Pantech Co., Ltd.) to obtain a W / O dispersion composition in which the average particle size of L-ascorbic acid was 0.4 μm by laser diffraction type particle size distribution measurement.
[0018]
Test example 1
50 parts by weight of medium chain fatty acid triglyceride (melting point −11 ° C., manufactured by Taiyo Kagaku Co., Ltd.) and 10 parts by weight of polyglycerin condensed ricinoleic acid ester (Sunsoft 818H; HLB1, manufactured by Taiyo Kagaku Co., Ltd.) While adding 40 parts by weight of ascorbic acid aqueous solution (pH 2.0), high-speed stirring is performed with a homomixer (made by Tokushu Kika Kogyo Co., Ltd.), and the average particle size of the internal aqueous phase is 0.4 μm by laser diffraction type particle size distribution measurement. The resulting W / O emulsion was prepared. Using this as a control, the oxidation state of L-ascorbic acid in the W / O dispersion composition of Example 1 was compared.
[0019]
200 g of each is sealed in a pressure bottle, sterilized by heating at 121 ° C. for 30 minutes, and after standing to cool, 20 g is separated, and 200 ml of 2% aqueous metaphosphoric acid and 200 ml of n-hexane are added and shake-extracted at room temperature. The aqueous layer obtained was collected and filtered through a 0.45 μm membrane filter to obtain a test solution, which was measured by HPLC with an amide-bonded reverse phase column (Amide 80, manufactured by Tosoh Corporation). -The amount of ascorbic acid was measured. As an elution solvent, acetonitrile / 2.5 mM potassium phosphate solution (50/50) was used, and detection was measured by absorbance at 254 nm. Thereafter, both were stored at 50 ° C. for 3 months, and the same measurement as described above was performed every month and the emulsified state was observed.
[0020]
L-ascorbic acid easily loses a hydrogen atom from the 2- and 3-position enol groups in the presence of water to form dehydroascorbic acid which is a keto-type isomer. Decomposes into oxalic acid. Of these compounds, only L-ascorbic acid has the property of exhibiting specific absorption at a wavelength of 254 nm. Therefore, the residual rate of L-ascorbic acid was determined using this as an index, and the stability as vitamin C was compared.
[0021]
As a result, as shown in Table 1, in the W / O dispersion composition of Example 1, L-ascorbic acid was hardly attenuated and showed excellent stability.
[0022]
[Table 1]
[0023]
Test example 2
70 parts by weight of rapeseed white squeezed oil (melting point: 12 ° C.) and 10 parts by weight of polyglycerin condensed ricinoleic acid ester (Sunsoft 818H; HLB1, manufactured by Taiyo Chemical Co., Ltd.) were mixed and 20 parts by weight of 2% riboflavin aqueous solution (Takeda Pharmaceutical Co., Ltd.) W / O emulsification in which the average particle size of the internal aqueous phase was 0.35 μm by laser diffraction type particle size distribution measurement. A liquid was prepared. Using this as a control, the W / O dispersion composition of Example 2 was subjected to a sensory test with 10 panelists to compare the unique flavor masking properties of riboflavin.
[0024]
As a result, as shown in Table 2, the W / O dispersion composition of Example 2 exhibited an excellent taste property that hardly caused the unique flavor of riboflavin to be felt.
[0025]
[Table 2]
[0026]
Test example 3
50 parts by weight of medium chain fatty acid triglyceride (melting point −11 ° C., manufactured by Taiyo Kagaku Co., Ltd.) and 10 parts by weight of polyglycerin condensed ricinoleic acid ester (Sunsoft 818H; HLB1, manufactured by Taiyo Kagaku Co., Ltd.) While adding 40 parts by weight of ascorbic acid aqueous solution (pH 2.0), high-speed stirring is performed with a homomixer (made by Tokushu Kika Kogyo Co., Ltd.), and the average particle size of the internal aqueous phase is 0.4 μm by laser diffraction type particle size distribution measurement. The resulting W / O emulsion was prepared. This was added to 1000 parts by weight of water in which 5 parts by weight of sucrose fatty acid ester (Ryoto Sugar Ester S-1670, manufactured by Mitsubishi Chemical Corporation) was dissolved, and stirred to prepare a W / O / W emulsion.
[0027]
Similarly, the W / O dispersion composition of Example 3 was added to 1000 parts by weight of water in which 5 parts by weight of sucrose fatty acid ester (Ryoto Sugar Ester S-1670, manufactured by Mitsubishi Chemical Corporation) was dissolved and stirred. W / O / W emulsions were prepared, 200 g of each was sealed in a pressure-resistant bottle, sterilized by heating at 121 ° C. for 15 minutes, 50 g was collected after standing to cool, 200 ml of 2% aqueous metaphosphoric acid solution and n- 200 ml of hexane was added and shake extraction was performed at room temperature. The resulting aqueous layer was collected and filtered through a 0.45 μm membrane filter to obtain a test solution. The amount of L-ascorbic acid was measured by HPLC equipped with Tosoh Corporation. As an elution solvent, acetonitrile / 2.5 mM potassium phosphate solution (50/50) was used, and detection was measured by absorbance at 254 nm. Thereafter, both were stored at 40 ° C. for 3 weeks, and the same measurement as described above was performed every week and the emulsified state was observed.
[0028]
As a result, as shown in Table 3, the W / O dispersion composition of Example 3 showed almost no attenuation of L-ascorbic acid even under W / O / W type unstable emulsification conditions, and had excellent stability. It showed chemical properties.
[0029]
[Table 3]
[0030]
Application example 1
3 parts by weight of the L-ascorbic acid W / O dispersion composition of Example 3 was added to 100 parts by weight of commercially available plain yogurt and mixed by stirring to prepare 1200 mg / g vitamin C-enriched yogurt. As a control, a yogurt prepared by adding 1.2 parts by weight of L-ascorbic acid to 100 parts by weight of the same plain yoghurt was prepared, and the flavor, product form, and residual ratio of L-ascorbic acid were compared. In L, the sour taste of L-ascorbic acid was remarkably remarkable, and the milk protein was dissolved due to a decrease in pH, resulting in a state deviating from the form of yogurt. However, the W / O dispersion composition of Example 3 was added. In things, the original flavor was hardly impaired.
[0031]
Moreover, when the L-ascorbic acid residual rate of both was analyzed based on the measuring method of Test Example 3, the W / O dispersion composition of Example 3 was compared with the residual rate of 45.0% in the control product. The residual ratio with the addition of was 94.3%, and the effects of the present invention in an aqueous acidic food could be sufficiently confirmed.
[0032]
Application example 2
3 parts by weight of the L-ascorbic acid W / O dispersion composition of Example 1 was added to 100 parts by weight of a commercially available cake premix, mixed with stirring, and baked at 160 ° C. for 30 minutes to prepare a pound cake. As a control, a pound cake prepared by adding 1.2 parts by weight of L-ascorbic acid to 100 parts by weight of the same cake premix was prepared, and the flavor, product form, and residual rate of L-ascorbic acid in both were compared. In the control product, the sourness of L-ascorbic acid was remarkably remarkable, and the foaming property of the cake was reduced to a low bulk state, but with the addition of the W / O dispersion composition of Example 3, The original flavor and foamability were hardly impaired.
[0033]
Moreover, when the L-ascorbic acid residual ratio of both was analyzed based on the measurement method of Test Example 3, the residual ratio was 30.0% in the control product, whereas the W / O dispersion composition of Example 3 was The residual ratio with the addition of was 87.3%, and the effects of the present invention under the heating step could be sufficiently confirmed.
[0034]
【The invention's effect】
Needless to say, an effective supply of vitamins is necessary for health maintenance, but water-soluble vitamins have their own degradability and unique flavor, so that they are traditionally used as pharmaceutical products such as sugar-coated tablets, tablet tablets and drinks. The supply form was generalized. Recently, there are many forms mixed in foods such as soft drinks and biscuits, but in foods that require strict heat history such as sterilization and baking, the original physiological activity of vitamins is significantly impaired. Is in the current situation.
The water-soluble vitamin composition of the present invention in an aqueous solution, preferably milk beverages, soft drinks, fruit juice beverages, tea beverages, coffee beverages and other favorite beverages, yogurt, ice cream, whipped cream and other milk processed products, pudding, jelly, etc. When dispersed in water-based foods such as desserts or water-based cosmetics such as cosmetic emulsions or lotions, a stable W / O / W emulsification system should be constructed without elution of water-soluble vitamins contained by emulsion phase inversion. It is characterized by. The W / O / W emulsification system referred to here indicates a double emulsification structure in which ultrafine particles of water-soluble vitamins are stably dispersed in oil droplets of neutral lipids dispersed in water. The present invention provides a form in which water soluble vitamins essential for human beings can be applied to various food processing, and is applicable to all water soluble vitamins without being limited to specific vitamins.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22534398A JP4173927B2 (en) | 1998-07-24 | 1998-07-24 | Water-soluble vitamin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22534398A JP4173927B2 (en) | 1998-07-24 | 1998-07-24 | Water-soluble vitamin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000044474A JP2000044474A (en) | 2000-02-15 |
JP4173927B2 true JP4173927B2 (en) | 2008-10-29 |
Family
ID=16827866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22534398A Expired - Lifetime JP4173927B2 (en) | 1998-07-24 | 1998-07-24 | Water-soluble vitamin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4173927B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001231470A (en) * | 2000-02-24 | 2001-08-28 | Taiyo Kagaku Co Ltd | Gel composition |
WO2003000248A1 (en) * | 2001-06-22 | 2003-01-03 | Taisho Pharmaceutical Co., Ltd. | Liquid composition |
JP4747534B2 (en) * | 2003-09-01 | 2011-08-17 | 大正製薬株式会社 | W / O / W type composite emulsion |
-
1998
- 1998-07-24 JP JP22534398A patent/JP4173927B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000044474A (en) | 2000-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Review on the stability mechanism and application of water‐in‐oil emulsions encapsulating various additives | |
Burgos-Díaz et al. | Multilayer emulsions stabilized by vegetable proteins and polysaccharides | |
JP3414530B2 (en) | Stable emulsified composition and food containing it | |
US20210092987A1 (en) | Oil-in-water pickering emulsion | |
EP0659347B1 (en) | Stable emulsified compositions and foods containing the same | |
JP7347620B2 (en) | Oil-in-water emulsion composition and method for producing the oil-in-water emulsion composition | |
EP2067406B1 (en) | Ubiquinol-enriched fat-containing dairy products | |
WO2018105747A1 (en) | Oil-in-water type emulsion composition, and method for producing said oil-in-water type emulsion composition | |
EP1843668B1 (en) | Powder compositions | |
JP4829963B2 (en) | Lignan compounds containing O / W / O type emulsion and composition containing the same | |
JP4044354B2 (en) | Composition having alcohol resistance, acid resistance and salt resistance and uses | |
JP2008245588A (en) | Emulsifier composition and oil-in-water emulsion | |
JP3941073B2 (en) | Oil and fat composition and food containing the same | |
IL133485A (en) | Food composition for producing satiation | |
HUP0400188A2 (en) | Stabilized dispersion of phytosterols in oil, process for its preparation and its use | |
WO2019066068A1 (en) | Oil-in-water type emulsified composition, and food and beverage containing same | |
JP4481928B2 (en) | Oil-in-water emulsified composition containing coenzyme Q10 and method for producing the same | |
JP3720375B2 (en) | Polyunsaturated fatty acid coated solid carrier particles for food | |
JP2001231470A (en) | Gel composition | |
CA2331661A1 (en) | Use of 'nanofood' in foodstuff final products for humans and animals | |
KR102444342B1 (en) | Chocolate-like foods containing polyunsaturated fatty acids | |
KR20180119640A (en) | Chocolate sheep food containing polyunsaturated fatty acids | |
JP4173927B2 (en) | Water-soluble vitamin composition | |
JPWO2019082550A1 (en) | Pyrroloquinoline quinone-containing gummy candy and its manufacturing method | |
JPH10262560A (en) | Emulsified composition and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080414 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080815 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |