[go: up one dir, main page]

JP4162078B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP4162078B2
JP4162078B2 JP2002224124A JP2002224124A JP4162078B2 JP 4162078 B2 JP4162078 B2 JP 4162078B2 JP 2002224124 A JP2002224124 A JP 2002224124A JP 2002224124 A JP2002224124 A JP 2002224124A JP 4162078 B2 JP4162078 B2 JP 4162078B2
Authority
JP
Japan
Prior art keywords
foundation
base
friction
seismic isolation
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002224124A
Other languages
Japanese (ja)
Other versions
JP2004060404A (en
Inventor
五月也 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2002224124A priority Critical patent/JP4162078B2/en
Publication of JP2004060404A publication Critical patent/JP2004060404A/en
Application granted granted Critical
Publication of JP4162078B2 publication Critical patent/JP4162078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は免震装置に係り、更に詳しくは、建物等の捩れ変形や残留変形を防止するのに好適な免震装置に関する。
【0002】
【従来の技術】
建物に適用される公知の免震装置としては、例えば、特開平9−264376号公報に開示されたものがある。この免震装置は、基礎と建物との間に配置されたアイソレーター及びダンパーを備えて構成されており、地震が発生したときに、地盤側からの振動を建物に伝達し難くすることで建物の揺れを低減するように作用する。
【0003】
【発明が解決しようとする課題】
しかしながら、前記免震装置にあっては、装置自体に建物の捩れ変形を防止する機構が設けられていないため、偏心の大きな建物の場合には、地震が発生すると、免震装置が適用されていない建物同様に、捩れ変形が発生し易く、当該捩れ変形に伴う建物の破損や倒壊等を招来するという不都合がある他、更に、地震終了後に免震装置に残留変形が残り建物の継続使用に不都合がある。
【0004】
ところで、前記ダンパーやアイソレーターを建物の捩れ変形を規制するように配置することで、当該捩れ変形を防止することも理論上可能である。ところが、この場合には、建物の特性が大きく変化したとき、例えば、建物の増改築等によって建物の重心位置や剛心位置が大きく変わったとき、若しくは、建物の総重量が大きく変わったとき等に、これら建物の特性に合わせてダンパーの配置をも変えなければ、建物の捩れ変形を効果的に防止できないという不都合がある。
【0005】
【発明の目的】
本発明は、これら不都合に着目して案出されたものであり、その目的は、基礎及び上部等からなる一対の分離体のうち一方の分離体側からの地震等の振動が付与されたときに、他方の分離体側の変形を少なくすることができる免震装置を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するため、本発明は、相対配置された一対の分離体の間に設けられる免震装置において、
前記各分離体の相対面に沿う方向の相対移動を平行移動に限定し、前記各移動体の捩れ方向の相対移動を規制するパッシブ型の捩れ防止手段と、前記各分離体が離間接近する方向に動作して振動付与後の所定部位の残留変形を抑制する付勢機構と、当該付勢機構の動作に追従して摩擦抵抗を発生させる摩擦機構とを備え、
前記付勢機構は、初期状態で圧縮された状態でセットされた付勢部材と、軸部材と、当該軸部材に沿って延びるガイドと、前記付勢部材に接触するとともに、前記ガイドに沿って移動可能な押部材と、前記ガイドの端部に固定されたストッパとを備え、
前記摩擦機構は、何れか一方の分離体に連結される連結部と、この連結部に連なるとともに、前記各分離体が接近する圧縮方向に所定の力が作用したときに、前記付勢部材が圧縮する方向に前記押部材を押しながら前記ガイドに沿って移動可能な中空の本体と、当該本体の内部に収容された摺動部と、前記本体と前記摺動部との間に介装された摩擦パッドとを備え、
前記軸部材は、一端側が前記摺動部に固定される一方、他端側が何れか他方の分離体に連結され、前記付勢部材及び前記押部材を貫通して、これら付勢部材及び押部材に対して軸線方向に移動可能に設けられるとともに、
前記軸部材には、前記各分離体が離間する引張方向に所定の力が作用したときに、前記押部材に引っ掛かって前記付勢部材が圧縮する方向のみに前記押部材を移動させる移動規制部材が固定される、という構成を採っている。このような構成によれば、地震等による振動が分離体の一方側から付与されたときでも、捩れ防止手段によって、各分離体の相対面に沿う方向の相対移動が平行移動に限定されるため、各分離体の捩れ方向の相対移動が規制され、他方の分離体の捩れ変形を防止することができる。また、付勢機構により、地震の終了後に発生する分離体相互の残留変形を略ゼロにでき、若しくは、従来よりも大幅に低減することができる。
【0008】
ここにおいて、前記捩れ防止手段は、各分離体を連結する複数本のアームと、これらアームに対する関節部位となる回転節とを備えたリンク機構により構成され、
前記アームは、一方の分離体に連結される一対の基礎連結部と、他方の分離体に連結される一対の土台連結部と、これら各連結部に連なる中間連結部とからなり、
前記一対の基礎連結部は、略同一の高さ位置に設けられて相互に平行とされ、
前記一対の土台連結部は、略同一の高さ位置に設けられて相互に平行とされ、
前記回転節は、前記各分離体に対し、前記基礎連結部及び前記土台連結部の各一端側をそれぞれ相対回転可能に接合するピン節と、前記中間連結部の両端側と前記基礎連結部及び前記土台連結部の各他端側とを相対回転可能に接合する摩擦節とからなり、
前記摩擦節には、前記基礎連結部及び前記土台連結部が相対回転する際に回転摩擦抵抗を発生させる摩擦抵抗部材が設けられる、という構成を採っている。これにより、一方の分離体側に地震等の振動が付与されてリンク機構が作動すると、その回転節で摩擦抵抗が発生し、一方の分離体側の振動エネルギーを吸収することができる。すなわち、摩擦ダンパーに捩れ防止手段が併設され、これによって、ダンパーと捩れ防止手段を有する他の装置とを別配置する必要がなくなり、免震装置を構成する部品点数を低減でき、ひいては、施工上の手間を軽減することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0013】
[第1実施例]
図1には、第1実施例に係る免震装置が適用された免震住宅の概略分解斜視図が示され、図2には、図1のA−A線に沿う拡大断面図が示されている。これらの図において、免震装置10は、相対配置された一対の分離体、すなわち、地盤側の基礎12と当該基礎12の上方の上部13との間の免震層に設けられており、地震が発生したときに、上部13の振動及び捩れ変形を規制するように作用する。
【0014】
ここで、基礎12は、特に限定されるものではないが、平面視略長方形状の枠体をなす外周部14を含んで構成されており、当該外周部14の上端面に免震装置10が取り付けられている。
【0015】
一方、上部13は、基礎12の直上に位置する土台17と、この土台17の上に載った状態で当該土台17に固定された建物18とにより構成されている。土台17は、特に限定されるものではないが、基礎12の外周部14に対応した平面視略長方形状をなす枠体状の外周材19を含んでいる。この外周材19の下端面には、免震装置10が取り付けられ、これによって、基礎12と土台17とが免震装置10を介して連結されることになる。なお、土台17は、図示例のように、縦断面視コ字状をなす鋼材によって形成する他、H型鋼等によって形成してもよく、その形状は問わない。
【0016】
前記免震装置10は、基礎12及び土台17に配置されるアイソレーター21と、所定のリンク機構により構成されるとともに、略同一高さで配置される二個のダンパー22,22とにより構成されている。
【0017】
前記アイソレーター21は、地震が発生したときに、建物18の揺れを基礎12の揺れに対して緩やかにするものであり、本第1実施例においては、ボールベアリング支承構造を有する公知のアイソレーターが採用されている。すなわち、ここでのアイソレーター21は、図2に示されるように、基礎12側に固定された受け部材24と、当該受け部材24上を転動する球状部材25と、この球状部材25を保持するとともに、土台17側に固定された球保持体26とを備えており、受け部材24上を球状部材25が転動することで、基礎12及び土台17の水平方向の相対移動が可能となっている。なお、アイソレーター21としては、図示例に限定されず、積層ゴムからなるアイソレーター等、他のアイソレーターを採用することも可能である。
【0018】
前記ダンパー22は、地震時等における振動エネルギーを摩擦抵抗力により減衰させる摩擦ダンパーとして機能する他、基礎12及び上部13の水平方向の相対移動を平行移動に限定する捩れ防止手段としても機能する。すなわち、ダンパー22は、図3〜図5に示されるように、基礎12及び土台17を連結する複数本のアーム28と、これらアーム28に対する関節部位となる回転節29とを備えて構成されている。
【0019】
前記アーム28は、ステンレス材等の鋼材によって形成されており、基礎12に連結される一対の基礎連結部31,31と、土台17に連結される一対の土台連結部32,32と、これら各連結部31,32に連なって図4中左右方向に延びる中間連結部33とからなる。
【0020】
前記基礎連結部31は、図3及び図5に示されるように、上下に相対配置される長片状の上片35及び下片36により構成され、これら上片35及び下片36は、相互に略同一長さに設定されている。また、土台連結部32についても、基礎連結部31と実質的に同一の上片37及び下片38により構成されている。更に、前記中間連結部33は、前記各片35〜38よりも長い長片状とされて上下に相対配置される上片39及び下片40により構成されている。
【0021】
前記回転節29は、図3〜図5に示されるように、基礎12及び土台17に対して、基礎連結部31,31及び土台連結部32,32をピン接合する図4中下側四箇所のピン節42と、基礎連結部31及び土台連結部32の相対移動を許容する同図中上側二箇所の摩擦節43とからなる。
【0022】
前記ピン節42は、基礎連結部31,31及び土台連結部32,32の一端側31A,31A、32A,32Aにそれぞれ設けられており、これら連結部31、32の回転を許容した状態で、当該連結部31、32を基礎12及び土台17に固定するようになっている。ここで、各ピン節42は、実質的に同一構造となっており、以下のピン節42の構造の説明においては、図4及び図5中最も左側に位置するピン節42について説明する。
【0023】
このピン節42は、上片35及び下片36の間に固定されるスペーサ45と、上片35の上面側及び下片36の下面側に固定されるリング状部材46とを備えている。これら各片35,36、スペーサ45及びリング状部材46には、基礎12に形成された貫通穴H1(図3参照)に連通する貫通穴H2(図5参照)が形成されている。これら各貫通穴H1,H2には、ボルトBが挿通され、ナットNで基礎連結部31が基礎12に取り付けられる。ここで、前記スペーサ45は、公知のベアリング機能を有し、挿通されたボルトBとの相対回転を許容するようになっており、これによって、基礎連結部31は、基礎12に対して回転可能にピン接合されることになる。なお、ピン節42は、前述の構造に限定されず、連結部31,32を基礎12及び土台17に対して回転可能に接合するものであれば何でもよい。
【0024】
前記摩擦節43は、中間連結部33の左右両端側に位置し、当該左右両端側と、基礎連結部31,31及び土台連結部32,32の各他端側31B,31B、32B,32Bとが、ボルトB及びナットNを用いて相対回転可能に接合されるようになっている。すなわち、摩擦節43では、図5に示されるように、各連結部31〜33の各片35〜40が互い違い積層された状態となっており、それらの位置関係は次のようになっている。つまり、上から、中間連結部33の上片39、土台連結部32の上片37、基礎連結部31の上片35、土台連結部32の下片38、基礎連結部31の下片36、中間連結部33の下片40の順で積層配置されている。これら各片35〜40の間には、摩擦節43に回転摩擦抵抗を発生させる摩擦付与部材としての摩擦パッド49が設けられている。この摩擦パッド49は、特に限定されるものではないが、樹脂製のリング状をなしており、基礎連結部31及び土台連結部32が相対回転する際、つまり、基礎12と土台17とが水平方向に相対移動する際に、所定の摩擦抵抗力を発生させるようになっている。具体的に、摩擦パッド49は、建物18の風揺れを防止可能な摩擦抵抗力を発生させるとともに、想定される大きさの地震に対して、地盤側からの振動エネルギーを有効に減衰できる摩擦抵抗力を発生可能となっている。なお、アーム28が鉄製等の場合には、摩擦パッド49が接触する当該各片35〜40の摩擦面を適宜研磨すると一層良好な摩擦ダンパー効果が得られる。
【0025】
以上のように構成されたダンパー22は、図3及び図4に示された状態で基礎12及び土台17に取り付けられる。つまり、一対の基礎連結部31,31は、略同一の高さ位置に設けられて相互に平行とされる。また、一対の土台連結部32,32も、略同一の高さ位置に設けられて相互に平行とされる。ここで、基礎連結部31と土台連結部32との交差角度α1(図4参照)は略90度とされる。更に、四箇所のピン節42は、略一直線上に並ぶように配置され、これらピン節42を結ぶ仮想直線L(図4参照)に対して略平行となるように、中間連結部33が配置される。ここで、中間連結部33と基礎連結部31との交差角度α2、及び、中間連結部33と土台連結部32との交差角度α3は、それぞれ略45度とされる。
【0026】
このように基礎12及び土台17に取り付けられたダンパー22は、図6に示されるように作動する。なお、図6においては、図面上の錯綜を回避するため、土台17の平面形状を図1に対して相対的に小さな方形状とした点、了解されたい。
【0027】
先ず、図6(A)の初期状態から地震が発生して基礎12が振動した場合、基礎連結部31と土台連結部32とが、摩擦節43を中心として水平面内を相対回転する。このとき、基礎連結部31,31の一端側31A,31Aが基礎12に固定されている一方、土台連結部32,32の一端側32A,32Aが土台17に固定されているため、基礎連結部31,31の平行状態と土台連結部32,32の平行状態が維持されたまま、各連結部31,32が相対回転される。このように連結部31,32が相対回転すると、図6(B)に示されるように、土台17は、同(B)中破線で示される初期位置から同図中二点鎖線で示される位置に平行移動することになり、基礎12に対する土台17及び建物18の捩れ方向の移動が規制されることになる。この際、摩擦節43で摩擦抵抗が付与され、基礎12側の振動エネルギーが減衰されることになる。このような作用は、ダンパー22の設置位置に拘わらず、建物18の総重量が大きく変化しても、或いは、増改築等で建物18の偏心状態が変わったときでも常に保障されることになる。
【0028】
従って、このような第1実施例によれば、地震が発生したときに、ダンパー22によって、建物18の最大変形及び最大加速度を低減できるばかりか、建物18の捩れ方向の相対移動を規制することもでき、建物18の捩れ変形による建物の倒壊や破損を防止できるという効果を得る。特に、建物18の特性が変わったときでも、ダンパー22の設置位置を変えずに建物18の捩れ変形を防止できるため、建物の増改築の際に、ダンパー22の配置変更や交換等を不要にし、免震構造が適用されていない建物と略同様の工程で増改築を行うことができる。
【0029】
なお、前記捩れ防止手段の形状や構造は、前記第1実施例のものに限定されず、基礎12と上部13との水平方向の相対移動を平行移動に限定できる限りにおいて、種々の形状や構造のものを採用することができる。
【0030】
また、前記第1実施例のダンパー22に対して摩擦パッド49を省略した捩れ防止装置を採用することもできる。この場合は、基礎12と土台17との間に、後述する第2実施例のダンパー52やその他のダンパーが別途配置されることになる。
【0031】
更に、ダンパー22は、前記図示例の取付位置に限定されるものではなく、基礎12や土台17の形状に合わせて任意に取付可能である。また、ダンパー22は、一箇所若しくは三箇所以上に設置してもよい。ここで、前記第1実施例のようにダンパー22を対称配置すると、当該ダンパー22が加力方向に非対称性を有している場合でも、当該非対称性を相殺して設計上の計算を簡単に行うことができる。
【0032】
次に、本発明の第2実施例について説明する。なお、以下の説明において、前記第1実施例と同一若しくは同等の構成部分については同一符号を用いるものとし、説明を省略若しくは簡略にする。
【0033】
[第2実施例]
この第2実施例は、図7に示されるように、前記第1実施例に対し、免震装置10として、基礎12及び土台17を連結する他のダンパー52を更に備えたところに特徴を有する。なお、以下の説明において、「上」、「下」、「左」、「右」は、特に明示しない限り、図8における「上」、「下」、「左」、「右」を意味する。
【0034】
前記ダンパー52は、基礎12の各辺一箇所づつとなる合計四箇所に設けられている。このダンパー52は、図8(A)に示されるように、右半分側に位置して、地震時等における振動エネルギーを摩擦抵抗により減衰させる摩擦機構53と、左半分側に位置するとともに、地震による振動付与後における残留変形を抑制する残留変形防止手段としての付勢機構54とを備えて構成されている。
【0035】
前記摩擦機構53は、基礎12及び土台17の何れか一方(本実施例では基礎12側)に連結される右端側の連結部56と、この連結部56に連なる中空の本体57と、この本体57の内部で左右方向に摺動可能に収容された鋼製の摺動部59と、本体57の内壁部分と摺動部59の外周部分との間に介装されるとともに、前記第1実施例の摩擦パッド49と同様の効果を奏する摩擦パッド61と、この摩擦パッド61を本体57に固定するボルトB及びナットNとを備えている。前記本体57の左端側には、上下両方向に屈曲する外向きの屈曲部63,63が形成されている。前記摩擦パッド61は、ボルトB及びナットNの締め付けによって所定の圧力が付加されている。なお、ボルトB及びナットNは、摺動部59に非干渉となる位置に設けられており、当該摺動部59の摺動は、ボルトB及びナットNによって規制されることはない。
【0036】
前記付勢機構54は、左右方向に重ね合わされた複数の皿ばねからなる付勢部材64と、この付勢部材64の略中央を貫通して左右に延びる軸部材65と、この軸部材65の上下両側で左右に延びるガイド66,66と、付勢部材64の右端側に相対配置された押部材68と、各ガイド66の右端側に固定されたストッパ69とを備えている。
【0037】
前記付勢部材64は、ガイド66,66と押部材68とで囲まれる空間内に配置されており、通常時の状態である図8(A)の初期状態では、ある程度圧縮された状態でセットされている。なお、付勢部材64としては、前述した皿ばねに限定されず、後述する作用を奏する限りにおいて、コイルばね等の他のばねやゴム等の他の弾性部材を採用することもできる。
【0038】
前記軸部材65は、その右端側が前記摺動部59に固定される一方、その左端側が、基礎12及び土台17の何れか他方(本実施例では土台17側)が連結される連結部65Aとなっている。この軸部材65は、付勢部材64及び押部材68の略中央を貫通しており、これら各部材64,68に対して左右方向に相対移動可能となっている。また、軸部材65には、押部材68の右側の一定位置にリング状の移動規制部材71が固定されている。この移動規制部材71は、押部材68の軸挿通穴よりも大きな外径を備えるとともに、図8(A)の初期状態では、押部材68の右端側に略当接するように配置されている。
【0039】
前記各ガイド66は、前記押部材68が摺動可能に係合するとともに、この押部材68の右側で前記屈曲部63が摺動可能に係合しており、これら屈曲部63と押部材68は、各ガイド66に沿って左右方向にスライド可能となっている。なお、屈曲部63と押部材68の右方へのスライドは、前記ストッパ69によって規制される。
【0040】
このような構成のダンパー23は、所定の条件で、図8(A)の初期状態から、同図(B),(C)に示される状態に変化する。
【0041】
すなわち、図8(A)の初期状態から地震が発生して基礎12が振動し、一定以上の力がダンパー52に作用すると、基礎12側に連結される連結部56と、土台17側に連結される連結部65Aとが、それらを結ぶ直線に略沿って水平方向に離間接近するように付勢機構54が動作し、この動作に追従して摩擦機構53で摩擦力を発生する。
【0042】
具体的に、各連結部56,65Aが相互に接近する圧縮方向に所定の力が作用した場合、図8(B)に示されるように、屈曲部63が押部材68を押しながら各ガイド66に沿って左方に移動して付勢部材64を初期状態から更に圧縮する。従って、この場合は、各連結部56,65Aが相互に接近して、基礎11及び土台17が初期状態から接近する。このとき、本体57の左方への移動により、摺動部59が本体57と相対的に摺動することになり、これによって、摺動部59と摩擦パッド61との直線的な相対滑りによる摩擦抵抗が発生し、基礎12側からの振動エネルギーが減衰される。
【0043】
一方、各連結部56,65Aが相互に離間する引張方向に所定の力が作用した場合、図8(C)に示されるように、本体57側は、ストッパ69によりガイド66との相対移動が規制されるが、軸部材65は、移動規制部材71が押部材68の右端に引っ掛かって当該押部材68と一体的に左方に移動し、この場合も、付勢部材64が初期状態から更に圧縮されることになる。従って、この場合は、各連結部56,65Aが相互に離間して、基礎11及び土台17が初期状態から離間する。このときにおいても、摺動部59が本体57内を相対的に摺動することになり、基礎12側からの振動エネルギーが減衰される。
【0044】
以上の各場合のように、原状態すなわち初期状態からの各連結部56,65Aの相対変位は、付勢部材64が予め圧縮された状態となっているため、当該付勢部材64を更に圧縮させることが可能となる一定以上の力が必要になる。また、各連結部56,65Aが初期状態から相対移動した後、再び初期状態に復帰する際には、当該復帰が付勢機構54により促進される。つまり、この際には、更に圧縮された付勢部材64の復元力を利用して、基礎11及び土台17を原状態に復帰し易くする。また、このときも、摺動部59と摩擦パッド61との相対滑りで基礎12側からの振動エネルギーが減衰するが、ここでの摩擦力の大きさは、前記復元力を妨げない程度とされる。
【0045】
このように、ダンパー52は、基礎12,上部13がそれぞれ支持される連結部56,65Aの相対的な移動により、付勢部材64に更なる圧縮力が常に付与されるとともに、摩擦機構53によって変位方向に応じて正負逆の抵抗力を発生するようになっている。このダンパー52の特性は、図9(A)に示される付勢機構54の特性と、同図(B)に示される摩擦機構53の特性とを組み合わせてなる同図(C)のようになっている。なお、図9内における矢印は、変位方向を意味する。
【0046】
つまり、図9(A)の特性は、剛塑性型の履歴のない非線形ばね特性、つまり、一定力以上の力を付与しない限り原状態から変位せず、且つ、変位時には、変位の正負両方向共に、変位と荷重(抵抗力)とが略比例関係となる特性である。一方、図9(B)の特性は、略矩形状の履歴ループをなす通常の摩擦ダンパーの特性である。そして、これらの特性を組み合わせることで、図9(C)に示されるように、原状態から変位する際には、連結部56,65Aの離間接近の何れの場合にも、一定の力を付与しない限り変位せず、また、変位後は、荷重(抵抗力)と変位とが略正比例する関係になるとともに、原状態(原点)に復帰する際には、原状態から変位する場合よりも必要荷重(抵抗力)が減少する特性となる。
【0047】
従って、このような第2実施例によれば、地震が発生したときに、摩擦機構53によって、建物18の最大変形及び最大加速度を低減できる他、ダンパー52の付勢機構54により、土台17側を原位置に復帰させ易くすることができ、これによって、基礎12よりも図7中上方部分の残留変形を略ゼロにし、若しくは、従来よりも大幅に低減できるという効果を得る。
【0048】
なお、前記残留変形防止手段の形状や構造は、前記第2実施例のものに限定されず、基礎12と上部13との相対移動の原位置復帰特性を持たせる限りにおいて、種々の形状や構造のものを採用することができる。つまり、前記残留変形防止手段としては、一定以上の力が付加されない限り基礎12側と上部13側との相対変位を不能とし、且つ、当該相対変位した状態から原状態に復帰する時に、復帰前よりも抵抗力を減少させ、若しくは略ゼロにするものであればよい。
【0049】
また、ダンパー52は、前記図示例の取付位置に限定されるものではなく、基礎12や土台17の形状に合わせて任意に取付可能である。また、ダンパー52の取り付け数も前述に限定されない。
【0050】
更に、前記第2実施例においては、前記残留変形防止手段を第1実施例のダンパー22と併用したが、建物18の構造上、当該建物18の捩れ変形がさほど問題にならない場合等においては、ダンパー22を省略することもできる。
【0051】
また、前記第2実施例のダンパー52に対して摩擦機構53を省略した残留変形防止装置を採用することもできる。このとき、前記ダンパー22を含む他のダンパーを別途配置することが必要となる。
【0052】
更に、前記各実施例では、基礎12と土台17との間に免震装置10を設けたが、本発明はこれに限らず、土台17を省略して基礎12と建物18との間に免震装置10を設けてもよい。
【0053】
また、本発明に係る免震装置は、建物の免震構造に適用する他に、家具や置物の架台等に適用される免震構造等、相対配置された一対の分離体のうち一方の分離体への振動を絶縁するものに適用することができる。この場合は、相対する各分離体の相対面に沿う方向の相対移動を平行移動に限定し、一方の分離体の捩れ方向の相対移動を規制でき、及び/又は、振動停止時の残留変形を略ゼロにし若しくは従来よりも低減できればよい。
【0054】
【発明の効果】
以上説明したように、本発明によれば、各分離体の相対面に沿う方向の相対移動を平行移動に限定する捩れ防止手段を免震装置に備えたから、地震等による振動が分離体の一方側から付与されたときでも、各分離体の捩れ方向の相対移動が規制され、他方の分離体の捩れ変形を防止することができる。
【0055】
また、前記捩れ防止手段は、建物の特性に拘わらず、基礎及び上部の水平方向の相対移動を平行移動に限定可能となるため、増改築等によって建物の特性が変わったときでも、免震装置の配置を変えずに建物の捩れ変形を確実に防止することができる。
【0056】
更に、振動付与後の所定部位の残留変形を抑制する残留変形防止手段を備えたから、振動停止時の残留変形を略ゼロにし若しくは従来よりも低減することができる。
【図面の簡単な説明】
【図1】第1実施例に係る免震装置が適用された免震住宅の概略分解斜視図。
【図2】図2には、図1のA−A線に沿う拡大断面図。
【図3】図1の要部を分解した拡大斜視図。
【図4】前記免震装置を構成するダンパーの拡大平面図。
【図5】前記ダンパーの拡大正面図。
【図6】(A)は、ダンパーの初期状態を模式的に示した平面図であり、(B)は、前記初期状態からダンパーが作動した一状態を模式的に示した平面図である。
【図7】第2実施例に係る免震装置が適用された免震住宅の概略分解斜視図。
【図8】(A)は、第2実施例に係るダンパーの初期状態の概略断面図であり、(B)は、前記初期状態からダンパーが圧縮方向に作動した状態を示す概略断面図であり、(C)は、前記初期状態からダンパーが引張方向に作動した状態を示す概略断面図である。
【図9】(A)は、第2実施例に係る付勢機構の特性を示すグラフであり、(B)は、第2実施例に係る摩擦機構の特性を示すグラフであり、(C)は、第2実施例に係るダンパーの特性を示すグラフである。
【符号の説明】
10 免震装置
12 基礎(分離体)
13 上部(分離体)
17 土台
18 建物
22 ダンパー(捩れ防止手段)
29 回転節
49 摩擦パッド(摩擦付与部材)
52 ダンパー
53 摩擦機構
54 付勢機構(残留変形防止手段)
[0001]
BACKGROUND OF THE INVENTION
  The present invention is a seismic isolation device.In placeMore specifically, seismic isolation equipment suitable for preventing torsional deformation and residual deformation of buildings, etc.In placeRelated.
[0002]
[Prior art]
As a known seismic isolation device applied to a building, for example, there is one disclosed in JP-A-9-264376. This seismic isolation device is configured with an isolator and a damper placed between the foundation and the building. When an earthquake occurs, the seismic isolation device makes it difficult to transmit vibration from the ground to the building. Acts to reduce shaking.
[0003]
[Problems to be solved by the invention]
However, in the seismic isolation device, since the device itself is not provided with a mechanism for preventing torsional deformation of the building, the seismic isolation device is applied when an earthquake occurs in a building having a large eccentricity. As with other buildings, twist deformation is likely to occur, resulting in inconveniences such as damage and collapse of the building due to the torsion deformation. There is an inconvenience.
[0004]
By the way, it is theoretically possible to prevent the torsional deformation by arranging the damper or isolator so as to restrict the torsional deformation of the building. However, in this case, when the characteristics of the building change significantly, for example, when the center of gravity or rigid position of the building changes significantly due to expansion or renovation of the building, or when the total weight of the building changes significantly. In addition, there is a disadvantage that the torsional deformation of the building cannot be effectively prevented unless the arrangement of the damper is changed in accordance with the characteristics of the building.
[0005]
OBJECT OF THE INVENTION
  The present invention has been devised by paying attention to these disadvantages.EyesThe seismic isolation device that can reduce the deformation of the other separator when a vibration such as an earthquake from one of the pair of separators consisting of the foundation and the upper part is applied.PlaceIt is to provide.
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention provides a seismic isolation device provided between a pair of relatively arranged separators,
  The passive movement preventing means for restricting the relative movement in the torsional direction of each moving body by restricting the relative movement in the direction along the relative surface of each separating body to the parallel movement; An urging mechanism that suppresses residual deformation of a predetermined portion after applying vibration and a friction mechanism that generates a frictional resistance following the operation of the urging mechanism,
  The biasing mechanism is a biasing member set in a compressed state in an initial state.And a shaft member, a guide extending along the shaft member, a pressing member that contacts the biasing member and is movable along the guide, and a stopper fixed to an end portion of the guide. ,
The friction mechanism includes a connecting portion connected to any one of the separators, and the biasing member is connected to the connecting portion and when the predetermined force is applied in a compression direction in which the separators approach each other. A hollow main body that is movable along the guide while pushing the pressing member in a compressing direction, a sliding portion housed in the main body, and interposed between the main body and the sliding portion. With friction pads,
One end side of the shaft member is fixed to the sliding portion, and the other end side is connected to one of the other separators, and passes through the urging member and the pressing member. In addition to being provided to be movable in the axial direction,
A movement restricting member that moves the pressing member only in the direction in which the biasing member is compressed by being hooked on the pressing member when a predetermined force is applied to the shaft member in a pulling direction in which the separating members are separated from each other. Is fixed, Is adopted. According to such a configuration, even when vibration due to an earthquake or the like is applied from one side of the separated body, the relative movement in the direction along the relative surface of each separated body is limited to parallel movement by the torsion preventing means. The relative movement in the twist direction of each separator is restricted, and the other separator can be prevented from being twisted. Moreover, the biasing mechanism can reduce the residual deformation between the separated bodies generated after the end of the earthquake to be substantially zero, or can be significantly reduced compared to the conventional case.
[0008]
  Here, the twist preventing means connects the separators.A plurality of arms and a rotating node that is a joint part for these armsIt consists of a link mechanism,
  The arm is composed of a pair of base connecting parts connected to one separator, a pair of base connecting parts connected to the other separator, and an intermediate connecting part connected to each of the connecting parts,
The pair of foundation connecting portions are provided at substantially the same height and are parallel to each other,
The pair of base connecting portions are provided at substantially the same height and are parallel to each other,
The rotating node includes a pin node for connecting each end of the foundation connecting part and the base connecting part to each separated body so as to be relatively rotatable, both end sides of the intermediate connecting part, the foundation connecting part, It consists of a friction node that joins the other end side of the base connecting portion so as to be relatively rotatable,
The friction node rotates when the foundation connecting portion and the base connecting portion rotate relative to each other.Friction resistance member that generates frictional resistanceIs adopted. ThisWhen vibration such as an earthquake is applied to one separated body side and the link mechanism operates, frictional resistance is generated at the rotating node, and vibration energy on one separated body side can be absorbed. In other words, the friction damper is provided with a twist preventing means, which eliminates the need to separately arrange the damper and another device having the twist preventing means, thereby reducing the number of parts constituting the seismic isolation device. Can be reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
[First embodiment]
FIG. 1 shows a schematic exploded perspective view of a base-isolated house to which the base isolation device according to the first embodiment is applied, and FIG. 2 shows an enlarged cross-sectional view along the line AA of FIG. ing. In these drawings, the seismic isolation device 10 is provided in a seismic isolation layer between a pair of separated bodies, that is, a foundation 12 on the ground side and an upper portion 13 above the foundation 12. When this occurs, it acts to regulate vibration and torsional deformation of the upper portion 13.
[0014]
Here, although the foundation 12 is not particularly limited, the foundation 12 is configured to include an outer peripheral portion 14 that forms a substantially rectangular frame in plan view, and the seismic isolation device 10 is provided on the upper end surface of the outer peripheral portion 14. It is attached.
[0015]
On the other hand, the upper portion 13 is composed of a base 17 positioned immediately above the foundation 12 and a building 18 fixed on the base 17 in a state of being placed on the base 17. The base 17 is not particularly limited, but includes a frame-shaped outer peripheral member 19 having a substantially rectangular shape in plan view corresponding to the outer peripheral portion 14 of the foundation 12. The seismic isolation device 10 is attached to the lower end surface of the outer peripheral member 19, whereby the foundation 12 and the base 17 are connected via the seismic isolation device 10. In addition, the base 17 may be formed by a steel material having a U-shape in a longitudinal sectional view as shown in the drawing, or may be formed by H-shaped steel or the like, and the shape is not limited.
[0016]
The seismic isolation device 10 is composed of an isolator 21 disposed on the foundation 12 and the base 17 and two dampers 22 and 22 disposed at substantially the same height while being configured by a predetermined link mechanism. Yes.
[0017]
The isolator 21 makes the swing of the building 18 moderate with respect to the swing of the foundation 12 when an earthquake occurs. In the first embodiment, a known isolator having a ball bearing support structure is adopted. Has been. That is, as shown in FIG. 2, the isolator 21 here holds the receiving member 24 fixed to the base 12 side, the spherical member 25 rolling on the receiving member 24, and the spherical member 25. In addition, a ball holder 26 fixed to the base 17 side is provided, and the base member 12 and the base 17 can be moved relative to each other in the horizontal direction by rolling the spherical member 25 on the receiving member 24. Yes. The isolator 21 is not limited to the illustrated example, and other isolators such as an isolator made of laminated rubber can be employed.
[0018]
The damper 22 functions as a friction damper that attenuates vibration energy during an earthquake or the like by a frictional resistance force, and also functions as a torsion preventing means that limits the horizontal relative movement of the foundation 12 and the upper portion 13 to parallel movement. That is, as shown in FIGS. 3 to 5, the damper 22 includes a plurality of arms 28 that connect the foundation 12 and the base 17, and a rotary node 29 that is a joint part for the arms 28. Yes.
[0019]
The arm 28 is made of a steel material such as stainless steel, and a pair of base connecting portions 31 and 31 connected to the base 12, a pair of base connecting portions 32 and 32 connected to the base 17, and each of these. It consists of the intermediate connection part 33 extended in the left-right direction in FIG.
[0020]
As shown in FIGS. 3 and 5, the basic connecting portion 31 is constituted by a long piece-like upper piece 35 and a lower piece 36 that are relatively arranged in the vertical direction, and the upper piece 35 and the lower piece 36 are mutually connected. Are set to approximately the same length. Further, the base connecting portion 32 is also constituted by an upper piece 37 and a lower piece 38 that are substantially the same as the basic connecting portion 31. Further, the intermediate connecting portion 33 is constituted by an upper piece 39 and a lower piece 40 which are longer than the pieces 35 to 38 and are relatively arranged in the vertical direction.
[0021]
As shown in FIGS. 3 to 5, the rotary node 29 is connected to the foundation 12 and the foundation 17 by pin-joining the foundation coupling portions 31 and 31 and the foundation coupling portions 32 and 32 in the lower four places in FIG. 4. Pin joints 42 and two friction joints 43 at the upper side in the figure allowing relative movement of the base connecting portion 31 and the base connecting portion 32.
[0022]
The pin joint 42 is provided on one end side 31A, 31A, 32A, 32A of the base connecting portions 31, 31 and the base connecting portions 32, 32, respectively, and in a state in which the connecting portions 31, 32 are allowed to rotate, The connecting portions 31 and 32 are fixed to the foundation 12 and the base 17. Here, each pin node 42 has substantially the same structure, and in the following description of the structure of the pin node 42, the pin node 42 located on the leftmost side in FIGS. 4 and 5 will be described.
[0023]
The pin node 42 includes a spacer 45 that is fixed between the upper piece 35 and the lower piece 36, and a ring-shaped member 46 that is fixed to the upper surface side of the upper piece 35 and the lower surface side of the lower piece 36. Each of the pieces 35 and 36, the spacer 45, and the ring-shaped member 46 is formed with a through hole H2 (see FIG. 5) communicating with the through hole H1 (see FIG. 3) formed in the foundation 12. Bolts B are inserted into these through holes H1 and H2, and the base connecting portion 31 is attached to the base 12 with nuts N. Here, the spacer 45 has a known bearing function and allows relative rotation with the inserted bolt B, whereby the foundation connecting portion 31 is rotatable with respect to the foundation 12. Will be pin-joined. The pin joint 42 is not limited to the above-described structure, and any pin joint 42 may be used as long as the connecting portions 31 and 32 are rotatably joined to the foundation 12 and the base 17.
[0024]
The friction nodes 43 are located on the left and right ends of the intermediate connecting portion 33, and the left and right ends, and the other end sides 31B, 31B, 32B, and 32B of the base connecting portions 31 and 31 and the base connecting portions 32 and 32, respectively. However, the bolts B and the nuts N are used so as to be relatively rotatable. That is, in the friction node 43, as shown in FIG. 5, the pieces 35 to 40 of the connecting portions 31 to 33 are alternately stacked, and their positional relationship is as follows. . That is, from above, the upper piece 39 of the intermediate connecting portion 33, the upper piece 37 of the base connecting portion 32, the upper piece 35 of the base connecting portion 31, the lower piece 38 of the base connecting portion 32, the lower piece 36 of the base connecting portion 31, The intermediate connecting portion 33 is arranged in the order of the lower piece 40. Between each of these pieces 35-40, a friction pad 49 is provided as a friction applying member for generating a rotational friction resistance in the friction node 43. The friction pad 49 is not particularly limited, but has a resin ring shape. When the base connecting portion 31 and the base connecting portion 32 rotate relative to each other, that is, the base 12 and the base 17 are horizontal. A predetermined frictional resistance is generated when moving relative to each other. Specifically, the friction pad 49 generates a frictional resistance force that can prevent the wind of the building 18 from being shaken, and can effectively attenuate the vibration energy from the ground side against an earthquake of an assumed magnitude. Force can be generated. When the arm 28 is made of iron or the like, a better friction damper effect can be obtained by appropriately polishing the friction surface of each of the pieces 35 to 40 with which the friction pad 49 comes into contact.
[0025]
The damper 22 configured as described above is attached to the foundation 12 and the base 17 in the state shown in FIGS. 3 and 4. That is, the pair of base connecting portions 31 and 31 are provided at substantially the same height and are parallel to each other. Further, the pair of base connecting portions 32, 32 are also provided at substantially the same height and are parallel to each other. Here, the crossing angle α1 (see FIG. 4) between the base connecting portion 31 and the base connecting portion 32 is approximately 90 degrees. Further, the four pin joints 42 are arranged so as to be arranged substantially in a straight line, and the intermediate connecting portion 33 is arranged so as to be substantially parallel to a virtual straight line L (see FIG. 4) connecting these pin joints 42. Is done. Here, the crossing angle α2 between the intermediate connecting portion 33 and the base connecting portion 31 and the crossing angle α3 between the intermediate connecting portion 33 and the base connecting portion 32 are approximately 45 degrees, respectively.
[0026]
The damper 22 attached to the foundation 12 and the base 17 in this way operates as shown in FIG. In FIG. 6, it should be understood that the planar shape of the base 17 is a relatively small square shape with respect to FIG. 1 in order to avoid complications in the drawing.
[0027]
First, when an earthquake occurs from the initial state of FIG. 6A and the foundation 12 vibrates, the foundation connecting portion 31 and the base connecting portion 32 relatively rotate in the horizontal plane around the friction node 43. At this time, since the one end sides 31A and 31A of the foundation connecting portions 31 and 31 are fixed to the foundation 12, the one end sides 32A and 32A of the foundation connecting portions 32 and 32 are fixed to the base 17, so that the foundation connecting portion While the parallel state of 31 and 31 and the parallel state of the base connection parts 32 and 32 are maintained, each connection part 31 and 32 is rotated relatively. When the connecting portions 31 and 32 are relatively rotated in this way, as shown in FIG. 6B, the base 17 is moved from the initial position indicated by the broken line in FIG. 6B to the position indicated by the two-dot chain line in FIG. Accordingly, the movement of the base 17 and the building 18 in the twisting direction with respect to the foundation 12 is restricted. At this time, frictional resistance is applied at the frictional joint 43, and the vibration energy on the foundation 12 side is attenuated. Such an action is always ensured regardless of the installation position of the damper 22 even if the total weight of the building 18 changes greatly or even when the eccentric state of the building 18 changes due to expansion or reconstruction. .
[0028]
Therefore, according to the first embodiment, when the earthquake occurs, the damper 22 can not only reduce the maximum deformation and the maximum acceleration of the building 18 but also regulate the relative movement of the building 18 in the torsional direction. It is also possible to obtain the effect of preventing the building from collapsing or breaking due to the torsional deformation of the building 18. In particular, even when the characteristics of the building 18 change, the torsional deformation of the building 18 can be prevented without changing the installation position of the damper 22, so that it is not necessary to change or replace the damper 22 when expanding or remodeling the building. The building can be expanded and reconstructed in the same process as a building without a seismic isolation structure.
[0029]
The shape and structure of the twist preventing means are not limited to those of the first embodiment, and various shapes and structures can be used as long as the horizontal relative movement between the foundation 12 and the upper part 13 can be limited to parallel movement. Can be adopted.
[0030]
Further, a twist preventing device in which the friction pad 49 is omitted from the damper 22 of the first embodiment may be employed. In this case, between the foundation 12 and the base 17, a damper 52 and other dampers of a second embodiment to be described later are separately arranged.
[0031]
Furthermore, the damper 22 is not limited to the mounting position in the illustrated example, and can be arbitrarily mounted according to the shapes of the foundation 12 and the base 17. Moreover, you may install the damper 22 in one place or three places or more. Here, when the dampers 22 are arranged symmetrically as in the first embodiment, even when the dampers 22 have an asymmetry in the applied force direction, the asymmetry is canceled and the design calculation is simplified. It can be carried out.
[0032]
Next, a second embodiment of the present invention will be described. In the following description, the same reference numerals are used for the same or equivalent components as in the first embodiment, and the description is omitted or simplified.
[0033]
[Second Embodiment]
As shown in FIG. 7, the second embodiment is characterized in that the seismic isolation device 10 further includes another damper 52 that connects the foundation 12 and the base 17 to the first embodiment. . In the following description, “upper”, “lower”, “left”, and “right” mean “upper”, “lower”, “left”, and “right” in FIG. 8 unless otherwise specified. .
[0034]
The dampers 52 are provided at a total of four locations, one on each side of the foundation 12. As shown in FIG. 8A, the damper 52 is located on the right half side, and is located on the left half side with a friction mechanism 53 that attenuates vibration energy at the time of an earthquake or the like by friction resistance. And an urging mechanism 54 as a residual deformation preventing means for suppressing the residual deformation after the vibration is applied.
[0035]
The friction mechanism 53 includes a right end side connecting portion 56 connected to one of the foundation 12 and the base 17 (in this embodiment, the base 12 side), a hollow main body 57 connected to the connecting portion 56, and the main body. The steel sliding portion 59 accommodated slidably in the left-right direction inside the 57, and the inner wall portion of the main body 57 and the outer peripheral portion of the sliding portion 59, and the first embodiment A friction pad 61 having the same effect as the friction pad 49 of the example, and a bolt B and a nut N for fixing the friction pad 61 to the main body 57 are provided. On the left end side of the main body 57, outward bent portions 63, 63 that are bent in both the upper and lower directions are formed. A predetermined pressure is applied to the friction pad 61 by tightening bolts B and nuts N. Note that the bolt B and the nut N are provided at positions that do not interfere with the sliding portion 59, and the sliding of the sliding portion 59 is not restricted by the bolt B and the nut N.
[0036]
The urging mechanism 54 includes an urging member 64 made up of a plurality of disc springs stacked in the left-right direction, a shaft member 65 extending through the substantial center of the urging member 64 to the left and right, and the shaft member 65. Guides 66, 66 extending left and right on both the upper and lower sides, a pressing member 68 disposed relatively to the right end side of the biasing member 64, and a stopper 69 fixed to the right end side of each guide 66 are provided.
[0037]
The urging member 64 is disposed in a space surrounded by the guides 66, 66 and the pressing member 68, and is set in a compressed state to some extent in the initial state of FIG. Has been. The urging member 64 is not limited to the above-described disc spring, and other elastic members such as a coil spring and rubber can be employed as long as the action described later is exhibited.
[0038]
The shaft member 65 has a right end fixed to the sliding portion 59, and a left end connected to the connecting portion 65A to which one of the foundation 12 and the base 17 (the base 17 side in this embodiment) is connected. It has become. The shaft member 65 penetrates substantially the center of the urging member 64 and the pressing member 68, and can move relative to the members 64 and 68 in the left-right direction. A ring-shaped movement restricting member 71 is fixed to the shaft member 65 at a fixed position on the right side of the pressing member 68. The movement restricting member 71 has an outer diameter larger than the shaft insertion hole of the pressing member 68 and is disposed so as to substantially abut on the right end side of the pressing member 68 in the initial state of FIG.
[0039]
Each of the guides 66 is slidably engaged with the pressing member 68, and the bent portion 63 is slidably engaged on the right side of the pressing member 68, and the bent portion 63 and the pressing member 68 are engaged. Is slidable in the left-right direction along each guide 66. Note that the rightward sliding of the bent portion 63 and the pressing member 68 is restricted by the stopper 69.
[0040]
The damper 23 having such a configuration changes from the initial state shown in FIG. 8A to the state shown in FIGS. 8B and 8C under a predetermined condition.
[0041]
That is, when an earthquake occurs from the initial state of FIG. 8A and the foundation 12 vibrates and a force of a certain level or more is applied to the damper 52, the connection portion 56 connected to the foundation 12 side and the foundation 17 side are connected. The urging mechanism 54 operates so that the connecting portion 65A is separated and approached in the horizontal direction substantially along a straight line connecting them, and the friction mechanism 53 generates a frictional force following this operation.
[0042]
Specifically, when a predetermined force is applied in the compression direction in which the connecting portions 56 and 65A approach each other, the guide 66 is pressed while the bending portion 63 presses the pressing member 68 as shown in FIG. The urging member 64 is further compressed from the initial state. Therefore, in this case, the connecting portions 56 and 65A approach each other, and the foundation 11 and the base 17 approach from the initial state. At this time, due to the movement of the main body 57 to the left, the sliding portion 59 slides relative to the main body 57, thereby causing a linear relative slip between the sliding portion 59 and the friction pad 61. Frictional resistance is generated, and vibration energy from the foundation 12 side is attenuated.
[0043]
On the other hand, when a predetermined force is applied in the pulling direction in which the connecting portions 56 and 65A are separated from each other, the main body 57 side is moved relative to the guide 66 by the stopper 69 as shown in FIG. Although the shaft member 65 is restricted, the movement restricting member 71 is hooked on the right end of the pressing member 68 and moves to the left integrally with the pressing member 68. In this case, the biasing member 64 is further moved from the initial state. It will be compressed. Therefore, in this case, the connecting portions 56 and 65A are separated from each other, and the foundation 11 and the base 17 are separated from the initial state. Also at this time, the sliding part 59 slides relatively in the main body 57, and the vibration energy from the foundation 12 side is attenuated.
[0044]
As in the above cases, the relative displacement of the connecting portions 56 and 65A from the original state, that is, the initial state is the state in which the urging member 64 is compressed in advance, so that the urging member 64 is further compressed. A certain level of force that can be applied is required. Further, when each of the connecting portions 56 and 65A relatively moves from the initial state and then returns to the initial state again, the return is promoted by the biasing mechanism 54. That is, in this case, the foundation 11 and the base 17 are easily returned to the original state by using the restoring force of the compressed biasing member 64. Also at this time, the vibrational energy from the base 12 side is attenuated by the relative sliding between the sliding portion 59 and the friction pad 61, but the magnitude of the frictional force here is set so as not to hinder the restoring force. The
[0045]
In this way, the damper 52 is constantly applied with a further compressive force to the biasing member 64 by the relative movement of the connecting portions 56 and 65A on which the foundation 12 and the upper portion 13 are supported, respectively, and the friction mechanism 53 Depending on the displacement direction, positive and negative resistance forces are generated. The characteristics of the damper 52 are as shown in FIG. 9C, which is a combination of the characteristics of the biasing mechanism 54 shown in FIG. 9A and the characteristics of the friction mechanism 53 shown in FIG. ing. In addition, the arrow in FIG. 9 means a displacement direction.
[0046]
That is, the characteristic shown in FIG. 9A is a non-linear spring characteristic with no history of a rigid plastic type, that is, the original state is not displaced unless a force exceeding a certain force is applied, and at the time of displacement, both the positive and negative directions of the displacement are obtained. This is a characteristic in which displacement and load (resistance force) are in a substantially proportional relationship. On the other hand, the characteristic of FIG. 9B is a characteristic of a normal friction damper that forms a substantially rectangular hysteresis loop. Then, by combining these characteristics, as shown in FIG. 9C, when displacing from the original state, a constant force is applied in both cases where the connecting portions 56 and 65A are separated and approached. It is not displaced unless it is changed, and after the displacement, the relationship between the load (resistance force) and the displacement is approximately directly proportional, and it is necessary to return to the original state (origin) than when displaced from the original state The load (resistance force) is reduced.
[0047]
Therefore, according to the second embodiment, when the earthquake occurs, the friction mechanism 53 can reduce the maximum deformation and the maximum acceleration of the building 18, and the biasing mechanism 54 of the damper 52 can reduce the base 17 side. 7 can be easily returned to the original position, whereby the residual deformation of the upper portion in FIG. 7 with respect to the base 12 can be made substantially zero or can be greatly reduced as compared with the conventional case.
[0048]
The shape and structure of the residual deformation preventing means are not limited to those of the second embodiment, and various shapes and structures can be used as long as they have the original position return characteristics of the relative movement between the foundation 12 and the upper portion 13. Can be adopted. That is, as the residual deformation preventing means, the relative displacement between the foundation 12 side and the upper portion 13 side is impossible unless a certain force is applied, and when the relative displacement state returns to the original state, As long as the resistance is reduced or made substantially zero.
[0049]
Further, the damper 52 is not limited to the attachment position in the illustrated example, and can be arbitrarily attached according to the shapes of the foundation 12 and the base 17. Further, the number of dampers 52 attached is not limited to the above.
[0050]
Further, in the second embodiment, the residual deformation preventing means is used in combination with the damper 22 of the first embodiment. However, in the case where the torsional deformation of the building 18 is not a problem due to the structure of the building 18, The damper 22 can also be omitted.
[0051]
Further, it is possible to employ a residual deformation preventing device in which the friction mechanism 53 is omitted from the damper 52 of the second embodiment. At this time, it is necessary to separately arrange other dampers including the damper 22.
[0052]
Further, in each of the above embodiments, the seismic isolation device 10 is provided between the foundation 12 and the base 17, but the present invention is not limited to this, and the base 17 is omitted and the base 12 and the building 18 are exempted. A seismic device 10 may be provided.
[0053]
Further, the seismic isolation device according to the present invention is applied to the seismic isolation structure of a building, and also separates one of a pair of relatively arranged separated bodies such as a seismic isolation structure applied to a furniture or a frame of a figurine. It can be applied to those that insulate vibration to the body. In this case, the relative movement in the direction along the relative surface of each separating member can be limited to parallel movement, the relative movement in the torsional direction of one separating member can be restricted, and / or the residual deformation when the vibration is stopped can be prevented. What is necessary is just to make it substantially zero or reduce it compared with the past.
[0054]
【The invention's effect】
As described above, according to the present invention, the seismic isolation device is provided with the torsion preventing means for limiting the relative movement in the direction along the relative surface of each separating body to the parallel movement. Even when applied from the side, the relative movement of each separator in the twisting direction is restricted, and the other separator can be prevented from being twisted.
[0055]
In addition, the torsion preventing means can limit the horizontal relative movement of the foundation and the upper part to parallel movement regardless of the characteristics of the building. It is possible to reliably prevent the torsional deformation of the building without changing the arrangement.
[0056]
Furthermore, since the residual deformation preventing means for suppressing the residual deformation of the predetermined part after the vibration is provided, the residual deformation when the vibration is stopped can be made substantially zero or can be reduced as compared with the conventional case.
[Brief description of the drawings]
FIG. 1 is a schematic exploded perspective view of a seismic isolation house to which a seismic isolation device according to a first embodiment is applied.
FIG. 2 is an enlarged cross-sectional view taken along line AA in FIG.
FIG. 3 is an enlarged perspective view in which a main part of FIG. 1 is disassembled.
FIG. 4 is an enlarged plan view of a damper constituting the seismic isolation device.
FIG. 5 is an enlarged front view of the damper.
6A is a plan view schematically showing an initial state of a damper, and FIG. 6B is a plan view schematically showing a state in which the damper is operated from the initial state.
FIG. 7 is a schematic exploded perspective view of a seismic isolation house to which a seismic isolation device according to a second embodiment is applied.
8A is a schematic cross-sectional view of an initial state of a damper according to a second embodiment, and FIG. 8B is a schematic cross-sectional view illustrating a state in which the damper is operated in the compression direction from the initial state. (C) is a schematic sectional drawing which shows the state which the damper act | operated from the said initial state in the tension | pulling direction.
9A is a graph showing the characteristics of the urging mechanism according to the second embodiment, and FIG. 9B is a graph showing the characteristics of the friction mechanism according to the second embodiment; These are graphs which show the characteristic of the damper concerning the 2nd example.
[Explanation of symbols]
10 Seismic isolation device
12 Foundation (separate)
13 Upper part (separator)
17 foundation
18 Building
22 Damper (Torsion prevention means)
29 Rotating nodes
49 Friction pad (friction imparting member)
52 Damper
53 Friction mechanism
54 Biasing mechanism (residual deformation prevention means)

Claims (2)

相対配置された一対の分離体の間に設けられる免震装置において、
前記各分離体の相対面に沿う方向の相対移動を平行移動に限定し、前記各移動体の捩れ方向の相対移動を規制するパッシブ型の捩れ防止手段と、前記各分離体が離間接近する方向に動作して振動付与後の所定部位の残留変形を抑制する付勢機構と、当該付勢機構の動作に追従して摩擦抵抗を発生させる摩擦機構とを備え、
前記付勢機構は、初期状態で圧縮された状態でセットされた付勢部材と、軸部材と、当該軸部材に沿って延びるガイドと、前記付勢部材に接触するとともに、前記ガイドに沿って移動可能な押部材と、前記ガイドの端部に固定されたストッパとを備え、
前記摩擦機構は、何れか一方の分離体に連結される連結部と、この連結部に連なるとともに、前記各分離体が接近する圧縮方向に所定の力が作用したときに、前記付勢部材が圧縮する方向に前記押部材を押しながら前記ガイドに沿って移動可能な中空の本体と、当該本体の内部に収容された摺動部と、前記本体と前記摺動部との間に介装された摩擦パッドとを備え、
前記軸部材は、一端側が前記摺動部に固定される一方、他端側が何れか他方の分離体に連結され、前記付勢部材及び前記押部材を貫通して、これら付勢部材及び押部材に対して軸線方向に移動可能に設けられるとともに、
前記軸部材には、前記各分離体が離間する引張方向に所定の力が作用したときに、前記押部材に引っ掛かって前記付勢部材が圧縮する方向のみに前記押部材を移動させる移動規制部材が固定されていることを特徴とする免震装置。
In the seismic isolation device provided between a pair of relatively arranged separated bodies,
The passive movement preventing means for restricting the relative movement in the torsional direction of each moving body by restricting the relative movement in the direction along the relative surface of each separating body to the parallel movement; An urging mechanism that suppresses residual deformation of a predetermined portion after applying vibration and a friction mechanism that generates a frictional resistance following the operation of the urging mechanism,
The urging mechanism includes an urging member set in a compressed state in an initial state, a shaft member, a guide extending along the shaft member, a contact with the urging member, and along the guide. A movable pressing member, and a stopper fixed to the end of the guide,
The friction mechanism includes a connecting portion connected to any one of the separators, and the biasing member is connected to the connecting portion and when the predetermined force is applied in a compression direction in which the separators approach each other. A hollow main body that is movable along the guide while pushing the pressing member in a compressing direction, a sliding portion housed in the main body, and interposed between the main body and the sliding portion. With friction pads,
One end side of the shaft member is fixed to the sliding portion, and the other end side is connected to one of the other separators, and passes through the urging member and the pressing member. In addition to being provided to be movable in the axial direction,
A movement restricting member that moves the pressing member only in the direction in which the biasing member is compressed by being hooked on the pressing member when a predetermined force is applied to the shaft member in a pulling direction in which the separating members are separated from each other. Seismic isolation device characterized in that is fixed .
前記捩れ防止手段は、各分離体を連結する複数本のアームと、これらアームに対する関節部位となる回転節とを備えたリンク機構により構成され、
前記アームは、一方の分離体に連結される一対の基礎連結部と、他方の分離体に連結される一対の土台連結部と、これら各連結部に連なる中間連結部とからなり、
前記一対の基礎連結部は、略同一の高さ位置に設けられて相互に平行とされ、
前記一対の土台連結部は、略同一の高さ位置に設けられて相互に平行とされ、
前記回転節は、前記各分離体に対し、前記基礎連結部及び前記土台連結部の各一端側をそれぞれ相対回転可能に接合するピン節と、前記中間連結部の両端側と前記基礎連結部及び前記土台連結部の各他端側とを相対回転可能に接合する摩擦節とからなり、
前記摩擦節には、前記基礎連結部及び前記土台連結部が相対回転する際に回転摩擦抵抗を発生させる摩擦抵抗部材が設けられたことを特徴とする請求項1記載の免震装置。
The torsion preventing means is constituted by a link mechanism including a plurality of arms that connect the respective separated bodies, and a rotary node that is a joint part with respect to these arms,
The arm is composed of a pair of base connecting parts connected to one separator, a pair of base connecting parts connected to the other separator, and an intermediate connecting part connected to each of the connecting parts,
The pair of foundation connecting portions are provided at substantially the same height and are parallel to each other,
The pair of base connecting portions are provided at substantially the same height and are parallel to each other,
The rotating node includes a pin node for connecting each end of the foundation connecting part and the base connecting part to each separated body so as to be relatively rotatable, both end sides of the intermediate connecting part, the foundation connecting part, It consists of a friction node that joins the other end side of the base connecting portion so as to be relatively rotatable,
The seismic isolation device according to claim 1, wherein the friction node is provided with a friction resistance member that generates a rotational friction resistance when the foundation connection portion and the base connection portion rotate relative to each other.
JP2002224124A 2002-07-31 2002-07-31 Seismic isolation device Expired - Fee Related JP4162078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224124A JP4162078B2 (en) 2002-07-31 2002-07-31 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224124A JP4162078B2 (en) 2002-07-31 2002-07-31 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2004060404A JP2004060404A (en) 2004-02-26
JP4162078B2 true JP4162078B2 (en) 2008-10-08

Family

ID=31943704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224124A Expired - Fee Related JP4162078B2 (en) 2002-07-31 2002-07-31 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP4162078B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628736B2 (en) * 2004-09-30 2011-02-09 大和ハウス工業株式会社 Torsion prevention mechanism for base-isolated buildings
JP4602804B2 (en) * 2005-03-16 2010-12-22 大和ハウス工業株式会社 Rotating friction damping device for seismic isolation system
JP5150804B2 (en) * 2006-10-23 2013-02-27 浩 倉林 3D fall prevention device
JP2008196640A (en) * 2007-02-14 2008-08-28 Mitsubishi Heavy Ind Ltd Two-stage vibration-proof pedestal
WO2009112039A1 (en) * 2008-03-14 2009-09-17 Damptech A/S Bearing for structures
JP5539172B2 (en) * 2010-11-25 2014-07-02 株式会社竹中工務店 Floor structure
ITMI20130713A1 (en) * 2013-04-30 2014-10-31 Goppion Spa SUPPORT FOR ANTI-SEISMIC PROTECTION
CN111664219A (en) * 2020-01-23 2020-09-15 张玉峰 Damping adjustment universal ball device
CN111664213A (en) * 2020-01-23 2020-09-15 张玉峰 Damping ball type anti-torsion shock insulation platform
CN111664216A (en) * 2020-01-23 2020-09-15 张玉峰 Anti-twisting device for shock insulation platform

Also Published As

Publication number Publication date
JP2004060404A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4162078B2 (en) Seismic isolation device
JP3871393B2 (en) Insulating support device and seismic isolation structure using this support device
JP6890491B2 (en) Seismic isolation damper and seismic isolation system
JPH03163240A (en) Three-dimensional earthquakeproof device
JP3589553B2 (en) Damping unit and damper
JP2015081464A (en) Vibration control structure
JP3696708B2 (en) Damping mechanism and damping device using the same
JP3736285B2 (en) Isolation device
JP4177991B2 (en) Seismic isolation device
JP5153733B2 (en) Seismic isolation device
JP5555393B2 (en) Seismic isolation mechanism
JP2001295499A (en) Base isolation mechanism for structure
JP2001082542A (en) Three-dimensional base isolation device
JPH0434247A (en) Base isolation element
JP2015105554A (en) Base-isolation structure
JP3671317B2 (en) Seismic isolation mechanism
JP3707307B2 (en) Friction damper
JP6402889B2 (en) Damping structure
JP2007285526A (en) Damping damper
JP3845140B2 (en) Structure isolation device
JP3722168B2 (en) Seismic isolation device
JP4176620B2 (en) Seismic control structure of RC building
JP2003202052A (en) Seismic isolation device
JPH10280726A (en) Vibration control mechanism
JP2002213101A (en) Seismic isolation device and seismic isolation building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees