[go: up one dir, main page]

JP4160318B2 - Gas generant composition with improved heat resistance - Google Patents

Gas generant composition with improved heat resistance Download PDF

Info

Publication number
JP4160318B2
JP4160318B2 JP2002123640A JP2002123640A JP4160318B2 JP 4160318 B2 JP4160318 B2 JP 4160318B2 JP 2002123640 A JP2002123640 A JP 2002123640A JP 2002123640 A JP2002123640 A JP 2002123640A JP 4160318 B2 JP4160318 B2 JP 4160318B2
Authority
JP
Japan
Prior art keywords
gas generant
generant composition
gas
composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002123640A
Other languages
Japanese (ja)
Other versions
JP2003321293A (en
Inventor
建州 呉
昇吾 富山
健 高堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2002123640A priority Critical patent/JP4160318B2/en
Publication of JP2003321293A publication Critical patent/JP2003321293A/en
Application granted granted Critical
Publication of JP4160318B2 publication Critical patent/JP4160318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等のエアバック拘束システムに適したガス発生剤組成物、その成型体、成型体の製造方法及びガス発生剤組成物を用いたエアバック用インフレータに関する。
【0002】
【従来の技術】
自動車における乗員保護装置としてのエアバッグ用ガス発生剤として、従来からアジ化ナトリウムを用いた組成物が多用されてきた。しかし、アジ化ナトリウムの人体に対する毒性[LD50(oral−rat)=27mg/kg]や取扱い時の危険性が問題視され、それに替わるより安全ないわゆる非アジド系ガス発生剤組成物として、各種の含窒素有機化合物を含むガス発生剤組成物が開発されている。
【0003】
米国特許4,909,549号には、水素を含むテトラゾール、トリアゾール化合物と酸素含有酸化剤との組成物が開示されている。米国特許4,370,181号には、水素を含まないビテトラゾールの金属塩と酸素を含まない酸化剤とからなるガス発生剤組成物が開示されている。
【0004】
米国特許4,369,079号には、水素を含まないビテトラゾールの金属塩とアルカリ金属硝酸塩、アルカリ金属亜硝酸塩、アルカリ土類金属硝酸塩、アルカリ土類金属亜硝酸塩及びこれらの混合物からなるガス発生剤組成物が開示されている。
【0005】
米国特許5,542,999号には、GZT,TAGN(トリアミノニトログアニジン),NG(ニトログアニジン)、NTO等の燃料、塩基性硝酸銅、有毒ガスを低減する触媒とクーラント剤からなるガス発生剤が開示されている。
【0006】
特開平10−72273号には、ビテトラゾール金属塩、ビテトラゾールアンモニウム塩、アミノテトラゾールと硝酸アンモニウムからなるガス発生剤が開示されている。
【0007】
特開平10−87390号には、ニトログアニジンなどのグアニジン誘導体と金属硝酸塩とバインダ及びその他の添加剤からなるガス発生剤が開示されている。
【0008】
自動車は10年以上使われるものであるから、インフレータにも10年以上の耐久性が要求されるため、ガス発生剤に対しても長期間分解しないこと、即ち耐熱性の良いことが要求される。耐熱性の規格は、自動車メーカにより若干異なるが、一般的には、107℃、400時間で実質的に分解しないことである。
【0009】
しかし、非アジド系ガス発生剤組成物の分解開始温度は150〜200℃前後であるため、分解温度が低くなると、ガス発生剤の耐熱性が悪くなる傾向があり、特に製造条件や不純物の存在により、その耐熱性が著しく低下することがある。
【0010】
本発明の課題は、耐熱性の良いガス発生剤、その成型体、成型体の製造方法及びガス発生剤を用いたエアバック用インフレータを提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、非アジド系ガス発生剤の耐熱性を損なう要因が、ガス発生剤に含まれる水分量、及びガス発生剤組成物の各成分等に起因する不純物、特に燃料成分等に含まれるアルカリ金属等の濃度と関連することを見出し、それらの含有量を低減させることで、ガス発生剤の耐熱性を改善し、熱安定性を向上させることができたものである。
【0012】
即ち本発明は、上記課題を解決するための手段として、(a)燃料及び(b)酸化剤を含み、120℃で2時間保持した後の重量減少率で示される水分含有率が0.5質量%以下であるか、或いは組成物中の各成分に含まれるアルカリ金属及び/又はアルカリ土類金属の含有量が800ppm以下であるガス発生剤組成物を提供する。
【0013】
アルカリ金属及び/又はアルカリ土類金属の含有量は、アルカリ金属炭酸塩又はアルカリ土類金属炭酸塩に換算した含有量であり、ppmは重量基準である。
【0014】
更に本発明は、上記のガス発生剤組成物から得られる単孔円柱状、多孔円柱状又はペレット状のガス発生剤組成物成型体を提供する。
【0015】
更に本発明は、上記ガス発生剤組成物成型体の製造方法であり、(a)燃料をイオン交換水又は蒸留水で洗浄する洗浄工程、(a)燃料、(b)酸化剤、更に必要に応じて(c)バインダ及び/又は(d)添加剤に水を加えて湿式混合し、成型して成型体を得る混合及び成型工程、成型体を乾燥する乾燥工程、並びに乾燥後に冷却する冷却工程を具備しており、前記乾燥工程において、ガス発生剤組成物成型体を80℃以上の乾燥雰囲気中で72時間以上保持するガス発生剤組成物成型体の製造方法を提供する。
【0016】
更に本発明は、上記のガス発生剤組成物、ガス発生剤組成物成型体から選ばれる1又は2以上を用いるエアバッグ用インフレータを提供する。
【0017】
【発明の実施の形態】
本発明のガス発生剤組成物又はガス発生剤組成物成型体は、(a)燃料及び(b)酸化剤を必須成分とし、必要に応じて(c)バインダ及び/又は(d)添加剤を配合したものである。
【0018】
(a)成分の燃料は、テトラゾール類化合物、グアニジン類化合物、トリアジン類化合物、ニトロアミン類化合物から選ばれる1又は2以上を用いることができる。テトラゾール類化合物は、5−アミノテトラゾール、ビテトラゾールアンモニウム塩が好ましく、グアニジン類化合物は、グアニジン硝酸塩、アミノグアニジン硝酸塩、ニトログアニジン、トリアミノグアニジン硝酸塩等が好ましく、トリアジン化合物は、メラミン、シアヌル酸、アンメリン、アンメリド、アンメランド等が好ましい。
【0019】
(b)成分の酸化剤は含酸素酸化剤が好ましく、含酸素酸化剤は、硝酸塩、過塩素酸塩、塩素酸、塩基性金属硝酸塩、硝酸アンモニウムから選ばれる1又は2以上を用いることができる。硝酸塩は、硝酸カリウム、硝酸ナトリウム等のアルカリ類金属硝酸塩、硝酸ストロンチウム等のアルカリ土類金属硝酸塩等が好ましく、過塩素酸塩類は、過塩素酸カリウム、過塩素酸ナトリウム、過塩素酸マグネシウム、過塩素酸アンモニウム等が好ましく、塩基性金属硝酸塩は、塩基性硝酸銅等が好ましい。
【0020】
ガス発生剤組成物が(a)燃料及び(b)酸化剤の2成分からなる場合は、(a)成分が10〜70質量%、(b)成分が30〜90質量%が好ましく、(a)成分15〜60質量%、(b)成分が40〜85質量%がより好ましい。
【0021】
(c)成分のバインダは、カルボキシメチルセルロース(CMC)、カルボキシメチルセルロースナトリウム塩(CMCNa)、カルボキシメチルセルロースカリウム塩、カルボキシメチルセルロースアンモニウム塩、酢酸セルロース、セルロースアセテートブチレート(CAB)、メチルセルロース(MC)、エチルセルロース(EC)、ヒドロキシエチルセルロース(HEC)、エチルヒドロキシエチルセルロース(EHEC)、ヒドロキシプロピルセルロース(HPC)、カルボキシメチルエチルセルロース(CMEC)、微結晶性セルロース、ポリアクリルアミド、ポリアクリルアミドのアミノ化物、ポリアクリルヒドラジド、アクリルアミド・アクリル酸金属塩共重合体、ポリアクリルアミド・ポリアクリル酸エステル化合物の共重合体、ポリビニルアルコール、アクリルゴム、グアガム、デンプン、シリコーンから選ばれる1又は2以上を用いることができる。これらの中でも、バインダの粘着性能、価格、着火性等を考えると、カルボキシメチルセルロースナトリウム塩(CMCNa)、グアガムが好ましい。
【0022】
(d)成分の添加剤は、酸化銅、酸化鉄、酸化亜鉛、酸化コバルト、酸化マンガン、酸化モリブデン、酸化ニッケル、酸化ビスマス、シリカ、アルミナ等の金属酸化物;炭酸コバルト、炭酸カルシウム、塩基性炭酸亜鉛、塩基性炭酸銅等の金属炭酸塩又は塩基性金属炭酸塩;酸性白土、カオリン、タルク、ベントナイト、ケイソウ土、ヒドロタルサイト等の金属酸化物又は水酸化物の複合化合物;ケイ酸ナトリウム、マイカモリブデン酸塩、モリブデン酸コバルト、モリブデン酸アンモニウム等の金属酸塩;二硫化モリブデン、ステアリン酸カルシウム、窒化ケイ素、炭化ケイ素から選ばれる1又は2以上を用いることができる。
【0023】
ガス発生剤組成物が(a)燃料、(b)酸化剤及び(c)バインダ又は(d)添加剤の3成分からなる場合は、(a)成分が5〜60質量%、(b)成分が30〜90質量%、(c)又は(d)成分が0.1〜15質量%が好ましく、(a)成分10〜50質量%、(b)成分が40〜80質量%、(c)又は(d)成分が3〜12質量%がより好ましい。
【0024】
ガス発生剤組成物が(a)燃料、(b)酸化剤、(c)バインダ及び(d)添加剤の4成分からなる場合は、(a)成分が5〜60質量%、(b)成分が30〜85質量%、(c)成分が0.1〜15質量%、(d)成分が0.1〜10質量%が好ましく、(a)成分10〜50質量%、(b)成分が40〜80質量%、(c)が3〜12質量%、(d)成分が1〜10質量%がより好ましい。
【0025】
ガス発生剤組成物は、(a)ニトログアニジン、(b)塩基性硝酸銅及び(c)グアガムを含有するもの、(a)ニトログアニジン、(b)硝酸ストロンチウム、(c)カルボキシメチルセルロースナトリウム塩及び(d)酸性白土を含有するものが好ましい。
【0026】
上記した(a)及び(b)成分、或いは(a)成分、(b)成分並びに(c)成分及び/又は(d)成分を含むガス発生剤組成物は、120℃で2時間保持した後の重量減少率で示される水分含有率が0.5質量%以下であるか、或いは組成物中の各成分に含まれるアルカリ金属及び/又はアルカリ土類金属の含有量が800ppm以下である。
【0027】
水分含有率は、0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.25質量%以下が更に好ましい。アルカリ金属及び/又はアルカリ土類金属の含有量は、組成物を構成する各成分中の量として800ppm以下が好ましく、200ppm以下がより好ましい。
【0028】
次に、ガス発生剤組成物成型体の製造方法を説明し、合わせてガス発生剤組成物成型体について説明する。ガス発生剤組成物成型体の製造方法は、洗浄工程、混合及び成型工程、乾燥工程及び冷却工程を備えるものであるが、当業者により通常なされる工程の追加及び変更ができる。
【0029】
まず、洗浄工程において、(a)燃料、又は(a)燃料と共に、(b)酸化剤、(c)バインダ及び(d)添加剤から選ばれる1、2又は3をイオン交換水又は蒸留水で洗浄する。特に、燃料成分を水洗することにより、大きな効果が得られる。
【0030】
ガス発生剤組成物には、原料成分又は湿式混合時に添加した水等に起因して、金属イオン、例えばNa、K、Li等のアルカリ金属のイオン、Mg、Ca等のアルカリ土類金属のイオン、その他の金属イオンを生じさせる不純物が混入することがある。例えば、Naイオンを生じさせる炭酸ナトリウムのような不純物が混入した場合、それがガス発生剤組成物中に残存すると、ガス発生剤組成物自体の熱安定性が低下する恐れがある。このため、洗浄処理により、炭酸ナトリウム等の不純物の含有量を低減させることが好ましい。
【0031】
洗浄工程においては、(a)成分の燃料100質量部、又は(a)成分の燃料を含む洗浄対象100質量部に対して、イオン交換水又は蒸留水を100〜1000質量部用いることが好ましく、200〜700質量部用いることがより好ましく、300〜500質量部用いることが更に好ましい。
【0032】
洗浄方法は特に制限されるものはなく、適当な容器中に(a)成分の燃料等の洗浄対象を入れ、更に所定量のイオン交換水又は蒸留水を添加した後、0.5〜2時間静置する方法、100〜1000r/分で5〜50分間攪拌する方法等を適用できる。
【0033】
次に、混合及び成型工程において、(a)燃料、(b)酸化剤、更に必要に応じて(c)バインダ及び/又は(d)添加剤に水を加えて湿式混合し、成型する。
【0034】
混合工程では、洗浄工程と同じ理由から、イオン交換水又は蒸留水を用いることが好ましく、加温状態で混合することで、成型に適した水分量に調節することができる。なお、加温状態で混合したときは、成型工程に移行する前に冷却することが好ましい。
【0035】
混合条件は、好ましくは20〜100℃、より好ましくは40〜80℃で、混合時間は、好ましくは10〜120分、より好ましくは30〜60分である。
【0036】
成型工程においては、圧伸成形しやすい温度に調温するため、混合と成型の間に熟成工程を設けることが好ましい。熟成処理は、好ましくは30〜50℃、より好ましくは35〜45℃で、好ましくは8時間以上、より好ましくは16時間以上保持することにより行う。
【0037】
成型方法は特に制限されるものではないが、原料成分と水との混合物を、圧伸機により圧伸成型し、裁断機により裁断する方法を適用できる。
【0038】
圧伸成型は、1段で成型する方法、予備成型を含む2段以上に分けて行う方法を適用できる。1段で行う場合は、成型圧力が好ましくは70MPa以下、より好ましくは60MPa以下であり、2段で行う場合は、成型圧力が好ましくは70MPa以下、より好ましくは60MPa以下で予備成形し、更に成型圧力が好ましくは70MPa以下、より好ましくは60MPa以下で成形する。
【0039】
裁断処理では、裁断機又は圧伸機に接続された裁断機により、要求される規格に合致した寸法に裁断する。
【0040】
ガス発生剤組成物は所望の形状に成型することができ、単孔円柱状、多孔円柱状又はペレット状等の成型体にすることができる。
【0041】
次に、前工程で得られた成型体を、乾燥工程において乾燥する。なお、乾燥工程の後に、更に篩い分けにより、ガス発生剤組成物の大きさを揃える分級処理する工程を付加することができる。
【0042】
ガス発生剤組成物成型体に含まれる水分は、乾燥工程の乾燥温度と乾燥時間、保管時の温度、湿度、保管期間及びガス発生剤組成物成分の性質(吸湿性)により左右されるが、乾燥工程の乾燥温度と乾燥時間が最も重要となる。特に、ガス発生剤組成物成型体の製造工程では、安全上の理由から湿式混合方法を使うため、含水率が高くなることが避けられず、乾燥温度が低く、乾燥時間が短ければ、乾燥後もガス発生剤組成物に少量の水分が残存することがある。この傾向は、5−アミノテトラゾールのような吸湿性のある燃料、吸湿性のあるバインダを含む場合に顕著となる。更に、製品出荷前のインフレータの耐熱性試験は107℃で行なわれるが、ガス発生剤組成物に過剰の水分が含まれていると、加熱時に水分が水蒸気となり、この水蒸気が単独又はインフレータに存在する微量のアンモニアガスと共にガス発生剤組成物成型体の劣化を引き起こし、インフレータ内部の金属部品を腐食する恐れもある。このため、以下のとおり、乾燥工程における適正な乾燥方法が重要となる。
【0043】
乾燥方法は、成型体を乾燥機内に入れ、80℃以上で72時間以上保持する1段階の乾燥処理を適用する。乾燥温度は、80〜130℃が好ましく、80〜120℃がより好ましく、乾燥時間は72〜168時間が好ましく、72〜120時間がより好ましい。
【0044】
次に、冷却工程において、乾燥した成型体を冷却する。冷却方法は特に制限されるものではなく、放置して自然冷却する方法、送風により冷却する方法等を適用できる。
【0045】
以上の製造方法により得られたガス発生剤組成物成型体は、120℃で2時間保持した後の重量減少率で示される水分含有率が0.5質量%以下であり、かつアルカリ金属及び/又はアルカリ土類金属の含有量が800ppm以下のものである。
【0046】
本発明の製造方法で得られるガス発生剤組成物及びガス発生剤組成物成型体は、例えば、各種乗り物の運転席のエアバック用インフレータ、助手席のエアバック用インフレータ、サイドエアバック用インフレータ、インフレータブルカーテン用インフレータ、ニーボルスター用インフレータ、インフレータブルシートベルト用インフレータ、チューブラーシステム用インフレータ、プリテンショナー用インフレータに適用できる。
【0047】
本発明の製造方法で得られるガス発生剤組成物及びガス発生剤組成物成型体は、インフレータ用のガス発生剤組成物として使用することができるほか、雷管やスクイブのエネルギーをガス発生剤組成物に伝えるためのエンハンサ剤(又はブースター)等と呼ばれる着火剤として使用することもできる。
【0048】
【実施例】
以下、実施例により本発明を説明するが、本発明はこれらにより限定されるものではない。
【0049】
実施例1、2
〔洗浄工程〕
ニトログアニジン2kgをステンレス容器内に入れ、更にニトログアニジン2kgに対して6kgのイオン交換水を加えた後、300r/分で30分間攪拌した。その後、濾過器(ガラスロート)により濾過し、2kgのイオン交換水により、計2回(計4kgのイオン交換水を使用)洗浄した。
【0050】
〔混合及び成型工程〕
ニトログアニジン39.5質量%、硝酸ストロンチウム55.5質量%、グアガム5質量%の合計5kgに対して、イオン交換水2.25kgを添加し、捏和機により、温度70℃で、30分間混合した。混合後、捏和機内の温度を80℃で3時間保持し、捏和機のベント口から水蒸気を揮発除去した。
【0051】
その後、捏和機内で攪拌しながら混合物の温度を40℃まで低下させた。次に、捏和機から混合物を取り出して圧伸機に供給し、成形圧力63MPaで成形し、単孔を有するストランドを得た。このストランドを裁断機に供給して裁断し、単孔円柱状のガス発生剤組成物成型体を得た。
【0052】
〔乾燥及び冷却工程〕
ガス発生剤組成物成型体を乾燥機内に入れ、実施例1は80℃で96時間保持し、実施例2は110℃で96時間保持して乾燥させた後、常温で放置して冷却した。得られたガス発生剤組成物成型体の耐熱性を下記の耐熱性試験1により評価し、水分含有量を測定した。結果を表1に示す。
【0053】
〔耐熱性試験1〕
ガス発生剤組成物40gをアルミニウム製容器に入れ、総重量を測定し、(総重量−アルミニウム製容器重量)を試験前のサンプル重量とした。サンプルの入ったアルミニウム製容器を、SUS製厚肉容器(内容積118.8ml)に入れて蓋をした後、110℃の恒温槽に入れた。この時、テフロンパッキンを使用して容器が密閉状態になるようにした。400時間経過後にSUS製厚肉容器を恒温槽から取り出し、容器が室温にもどってから蓋を開け、中からアルミニウム製容器を取り出した。アルミニウム製容器ごとの総重量を測定し、(総重量−アルミニウム製容器重量)を試験後のサンプル重量とした。そして、試験前後の重量変化を比較して重量減少率を求めることにより耐熱性を評価した。重量減少率は、〔(試験前のガス発生剤組成物重量−試験後のガス発生剤組成物重量)/試験前のガス発生剤組成物重量〕×100から求めた。
【0054】
〔ナトリウム含有量の測定法〕
洗浄工程が終了した時点のニトログアニジンを濾過器から取り出し、0.5gを秤量した後、90℃の熱水25mlに溶解した。その後、塩酸で0.05Nに調整し、1晩放置した後、冷却してニトログアニジンの再沈殿物を除去した。残りの溶液をイオン交換水で1000倍希釈(質量基準)し、原子吸光分析法でナトリウム量を測定した。
【0055】
比較例1
乾燥工程の条件を80℃で24時間としたほかは実施例1、2と同様にして、ガス発生剤組成物成型体を得た。得られたガス発生剤組成物成型体について、耐熱性試験1により評価した。結果を表1に示す。
【0056】
実施例3、4
実施例1、2と同様にして、ガス発生剤組成物成型体を得た。但し、実施例3は80℃で90時間保持し、実施例4は110℃で120時間保持して乾燥させた。得られたガス発生剤組成物成型体について、耐熱性試験1により評価した。結果を表1に示す。
【0057】
比較例2
乾燥工程の条件を80℃で16時間としたほかは実施例3、4と同様にして、ガス発生剤組成物成型体を得た。得られたガス発生剤組成物成型体について、耐熱性試験1により評価した。結果を表1に示す。
【0058】
【表1】

Figure 0004160318
【0059】
水分含有率が低いほど重量減少率が小さく、重量減少率が小さいほど熱安定性が高く、実施例1〜4のものは、長期間(例えば10数年)経過する過程でも分解が殆どないことを示している。
【0060】
実施例5
ガス発生剤組成物の成分として、炭酸ナトリウムを842ppm(質量基準)含むニトログアニジン39.5質量%を用いたほかは実施例1と同様にして、ガス発生剤組成物成型体を得た。得られたガス発生剤組成物成型体の耐熱性を下記の耐熱性試験2により評価した。結果を表2に示す。
【0061】
〔耐熱性試験2〕
ガス発生剤組成物40gをアルミニウム製容器に入れ、総重量を測定し、(総重量−アルミニウム製容器重量)を試験前のサンプル重量とした。サンプルの入ったアルミニウム製容器をSUS製厚肉容器(内容積118.8ml)に入れ、SUS容器の開口部分に径70mm、厚さ2mmのアルミニウム破裂板を付けて固定した後、110℃の恒温槽に入れた。この時、テフロンパッキンを使用して容器が密閉状態になるようにした。その後、この状態で保持し、破裂板が破裂するまでの時間を測定した。
【0062】
比較例3
洗浄工程を行わなかったほかは実施例5と同様にして、ガス発生剤組成物成型体を得た。得られたガス発生剤組成物成型体を用い、実施例5と同じ耐熱性試験をした。結果を表2に示す。
【0063】
【表2】
Figure 0004160318
【0064】
比較例3のガス発生剤組成物成型体は、洗浄工程の処理がなされていないので、ニトログアニジン中に含まれるナトリウムがそのまま残存している。このため、洗浄処理をした実施例5に比べてナトリウム含有量が多いので、ニトログアニジンが非常に早く熱分解して、110℃でも燃焼が開始されたため、内圧に抗し切れなくなった破裂板が実施例5に比べて非常に短い時間で破裂したものである。なお、破裂時間に幅があるのは、破裂は目視にて確認しているが、常時チェックするのではなく、時間間隔をおいてチェックするためである。
【0065】
【発明の効果】
本発明のガス発生剤組成物及びガス発生剤組成物成型体は、水分含有率及びアルカリ金属等の含有量が小さいので、耐熱性が優れており、長期間にわたる熱安定性が優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas generant composition suitable for an air bag restraint system such as an automobile, a molded body thereof, a method for producing the molded body, and an airbag inflator using the gas generant composition.
[0002]
[Prior art]
Conventionally, a composition using sodium azide has been widely used as a gas generating agent for an air bag as an occupant protection device in an automobile. However, toxicity of sodium azide to the human body [LD50 (oral-rat) = 27 mg / kg] and danger in handling are regarded as problems. Gas generant compositions containing nitrogen-containing organic compounds have been developed.
[0003]
U.S. Pat. No. 4,909,549 discloses a composition of hydrogen-containing tetrazole, triazole compounds and an oxygen-containing oxidizing agent. U.S. Pat. No. 4,370,181 discloses a gas generant composition comprising a metal salt of bitetrazole containing no hydrogen and an oxidizing agent containing no oxygen.
[0004]
U.S. Pat. No. 4,369,079 describes gas generation comprising hydrogen-free metal salts of bitetrazole and alkali metal nitrates, alkali metal nitrites, alkaline earth metal nitrates, alkaline earth metal nitrites and mixtures thereof. An agent composition is disclosed.
[0005]
US Pat. No. 5,542,999 discloses GZT, TAGN (triaminonitroguanidine), NG (nitroguanidine), NTO, and other fuels, basic copper nitrate, a catalyst for reducing toxic gases, and a gas generation comprising a coolant agent. Agents are disclosed.
[0006]
Japanese Patent Application Laid-Open No. 10-72273 discloses a gas generating agent composed of a bitetrazole metal salt, a bitetrazole ammonium salt, aminotetrazole and ammonium nitrate.
[0007]
Japanese Patent Application Laid-Open No. 10-87390 discloses a gas generating agent comprising a guanidine derivative such as nitroguanidine, a metal nitrate, a binder and other additives.
[0008]
Since automobiles are used for more than 10 years, the inflator is also required to have durability of more than 10 years, and therefore the gas generating agent is required not to decompose for a long time, that is, to have good heat resistance. . The standard of heat resistance is slightly different depending on the automobile manufacturer, but in general, it does not substantially decompose at 107 ° C. for 400 hours.
[0009]
However, since the decomposition start temperature of the non-azide gas generant composition is around 150 to 200 ° C., if the decomposition temperature is low, the heat resistance of the gas generant tends to be deteriorated. Therefore, the heat resistance may be significantly reduced.
[0010]
The subject of this invention is providing the inflator for airbags using the gas generating agent with good heat resistance, its molded object, the manufacturing method of a molded object, and a gas generating agent.
[0011]
[Means for Solving the Problems]
The present inventors have found that the factors that impair the heat resistance of the non-azide gas generating agent are the amount of moisture contained in the gas generating agent and impurities caused by each component of the gas generating agent composition, particularly fuel components, etc. It has been found that the concentration is related to the concentration of alkali metals and the like, and by reducing the content thereof, the heat resistance of the gas generating agent can be improved and the thermal stability can be improved.
[0012]
That is, as a means for solving the above-mentioned problems, the present invention includes (a) a fuel and (b) an oxidant, and has a moisture content of 0.5% after being held at 120 ° C. for 2 hours. Provided is a gas generant composition having a content of alkali metal and / or alkaline earth metal contained in each component in the composition of 800 ppm or less.
[0013]
The content of alkali metal and / or alkaline earth metal is the content converted to alkali metal carbonate or alkaline earth metal carbonate, and ppm is based on weight.
[0014]
Furthermore, the present invention provides a single-hole columnar, porous columnar or pellet-shaped gas generant composition molded body obtained from the gas generant composition described above.
[0015]
Furthermore, the present invention is a method for producing the molded product of the gas generant composition, wherein (a) a washing step of washing the fuel with ion-exchanged water or distilled water, (a) a fuel, (b) an oxidant, and further necessary Accordingly, (c) a binder and / or (d) water is added to the additive and wet mixed and mixed to obtain a molded body, a molding process, a drying process for drying the molded body, and a cooling process for cooling after drying. In the drying step, there is provided a method for producing a gas generant composition molded body in which the gas generant composition molded body is held in a dry atmosphere at 80 ° C. or higher for 72 hours or longer.
[0016]
Furthermore, this invention provides the inflator for airbags which uses 1 or 2 or more chosen from said gas generating composition and a gas generating composition molded object.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The gas generant composition or gas generant composition molded body of the present invention comprises (a) fuel and (b) an oxidant as essential components, and (c) a binder and / or (d) an additive as necessary. It is a blend.
[0018]
As the component (a) fuel, one or more selected from tetrazole compounds, guanidine compounds, triazine compounds, and nitroamine compounds can be used. The tetrazole compounds are preferably 5-aminotetrazole and bitetrazole ammonium salts, the guanidine compounds are preferably guanidine nitrate, aminoguanidine nitrate, nitroguanidine, triaminoguanidine nitrate, etc., and the triazine compounds are melamine, cyanuric acid, ammelin. , Ammelide, ammeland and the like are preferable.
[0019]
The oxidizing agent of component (b) is preferably an oxygen-containing oxidizing agent, and the oxygen-containing oxidizing agent may be one or more selected from nitrate, perchlorate, chloric acid, basic metal nitrate, and ammonium nitrate. The nitrate is preferably an alkaline metal nitrate such as potassium nitrate or sodium nitrate, or an alkaline earth metal nitrate such as strontium nitrate. The perchlorates are potassium perchlorate, sodium perchlorate, magnesium perchlorate, perchlorate, or the like. Ammonium acid is preferred, and the basic metal nitrate is preferably basic copper nitrate.
[0020]
When the gas generant composition is composed of two components (a) fuel and (b) oxidant, the component (a) is preferably 10 to 70% by mass, the component (b) is preferably 30 to 90% by mass, The component 15) to 60% by mass and the component (b) are more preferably 40 to 85% by mass.
[0021]
The binder of component (c) is carboxymethylcellulose (CMC), carboxymethylcellulose sodium salt (CMCNa), carboxymethylcellulose potassium salt, carboxymethylcellulose ammonium salt, cellulose acetate, cellulose acetate butyrate (CAB), methylcellulose (MC), ethylcellulose ( EC), hydroxyethylcellulose (HEC), ethylhydroxyethylcellulose (EHEC), hydroxypropylcellulose (HPC), carboxymethylethylcellulose (CMEC), microcrystalline cellulose, polyacrylamide, polyacrylamide amination, polyacrylhydrazide, acrylamide Copolymer of acrylic acid metal salt copolymer and polyacrylamide / polyacrylic acid ester compound Coalescence, polyvinyl alcohol, acrylic rubber, guar gum, starch, can be used one or more selected from silicone. Among these, carboxymethylcellulose sodium salt (CMCNa) and guar gum are preferable in view of the adhesive performance, price, ignitability, and the like of the binder.
[0022]
(D) Component additives are copper oxide, iron oxide, zinc oxide, cobalt oxide, manganese oxide, molybdenum oxide, nickel oxide, bismuth oxide, silica, alumina, and other metal oxides; cobalt carbonate, calcium carbonate, basic Metal carbonates or basic metal carbonates such as zinc carbonate and basic copper carbonate; complex compounds of metal oxides or hydroxides such as acid clay, kaolin, talc, bentonite, diatomaceous earth, hydrotalcite; sodium silicate Metal salts such as mica molybdate, cobalt molybdate, and ammonium molybdate; one or two or more selected from molybdenum disulfide, calcium stearate, silicon nitride, and silicon carbide can be used.
[0023]
When the gas generant composition is composed of three components (a) fuel, (b) oxidant, and (c) binder or (d) additive, (a) component is 5 to 60% by mass, and (b) component. 30 to 90% by mass, (c) or (d) component is preferably 0.1 to 15% by mass, (a) component 10 to 50% by mass, (b) component 40 to 80% by mass, (c) Or 3-12 mass% of (d) component is more preferable.
[0024]
When the gas generant composition is composed of four components (a) fuel, (b) oxidant, (c) binder and (d) additive, (a) component is 5 to 60% by mass, and (b) component. Is preferably 30 to 85% by mass, (c) component is 0.1 to 15% by mass, (d) component is preferably 0.1 to 10% by mass, (a) component 10 to 50% by mass, and (b) component is More preferably, it is 40-80 mass%, (c) is 3-12 mass%, and (d) component is 1-10 mass%.
[0025]
The gas generant composition comprises (a) nitroguanidine, (b) basic copper nitrate and (c) guar gum, (a) nitroguanidine, (b) strontium nitrate, (c) carboxymethylcellulose sodium salt and (D) Those containing acidic clay are preferred.
[0026]
The gas generant composition containing the above components (a) and (b), or (a) component, (b) component, and (c) component and / or (d) component is kept at 120 ° C. for 2 hours. The water content shown by the weight reduction rate is 0.5 mass% or less, or the content of alkali metal and / or alkaline earth metal contained in each component in the composition is 800 ppm or less.
[0027]
The water content is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and still more preferably 0.25% by mass or less. The content of the alkali metal and / or alkaline earth metal is preferably 800 ppm or less, more preferably 200 ppm or less as the amount in each component constituting the composition.
[0028]
Next, the manufacturing method of a gas generating agent composition molded body will be described, and the gas generating agent composition molded body will be described together. The method for producing a gas generant composition molded body includes a cleaning process, a mixing and molding process, a drying process, and a cooling process, but processes that are usually performed by those skilled in the art can be added or changed.
[0029]
First, in the washing process, 1, 2 or 3 selected from (a) fuel, or (a) fuel, (b) oxidant, (c) binder, and (d) additive is ion-exchanged water or distilled water. Wash. In particular, a great effect can be obtained by washing the fuel component with water.
[0030]
In the gas generant composition, metal ions, for example, ions of alkali metals such as Na, K and Li, ions of alkaline earth metals such as Mg and Ca, originate from the raw material components or water added during wet mixing. Impurities that generate other metal ions may be mixed. For example, when impurities such as sodium carbonate that generate Na ions are mixed in and remain in the gas generant composition, the thermal stability of the gas generant composition itself may be lowered. For this reason, it is preferable to reduce content of impurities, such as sodium carbonate, by a washing process.
[0031]
In the washing step, it is preferable to use 100 to 1000 parts by mass of ion-exchanged water or distilled water with respect to 100 parts by mass of the component (a) fuel or 100 parts by mass of the washing target containing the component (a) fuel. It is more preferable to use 200 to 700 parts by mass, and it is even more preferable to use 300 to 500 parts by mass.
[0032]
There is no particular limitation on the washing method, and the object to be washed such as the fuel of component (a) is placed in a suitable container, and a predetermined amount of ion exchange water or distilled water is added, and then 0.5 to 2 hours. A method of standing, a method of stirring at 100 to 1000 r / min for 5 to 50 minutes, and the like can be applied.
[0033]
Next, in the mixing and molding step, water is added to (a) fuel, (b) oxidant, and (c) binder and / or (d) additive as necessary, and wet-mixed and molded.
[0034]
In the mixing step, it is preferable to use ion-exchanged water or distilled water for the same reason as in the washing step, and the amount of water suitable for molding can be adjusted by mixing in a heated state. In addition, when it mixes in a warmed state, it is preferable to cool before moving to a shaping | molding process.
[0035]
The mixing conditions are preferably 20 to 100 ° C., more preferably 40 to 80 ° C., and the mixing time is preferably 10 to 120 minutes, more preferably 30 to 60 minutes.
[0036]
In the molding process, it is preferable to provide an aging process between mixing and molding in order to adjust the temperature to a temperature at which it is easy to draw and mold. The aging treatment is preferably carried out by holding at 30 to 50 ° C., more preferably 35 to 45 ° C., preferably 8 hours or more, more preferably 16 hours or more.
[0037]
The molding method is not particularly limited, but a method of drawing a mixture of a raw material component and water with a drawing machine and cutting with a cutting machine can be applied.
[0038]
For the drawing, a method of forming in one step or a method of dividing into two or more steps including preliminary forming can be applied. When it is performed in one stage, the molding pressure is preferably 70 MPa or less, more preferably 60 MPa or less, and when it is performed in two stages, the molding pressure is preferably 70 MPa or less, more preferably 60 MPa or less, and further molding is performed. The molding is performed at a pressure of preferably 70 MPa or less, more preferably 60 MPa or less.
[0039]
In the cutting process, a cutting machine connected to a cutting machine or a drawing machine cuts the sheet into dimensions that meet the required standards.
[0040]
The gas generant composition can be molded into a desired shape, and can be formed into a molded body such as a single-hole cylinder, a porous cylinder, or a pellet.
[0041]
Next, the molded body obtained in the previous step is dried in the drying step. In addition, the classification process which arrange | equalizes the magnitude | size of a gas generant composition can be added by further sieving after a drying process.
[0042]
The moisture contained in the gas generant composition molded body depends on the drying temperature and drying time of the drying process, the temperature during storage, the humidity, the storage period, and the properties (hygroscopicity) of the gas generant composition components, The drying temperature and drying time of the drying process are the most important. In particular, in the manufacturing process of the gas generant composition molded body, a wet mixing method is used for safety reasons. Therefore, it is inevitable that the water content becomes high, and if the drying temperature is low and the drying time is short, In some cases, a small amount of water may remain in the gas generant composition. This tendency becomes remarkable when a hygroscopic fuel such as 5-aminotetrazole and a hygroscopic binder are included. Furthermore, the heat resistance test of the inflator before product shipment is performed at 107 ° C., but if the gas generant composition contains excessive moisture, the moisture becomes water vapor during heating, and this water vapor exists alone or in the inflator. This may cause deterioration of the molded product of the gas generant composition together with a small amount of ammonia gas, and may corrode metal parts inside the inflator. For this reason, the appropriate drying method in a drying process becomes important as follows.
[0043]
As the drying method, a one-step drying process is applied in which the molded body is placed in a dryer and held at 80 ° C. or higher for 72 hours or longer. The drying temperature is preferably 80 to 130 ° C, more preferably 80 to 120 ° C, and the drying time is preferably 72 to 168 hours, more preferably 72 to 120 hours.
[0044]
Next, in the cooling step, the dried molded body is cooled. The cooling method is not particularly limited, and a natural cooling method by leaving it alone, a cooling method by blowing air, or the like can be applied.
[0045]
The molded product of the gas generant composition obtained by the above production method has a moisture content of 0.5% by mass or less after being held at 120 ° C. for 2 hours, and has an alkali metal and / or Alternatively, the alkaline earth metal content is 800 ppm or less.
[0046]
Examples of the gas generant composition and the gas generant composition molded body obtained by the production method of the present invention include an inflator for an air bag in a driver seat of various vehicles, an inflator for an air bag in a passenger seat, an inflator for a side air bag, It can be applied to inflators for inflatable curtains, inflators for knee bolsters, inflators for inflatable seat belts, inflators for tubular systems, and inflators for pretensioners.
[0047]
The gas generant composition and the gas generant composition molded product obtained by the production method of the present invention can be used as a gas generant composition for an inflator, and also use the energy of a detonator or a squib as a gas generant composition. It can also be used as an igniting agent called an enhancer (or booster) or the like.
[0048]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these.
[0049]
Examples 1 and 2
[Washing process]
2 kg of nitroguanidine was put in a stainless steel container, and 6 kg of ion exchange water was further added to 2 kg of nitroguanidine, followed by stirring at 300 r / min for 30 minutes. Then, it filtered with the filter (glass funnel), and wash | cleaned 2 times (a total of 4 kg ion-exchange water is used) with 2 kg ion-exchange water.
[0050]
[Mixing and molding process]
2.25 kg of ion-exchanged water is added to a total of 5 kg of 39.5% by mass of nitroguanidine, 55.5% by mass of strontium nitrate, and 5% by mass of guar gum, and mixed for 30 minutes at a temperature of 70 ° C. with a kneader. did. After mixing, the temperature in the kneading machine was maintained at 80 ° C. for 3 hours, and water vapor was volatilized and removed from the vent port of the kneading machine.
[0051]
Thereafter, the temperature of the mixture was lowered to 40 ° C. while stirring in a kneader. Next, the mixture was taken out from the kneading machine, supplied to the drawing machine, and molded at a molding pressure of 63 MPa to obtain a strand having a single hole. This strand was supplied to a cutting machine and cut to obtain a single-hole cylindrical gas generant composition molded body.
[0052]
[Drying and cooling process]
The molded product of the gas generant composition was placed in a dryer. Example 1 was held at 80 ° C. for 96 hours, and Example 2 was held at 110 ° C. for 96 hours for drying, and then allowed to cool at room temperature. The heat resistance of the obtained gas generant composition molded body was evaluated by the following heat resistance test 1, and the water content was measured. The results are shown in Table 1.
[0053]
[Heat resistance test 1]
40 g of the gas generant composition was placed in an aluminum container, the total weight was measured, and (total weight-aluminum container weight) was taken as the sample weight before the test. The aluminum container containing the sample was placed in a SUS thick-walled container (internal volume 118.8 ml), capped, and then placed in a thermostatic chamber at 110 ° C. At this time, Teflon packing was used so that the container was sealed. After 400 hours, the SUS thick container was taken out from the thermostatic bath, the container was returned to room temperature, the lid was opened, and the aluminum container was taken out. The total weight of each aluminum container was measured, and (total weight-aluminum container weight) was taken as the sample weight after the test. And the heat resistance was evaluated by comparing the weight change before and after the test to determine the weight reduction rate. The weight reduction rate was determined from [(gas generant composition weight before test−gas generant composition weight after test) / gas generant composition weight before test] × 100.
[0054]
[Measurement method of sodium content]
Nitroguanidine at the end of the washing step was taken out of the filter, 0.5 g was weighed, and dissolved in 25 ml of hot water at 90 ° C. Thereafter, the mixture was adjusted to 0.05 N with hydrochloric acid and allowed to stand overnight, and then cooled to remove the reprecipitate of nitroguanidine. The remaining solution was diluted 1000 times with ion-exchanged water (mass basis), and the amount of sodium was measured by atomic absorption spectrometry.
[0055]
Comparative Example 1
A gas generant composition molded body was obtained in the same manner as in Examples 1 and 2, except that the drying process was performed at 80 ° C. for 24 hours. The obtained gas generant composition molded body was evaluated by the heat resistance test 1. The results are shown in Table 1.
[0056]
Examples 3 and 4
In the same manner as in Examples 1 and 2, a gas generant composition molded body was obtained. However, Example 3 was kept at 80 ° C. for 90 hours, and Example 4 was kept at 110 ° C. for 120 hours for drying. The obtained gas generant composition molded body was evaluated by the heat resistance test 1. The results are shown in Table 1.
[0057]
Comparative Example 2
A gas generant composition molded body was obtained in the same manner as in Examples 3 and 4 except that the drying process was performed at 80 ° C. for 16 hours. The obtained gas generant composition molded body was evaluated by the heat resistance test 1. The results are shown in Table 1.
[0058]
[Table 1]
Figure 0004160318
[0059]
The lower the moisture content, the smaller the weight loss rate, and the smaller the weight loss rate, the higher the thermal stability. Examples 1 to 4 have almost no decomposition even in the course of a long period of time (for example, 10 years). Is shown.
[0060]
Example 5
A gas generant composition molded body was obtained in the same manner as in Example 1 except that 39.5% by mass of nitroguanidine containing 842 ppm (mass basis) of sodium carbonate was used as a component of the gas generant composition. The heat resistance of the obtained gas generant composition molded body was evaluated by the following heat resistance test 2. The results are shown in Table 2.
[0061]
[Heat resistance test 2]
40 g of the gas generant composition was placed in an aluminum container, the total weight was measured, and (total weight-aluminum container weight) was taken as the sample weight before the test. The aluminum container containing the sample was placed in a SUS thick container (internal volume 118.8 ml), and an aluminum rupture plate having a diameter of 70 mm and a thickness of 2 mm was fixed to the opening of the SUS container, and then a constant temperature of 110 ° C. Put in the tank. At this time, Teflon packing was used so that the container was sealed. Then, it hold | maintained in this state and time until a rupture disk burst was measured.
[0062]
Comparative Example 3
A gas generant composition molded body was obtained in the same manner as in Example 5 except that the washing step was not performed. Using the obtained gas generant composition molded body, the same heat resistance test as in Example 5 was conducted. The results are shown in Table 2.
[0063]
[Table 2]
Figure 0004160318
[0064]
The molded product of the gas generant composition of Comparative Example 3 has not been subjected to the cleaning process, so that sodium contained in the nitroguanidine remains as it is. For this reason, since the sodium content is higher than that in Example 5 where the cleaning treatment was performed, nitroguanidine pyrolyzed very quickly and combustion was started even at 110 ° C., so that a rupture disk that could not resist the internal pressure was obtained. As compared with Example 5, it was ruptured in a very short time. The reason why the bursting time is wide is that the bursting is visually confirmed, but is not always checked but is checked at intervals.
[0065]
【The invention's effect】
Since the gas generant composition and the gas generant composition molded body of the present invention have a low moisture content and alkali metal content, they have excellent heat resistance and excellent thermal stability over a long period of time.

Claims (9)

(a)燃料及び(b)酸化剤を含み、120℃で2時間保持した後の重量減少率で示される水分含有率が0.5質量%以下であるか、或いは組成物中の各成分に含まれるアルカリ金属及び/又はアルカリ土類金属の含有量が800ppm以下であるガス発生剤組成物を押出し成型して得られる、単孔円柱状、多孔円柱状又はペレット形状のガス発生剤組成物成型体の製造方法であって、
前記ガス発生剤組成物に含まれる成分のうち、少なくとも(a)燃料をイオン交換水又は蒸留水で洗浄した後に濾過する洗浄工程、
(a)燃料、(b)酸化剤、更に必要に応じて(c)バインダ及び/又は(d)添加剤に水を加えて湿式混合し、成型して成型体を得る混合及び成型工程、
成型体を乾燥する乾燥工程、並びに乾燥後に冷却する冷却工程を具備しており、
前記洗浄工程において、(a)燃料100質量部に対して100〜1000質量部のイオン交換水を用い、
前記乾燥工程において、ガス発生剤組成物成型体を80℃以上の乾燥雰囲気中で72時間以上保持するガス発生剤組成物成型体の製造方法。
(A) containing fuel and (b) an oxidizer and having a water content of 0.5% by weight or less after being held at 120 ° C. for 2 hours, or in each component in the composition Single-hole cylindrical, porous cylindrical, or pellet-shaped gas generant composition molding obtained by extruding a gas generant composition having an alkali metal and / or alkaline earth metal content of 800 ppm or less A method for manufacturing a body,
Wherein among the components contained in the gas generating composition, the cleaning step of filtering after washing at least (a) a fuel in ion-exchanged water or distilled water,
(A) Fuel, (b) Oxidizing agent, and (c) Binder and / or (d) Addition of water to the additive and wet mixing, followed by molding and molding to obtain a molded body,
It has a drying process for drying the molded body, and a cooling process for cooling after drying,
In the washing step, (a) 100 to 1000 parts by mass of ion-exchanged water is used with respect to 100 parts by mass of fuel,
In the drying step, a method for producing a gas generant composition molded body, wherein the gas generant composition molded body is held in a dry atmosphere at 80 ° C. or higher for 72 hours or more.
前記ガス発生剤組成物が更に(c)バインダ及び/又は(d)添加剤を含むものである請求項1記載のガス発生剤組成物成型体の製造方法 The method for producing a molded article of a gas generant composition according to claim 1, wherein the gas generant composition further contains (c) a binder and / or (d) an additive . 前記ガス発生剤組成物に含まれる(a)成分の燃料が、テトラゾール類化合物、グアニジン類化合物、トリアジン類化合物、ニトロアミン類化合物から選ばれる1又は2以上である請求項1又は2記載のガス発生剤組成物成型体の製造方法 The gas generation according to claim 1 or 2, wherein the fuel of component (a) contained in the gas generant composition is one or more selected from tetrazole compounds, guanidine compounds, triazine compounds, and nitroamine compounds. method for producing a composition molded. 前記ガス発生剤組成物に含まれる(b)成分の酸化剤が含酸素酸化剤であり、硝酸塩、過塩素酸塩、塩素酸、塩基性金属硝酸塩、硝酸アンモニウムから選ばれる1又は2以上である請求項1〜3のいずれか1記載のガス発生剤組成物成型体の製造方法 The oxidizing agent of component (b) contained in the gas generating composition is an oxygen-containing oxidizing agent, and is one or more selected from nitrate, perchlorate, chloric acid, basic metal nitrate, and ammonium nitrate. Item 4. A method for producing a molded article of a gas generant composition according to any one of Items 1 to 3 . 前記ガス発生剤組成物に含まれる(c)成分のバインダが、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースカリウム塩、カルボキシメチルセルロースアンモニウム塩、酢酸セルロース、セルロースアセテートブチレート、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルエチルセルロース、微結晶性セルロース、ポリアクリルアミド、ポリアクリルアミドのアミノ化物、ポリアクリルヒドラジド、アクリルアミド・アクリル酸金属塩共重合体、ポリアクリルアミド・ポリアクリル酸エステル化合物の共重合体、ポリビニルアルコール、アクリルゴム、グアガム、デンプン、シリコーンから選ばれる1又は2以上である請求項2〜4のいずれか1記載のガス発生剤組成物成型体の製造方法 The binder of the component (c) contained in the gas generating composition is carboxymethyl cellulose, carboxymethyl cellulose sodium salt, carboxymethyl cellulose potassium salt, carboxymethyl cellulose ammonium salt, cellulose acetate, cellulose acetate butyrate, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, Ethyl hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl ethyl cellulose, microcrystalline cellulose, polyacrylamide, polyacrylamide amination, polyacryl hydrazide, acrylamide / metal acrylate copolymer, polyacrylamide / polyacrylate ester Polymer, polyvinyl alcohol, acrylic rubber, guar gum, starch, 1 or 2 or more in the manufacturing method of the gas generating composition molded according to any one of claims 2-4 which is selected from recone. 前記ガス発生剤組成物に含まれる(d)成分の添加剤が、金属酸化物、金属炭酸塩又は塩基性金属炭酸塩、金属水酸化物、金属酸化物又は水酸化物の複合化合物、金属酸塩、シリコーン、二硫化モリブデン、ステアリン酸カルシウム、窒化ケイ素、炭化ケイ素から選ばれる1又は2以上である請求項1〜5のいずれか1記載のガス発生剤組成物成型体の製造方法。The additive of the component (d) contained in the gas generating composition is a metal oxide, a metal carbonate or a basic metal carbonate, a metal hydroxide, a complex compound of a metal oxide or a hydroxide, a metal acid The method for producing a molded article of a gas generant composition according to any one of claims 1 to 5, which is one or more selected from a salt, silicone, molybdenum disulfide, calcium stearate, silicon nitride, and silicon carbide. 前記ガス発生剤組成物が(a)ニトログアニジン、(b)塩基性硝酸銅及び(c)グアガムを含有する請求項1〜6のいずれか1記載のガス発生剤組成物成型体の製造方法 The method for producing a molded product of a gas generant composition according to any one of claims 1 to 6, wherein the gas generant composition contains (a) nitroguanidine, (b) basic copper nitrate, and (c) guar gum . 前記ガス発生剤組成物が(a)ニトログアニジン、(b)硝酸ストロンチウム、(c)カルボキシメチルセルロースナトリウム塩及び(d)酸性白土を含有する請求項1〜7のThe gas generant composition comprises (a) nitroguanidine, (b) strontium nitrate, (c) carboxymethylcellulose sodium salt and (d) acidic clay. いずれか1記載のガス発生剤組成物成型体の製造方法。The manufacturing method of the gas generant composition molding of any one. 混合及び成型工程においてイオン交換水又は蒸留水を添加する請求項1〜8のいずれか1記載のガス発生剤組成物成型体の製造方法。The method for producing a molded article of a gas generant composition according to any one of claims 1 to 8, wherein ion exchange water or distilled water is added in the mixing and molding step.
JP2002123640A 2002-04-25 2002-04-25 Gas generant composition with improved heat resistance Expired - Lifetime JP4160318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123640A JP4160318B2 (en) 2002-04-25 2002-04-25 Gas generant composition with improved heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123640A JP4160318B2 (en) 2002-04-25 2002-04-25 Gas generant composition with improved heat resistance

Publications (2)

Publication Number Publication Date
JP2003321293A JP2003321293A (en) 2003-11-11
JP4160318B2 true JP4160318B2 (en) 2008-10-01

Family

ID=29538872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123640A Expired - Lifetime JP4160318B2 (en) 2002-04-25 2002-04-25 Gas generant composition with improved heat resistance

Country Status (1)

Country Link
JP (1) JP4160318B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286165A1 (en) * 2004-05-05 2008-11-20 Graupner Robert K Guanidine Based Composition and System for Same
US7811397B2 (en) 2004-09-27 2010-10-12 Daicel Chemical Industries, Ltd. Gas generating agent
JP4634766B2 (en) * 2004-09-27 2011-02-16 ダイセル化学工業株式会社 Gas generant
JP5085903B2 (en) * 2006-08-29 2012-11-28 株式会社ダイセル Gas generant composition
JP6995006B2 (en) * 2018-04-18 2022-01-14 日本化薬株式会社 Gas generator composition

Also Published As

Publication number Publication date
JP2003321293A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
EP1241138B1 (en) Basic metal nitrate, method for producing the same and gas-generating agent composition
JP4302442B2 (en) Gas generant composition
JP4500399B2 (en) Gas generant composition containing triazine derivative
US20100078098A1 (en) Gas generating composition for inflator containing melamine cyanurate
CN103459354B (en) Gas generant composition
US7662248B2 (en) Process for producing a gas generating agent
JP4800469B2 (en) Gas generant composition
JP4703837B2 (en) Gas generant composition
US20060191614A1 (en) Gas generating composition
JP3907548B2 (en) Gas generator composition for inflator containing melamine cyanurate
JP4160318B2 (en) Gas generant composition with improved heat resistance
JP4672974B2 (en) Gas generant composition
JP5422096B2 (en) Gas generant composition
US20050127324A1 (en) Gas generating composition
WO2000014032A1 (en) Gas-evolving composition
JP4514024B2 (en) Gunpowder molded body and gas generator having the same
US8034133B2 (en) Gas generating composition
JP5274078B2 (en) Gas generant composition
JP4794728B2 (en) Basic metal nitrate and process for producing the same
JPH11314992A (en) Gas generator composition
JP4500576B2 (en) Gas generant composition
JP4500586B2 (en) Gas generant composition
JP2004059331A (en) Gas generating composition
KR980009207A (en) Gas Generators for Airbags

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R151 Written notification of patent or utility model registration

Ref document number: 4160318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term