[go: up one dir, main page]

JP4160336B2 - Power supply for genuine equipment - Google Patents

Power supply for genuine equipment Download PDF

Info

Publication number
JP4160336B2
JP4160336B2 JP2002229919A JP2002229919A JP4160336B2 JP 4160336 B2 JP4160336 B2 JP 4160336B2 JP 2002229919 A JP2002229919 A JP 2002229919A JP 2002229919 A JP2002229919 A JP 2002229919A JP 4160336 B2 JP4160336 B2 JP 4160336B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
current
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002229919A
Other languages
Japanese (ja)
Other versions
JP2004070709A (en
Inventor
繁俊 井上
和正 檀上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Corp filed Critical Idec Corp
Priority to JP2002229919A priority Critical patent/JP4160336B2/en
Publication of JP2004070709A publication Critical patent/JP2004070709A/en
Application granted granted Critical
Publication of JP4160336B2 publication Critical patent/JP4160336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Voltage And Current In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、爆発性ガスが爆発する虞がある爆発性雰囲気状態の危険区域内で使用される本質安全防爆構造の電気機器(以下、本安機器という。)に安全区域から電源を供給する本安機器用電源装置に関する。
【0002】
【従来の技術】
本安機器の使用に際して直流電源を供給する場合、電源回路側で生じた過電圧が本安機器に出力されないようにするとともに、供給する電源の電圧値及び電流値を危険区域内の爆発性ガスに応じて規格化された基準値よりも小さくする必要がある。このため、本安機器に安全区域から電源を供給する本安機器用電源装置には、本安機器に対する出力電圧及び出力電流を制限する安全保持機能が備えられている。
【0003】
従来の安全保持機能を備えた本安機器用電源装置として、図5(A)に示すように、本安機器に対する出力電圧を制限する分路電圧制限回路52、本安機器に対する出力電流を制限する電流制限回路53、及び、分路電圧制限回路52を保護するヒューズ51からなる分路ダイオード型安全保持器50を備えたものがある。分路電圧制限回路52には分路ダイオードが含まれ、この分路ダイオードとして一般にツェナダイオードが用いられている。
【0004】
本安機器用電源装置の回路電圧が、分路電圧制限回路52内の分路ダイオードの制限電圧(例えばツェナダイオードのツェナ電圧)よりも高くなると、分路電圧制限回路52に電流が流れ、本安機器に対する出力電圧値が制限電圧に制限される。ところが、図5(A)に示す分路ダイオード型安全保持器50では、対地電圧を下げるために分路電圧制限回路52を最良の方法で接地しなければならない。
【0005】
そこで、図5(B)に示すように、分路電圧制限回路52と電流制限回路53との間に絶縁変圧器61を配置し、分路電圧制限回路52の接地を不要にした絶縁型の分路ダイオード型安全保持器60が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、図5(A)及び(B)に示した従来の分路ダイオード型安全保持器では、分路電圧制限回路52を構成する分路ダイオードの制限電圧が回路電圧に近い場合には、回路電圧が僅かに高くなった際にも分路電圧制限回路52に電流が流れることになり、回路電圧の変動によってヒューズ51が容易に溶断する虞がある。一般に、本安機器用電源装置の安全保持器におけるヒューズの交換作業は煩雑で長時間を必要とするため、ヒューズの溶断はできるだけ回避すべきであり、回路電圧をツェナ電圧に比較して十分に低い値にしなければならず、結果的にツェナ電圧の高いツェナダイオードを用いる必要があり、電圧利用効率が低い欠点があった。また、負荷電流に拘らずヒューズが溶断しない程度の電流を回路内に常に流しておくことによって電圧利用効率を高くすることができるが、電流利用効率が低くなる。
【0007】
この発明の目的は、分路電圧制限回路の電圧をフィードバック制御することにより、電圧利用効率及び電流利用効率を低下させることなく本安機器に適正に電源を供給することができ、かつ容易にヒューズが溶断することのない本安機器用電源装置を提供することにある。
【0008】
【課題を解決するための手段】
この発明は、上記の課題を解決するための手段として、以下の構成を備えている。
【0009】
(1) 入力側が直流電源に接続されるとともに出力側が本質安全防爆構造の電気機器に接続され、前記直流電源を電源ラインを介して前記電気機器に供給する本安機器用電源装置において、
前記入力側から前記出力側に向かって定電圧制御回路と電圧制限回路とをこの順に備え、
前記電圧制限回路は、両端にかかる電圧を定電圧に制限する分路電圧制限回路と、前記電源ライン間の電圧と前記定電圧との差分の電圧を検出電圧として検出する電圧検出回路と、前記電圧検出回路の検出電圧が動作電圧以上になったときに動作して電源ライン間を短絡する出力短絡回路と、を含み、
前記定電圧制御回路は、前記電圧検出回路から信号線を介して入力された検出電圧が基準電圧に一致するように前記電源ライン間の電圧をフィードバック制御し、
前記電源ラインにおける前記入力側と前記電圧制限回路との間にヒューズを設け、
前記信号線にフィードバック抵抗を設けたことを特徴とする。
【0011】
(2)前記電源ラインの電流を検出する電流検出回路と、前記電流検出回路の検出した流が基準電流以下になるように前記電源ラインの電流をフィードバック制御する電流制御回路と、を含むことを特徴とする。
(3)前記基準電流は、前記ヒューズの溶断特性以下に設定したことを特徴とする
(4)前記定電圧制御回路は、基準電圧を発生する基準電圧回路と、前記フィードバック抵抗を介して入力される前記電圧検出回路の検出電圧と前記基準電圧とを比較して差分電圧信号を出力する電圧誤差増幅回路と、前記差分電圧信号に基づいて前記電源ライン間の電圧を制御する電圧制御回路と、を含むこと特徴とする。
(5)前記定電圧制御回路は、第1の基準電圧を発生する第1の基準電圧回路と、第2の基準電圧を発生する第2の基準電圧回路と、前記フィードバック抵抗を介して入力される前記電圧検出回路の検出電圧と前記第1の基準電圧とを比較して第1の差分電圧信号を出力する電圧誤差増幅回路と、前記電源ラインの電流を検出して検出電流に対応した電圧を出力する電流検出回路と、前記検出電流に対応した電圧と前記第2の基準電圧とを比較して第2の差分電圧信号を出力する電流誤差増幅回路と、前記第1の差分電圧信号に基づいて前記電源ライン間の電圧を制御するとともに前記第2の差分電圧信号に基づいて前記電源ラインの電流を制御する電圧・電流制御回路と、を含む定電圧・電流制御回路であること特徴とする。
(6)入出力経路中に絶縁変圧器を配置し、絶縁変圧器の1次側及び2次側の少なくとも一方に、前記電圧制限回路と前記定電圧制御回路とを設けたことを特徴とする。
(7)入出力経路中に絶縁変圧器を配置し、絶縁変圧器の1次側及び2次側の少なくとも一方に、前記電圧制限回路と前記定電圧・電流制御回路とを設けたことを特徴とする。
【0015】
【発明の実施の形態】
図1は、この発明の第1の実施形態に係る本安機器用電源装置(以下、単に電源装置という。)の構成を示すブロック図である。爆発性ガスが爆発する虞がある爆発性雰囲気の危険区域で使用される本安機器には、部品の故障等によって電源回路に生じた過電圧を供給してはならない。また、本安機器に供給すべき電圧値及び電流値は危険区域の爆発性ガスの種類に応じて規格化されており、電源装置10の出力電圧及び出力電流を規格化された基準電圧値以下及び基準電流値以下に保たなければならない。このため、この実施形態に係る電源装置10は、直流電源に接続される入力側から本安機器に接続される出力側に向かって定電圧制御回路2、ヒューズ1、電圧制限回路3及び電流制限回路8を備えている。
【0016】
電圧制限回路3は、本安機器に対する電源ラインの間に、分路電圧制限回路3b及び電圧検出回路3cからなる直列回路に出力短絡回路3aを並列に接続して構成されている。出力短絡回路3aは、例えばサイリスタ等の半導体によって構成され、分路電圧制限回路3bと電圧検出回路3cとの間に入力端子を接続しており、電圧検出回路3cの検出電圧の入力を受ける。出力短絡回路3aは、検出電圧が所定の動作電圧を超えた時に電源ライン間を短絡し、基準電圧を超える出力電圧の本安機器への出力を防止する。分路電圧制限回路3bは、例えばツェナダイオードによって構成され、両端電圧を定電圧であるツェナ電圧に維持する。
【0017】
したがって、電源ライン間の電圧である出力電圧が変動すると電圧検出回路3cの両端電圧が変動し、出力短絡回路3aの入力端子に入力される検出電圧が変動する。即ち、出力短絡回路3aに入力される検出電圧は、出力電圧からツェナ電圧(制限電圧)を差し引いた値となる。電圧検出回路3cは、例えば抵抗によって構成され、出力電圧から制限電圧を差し引いた検出電圧として出力電圧を間接的に検出する。
【0018】
なお、ヒューズ1は、電圧制限回路3に対する規格上の要求に基づいて設けられている。また、電流制限回路8は、例えば抵抗によって構成されており、本安機器に供給される出力電流値を基準電流値以下に制限する。
【0019】
定電圧制御回路2は、電圧制御回路2a、フィードバック抵抗2b、基準電圧回路2c及び電圧誤差増幅回路2dを含む。電圧制限回路3における電圧検出回路3cの検出電圧は、フィードバック抵抗2bを介して電圧誤差増幅回路2dに入力される。電圧誤差増幅回路2dは、フィードバック抵抗2bを介して入力された検出電圧を基準電圧回路2cが発生する基準電圧と比較し、両者の差を増幅した差分電圧信号を電圧制御回路2aに供給する。電圧制御回路2aは、電圧誤差増幅回路2dからの差分電圧信号に基づいて出力電圧を制御する。これによって、電圧検出回路3cが間接的に検出した出力電圧が、基準電圧に一致するようにフィードバック制御される。
【0020】
上記の構成により、定電圧制御回路2の出力電圧が上昇しだすと、出力電圧と分路電圧制限回路3bの制限電圧との電圧差も上昇する。この電圧差は電圧検出回路3cによって検出される。この検出電圧が出力短絡回路3aが動作する動作電圧未満の範囲では、定電圧制御回路2により出力電圧が基準電圧に一致するようにフィードバック制御される。定電圧制御回路2の出力電圧がさらに上昇し、電圧検出回路3cの検出電圧が出力短絡回路3aの動作電圧以上になると、出力短絡回路3aが動作して電源回路が短絡される。また、電源装置10に異常電圧が入力された場合には、定電圧制御回路2のフィードバック抵抗2bから電圧制限回路3の出力短絡回路3aに高電圧が印加され、出力短絡回路3aが動作して電源回路が短絡される。さらに、フィードバック抵抗により出力短絡回路の入力等を高電圧から保護する。
【0021】
これによって、基準電圧に一致する出力電圧の直流電源が本安機器に供給されるとともに、過大な電圧が本安機器に入力されることがなく、本安機器に火花を発生した場合でも危険区域の爆発性ガスへの引火を防止できる。
【0022】
なお、出力短絡回路3aが電源回路を短絡した後は、電源装置10に対する電源を一旦切断した後に再投入することによって電源装置10が動作を復帰する。
【0023】
分路電圧制限回路3bは、出力電圧を直接制限するものではなく、出力短絡回路3aの入力電圧を制御する電圧を供給するものであり、分路電圧制限回路3b及び電圧検出回路3cに常時電流が流れるように制限電圧が設定されている。したがって、分路電圧制限回路3bの制限電圧と電圧検出回路3cの検出電圧との和が電源装置10の出力電圧となり、電圧制御回路2aの電圧降下がない場合には、電圧利用効率が略100%になる。
【0024】
なお、ヒューズ1は、電圧制限回路3の出力短絡回路3aよりも入力側の適当な箇所に配置することができ、図2に示す電源装置20のように、定電圧制御回路2よりも入力側に配置してもよい。
【0025】
図3は、この発明の第2の実施形態に係る電源装置の構成を示すブロック図である。この実施形態に係る電源装置30は、図1及び図2に示した定電圧制御回路2に代えて、定電圧電流制御回路4を備えたものである。定電圧電流制御回路4は、定電圧制御回路2に含まれるフィードバック抵抗2b、基準電圧回路2c及び電圧誤差増幅回路2dを含むとともに、新たに、電圧・電流制御回路4a、電流検出回路4b、基準電圧回路4c及び電流誤差増幅回路4dを含む。
【0026】
電流検出回路4bは、電源装置30から本安機器に供給される出力電流を検出し、検出した電流値に対応した電圧を検出電圧として出力する。電流検出回路4bの検出電圧は、基準電圧回路4cが発生した基準電圧とともに電流誤差増幅回路4dに入力される。電流誤差増幅回路4dは、電流検出回路4bから入力された検出電圧と基準電流回路4cから入力された基準電圧との差を増幅した差分電流信号を電圧・電流制御回路4aに供給する。電圧・電流制御回路4aは、電圧誤差増幅回路2dから供給される差分電圧信号に基づいて直流電源の出力電圧が基準電圧に一致するように制御するとともに、電流誤差増幅回路4dから供給される差分電流信号に基づいて直流電源の出力電流が基準電流以下になるように制御する。
【0027】
以上の構成により、この実施形態に係る電源装置30では、本安機器に供給すべき直流電源の出力電圧が基準電圧に等しくされるとともに、本安機器に供給すべき直流電源の出力電流が電圧制限回路3が故障した場合や負荷である本安機器が短絡した場合にもヒューズ1が溶断しない電流値に制御される。
【0028】
図4は、この発明の第3の実施形態に係る電源装置の構成を示すブロック図である。この実施形態に係る電源装置40は、電源回路内に絶縁変圧器5を備えたものである。電源装置40において、発振回路6が接続された絶縁変圧器5の1次側に電圧制限回路3、ヒューズ1及び定電圧・電流制御回路4を備え、整流・平滑回路7が接続された絶縁変圧器5の2次側に定電圧制御回路2及び電圧制限回路3を備えている。図4においては、電流制限回路は省略している。
【0029】
この構成により、電源と本安機器との間の絶縁状態を実現することができるとともに、1次側における電源ライン上へのノイズを含む異常電圧の印加による電圧変動及び電流変動は1次側の電圧制限回路3、ヒューズ1及び定電圧・電流制御回路4によって吸収し、2次側における本安機器との間の電源ライン上へのノイズを含む異常電圧の印加による電圧変動及び電流変動は2次側の定電圧制御回路2及び電圧制限回路3によって吸収することができる。
【0030】
なお、電源装置40の1次側において、定電圧・電流制御回路4に代えて定電圧制御回路2を用いることもできる。
【0031】
【発明の効果】
この発明によれば、以下の効果を奏することができる。
【0032】
(1)電圧検出回路の検出電圧に基づいて電源ライン間の電圧と定電圧との差分の電圧を基準電圧に制御する一方、電源ライン間の電圧と定電圧との差分の電圧を検出電圧として出力短絡回路に供給することにより、電源ライン間の電圧が出力短絡回路の動作電圧を超えない範囲で変動した場合には電源ライン間の電圧と定電圧との差分の電圧を基準電圧に維持するとともに、電源ライン間の電圧が出力短絡回路の動作電圧以上に変動した場合、及び、異常電圧が入力された場合には出力短絡回路を動作させて電源ライン間を短絡させることができる。これによって、本安機器に対して危険区域の爆発性ガスの種類に応じて規格化された範囲の電圧及び電流を安定して供給することができる。また、電圧制限回路の制限電圧を出力電圧に近い値に設定することができ、電圧利用効率を向上させることができる。
【0033】
(2)ヒューズを流れる電源ラインの電流を基準電流以下に制御することにより、ヒューズの溶断を防止して、煩雑な交換作業を不要にすることができる。
【0034】
(3)絶縁変圧器の1次側の出力短絡回路、電圧検出回路及び定電圧制御回路、絶縁変圧器、並びに、絶縁変圧器の2次側の出力短絡回路、電圧検出回路及び定電圧制御回路を介して直流電源と本安機器とを接続することにより、直流電源と本安機器との間の絶縁状態を確実に維持することができるとともに、絶縁変圧器の1次側及び2次側において生じた電圧変動を1次側及び2次側のそれぞれで個別に吸収させることができる。これによって、本安機器に対して、危険区域の爆発性ガスの種類に応じて規格化された範囲の出力電圧及び出力電流を安定して供給することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係る電源装置の構成を示すブロック図である。
【図2】上記電源装置の別の構成を示すブロック図である。
【図3】この発明の第2の実施形態に係る電源装置の構成を示すブロック図である。
【図4】この発明の第3の実施形態に係る電源装置の構成を示すブロック図である。
【図5】従来の電源装置に備えられる安全保護器の構成を示すブロック図である。
【符号の説明】
1−ヒューズ
2−定電圧制御回路
2a−電圧制御回路
2b−フィードバック抵抗
2c−基準電圧回路
2d−電圧誤差塑像服回路
3−電圧制限回路
3a−出力短絡回路
3b−分路電圧制限回路
3c−電圧検出回路
4−定電圧・電流制御回路
10,20,30,40−電源装置(本安機器用電源装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention is a book that supplies power from a safe area to an intrinsically safe electrical device (hereinafter referred to as a “safety device”) that is used in a hazardous area in an explosive atmosphere where explosive gas may explode. The present invention relates to a power supply for safety equipment.
[0002]
[Prior art]
When DC power is supplied when using the safety device, the overvoltage generated on the power supply circuit side should not be output to the safety device, and the voltage and current values of the power supply to be supplied to the explosive gas in the hazardous area. Accordingly, it is necessary to make it smaller than the standardized standard value. For this reason, a power supply device for a safety device that supplies power to the safety device from a safe area is provided with a safety holding function that limits an output voltage and an output current for the safety device.
[0003]
As shown in FIG. 5A, as a power supply device for a safety device having a conventional safety maintaining function, as shown in FIG. 5A, a shunt voltage limiting circuit 52 for limiting the output voltage to the safety device, and the output current for the safety device are limited. Some of them have a shunt diode-type safety retainer 50 including a current limiting circuit 53 that performs the above and a fuse 51 that protects the shunt voltage limiting circuit 52. The shunt voltage limiting circuit 52 includes a shunt diode, and a Zener diode is generally used as the shunt diode.
[0004]
When the circuit voltage of the power supply device for the safety device becomes higher than the limit voltage of the shunt diode in the shunt voltage limit circuit 52 (for example, the zener voltage of the zener diode), a current flows through the shunt voltage limit circuit 52, The output voltage value for the safety device is limited to the limit voltage. However, in the shunt diode type safety retainer 50 shown in FIG. 5A, the shunt voltage limiting circuit 52 must be grounded in the best way to reduce the ground voltage.
[0005]
Therefore, as shown in FIG. 5B, an insulating transformer 61 is disposed between the shunt voltage limiting circuit 52 and the current limiting circuit 53, and the grounding of the shunt voltage limiting circuit 52 is not required. A shunt diode type safety retainer 60 has been proposed.
[0006]
[Problems to be solved by the invention]
However, in the conventional shunt diode type safety retainer shown in FIGS. 5 (A) and 5 (B), when the limit voltage of the shunt diode constituting the shunt voltage limit circuit 52 is close to the circuit voltage, Even when the voltage becomes slightly high, a current flows through the shunt voltage limiting circuit 52, and the fuse 51 may be easily blown by the fluctuation of the circuit voltage. In general, the replacement of the fuse in the safety cage of the power supply device for this safety device is complicated and requires a long time. Therefore, fusing of the fuse should be avoided as much as possible, and the circuit voltage should be sufficiently compared with the Zener voltage. As a result, it is necessary to use a Zener diode having a high Zener voltage, resulting in a low voltage utilization efficiency. In addition, the voltage utilization efficiency can be increased by always flowing a current that does not blow the fuse regardless of the load current in the circuit, but the current utilization efficiency is lowered.
[0007]
An object of the present invention is to feedback the voltage of the shunt voltage limiting circuit so that power can be properly supplied to the safety device without degrading the voltage utilization efficiency and the current utilization efficiency, and the fuse can be easily used. An object of the present invention is to provide a power device for a safety device that does not melt.
[0008]
[Means for Solving the Problems]
The present invention has the following configuration as means for solving the above problems.
[0009]
(1) In the power supply device for safety equipment, the input side is connected to a DC power source and the output side is connected to an intrinsically safe explosion-proof electrical device, and the DC power source is supplied to the electrical device via a power line .
A constant voltage control circuit and a voltage limiting circuit are provided in this order from the input side to the output side,
The voltage limiting circuit includes a shunt voltage limiting circuit that limits a voltage applied to both ends to a constant voltage, a voltage detection circuit that detects a voltage difference between the voltage between the power supply lines and the constant voltage as a detection voltage, An output short circuit that operates when the detection voltage of the voltage detection circuit is equal to or higher than the operating voltage and shorts between the power supply lines,
The constant voltage control circuit feedback-controls the voltage between the power supply lines so that a detection voltage input from the voltage detection circuit via a signal line matches a reference voltage ;
A fuse is provided between the input side of the power line and the voltage limiting circuit,
The signal line is provided with a feedback resistor .
[0011]
(2) said comprises a current detection circuit for detecting a power line current, and a current control circuit detected current is feedback-controls the current of the power supply line to be less than the reference current of the current detection circuit It is characterized by.
(3) The reference current is set to be equal to or lower than a fusing characteristic of the fuse .
(4) The constant voltage control circuit compares the detection voltage of the voltage detection circuit that is input via the feedback resistor with the reference voltage circuit that generates a reference voltage, and outputs a differential voltage signal And a voltage control circuit for controlling a voltage between the power supply lines based on the differential voltage signal.
(5) The constant voltage control circuit is input via the first reference voltage circuit that generates the first reference voltage, the second reference voltage circuit that generates the second reference voltage, and the feedback resistor. A voltage error amplifying circuit for comparing a detection voltage of the voltage detection circuit with the first reference voltage and outputting a first differential voltage signal; and a voltage corresponding to the detection current by detecting a current of the power supply line A current detection circuit that outputs a second differential voltage signal by comparing a voltage corresponding to the detected current with the second reference voltage, and a first differential voltage signal A voltage / current control circuit that controls a voltage between the power supply lines based on the second differential voltage signal and controls a current of the power supply line based on the second differential voltage signal. To do.
(6) An insulating transformer is disposed in the input / output path, and the voltage limiting circuit and the constant voltage control circuit are provided on at least one of the primary side and the secondary side of the insulating transformer. .
(7) An insulating transformer is disposed in the input / output path, and the voltage limiting circuit and the constant voltage / current control circuit are provided on at least one of the primary side and the secondary side of the insulating transformer. And
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a configuration of a safety device power supply device (hereinafter simply referred to as a power supply device) according to a first embodiment of the present invention. The overvoltage generated in the power supply circuit due to the failure of parts, etc. shall not be supplied to the safety equipment used in the hazardous area of explosive atmosphere where explosive gas may explode. In addition, the voltage value and current value to be supplied to the safety device are standardized according to the type of explosive gas in the hazardous area, and the output voltage and output current of the power supply device 10 are less than the standardized reference voltage value. And shall be kept below the reference current value. Therefore, the power supply device 10 according to this embodiment includes a constant voltage control circuit 2, a fuse 1, a voltage limiting circuit 3, and a current limiting from the input side connected to the DC power source to the output side connected to the safety device. A circuit 8 is provided.
[0016]
The voltage limiting circuit 3 is configured by connecting an output short circuit 3a in parallel to a series circuit including a shunt voltage limiting circuit 3b and a voltage detection circuit 3c between power lines for the safety device. The output short circuit 3a is made of, for example, a semiconductor such as a thyristor, and has an input terminal connected between the shunt voltage limiting circuit 3b and the voltage detection circuit 3c, and receives an input of the detection voltage of the voltage detection circuit 3c. The output short circuit 3a shorts between the power supply lines when the detected voltage exceeds a predetermined operating voltage, and prevents output of the output voltage exceeding the reference voltage to the safety device. The shunt voltage limiting circuit 3b is constituted by a Zener diode, for example, and maintains the voltage across the terminal at a Zener voltage that is a constant voltage.
[0017]
Therefore, when the output voltage, which is the voltage between the power supply lines, varies, the voltage across the voltage detection circuit 3c varies, and the detection voltage input to the input terminal of the output short circuit 3a varies. That is, the detection voltage input to the output short circuit 3a is a value obtained by subtracting the zener voltage (limit voltage) from the output voltage. The voltage detection circuit 3c is configured by a resistor, for example, and indirectly detects the output voltage as a detection voltage obtained by subtracting the limit voltage from the output voltage.
[0018]
The fuse 1 is provided based on a standard requirement for the voltage limiting circuit 3. Moreover, the current limiting circuit 8 is configured by, for example, a resistor, and limits the output current value supplied to the safety device to a reference current value or less.
[0019]
The constant voltage control circuit 2 includes a voltage control circuit 2a, a feedback resistor 2b, a reference voltage circuit 2c, and a voltage error amplification circuit 2d. The detection voltage of the voltage detection circuit 3c in the voltage limiting circuit 3 is input to the voltage error amplification circuit 2d via the feedback resistor 2b. The voltage error amplifier circuit 2d compares the detection voltage input via the feedback resistor 2b with a reference voltage generated by the reference voltage circuit 2c, and supplies a differential voltage signal obtained by amplifying the difference between the two to the voltage control circuit 2a. The voltage control circuit 2a controls the output voltage based on the differential voltage signal from the voltage error amplification circuit 2d. As a result, feedback control is performed so that the output voltage indirectly detected by the voltage detection circuit 3c matches the reference voltage.
[0020]
With the above configuration, when the output voltage of the constant voltage control circuit 2 starts to rise, the voltage difference between the output voltage and the limit voltage of the shunt voltage limit circuit 3b also increases. This voltage difference is detected by the voltage detection circuit 3c. In a range where the detected voltage is less than the operating voltage at which the output short circuit 3a operates, the constant voltage control circuit 2 performs feedback control so that the output voltage matches the reference voltage. When the output voltage of the constant voltage control circuit 2 further rises and the detection voltage of the voltage detection circuit 3c becomes equal to or higher than the operating voltage of the output short circuit 3a, the output short circuit 3a operates and the power supply circuit is short-circuited. When an abnormal voltage is input to the power supply device 10, a high voltage is applied from the feedback resistor 2b of the constant voltage control circuit 2 to the output short circuit 3a of the voltage limiting circuit 3, and the output short circuit 3a operates. The power circuit is short-circuited. Furthermore, the input of the output short circuit is protected from a high voltage by a feedback resistor.
[0021]
As a result, a DC power supply with an output voltage that matches the reference voltage is supplied to the safety device, and an excessive voltage is not input to the safety device. Can prevent ignition to explosive gas.
[0022]
In addition, after the output short circuit 3a short-circuits the power supply circuit, the power supply apparatus 10 returns to operation by temporarily turning off the power supply to the power supply apparatus 10 and then turning it on again.
[0023]
The shunt voltage limiting circuit 3b does not directly limit the output voltage, but supplies a voltage for controlling the input voltage of the output short circuit 3a. The shunt voltage limiting circuit 3b always supplies current to the shunt voltage limiting circuit 3b and the voltage detection circuit 3c. The limit voltage is set so that current flows. Accordingly, when the sum of the limit voltage of the shunt voltage limit circuit 3b and the detection voltage of the voltage detection circuit 3c is the output voltage of the power supply device 10, and there is no voltage drop of the voltage control circuit 2a , the voltage utilization efficiency is approximately 100. %become.
[0024]
Note that the fuse 1 can be disposed at an appropriate location on the input side of the output short circuit 3a of the voltage limiting circuit 3, and the input side of the constant voltage control circuit 2 as in the power supply device 20 shown in FIG. You may arrange in.
[0025]
FIG. 3 is a block diagram showing the configuration of the power supply device according to the second embodiment of the present invention. The power supply device 30 according to this embodiment includes a constant voltage / current control circuit 4 instead of the constant voltage control circuit 2 shown in FIGS. 1 and 2. The constant voltage / current control circuit 4 includes a feedback resistor 2b, a reference voltage circuit 2c, and a voltage error amplifier circuit 2d included in the constant voltage control circuit 2, and a voltage / current control circuit 4a, a current detection circuit 4b, A reference voltage circuit 4c and a current error amplifier circuit 4d are included.
[0026]
The current detection circuit 4b detects an output current supplied from the power supply device 30 to the safety device, and outputs a voltage corresponding to the detected current value as a detection voltage. The detection voltage of the current detection circuit 4b is input to the current error amplification circuit 4d together with the reference voltage generated by the reference voltage circuit 4c. The current error amplification circuit 4d supplies a differential current signal obtained by amplifying the difference between the detection voltage input from the current detection circuit 4b and the reference voltage input from the reference current circuit 4c to the voltage / current control circuit 4a. The voltage / current control circuit 4a controls the output voltage of the DC power supply to match the reference voltage based on the differential voltage signal supplied from the voltage error amplifier circuit 2d, and the difference supplied from the current error amplifier circuit 4d. Based on the current signal, control is performed so that the output current of the DC power supply becomes equal to or less than the reference current.
[0027]
With the above configuration, in the power supply device 30 according to this embodiment, the output voltage of the DC power supply to be supplied to the safety device is equal to the reference voltage, and the output current of the DC power supply to be supplied to the safety device is the voltage. The current is controlled so that the fuse 1 does not melt even when the limiting circuit 3 fails or when the safety device as a load is short-circuited.
[0028]
FIG. 4 is a block diagram showing a configuration of a power supply device according to the third embodiment of the present invention. The power supply device 40 according to this embodiment includes an insulation transformer 5 in a power supply circuit. In the power supply device 40, an insulation transformer having a voltage limiting circuit 3, a fuse 1 and a constant voltage / current control circuit 4 on the primary side of an insulation transformer 5 to which an oscillation circuit 6 is connected, and a rectification / smoothing circuit 7 connected thereto. A constant voltage control circuit 2 and a voltage limiting circuit 3 are provided on the secondary side of the device 5. In FIG. 4, the current limiting circuit is omitted.
[0029]
With this configuration, an insulation state between the power source and the safety device can be realized, and voltage fluctuations and current fluctuations due to application of abnormal voltage including noise on the power supply line on the primary side are reduced on the primary side. Voltage fluctuations and current fluctuations due to application of abnormal voltage including noise that is absorbed by the voltage limiting circuit 3, the fuse 1 and the constant voltage / current control circuit 4 and on the power supply line to the safety device on the secondary side is 2 It can be absorbed by the constant voltage control circuit 2 and the voltage limiting circuit 3 on the secondary side.
[0030]
The constant voltage control circuit 2 can be used instead of the constant voltage / current control circuit 4 on the primary side of the power supply device 40.
[0031]
【The invention's effect】
According to the present invention, the following effects can be obtained.
[0032]
(1) Based on the detection voltage of the voltage detection circuit, the difference voltage between the voltage between the power supply lines and the constant voltage is controlled to the reference voltage, while the difference voltage between the voltage between the power supply lines and the constant voltage is used as the detection voltage. by supplying the output short circuit, to maintain a differential voltage between the voltage and the constant voltage between the power supply line to the reference voltage when the voltage between the power supply line is changed in a range not exceeding the operating voltage of the output short circuit At the same time, when the voltage between the power supply lines fluctuates more than the operating voltage of the output short circuit or when an abnormal voltage is input, the output short circuit can be operated to short-circuit the power supply lines . As a result, it is possible to stably supply voltage and current in a range that is standardized according to the type of explosive gas in the hazardous area to the safety device. In addition, the limiting voltage of the voltage limiting circuit can be set to a value close to the output voltage, and the voltage utilization efficiency can be improved.
[0033]
(2) By controlling the following reference current a current supply line through the fuses, to prevent blowing of the fuse, it is possible to dispense with complicated replacement work.
[0034]
(3) Output short circuit on the primary side of the insulation transformer, voltage detection circuit and constant voltage control circuit, insulation transformer, and output short circuit on the secondary side of the insulation transformer, voltage detection circuit and constant voltage control circuit By connecting the DC power source and the safety device via the power source, the insulation state between the DC power source and the safety device can be reliably maintained, and at the primary side and secondary side of the isolation transformer The generated voltage fluctuation can be individually absorbed on each of the primary side and the secondary side. As a result, it is possible to stably supply the safety device with an output voltage and an output current in a range that is standardized according to the type of explosive gas in the hazardous area.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a power supply device according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing another configuration of the power supply device.
FIG. 3 is a block diagram showing a configuration of a power supply device according to a second embodiment of the present invention.
FIG. 4 is a block diagram showing a configuration of a power supply device according to a third embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration of a safety protector provided in a conventional power supply device.
[Explanation of symbols]
1-fuse 2-constant voltage control circuit 2a-voltage control circuit 2b-feedback resistor 2c-reference voltage circuit 2d-voltage error plastic image circuit 3-voltage limiting circuit 3a-output short circuit 3b-shunt voltage limiting circuit 3c-voltage Detection circuit 4—constant voltage / current control circuit 10, 20, 30, 40—power supply device (power supply device for safety equipment)

Claims (7)

入力側が直流電源に接続されるとともに出力側が本質安全防爆構造の電気機器に接続され、前記直流電源を電源ラインを介して前記電気機器に供給する本安機器用電源装置において、
前記入力側から前記出力側に向かって定電圧制御回路と電圧制限回路とをこの順に備え、
前記電圧制限回路は、両端にかかる電圧を定電圧に制限する分路電圧制限回路と、前記電源ライン間の電圧と前記定電圧との差分の電圧を検出電圧として検出する電圧検出回路と、前記電圧検出回路の検出電圧が動作電圧以上になったときに動作して電源ライン間を短絡する出力短絡回路と、を含み、
前記定電圧制御回路は、前記電圧検出回路から信号線を介して入力された検出電圧が基準電圧に一致するように前記電源ライン間の電圧をフィードバック制御し、
前記電源ラインにおける前記入力側と前記電圧制限回路との間にヒューズを設け、
前記信号線にフィードバック抵抗を設けたことを特徴とする本安機器用電源装置。
In the power supply device for safety equipment, the input side is connected to a DC power source and the output side is connected to an intrinsically safe explosion-proof electrical device, and the DC power source is supplied to the electrical device via a power line .
A constant voltage control circuit and a voltage limiting circuit are provided in this order from the input side to the output side,
The voltage limiting circuit includes a shunt voltage limiting circuit that limits a voltage applied to both ends to a constant voltage, a voltage detection circuit that detects a voltage difference between the voltage between the power supply lines and the constant voltage as a detection voltage, An output short circuit that operates when the detection voltage of the voltage detection circuit is equal to or higher than the operating voltage and shorts between the power supply lines,
The constant voltage control circuit feedback-controls the voltage between the power supply lines so that a detection voltage input from the voltage detection circuit via a signal line matches a reference voltage ;
A fuse is provided between the input side of the power line and the voltage limiting circuit,
A power supply device for a safety device, wherein a feedback resistor is provided on the signal line .
前記電源ラインの電流を検出する電流検出回路と、前記電流検出回路の検出した流が基準電流以下になるように前記電源ラインの電流をフィードバック制御する電流制御回路と、を含むことを特徴とする請求項1に記載の本安機器用電源装置。And characterized in that it comprises a current detection circuit for detecting a current of said power supply line, and a current control circuit detected current is feedback-controls the current of the power supply line to be less than the reference current of the current detection circuit The power supply device for the safety device according to claim 1. 前記基準電流は、前記ヒューズの溶断特性以下に設定したことを特徴とする請求項に記載の本安機器用電源装置。 The power supply device for a safety device according to claim 2 , wherein the reference current is set to be equal to or lower than a fusing characteristic of the fuse . 前記定電圧制御回路は、基準電圧を発生する基準電圧回路と、前記フィードバック抵抗を介して入力される前記電圧検出回路の検出電圧と前記基準電圧とを比較して差分電圧信号を出力する電圧誤差増幅回路と、前記差分電圧信号に基づいて前記電源ライン間の電圧を制御する電圧制御回路と、を含むこと特徴とする請求項1乃至3のいずれかに記載の本安機器用電源装置。The constant voltage control circuit compares a reference voltage circuit that generates a reference voltage with a detection voltage of the voltage detection circuit that is input via the feedback resistor and the reference voltage, and outputs a differential voltage signal. The power supply device for a safety device according to any one of claims 1 to 3, further comprising: an amplifier circuit; and a voltage control circuit that controls a voltage between the power supply lines based on the differential voltage signal. 前記定電圧制御回路は、第1の基準電圧を発生する第1の基準電圧回路と、第2の基準電圧を発生する第2の基準電圧回路と、前記フィードバック抵抗を介して入力される前記電圧検出回路の検出電圧と前記第1の基準電圧とを比較して第1の差分電圧信号を出力する電圧誤差増幅回路と、前記電源ラインの電流を検出して検出電流に対応した電圧を出力する電流検出回路と、前記検出電流に対応した電圧と前記第2の基準電圧とを比較して第2の差分電圧信号を出力する電流誤差増幅回路と、前記第1の差分電圧信号に基づいて前記電源ライン間の電圧を制御するとともに前記第2の差分電圧信号に基づいて前記電源ラインの電流を制御する電圧・電流制御回路と、を含む定電圧・電流制御回路であること特徴とする請求項1乃至3のいずれかに記載の本安機器用電源装置。The constant voltage control circuit includes a first reference voltage circuit that generates a first reference voltage, a second reference voltage circuit that generates a second reference voltage, and the voltage input via the feedback resistor. A voltage error amplifier circuit that compares a detection voltage of a detection circuit with the first reference voltage and outputs a first differential voltage signal; and detects a current of the power supply line and outputs a voltage corresponding to the detection current A current detection circuit, a current error amplification circuit that compares the voltage corresponding to the detection current with the second reference voltage and outputs a second differential voltage signal, and the first differential voltage signal And a voltage / current control circuit that controls a voltage between the power supply lines and controls a current of the power supply line based on the second differential voltage signal. 1 to 3 Intrinsically safe equipment power supply crab according. 入出力経路中に絶縁変圧器を配置し、絶縁変圧器の1次側及び2次側の少なくとも一方に、前記電圧制限回路と前記定電圧制御回路とを設けたことを特徴とする請求項1乃至4のいずれかに記載の本安機器用電源装置。2. An insulation transformer is disposed in the input / output path, and the voltage limiting circuit and the constant voltage control circuit are provided on at least one of a primary side and a secondary side of the insulation transformer. The power supply device for the safety device according to any one of 1 to 4. 入出力経路中に絶縁変圧器を配置し、絶縁変圧器の1次側及び2次側の少なくとも一方に、前記電圧制限回路と前記定電圧・電流制御回路とを設けたことを特徴とする請求項5に記載の本安機器用電源装置。An isolation transformer is disposed in the input / output path, and the voltage limiting circuit and the constant voltage / current control circuit are provided on at least one of the primary side and the secondary side of the isolation transformer. Item 6. The power device for a safety device according to Item 5.
JP2002229919A 2002-08-07 2002-08-07 Power supply for genuine equipment Expired - Fee Related JP4160336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229919A JP4160336B2 (en) 2002-08-07 2002-08-07 Power supply for genuine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229919A JP4160336B2 (en) 2002-08-07 2002-08-07 Power supply for genuine equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007340458A Division JP4749411B2 (en) 2007-12-28 2007-12-28 Power supply device for safety device and power supply method for safety device

Publications (2)

Publication Number Publication Date
JP2004070709A JP2004070709A (en) 2004-03-04
JP4160336B2 true JP4160336B2 (en) 2008-10-01

Family

ID=32016151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229919A Expired - Fee Related JP4160336B2 (en) 2002-08-07 2002-08-07 Power supply for genuine equipment

Country Status (1)

Country Link
JP (1) JP4160336B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855059B2 (en) 2005-12-08 2012-01-18 オリンパス株式会社 Endoscope device
JP4757044B2 (en) 2006-01-27 2011-08-24 オリンパス株式会社 Explosion-proof device drive
ES2327264T3 (en) * 2006-10-21 2009-10-27 Sma Solar Technology Ag ELECTRICAL CIRCUIT DEVICE AND PROCEDURE, IN PARTICULAR FOR PHOTOVOLTAIC GENERATORS.
JP5091561B2 (en) * 2007-06-27 2012-12-05 Idec株式会社 Explosion-proof LCD
JP2012182875A (en) * 2011-02-28 2012-09-20 Jfe Engineering Corp Power supply circuit of explosion proof electronic apparatus

Also Published As

Publication number Publication date
JP2004070709A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US5982594A (en) Intrinsically safe power source
JP2004312954A (en) Switching ac adapter circuit
EP3273560A1 (en) Ideal diode with active reverse voltage protection
JP2004180433A (en) Switching power supply
US6738247B2 (en) DC-DC converter
JP4160336B2 (en) Power supply for genuine equipment
JP4749411B2 (en) Power supply device for safety device and power supply method for safety device
EP3954011A1 (en) Trapezoidal power-supply barrier between hazardous and normal locations
JP3398354B2 (en) Multi-output power supply
US4755923A (en) Regulated high-voltage power supply
JPH11305855A (en) Power source device
JP3042217B2 (en) Switching power supply
JP2013223290A (en) Power-supply circuit
JPH0657039U (en) Power protection circuit
JP2001268777A (en) Overcurrent protection device
JP2009194960A (en) Power circuit and its control method
JP3068723B2 (en) Drive circuit for semiconductor laser
JP3932163B2 (en) Inverter-controlled engine-driven magnet generator
JPH0530176Y2 (en)
JP2811904B2 (en) Power protection device
JP2005160241A (en) Power supply device
JP2004357460A (en) Power supply unit
JP2886630B2 (en) Emergency protection circuit device in power supply equipment
JP2021078304A (en) Overload detection circuit
JPH0477675A (en) Overcurrent protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Ref document number: 4160336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees