[go: up one dir, main page]

JP4157691B2 - Diesel engine swirl chamber combustion chamber - Google Patents

Diesel engine swirl chamber combustion chamber Download PDF

Info

Publication number
JP4157691B2
JP4157691B2 JP2001293546A JP2001293546A JP4157691B2 JP 4157691 B2 JP4157691 B2 JP 4157691B2 JP 2001293546 A JP2001293546 A JP 2001293546A JP 2001293546 A JP2001293546 A JP 2001293546A JP 4157691 B2 JP4157691 B2 JP 4157691B2
Authority
JP
Japan
Prior art keywords
chamber
nozzle hole
vortex chamber
vortex
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293546A
Other languages
Japanese (ja)
Other versions
JP2003097270A (en
Inventor
学 宮▲崎▼
潔 畑浦
ジョージ 松本
睦 村田
紀 滝井
博 三雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001293546A priority Critical patent/JP4157691B2/en
Publication of JP2003097270A publication Critical patent/JP2003097270A/en
Application granted granted Critical
Publication of JP4157691B2 publication Critical patent/JP4157691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンの渦流室式燃焼室に関する。
【0002】
【前提構成】
本発明のディーゼルエンジンの渦流室式燃焼室は、例えば図1・図2(本発明)、または図7(従来技術)に示すように、次の前提構成を有するものを対象とする。
【0003】
図1・図2は本発明のディーゼルエンジンの渦流室式燃焼室の実施形態1を示す。図2はディーゼルエンジンの渦流室式燃焼室の縦断右側面図である。図1(A)は噴口口金の縦断右側面図、図1(B)は図1(A)の平面図。図1(C)は図1(A)の噴口の要部拡大図。図1(D)は図1(C)の平面図、図1(E)は図1(C)の底面図、図1(F)は図1(C)のF矢視図。図1(G)は図1(C)の噴口を斜め上から見た斜視図、図1(H)は図1(C)の噴口を斜め下から見た斜視図である。
【0004】
図7は従来技術に係る噴口の形状を示す。図7(A)は噴口の縦断右側面図。図7(B)は図7(A)の平面図、図7(C)は図7(A)の底面図、図7(D)は図7(A)のD矢視図。図7(E)は図7(A)の噴口を斜め上から見た斜視図、図7(F)は図7(A)の噴口を斜め下から見た斜視図である。
【0005】
ディーゼルエンジンの渦流室式燃焼室の主室(1)に渦流室(2)を噴口(3)を介して連通させる。圧縮工程で主室(1)から噴口(3)を経て渦流室(2)内に圧入されてきた圧縮空気流(6)が、渦流室(2)内で空気渦流(7)となつて旋回するように構成する。この渦流室(2)に燃料噴射ノズル(8)を臨ませる。
噴口(3)の形状は、主噴孔(21)の左右両横側部に左右一対の各脇噴孔(22)(22)の横側部を連通させて形成する。両脇噴孔(22)(22)の軸心(23)(23)同士は互いに先すぼまりに傾斜させて交点(24)で交差させる。この交点(24)は主噴孔(21)の軸心(25)よりも渦流室(2)の渦流室周面(12)に近い側に位置させたものである。
【0006】
【従来の技術】
上記前提構成において、噴口(3)の具体的な形状として、従来技術では図7に示すものがある。
図7は従来技術に係る噴口の形状を示す。図7(A)は噴口の縦断右側面図。図7(B)は図7(A)の平面図、図7(C)は図7(A)の底面図、図7(D)は図7(A)のD矢視図。図7(E)は図7(A)の噴口を斜め上から見た斜視図、図7(F)は図7(A)の噴口を斜め下から見た斜視図である。
【0007】
前記噴口(3)を構成する主噴孔(21)および脇噴孔(22)(22)は、単に円柱形に形成されたまま、渦流室(2)の渦流室周面(12)に開口しているだけである。
主噴孔(21)と左右の脇噴孔(22)(22)とが成す前後左右の合計4箇所の境界部分のうちの、前部左右の2箇所の各境界部分に沿わせて、それぞれ微小渦流生成用溝(32)(32)を形成し、この微小渦流生成用溝(32)(32)の溝終端部を渦流室(2)の渦流室周面(12)に開口したものである。
【0008】
【発明が解決しようとする課題】
上記従来技術では、次の問題がある。
[ イ. 圧縮空気流(6)が噴口(3)から真っすぐに渦流室(2)内に流れ込むため、空気渦流(7)は渦流室(2)内の中央空間部分から左右両脇空間部分まで幅広く拡がって行きにくい分だけ、渦流室(2)内での空気と燃料との混合性能が高まりにくく、空気利用率が向上しにくい。 ]
【0009】
図4(A)は従来技術の噴口の働きを模式的に示す図であり、図4(B)は図4(A)のB−B線断面図である。この図4(A)・(B)に示すように、圧縮工程で主室(1)から噴口(2)を経て渦流室(2)内に圧入される圧縮空気流(6)は、噴口(3)を通過する段階では噴口(3)に案内されて直進し、そのまま真っすぐに渦流室(2)内に流れ込む。
【0010】
このため、空気渦流(7)は、渦流室(2)内の中央空間部分から左右両脇空間部分まで幅広く拡がって行きにくい分だけ、渦流室(2)内での空気と燃料との混合性能が高まりにくく、空気利用率が向上しにくい。
これにより、燃焼排ガス中のNOx(窒素酸化物)を悪化させることなく、PM(パティキュレートマテリアル=粒子状物質)を低減させることが出来ないのである。
【0011】
[ ロ. 空気渦流(7)が渦流室(2)の左右両脇空間部分まで幅広く拡がって行きにくい分だけ、図3(C)の微小渦流(46)も拡散されて行きにくいため、微小渦流(46)が空気と燃料との接触率・接触速度を高めて燃料噴射開始から発火開始までの発火遅れ時間を短縮することができず、燃焼排ガス中のNOx(窒素酸化物)の発生量を低減させることができない。 ]
【0012】
圧縮空気流(6)が噴口(3)から真っすぐに渦流室(2)内に流れ込むため、空気渦流(7)は渦流室(2)内の中央空間部分から左右両脇空間部分まで幅広く拡がって行きにくい。これにより、図3(C)の微小渦流発生用溝(32)を通過した溝通過空気流(45)で発生した微小渦流(46)が、空気渦流(7)の横幅方向に広く拡散されて行きにくい。このため、微小渦流(46)が空気と燃料との接触率・接触速度を高めて燃料噴射開始から発火開始までの発火遅れ時間を短縮することができず、燃焼排ガス中のNOx(窒素酸化物)の発生量を低減させることができない。
【0013】
本発明の課題は、次のようにすることにある。
(イ).渦流室内において、空気渦流を渦流室内の中央空間部分から左右両脇空間部分にまで幅広く拡がらせて行くことにより、空気と燃料との混合性能を高めて空気利用率を向上させて、PM(パティキュレートマテリアル=粒子状物質)を低減させる。
【0014】
(ロ). 渦流室内において、空気渦流を渦流室内の中央空間部分から左右両脇空間部分にまで幅広く拡がらせて行くことにより、図3(C)の溝通過空気流(45)で発生した微小渦流(46)を空気渦流の横幅方向に広く拡散させて行って、微小渦流が空気と燃料との接触率・接触速度を高めて燃料噴射開始から発火開始までの発火遅れ時間を短縮させるようにして、燃焼排ガス中のNOx(窒素酸化物)の発生量を低減させる。
【0015】
【課題を解決するための手段】
本発明のディーゼルエンジンの渦流室式燃焼室は、上記前提構成において、上記課題を解決するために、例えば図1−図5、または図6に示すように、次の特徴構成を追加したことを特徴とする。
【0016】
図1−図5(A)は本発明のディーゼルエンジンの渦流室式燃焼室の実施形態1を示す。図1(A)は噴口口金の縦断右側面図、図1(B)は図1(A)の平面図。図1(C)は図1(A)の噴口の要部拡大図。図1(D)は図1(C)の平面図、図1(E)は図1(C)の底面図、図1(F)は図1(C)のF矢視図。図1(G)は図1(C)の噴口を斜め上から見た斜視図、図1(H)は図1(C)の噴口を斜め下から見た斜視図である。
【0017】
図2はディーゼルエンジンの渦流室式燃焼室の縦断右側面図である。図3(A)は噴口の主噴孔と脇噴孔の働きを模式的に示す縦断正面図、図3(B)は図3(A)の縦断右側面図。図3(C)は微小渦流発生用溝の働きを模式的に示す要部縦断正面図。図4は噴口の働きを模式的に示す図である。図4(A)は従来技術の噴口および渦流室の縦断右側面図、図4(B)は図4(A)のB−B線断面図。図4(C)は本発明の噴口および渦流室の縦断右側面図、図4(D)は図4(C)のD−D線断面図である。
【0018】
図5は本発明の実施形態1・2・および3を示す噴口の円滑接続用面の縦断右側面図。図5(A)は実施形態1を示し、図5(B)は実施形態2を、図5(C)は実施形態3を示す。
【0019】
図6は本発明の実施形態4に係る噴口の形状を示す。図6(A)は噴口の縦断右側面図。図6(B)は図6(A)の平面図、図6(C)は図6(A)の底面図、図6(D)は図6(A)のD矢視図。図6(E)は図6(A)の噴口を斜め上から見た斜視図、図6(F)は図6(A)の噴口を斜め下から見た斜視図である。
【0020】
○ 発明1. 請求項1. 図1−図5参照.
この発明1は、前記前提構成において、次の特徴構成を追加したことを特徴とする。
前記主噴孔(21)が渦流室(2)につながる部分の主噴孔終端周縁部(9)のうちの、渦流室(2)の中心(5)から見て主噴孔(21)の軸心(25)よりも外側に位置する外回り側周縁部分(10)において、主噴孔(21)の外回り寄り周面部分(11)と渦流室(2)の渦流室周面(12)とを滑らかに接続させる主噴孔円滑接続用面(13)を形成する。
【0021】
主噴孔終端周縁部(9)のうちの、前記外回り側周縁部分(10)とは反対側に位置する内回り側周縁部分(14)において、主噴孔(21)の内回り寄り周面部分(15)と渦流室(2)の渦流室周面(12)とを直接鋭角を成すままにつながらせる。
主噴孔(21)と左右の脇噴孔(22)(22)とが成す前後左右の合計4箇所の境界部分のうちの、少なくとも前部左右の2箇所の各境界部分に沿わせて、それぞれ微小渦流生成用溝(32)(32)を形成する。この微小渦流生成用溝(32)(32)の溝終端部を渦流室(2)の渦流室周面(12)に開口して構成し
前記各脇噴孔 (22) が渦流室 ( ) につながる部分の脇噴孔終端周縁部 (26) に、脇噴孔 (22) の周面部分 (28) と渦流室 ( ) の渦流室周面 (12) とを滑らかに接続させる脇噴孔円滑接続用面 (29) を形成した、ことを特徴とする。
【0022】
○ 発明2. 請求項2. 図1・図5(B)参照.
この発明2は、前記前提構成において、次の特徴構成を追加したことを特徴とする。
前記主噴孔 (21) が渦流室 ( ) につながる部分の主噴孔終端周縁部 ( ) のうちの、渦流室 ( ) の中心 ( ) から見て主噴孔 (21) の軸心 (25) よりも外側に位置する外回り側周縁部分 (10) において、主噴孔 (21) の外回り寄り周面部分 (11) と渦流室 ( ) の渦流室周面 (12) とを滑らかに接続させる主噴孔円滑接続用面 (13) を形成し、
主噴孔終端周縁部 ( ) のうちの、前記外回り側周縁部分 (10) とは反対側に位置する内回り側周縁部分 (14) において、主噴孔 (21) の内回り寄り周面部分 (15) と渦流室 ( ) の渦流室周面 (12) とを直接鋭角を成すままにつながらせ、
主噴孔 (21) と左右の脇噴孔 (22)(22) とが成す前後左右の合計4箇所の境界部分のうちの、少なくとも前部左右の2箇所の各境界部分に沿わせて、それぞれ微小渦流生成用溝 (32)(32) を形成し、この微小渦流生成用溝 (32)(32) の溝終端部を渦流室 ( ) の渦流室周面 (12) に開口し、
前記主噴孔円滑接続用面(13)の縦断面形状は、主噴孔(21)の外回り寄り周面部分(11)から渦流室(2)の渦流室周面(12)へと次第に近づいて行く複数段折曲り連続傾斜面(16)から成る。
【0023】
○ 発明3. 請求項3. 図1・図5(C)参照.
この発明3は、前記前提構成において、次の特徴構成を追加したことを特徴とする。
前記主噴孔 (21) が渦流室 ( ) につながる部分の主噴孔終端周縁部 ( ) のうちの、渦流室 ( ) の中心 ( ) から見て主噴孔 (21) の軸心 (25) よりも外側に位置する外回り側周縁部分 (10) において、主噴孔 (21) の外回り寄り周面部分 (11) と渦流室 ( ) の渦流室周面 (12) とを滑らかに接続させる主噴孔円滑接続用面 (13) を形成し、
主噴孔終端周縁部 ( ) のうちの、前記外回り側周縁部分 (10) とは反対側に位置する内回り側周縁部分 (14) において、主噴孔 (21) の内回り寄り周面部分 (15) と渦流室 ( ) の渦流室周面 (12) とを直接鋭角を成すままにつながらせ、
主噴孔 (21) と左右の脇噴孔 (22)(22) とが成す前後左右の合計4箇所の境界部分のうちの、少なくとも前部左右の2箇所の各境界部分に沿わせて、それぞれ微小渦流生成用溝 (32)(32) を形成し、この微小渦流生成用溝 (32)(32) の溝終端部を渦流室 ( ) の渦流室周面 (12) に開口し、
前記主噴孔円滑接続用面(13)の縦断面形状は、主噴孔(21)の外回り寄り周面部分(11)から渦流室(2)の渦流室周面(12)へと次第に近づいて行くなだらかな凸曲面(17)から成る。
【0024】
○ 発明4. 請求項4. 図1参照.
この発明4は、上記発明2または3において、次の特徴構成を追加したことを特徴とする。
前記各脇噴孔(22)が渦流室(2)につながる部分の脇噴孔終端周縁部(26)に、脇噴孔(22)の周面部分(28)と渦流室(2)の渦流室周面(12)とを滑らかに接続させる脇噴孔円滑接続用面(29)を形成した。
【0025】
○ 発明5. 請求項5. 図1・図5(B)参照.
この発明5は、上記発明1または4において、次の特徴構成を追加したことを特徴とする。
前記脇噴孔円滑接続用面(29)の縦断面形状は、脇噴孔(22)の周面部分(28)から渦流室(2)の渦流室周面(12)へと次第に近づいて行く複数段折曲り連続傾斜面(30)から成る。
【0026】
○ 発明6. 請求項6. 図1・図5(C)参照.
この発明6は、上記発明1または4において、次の特徴構成を追加したことを特徴とする。
前記脇噴孔円滑接続用面(29)の縦断面形状は、脇噴孔(22)の周面部分(28)から渦流室(2)の渦流室周面(12)へと次第に近づいて行くなだらかな凸曲面(31)から成る。
【0027】
【発明の効果】
本発明のディーゼルエンジンの渦流室式燃焼室は、つぎの効果を奏する。
○ 発明1. 請求項1. 図1−図5参照.
[ イ. 1.主空気渦流(43)と左右一対の脇空気渦流(44)(44)とが、渦流室(2)の中央空間部分から左右両脇空間部分にまで広範囲に亘って広がる事、2.主噴孔円滑接続用面(13)の負圧引き寄せ作用で、主空気渦流(43)の横幅が押し広げられる事、および3.主噴孔円滑接続用面(13)での主圧縮空気流(41)の負圧引き寄せ作用で、左右一対の脇圧縮空気流(42)(42)の衝突・反射を加速する事、の三者の相乗作用により、渦流室(2)内での空気と燃料との混合性能・空気利用率が大幅に向上し、燃焼排ガス中のNOxを悪化させることなく、PMを低減させる。

【0028】
「 作用. 主空気渦流(43)と左右一対の脇空気渦流(44)(44)とが、渦流室(2)の中央空間部分から左右両脇空間部分にまで広範囲に亘って広がって、混合性能・空気利用率が向上する。 」
【0029】
図3(A)・(B)に示すように、圧縮行程において、主室(1)から主噴孔(21)および左右一対の両脇噴孔(22)(22)を経て、主圧縮空気流(41)と両脇圧縮空気流(42)(42)とが並列して、渦流室(2)に圧入されて行く。
【0030】
まず、主噴孔(21)を通過した主圧縮空気流(41)は、渦流室(2)内を旋回して主空気渦流(43)となって、主に渦流室(2)内の中央空間部分の付近で左右に広がって行く。
次に、左右一対の脇噴孔(22)(22)を通過した左右の脇圧縮空気流(42)(42)は、渦流室(2)に入って少し進んだ段階で、主圧縮空気流(41)の下側に離れた交点(24)で互いに衝突し反射して、左右へ拡がっていく。このため、両脇空気渦流(44)(44)は主に、渦流室(2)内の中央空間部分から離れて、左右両脇空間部分に拡がる。
【0031】
これにより、主空気渦流(43)と左右一対の脇空気渦流(44)(44)とが、渦流室(2)の中央空間部分から両脇空間部分まで広範に広がる。このため、渦流室(2)内での空気と燃料との混合性能が向上し、空気利用率が向上する。
【0032】
「 作用. 主噴孔円滑接続用面(13)の負圧引き寄せ作用で、主空気渦流(43)の横幅が押し広げられる。 」
【0033】
図4(C)・(D)に示すように、圧縮工程で主室(1)から主噴孔(21)を経て渦流室(2)内に圧入される主圧縮空気流(41)は、主噴孔(21)を通過する段階では主噴孔(21)に案内されて直進した後、主噴孔円滑接続用面(13)上を通過する段階では、主噴孔円滑接続用面(13)側で発生する負圧により、主噴孔円滑接続用面(13)側へ引き寄せられて曲がって行き、渦流室(2)の渦流室周面(12)に早いうちから速やかに強く押し付けられて行って、左右へ押し広げられていく。
【0034】
これに伴い、主空気渦流(43)は渦流室(2)内の中央空間部分から左右両脇空間部分に向かって押し広げられて行く分だけ、渦流室(2)内での空気と燃料との混合性能が高まり、空気利用率が向上する。
【0035】
作用3. 主噴孔円滑接続用面(13)での主圧縮空気流(41)の負圧引き寄せ作用で、左右一対の脇圧縮空気流(42)(42)の衝突・反射を加速する。 」
【0036】
上記作用において、主圧縮空気流(41)は、主噴孔円滑接続用面(13)の負圧引き寄せ作用で渦流室周面(12)に強く押し付けられて行くときに、上記作用1の左右一対の脇圧縮空気流(42)(42)が交点(24)で衝突・反射しているものを、上から強く押し付けて、この衝突・反射を加速する。
【0037】
これにより、両脇空気渦流(44)(44)は、渦流室(12)内の両脇空間部分の幅広い範囲に亘って押し広げられていくため、渦流室(2)内での混合性能・空気利用率が更に向上する。
【0038】
作用4. 上述の作用1〜3の相乗作用 」
上述の作用1〜3の相乗作用により、渦流室(2)内での空気と燃料との混合性能が高まり、空気利用率が大幅に向上する。これにより、燃焼排ガス中のNOx(窒素酸化物)を悪化させることなく、PM(パティキュレートマテリアル=粒子状物質)を低減させることが出来たのである。
【0039】
[ ロ. 6.微小渦流発生用溝(32)を通過した溝通過空気流(45)が微小渦流(46)を多量に発生させる事、7.主噴孔円滑接続用面(13)の負圧引き寄せ作用で主空気渦流(43)の横幅が押し広げられることに伴って、溝通過空気流(45)で発生した微小渦流(46)が主空気渦流(43)の横幅方向に広く拡散されて行く事、および8.主噴孔円滑接続用面(13)での主圧縮空気流(41)の負圧引き寄せ作用で、左右一対の脇圧縮空気流(42)(42)同士の衝突・反射を加速することに伴って、溝通過空気流(45)で発生した微小渦流(46)が、脇圧縮空気流(42)(42)の横幅方向に急速に広く拡散されて行く事、の三者の相乗作用により、多量の微小渦流(46)が渦流室(21)内の幅広い範囲に亘って急速に拡散して、空気と燃料との接触率・接触速度を高め、燃料噴射開始から発火開始までの発火遅れ時間を短縮して、燃焼排ガス中のNOx(窒素酸化物)の発生量を低減させる。 ]
【0040】
「 作用. 微小渦流発生用溝(32)を通過した溝通過空気流(45)が微小渦流(46)を多量に発生させる。 」
図3(C)に示すように、微小渦流発生用溝(32)を通過した溝通過空気流(45)は、渦流室(21)内に飛び込んだところで、渦流室周面(12)付近の空間の空気を負圧により巻き込んで、微小渦流(46)を活発に多量に発生させながら、巻き込んで連れて行く。
【0041】
「 作用. 主噴孔円滑接続用面(13)の負圧引き寄せ作用で主空気渦流(43)の横幅が押し広げられることに伴って、溝通過空気流(45)で発生した微小渦流(46)が主空気渦流(43)の横幅方向に広く拡散されて行く。 」
上記効果[イ]の「作用」で述べた通り、図4(C)・(D)に示すように、主噴孔円滑接続用面(13)の負圧引き寄せ作用で、主空気渦流(43)の横幅が押し広げられて行く。これに伴って、溝通過空気流(45)で発生した微小渦流(46)が主空気渦流(43)の横幅方向に押し寄せられて行って、急速に広く拡散されて行く。
【0042】
[ 作用. 主噴孔円滑接続用面(13)での主圧縮空気流(41)の負圧引き寄せ作用で、左右一対の脇圧縮空気流(42)(42)同士の衝突・反射を加速することに伴って、上記溝通過空気流(45)で発生した微小渦流(46)が、脇圧縮空気流(42)(42)の横幅方向に急速に広く拡散されて行く。 」
【0043】
上記効果[イ]の「作用」で述べた通り、図2(A)・(B)に示すように、主噴孔円滑接続用面(13)での主圧縮空気流(41)の負圧引き寄せ作用で、左右一対の脇圧縮空気流(42)(42)同士の衝突・反射を加速する。
これに伴って、図3(C)に示すように、上記溝通過空気流(45)で発生した微小渦流(46)は、脇圧縮空気流(42)(42)同士の衝突・反射に巻き込まれ、この衝突・反射流に乗って、脇圧縮空気流(42)(42)内でその横幅方向に急速に広く拡散されて行く。
【0044】
「 作用. 上述の作用6〜8の相乗作用。 」
上述の作用6〜8の相乗作用により、多量の微小渦流(46)が渦流室(21)内の幅広い範囲に亘って急速に拡散して、空気と燃料との接触率・接触速度を高め、燃料噴射開始から発火開始までの発火遅れ時間を短縮して、燃焼排ガス中のNOx(窒素酸化物)の発生量低減させる。
[ ホ. 脇噴孔円滑接続用面 (29) 側で発生する負圧により、脇空気渦流 (44) は渦流室 ( ) 内の左右両脇空間部分の隅々にまで一層広範囲に幅広く拡がって行く分だけ、渦流室 ( ) 内での混合性能・空気利用率が格段に向上し、PMを格段に低減させるとともに、渦流室 ( ) 内での微小渦流 (46) がより良く拡散して、NOxをより良く低減させる。
【0045】
○ 発明2. 請求項2. 図4(C)・(D)・図5(B)参照.
この発明2は、上記発明1の効果[イ]および[ロ]に加えて、つぎの効果を奏する。
[ ハ. 主圧縮空気流(41)が複数段折曲り連続傾斜面(16)側へよりスムースに引き寄せられて曲がって行くことにより、主空気渦流(41)がより良く幅広く拡げられて行く分だけ、渦流室(2)内での混合性能・空気利用率がより良く向上し、PMをより良く低減させるとともに、渦流室(2)内での微小渦流(46)がより良く拡散して、NOxをより良く低減させる。 ]
【0046】
図5(B)に示すように、前記主噴孔円滑接続用面(13)が複数段折曲り連続傾斜面(16)に改良された分だけ、図4(C)・(D)に示す主圧縮空気流(41)は複数段折曲り連続傾斜面(16)側へよりスムースに引き寄せられて曲がって行き、渦流室周面(12)により強く押し付けられて行って、左右へより良く幅広く押し広げられていく。
【0047】
これにより、主空気渦流(43)は渦流室(2)内の中央空間部分から左右両脇空間部分までより良く幅広く拡がって行く分だけ、上記効果[イ]および[ロ]を改善できた。すなわち、渦流室(2)内での混合性能・空気利用率の向上がより改善され、PM(パティキュレートマテリアル=粒子状物質)をより良く低減させることが出来たのである。
【0048】
しかも、その主空気渦流(43)が幅広く拡がって行くときに、微小渦流発生用溝(32)(32)の溝通過空気流(45)により多量に発生した微小渦流(46)も、主空気渦流(43)の拡がりに乗ってより広範囲に拡散して行き、NOx(窒素酸化物)をより良く低減させることが出来たのである。
【0049】
○ 発明3. 請求項3. 図4(C)・(D)・図5(C)参照.
この発明3は、上記発明1の効果[イ]および[ロ]に加えて、つぎの効果を奏する。
[ ニ. 主圧縮空気流(41)がなだらかな凸曲面(17)側へ更にスムースに引き寄せられて曲がって行くことにより、主空気渦流(43)が更により良く幅広く拡げられて行く分だけ、渦流室(2)内での混合性能・空気利用率が更により良く向上し、PMを更により良く低減させるとともに、渦流室(2)内での微小渦流(46)がより良く拡散して、NOxを更により良く低減させる。 ]
【0050】
図5(C)に示すように、前記主噴孔円滑接続用面(13)がなだらかな凸曲面(17)に改良された分だけ、図4(C)・(D)に示す主圧縮空気流(41)はなだらかな凸曲面(17)側へ更にスムースに引き寄せられて曲がって行き、渦流室周面(12)に更に強く押し付けられて行って、左右へ更により良く幅広く押し広げられていく。
【0051】
これにより、主空気渦流(43)は渦流室(2)内の中央空間部分から左右両脇空間部分まで更により良く幅広く拡げられて行く分だけ、渦流室(2)内での混合性能・空気利用率が更により良く向上し、PM(パティキュレートマテリアル=粒子状物質)を更により良く低減させることが出来たのである。
【0052】
しかも、その主空気渦流(43)が幅広く拡がって行くときに、微小渦流発生用溝(32)(32)の溝通過空気流(45)により多量に発生した微小渦流(46)も、主空気渦流(43)の拡がりに乗ってより広範囲に拡散して行き、NOx(窒素酸化物)をより良く低減させることが出来たのである。
【0053】
○ 発明4. 請求項4. 図1・図3・図4(C)・(D)参照.
この発明4は、上記発明2または3の効果に加えて、つぎの効果を奏する。
[ ホ. 脇噴孔円滑接続用面(29)側で発生する負圧により、脇空気渦流(44)は渦流室(2)内の左右両脇空間部分の隅々にまで一層広範囲に幅広く拡がって行く分だけ、渦流室(2)内での混合性能・空気利用率が格段に向上し、PMを格段に低減させるとともに、渦流室(2)内での微小渦流(46)がより良く拡散して、NOxをより良く低減させる。 ]
【0054】
図3に示す脇圧縮空気流(42)は、図1に示す脇噴孔円滑接続用面(29)によって、負圧作用で引き寄せられて、渦流室周面(12)に更に広範に強く押し付けられて行って、左右へ強力に広範に押し広げられていく。
【0055】
これにより、脇空気渦流(44)は渦流室(2)内の左右両脇空間部分の隅々にまで、一層広範囲に拡がって行って、上記効果[イ]で得られた混合性能・空気利用率の向上が格段に向上し、燃焼排ガス中のNOx(窒素酸化物)を悪化させることなく、PM(パティキュレートマテリアル=粒子状物質)を格段に低減させることが出来たのである。
【0056】
しかも、その脇空気渦流(44)が幅広く拡がって行くときに、微小渦流発生用溝(32)(32)の溝通過空気流(45)により多量に発生した微小渦流(46)も、脇空気渦流(44)の拡がりに乗ってより広範囲に拡散して行き、NOx(窒素酸化物)をより良く低減させることが出来たのである。
【0057】
○ 発明5. 請求項5. 図1・図3・図5(B)参照.
この発明5は、上記発明1または4の効果に加えて、つぎの効果を奏する。
[ ヘ. 脇圧縮空気流(42)が複数段折曲り連続傾斜面(30)側へよりスムースに引き寄せられて曲がって行くことにより、脇空気渦流(44)がより良く幅広く拡げられて行く分だけ、渦流室(2)内での混合性能・空気利用率がより良く向上し、PMをより良く低減させるとともに、渦流室(2)内での微小渦流(46)がより良く拡散して、NOxをより良く低減させる。 ]
【0058】
図5(B)に示すように、前記脇噴孔円滑接続用面(29)が複数段折曲り連続傾斜面(30)に改良された分だけ、図3に示す脇圧縮空気流(42)は複数段折曲り連続傾斜面(30)側へよりスムースに引き寄せられて曲がって行き、渦流室周面(12)により強く押し付けられて行って、左右へより良く幅広く押し広げられていく。
【0059】
これにより、脇空気渦流(44)は渦流室(2)内の中央空間部分から左右両脇空間部分でより良く幅広く拡がって行く分だけ、上記効果[ニ]で得られた渦流室(2)内での混合性能・空気利用率の向上がより良く改善されて、PM(パティキュレートマテリアル=粒子状物質)をより良く低減させることが出来る。
【0060】
しかも、その脇空気渦流(44)が幅広く拡がって行くときに、微小渦流発生用溝(32)(32)の溝通過空気流(45)により多量に発生した微小渦流(46)も、脇空気渦流(44)の拡がりに乗ってより広範囲に拡散して行き、NOx(窒素酸化物)をより良く低減させることが出来たのである。
【0061】
○ 発明6. 請求項6. 図3・図5(C)参照.
この発明6は、上記発明1または4の効果に加えて、つぎの効果を奏する。
[ ト. 脇圧縮空気流(42)がなだらかな凸曲面(31)側へ更にスムースに引き寄せられて曲がって行くことにより、脇空気渦流(44)が更により良く幅広く拡げられて行く分だけ、渦流室(2)内での混合性能・空気利用率が更により良く向上し、PMを更により良く低減させるとともに、渦流室(2)内での微小渦流(46)がより良く拡散して、NOxをより良く低減させる。 ]
【0062】
図5(C)に示すように、前記脇噴孔円滑接続用面(29)がなだらかな凸曲面(31)に改良された分だけ、図3に示す脇圧縮空気流(42)はなだらかな凸曲面(31)側へ更にスムースに引き寄せられて曲がって行き、渦流室周面(12)に更に強く押し付けられて行って、左右へ更により良く幅広く押し広げられていく。
【0063】
これにより、脇空気渦流(44)は渦流室(2)内の左右両脇空間部分で更により良く幅広く拡げられて行く分だけ、上記効果[ニ]で得られた渦流室(2)内での混合性能・空気利用率の向上が更により良く改善され、PM(パティキュレートマテリアル=粒子状物質)を更により良く低減させることが出来たのである。
【0064】
しかも、その脇空気渦流(44)が幅広く拡がって行くときに、微小渦流発生用溝(32)(32)の溝通過空気流(45)により多量に発生した微小渦流(46)も、脇空気渦流(44)の拡がりに乗ってより広範囲に拡散して行き、NOx(窒素酸化物)をより良く低減させることが出来たのである。
【0065】
【発明の実施の形態】
以下、本発明のディーゼルエンジンの渦流室式燃焼室の実施の形態を、図面に基づき説明する。
○ 実施形態1. 請求項1・4・7. 図1−図5(A)参照.
【0066】
図1−図5(A)は本発明のディーゼルエンジンの渦流室式燃焼室の実施形態1を示す。図1(A)は噴口口金の縦断右側面図、図1(B)は図1(A)の平面図。図1(C)は図1(A)の噴口の要部拡大図。図1(D)は図1(C)の平面図、図1(E)は図1(C)の底面図、図1(F)は図1(C)のF矢視図。図1(G)は図1(C)の噴口を斜め上から見た斜視図、図1(H)は図1(C)の噴口を斜め下から見た斜視図である。
【0067】
図2はディーゼルエンジンの渦流室式燃焼室の縦断右側面図である。図3(A)は噴口の主噴孔と脇噴孔の働きを模式的に示す縦断正面図、図3(B)は図3(A)の縦断右側面図。図3(C)は微小渦流発生用溝の働きを模式的に示す要部縦断正面図。
【0068】
図4は噴口の働きを模式的に示す図である。図4(A)は従来技術の噴口および渦流室の縦断右側面図、図4(B)は図4(A)のB−B線断面図。図4(C)は本発明の噴口および渦流室の縦断右側面図、図4(D)は図4(C)のD−D線断面図である。図5(A)は噴口の円滑接続用面の縦断右側面図である。
【0069】
図2において、符号(51)は水冷縦形多気筒ディーゼルエンジンのシリンダ、(52)はシリンダヘッド、(53)はピストン、(54)は渦流室式燃焼室の渦流室口金である。
図1に示すように、ディーゼルエンジンの渦流室式燃焼室の主室(1)に渦流室(2)を噴口(3)を介して連通させる。圧縮工程で主室(1)から噴口(3)を経て渦流室(2)内に圧入されてきた圧縮空気流(6)が、渦流室(2)内で空気渦流(7)となつて旋回するように構成する。この渦流室(2)に燃料噴射ノズル(8)を臨ませる。
【0070】
噴口(3)の形状は、主噴孔(21)の左右両横側部に左右一対の各脇噴孔(22)(22)の横側部を連通させて形成する。両脇噴孔(22)(22)の軸心(23)(23)同士は互いに先すぼまりに傾斜させて交点(24)で交差させる。この交点(24)は主噴孔(21)の軸心(25)よりも渦流室(2)の渦流室周面(12)に近い側に位置させる。主噴孔(21)は円柱形に形成する。脇噴孔(22)(22)は上すぼまりの円錐台形に形成する。
【0071】
前記主噴孔(21)が渦流室(2)につながる部分の主噴孔終端周縁部(9)のうちの、渦流室(2)の中心(5)から見て主噴孔(21)の軸心(25)よりも外側に位置する外回り側周縁部分(10)において、主噴孔(21)の外回り寄り周面部分(11)と渦流室(2)の渦流室周面(12)とを滑らかに接続させる主噴孔円滑接続用面(13)を形成する。
【0072】
この主噴孔円滑接続用面(13)の縦断面形状は、図5(A)に示すように、主噴孔(21)の外回り寄り周面部分(11)と渦流室(2)の渦流室周面(12)とのどちらに対しても、緩やかに傾斜する一段の傾斜面になっている。この主噴孔円滑接続用面(13)が噴口(3)の外回り寄り周面部分(11)に対して傾斜する角度は、15.2゜〜16゜の範囲内にする。
【0073】
主噴孔終端周縁部(9)のうちの、前記外回り側周縁部分(10)とは反対側に位置する内回り側周縁部分(14)において、主噴孔(21)の内回り寄り周面部分(15)と渦流室(2)の渦流室周面(12)とを直接鋭角を成すままにつながらせる。
【0074】
前記各脇噴孔(22)が渦流室(2)につながる部分の脇噴孔終端周縁部(26)に、脇噴孔(22)の周面部分(28)と渦流室(2)の渦流室周面(12)とを滑らかに接続させる脇噴孔円滑接続用面(29)を形成する。
【0075】
この脇噴孔円滑接続用面(29)の縦断面形状は、図5(A)に示すように、脇噴孔(22)の周面部分(28)と渦流室(2)の渦流室周面(12)とのどちらに対しても、緩やかに傾斜する一段の傾斜面になっている。この脇噴孔円滑接続用面(29)が脇噴孔(22)の周面部分(28)に対して傾斜する角度は、15.2゜〜16゜の範囲内にする。
【0076】
主噴孔(21)と左右の脇噴孔(22)(22)とが成す前後左右の合計4箇所の境界部分のうちの、全ての各境界部分に沿わせて、それぞれ微小渦流生成用溝(32)(32)・(33)(33)を形成し、この微小渦流生成用溝(32)(32)・(33)(33)の溝終端部を渦流室(2)の渦流室周面(12)に開口たものである。
【0077】
○ 他の実施形態.
次に述べる実施形態2・3・4は、上記実施形態1の構成において、その一部を次のように変更したものである。
○ 実施形態2. 請求項2・5. 図1・図5(B)参照.
図5(B)は実施形態2に係る噴口の円滑接続用面の縦断右側面図である。
【0078】
この実施形態2は、上記実施形態1の構成において、その一部を次のように変更したものである。
前記主噴孔円滑接続用面(13)の縦断面形状は、主噴孔(21)の外回り寄り周面部分(11)から渦流室(2)の渦流室周面(12)へと次第に近づいて行く複数段折曲り連続傾斜面(16)から成る。
【0079】
前記脇噴孔円滑接続用面(29)の縦断面形状は、脇噴孔(22)の周面部分(28)から渦流室(2)の渦流室周面(12)へと次第に近づいて行く複数段折曲り連続傾斜面(30)から成る。
【0080】
この主噴孔円滑接続用面(13)および脇噴孔円滑接続用面(29)において、それぞれの2段折曲り連続傾斜面(16)のうちの、第1段目の傾斜面が噴口(3)の外回り寄り周面部分(11)に対して傾斜する角度(Θ1)は16゜に設定し、この第1段目の傾斜面に対して第2段目の傾斜面が傾斜する角度(Θ2)は6゜に設定する。
【0081】
○ 実施形態3. 請求項3・6. 図1・図5(C)参照.
図5(C)は実施形態3に係る噴口の円滑接続用面の縦断右側面図を示す。
この実施形態3は、上記実施形態1の構成において、その一部を次のように変更したものである。
【0082】
前記主噴孔円滑接続用面(13)の縦断面形状は、主噴孔(21)の外回り寄り周面部分(11)から渦流室(2)の渦流室周面(12)へと次第に近づいて行くなだらかな凸曲面(17)から成る。
【0083】
前記脇噴孔円滑接続用面(29)の縦断面形状は、脇噴孔(22)の周面部分(28)から渦流室(2)の渦流室周面(12)へと次第に近づいて行くなだらかな凸曲面(31)から成るものである。
【0084】
○ 実施形態4. 請求項2・3. 図6参照.
図6は本発明の実施形態4に係る噴口の形状を示す。図6(A)は噴口の縦断右側面図。図6(B)は図6(A)の平面図、図6(C)は図6(A)の底面図、図6(D)は図6(A)のD矢視図。図6(E)は図6(A)の噴口を斜め上から見た斜視図、図6(F)は図6(A)の噴口を斜め下から見た斜視図である。
【0085】
この実施形態4は、上記実施形態1・2または3の構成において、その一部を次のように変更したものである。
すなわち、図1に示す主噴孔円滑接続用面(13)と脇噴孔円滑接続用面(29)とのうちの、脇噴孔円滑接続用面(29)を省略し、主噴孔円滑接続用面(13)を残したものである。
【0086】
○ その他の実施形態. 図は省略.
上記実施形態1−4において、前記主噴孔(21)の形状としては、円柱状から、楕円柱状・3角柱状・4角柱状・5角柱状または6角柱状、或いはその他の任意な形状に変更することが考えられる。また、これらの各柱状を上すぼまりのテーパー状に変更することも考えられる。
【0087】
また、前記脇噴孔(22)の形状としては、上すぼまりの円錐台形から、円柱状・楕円柱状・3角柱状・4角柱状・5角柱状または6角柱状、或いはその他の任意な形状に変更することが考えられる。また、これらの各柱状を上すぼまりのテーパー状に変更することも考えられる。
【図面の簡単な説明】
【図1】 図1−図5(A)は本発明のディーゼルエンジンの渦流室式燃焼室の実施形態1を示す。図1(A)は噴口口金の縦断右側面図、図1(B)は図1(A)の平面図。図1(C)は図1(A)の噴口の要部拡大図。図1(D)は図1(C)の平面図、図1(E)は図1(C)の底面図、図1(F)は図1(C)のF矢視図。図1(G)は図1(C)の噴口を斜め上から見た斜視図、図1(H)は図1(C)の噴口を斜め下から見た斜視図である。
【図2】 ディーゼルエンジンの渦流室式燃焼室の縦断右側面図。
【図3】 図3(A)は噴口の主噴孔と脇噴孔の働きを模式的に示す縦断正面図、図3(B)は図3(A)の縦断右側面図。図3(C)は微小渦流発生用溝の働きを模式的に示す要部縦断正面図。
【図4】 図4は噴口の働きを模式的に示す図である。図4(A)は従来技術の噴口および渦流室の縦断右側面図、図4(B)は図4(A)のB−B線断面図。図4(C)は本発明の噴口および渦流室の縦断右側面図、図4(D)は図4(C)のD−D線断面図。
【図5】 図5は本発明の実施形態1・2・および3を示す噴口の円滑接続用面の縦断右側面図。図5(A)は実施形態1を示し、図5(B)は実施形態2を、図5(C)は実施形態3を示す。
【図6】 図6は本発明の実施形態4に係る噴口の形状を示す。図6(A)は噴口の縦断右側面図。図6(B)は図6(A)の平面図、図6(C)は図6(A)の底面図、図6(D)は図6(A)のD矢視図。図6(E)は図6(A)の噴口を斜め上から見た斜視図、図6(F)は図6(A)の噴口を斜め下から見た斜視図。
【図7】 図7は従来技術に係る噴口の形状を示す。図7(A)は噴口の縦断右側面図。図7(B)は図7(A)の平面図、図7(C)は図7(A)の底面図、図7(D)は図7(A)のD矢視図。図7(E)は図7(A)の噴口を斜め上から見た斜視図、図7(F)は図7(A)の噴口を斜め下から見た斜視図。
【符号の説明】
1…主室、 2…渦流室、 3…噴口、 5…渦流室中心、 6…圧縮空気流、 7…空気渦流、 8…燃料噴射ノズル、 9…主噴孔終端周縁部、 10…外回り側周縁部分、 11…外回り寄り周面部分、 12…渦流室周面、 13…主噴孔円滑接続用面、 14…内回り側周縁部分、 15…内回り寄り周面部分、 16…複数段折曲り連続傾斜面、 17…なだらかな凸曲面、 21…主噴孔、 22…脇噴孔、 23…脇噴孔の軸心、 24…交点、 25…主噴孔の軸心、 26…脇噴孔終端周縁部、 28…周面部分、 29…脇噴孔円滑接続用面、 30…複数段折曲り連続傾斜面、 31…なだらかな凸曲面 32…微小渦流発生用溝。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a vortex chamber combustion chamber of a diesel engine.
[0002]
[Prerequisite configuration]
  The vortex chamber combustion chamber of the diesel engine according to the present invention is intended for the one having the following premise configuration as shown in FIGS. 1 and 2 (present invention) or FIG. 7 (prior art), for example.
[0003]
  1 and 2 show Embodiment 1 of a vortex chamber type combustion chamber of a diesel engine of the present invention. FIG. 2 is a vertical right side view of a vortex chamber combustion chamber of a diesel engine. 1A is a vertical right side view of the nozzle mouthpiece, and FIG. 1B is a plan view of FIG. FIG. 1C is an enlarged view of a main part of the nozzle hole in FIG. 1D is a plan view of FIG. 1C, FIG. 1E is a bottom view of FIG. 1C, and FIG. 1F is a view taken in the direction of arrow F in FIG. FIG. 1G is a perspective view of the nozzle hole of FIG. 1C viewed from obliquely above, and FIG. 1H is a perspective view of the nozzle hole of FIG. 1C viewed obliquely from below.
[0004]
  FIG. 7 shows the shape of the nozzle hole according to the prior art. FIG. 7A is a vertical right side view of the nozzle hole. 7B is a plan view of FIG. 7A, FIG. 7C is a bottom view of FIG. 7A, and FIG. 7D is a view as viewed from the direction of arrow D in FIG. 7A. FIG. 7E is a perspective view of the nozzle hole of FIG. 7A viewed from obliquely above, and FIG. 7F is a perspective view of the nozzle hole of FIG. 7A viewed obliquely from below.
[0005]
  The vortex chamber (2) is communicated with the main chamber (1) of the vortex chamber type combustion chamber of the diesel engine through the nozzle (3). The compressed air flow (6) that has been press-fitted into the vortex chamber (2) from the main chamber (1) through the nozzle (3) in the compression process turns into an air vortex (7) in the vortex chamber (2). To be configured. The fuel injection nozzle (8) faces the vortex chamber (2).
  The shape of the nozzle hole (3) is formed by connecting the lateral sides of the pair of left and right side nozzle holes (22), (22) to the left and right sides of the main nozzle hole (21). The axial centers (23) and (23) of the side nozzle holes (22) and (22) are inclined to each other at a converging point and intersect at an intersection (24). This intersection (24) is located closer to the vortex chamber peripheral surface (12) of the vortex chamber (2) than the axis (25) of the main nozzle hole (21).
[0006]
[Prior art]
  In the above premise configuration, there is a conventional shape shown in FIG. 7 as a specific shape of the nozzle hole (3).
  FIG. 7 shows the shape of the nozzle hole according to the prior art. FIG. 7A is a vertical right side view of the nozzle hole. 7B is a plan view of FIG. 7A, FIG. 7C is a bottom view of FIG. 7A, and FIG. 7D is a view as viewed from the direction of arrow D in FIG. 7A. FIG. 7E is a perspective view of the nozzle hole of FIG. 7A viewed from obliquely above, and FIG. 7F is a perspective view of the nozzle hole of FIG. 7A viewed obliquely from below.
[0007]
  The main injection hole (21) and the side injection holes (22) and (22) constituting the injection hole (3) are simply formed in a cylindrical shape, and open to the peripheral surface (12) of the vortex flow chamber (2). Just doing.
  Along each of the front and left and right boundary portions of the front and left and right boundary holes formed by the main nozzle hole (21) and the left and right side nozzle holes (22) and (22), respectively, A micro eddy current generating groove (32) (32) is formed, and the end of the micro eddy current generating groove (32) (32) is opened to the peripheral surface (12) of the vortex chamber (2). is there.
[0008]
[Problems to be solved by the invention]
  The above prior art has the following problems.
  [ I. Since the compressed air flow (6) flows straight into the vortex chamber (2) from the nozzle (3), the air vortex (7) spreads widely from the central space portion in the vortex chamber (2) to the left and right side space portions. As much as it is difficult to reach, the mixing performance of air and fuel in the vortex chamber (2) is difficult to improve, and the air utilization rate is difficult to improve. ]
[0009]
  FIG. 4 (A) is a diagram schematically showing the function of a conventional nozzle, and FIG. 4 (B) is a cross-sectional view taken along the line BB of FIG. 4 (A). As shown in FIGS. 4 (A) and 4 (B), the compressed air flow (6) pressed into the vortex chamber (2) from the main chamber (1) through the nozzle (2) in the compression step is At the stage of passing through 3), it goes straight through the nozzle (3) and flows straight into the vortex chamber (2).
[0010]
  Therefore, the air vortex flow (7) is mixed with air and fuel in the vortex flow chamber (2) by the amount that is difficult to spread from the central space portion to the left and right side space portions in the vortex flow chamber (2). It is difficult to increase the air utilization rate.
  Thereby, PM (particulate material = particulate matter) cannot be reduced without deteriorating NOx (nitrogen oxide) in the combustion exhaust gas.
[0011]
  [B. Since the air vortex (7) is difficult to reach because it spreads widely to the left and right sides of the vortex chamber (2), the micro vortex (46) in FIG. Increases the contact rate and contact speed between air and fuel, and the ignition delay time from the start of fuel injection to the start of ignition cannot be shortened, and the amount of NOx (nitrogen oxide) generated in the combustion exhaust gas is reduced I can't. ]
[0012]
  Since the compressed air flow (6) flows straight into the vortex chamber (2) from the nozzle (3), the air vortex (7) spreads widely from the central space portion in the vortex chamber (2) to the left and right side space portions. It is hard to go. Thereby, the micro eddy current (46) generated by the groove passing air flow (45) that has passed through the micro eddy current generating groove (32) of FIG. 3 (C) is widely diffused in the lateral width direction of the air vortex (7). It is hard to go. For this reason, the micro eddy current (46) increases the contact rate / contact speed between the air and the fuel, so that the ignition delay time from the start of fuel injection to the start of ignition cannot be shortened. ) Cannot be reduced.
[0013]
  An object of the present invention is to do as follows.
  (I). In the vortex chamber, the air vortex is broadly expanded from the central space portion to the left and right side space portions in the vortex chamber, so that the mixing performance of air and fuel is improved and the air utilization rate is improved. (Particulate material = particulate matter) is reduced.
[0014]
  (B). In the vortex chamber, the air vortex is broadly expanded from the central space portion to the left and right side space portions in the vortex chamber, so that the micro vortex flow (46) generated by the groove passing air flow (45) in FIG. ) Is widely diffused in the lateral direction of the air vortex, and the micro vortex increases the contact rate and contact speed between the air and the fuel to shorten the ignition delay time from the start of fuel injection to the start of ignition. Reduce the amount of NOx (nitrogen oxide) generated in the exhaust gas.
[0015]
[Means for Solving the Problems]
  The vortex chamber combustion chamber of the diesel engine according to the present invention has the following feature configuration as shown in FIG. 1 to FIG. 5 or FIG. Features.
[0016]
  FIG. 1 to FIG. 5 (A) show Embodiment 1 of the vortex chamber type combustion chamber of the diesel engine of the present invention. 1A is a vertical right side view of the nozzle mouthpiece, and FIG. 1B is a plan view of FIG. FIG. 1C is an enlarged view of a main part of the nozzle hole in FIG. 1D is a plan view of FIG. 1C, FIG. 1E is a bottom view of FIG. 1C, and FIG. 1F is a view taken in the direction of arrow F in FIG. FIG. 1G is a perspective view of the nozzle hole of FIG. 1C viewed from obliquely above, and FIG. 1H is a perspective view of the nozzle hole of FIG. 1C viewed obliquely from below.
[0017]
  FIG. 2 is a vertical right side view of a vortex chamber combustion chamber of a diesel engine. 3A is a longitudinal front view schematically showing the function of the main nozzle hole and the side nozzle hole of the nozzle hole, and FIG. 3B is a vertical right side view of FIG. 3A. FIG. 3C is a front view of a longitudinal section of a main part schematically showing the function of the micro eddy current generating groove. FIG. 4 is a diagram schematically showing the function of the nozzle hole. 4A is a vertical right side view of a conventional nozzle and vortex chamber, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A. 4C is a longitudinal right side view of the nozzle and vortex chamber of the present invention, and FIG. 4D is a cross-sectional view taken along line DD of FIG. 4C.
[0018]
  FIG. 5 is a vertical right side view of the smooth connection surface of the nozzle hole showing the first, second, and third embodiments of the present invention. 5A shows the first embodiment, FIG. 5B shows the second embodiment, and FIG. 5C shows the third embodiment.
[0019]
  FIG. 6 shows the shape of a nozzle hole according to Embodiment 4 of the present invention. FIG. 6A is a vertical right side view of the nozzle hole. 6 (B) is a plan view of FIG. 6 (A), FIG. 6 (C) is a bottom view of FIG. 6 (A), and FIG. 6 (D) is a view taken in the direction of arrow D in FIG. 6E is a perspective view of the nozzle hole of FIG. 6A viewed from obliquely above, and FIG. 6F is a perspective view of the nozzle hole of FIG. 6A viewed from diagonally below.
[0020]
    ○ Invention 1. Claim 1.1-5reference.
  The present invention 1 is characterized in that the following feature configuration is added to the premise configuration.
  Of the main nozzle hole peripheral edge (9) where the main nozzle hole (21) is connected to the vortex chamber (2), the main nozzle hole (21) is seen from the center (5) of the vortex chamber (2). In the outer peripheral side peripheral portion (10) located outside the axis (25), the outer peripheral portion (11) closer to the outer periphery of the main nozzle hole (21) and the vortex chamber peripheral surface (12) of the vortex chamber (2) The main nozzle hole smooth connection surface (13) for smoothly connecting the two is formed.
[0021]
  In the inner peripheral side peripheral portion (14) located on the opposite side of the outer peripheral side peripheral portion (10) of the main injection hole end peripheral portion (9), the inner peripheral peripheral surface portion ( 15) and the vortex chamber peripheral surface (12) of the vortex chamber (2) can be directly connected with an acute angle.
  Along the front and right and left and right boundary portions of the front and right and left and right side nozzle holes (22) and (22), respectively, at least two front and left boundary portions, The micro eddy current generating grooves (32) and (32) are formed respectively. The groove end portions of the micro eddy current generating grooves (32) and (32) are formed by opening the peripheral surface (12) of the vortex chamber (2).,
  Each side nozzle hole (twenty two) Vortex chamber ( 2 ) The peripheral edge of the end of the side nozzle hole (26) The side nozzle hole (twenty two) Peripheral part of (28) And vortex chamber ( 2 ) Eddy current chamber (12) Side nozzle holes for smooth connection (29) Is formed.
[0022]
    ○ Invention 2. Claim 2. See FIGS. 1 and 5B.
  This invention 2Prerequisite configurationThe following feature configuration is added.
  Main nozzle hole (twenty one) Vortex chamber ( 2 ) The peripheral edge of the main nozzle hole ( 9 ) Of the vortex chamber ( 2 ) Heart of ( 5 ) Main nozzle hole seen from (twenty one) Axis of (twenty five) Outer periphery side peripheral part located outside (Ten) At the main nozzle hole (twenty one) The outer surface of the outer surface (11) And vortex chamber ( 2 ) Eddy current chamber (12) Smooth connection surface for main nozzle holes (13) Form the
Main nozzle hole peripheral edge ( 9 ) Of the outer periphery side peripheral portion (Ten) Inner periphery side peripheral edge located on the opposite side (14) At the main nozzle hole (twenty one) The inner surface of the peripheral surface (15) And vortex chamber ( 2 ) Eddy current chamber (12) Can be directly connected to form an acute angle,
Main nozzle hole (twenty one) And left and right side nozzle holes (22) (22) Grooves for generating micro eddy currents along at least the two front and right boundary parts of the total of four front and rear boundary parts (32) (32) This micro eddy current generating groove is formed (32) (32) The vortex chamber at the end of the groove ( 2 ) Eddy current chamber (12) Open to
  The vertical cross-sectional shape of the main nozzle hole smooth connection surface (13) gradually approaches from the outer peripheral surface portion (11) of the main nozzle hole (21) to the vortex chamber peripheral surface (12) of the vortex chamber (2). It consists of a multi-step bent continuous inclined surface (16).
[0023]
    ○ Invention 3. Claim 3. See FIGS. 1 and 5C.
  This invention 3Prerequisite configurationThe following feature configuration is added.
  Main nozzle hole (twenty one) Vortex chamber ( 2 ) The peripheral edge of the main nozzle hole ( 9 ) Of the vortex chamber ( 2 ) Heart of ( 5 ) Main nozzle hole seen from (twenty one) Axis of (twenty five) Outer periphery side peripheral part located outside (Ten) At the main nozzle hole (twenty one) The outer surface of the outer surface (11) And vortex chamber ( 2 ) Eddy current chamber (12) Smooth connection surface for main nozzle holes (13) Form the
Main nozzle hole peripheral edge ( 9 ) Of the outer periphery side peripheral portion (Ten) Inner periphery side peripheral edge located on the opposite side (14) At the main nozzle hole (twenty one) The inner surface of the peripheral surface (15) And vortex chamber ( 2 ) Eddy current chamber (12) Can be directly connected to form an acute angle,
Main nozzle hole (twenty one) And left and right side nozzle holes (22) (22) Grooves for generating micro eddy currents along at least the two front and right boundary parts of the total of four front and rear boundary parts (32) (32) This micro eddy current generating groove is formed (32) (32) The vortex chamber at the end of the groove ( 2 ) Eddy current chamber (12) Open to
  The vertical cross-sectional shape of the main nozzle hole smooth connection surface (13) gradually approaches from the outer peripheral surface portion (11) of the main nozzle hole (21) to the vortex chamber peripheral surface (12) of the vortex chamber (2). Consists of gently convex curved surface (17).
[0024]
    ○ Invention 4. Claim 4. See FIG.
  This invention 4 is the above invention.2 or 3The following feature configuration is added.
  In the peripheral edge portion (26) of the side nozzle hole where the side nozzle holes (22) are connected to the vortex chamber (2), the peripheral surface portion (28) of the side nozzle hole (22) and the vortex flow in the vortex chamber (2) A side injection hole smooth connection surface (29) for smoothly connecting the chamber peripheral surface (12) was formed.
[0025]
    ○ Invention 5. Claim 5. See FIGS. 1 and 5B.
  This invention 5 is the above invention.1 or4 is characterized in that the following feature configuration is added.
  The vertical cross-sectional shape of the side nozzle hole smooth connection surface (29) gradually approaches the peripheral surface portion (28) of the side nozzle hole (22) from the peripheral surface (12) of the vortex chamber (2). It consists of a multi-step bent continuous inclined surface (30).
[0026]
    ○ Invention 6. Claim 6. See FIGS. 1 and 5C.
  This invention 6 is the above invention.1 or4 is characterized in that the following feature configuration is added.
  The vertical cross-sectional shape of the side nozzle hole smooth connection surface (29) gradually approaches the peripheral surface portion (28) of the side nozzle hole (22) from the peripheral surface (12) of the vortex chamber (2). It consists of a gentle convex surface (31).
[0027]
【The invention's effect】
  The vortex chamber combustion chamber of the diesel engine of the present invention has the following effects.
    ○ Invention 1. Claim 1.1-5reference.
  [ I.1.The main air vortex (43) and the pair of left and right side air vortices (44) (44) spread over a wide range from the central space portion of the vortex chamber (2) to the left and right side space portions;2.The negative pressure of the main nozzle hole smooth connection surface (13) attracts the lateral width of the main air vortex (43), and3.Accelerating the collision and reflection of the pair of left and right side compressed air flows (42) and (42) by the negative pressure pulling action of the main compressed air flow (41) on the main nozzle hole smooth connection surface (13) As a result of the synergistic effect of the person, the mixing performance and air utilization rate of air and fuel in the vortex chamber (2) are greatly improved, and PM is reduced without deteriorating NOx in the combustion exhaust gas.
  ]
[0028]
  "Action1. The main air vortex flow (43) and the pair of left and right side air vortex flows (44) and (44) spread over a wide range from the central space portion of the vortex flow chamber (2) to the left and right side space portions. Utilization rate is improved. "
[0029]
  As shown in FIGS. 3A and 3B, in the compression stroke, the main compressed air passes from the main chamber (1) through the main nozzle hole (21) and the pair of left and right side nozzle holes (22) and (22). The flow (41) and the compressed air flows (42) (42) on both sides are pressed into the vortex chamber (2) in parallel.
[0030]
  First, the main compressed air flow (41) that has passed through the main nozzle hole (21) swirls in the vortex chamber (2) to become the main air vortex flow (43), mainly in the center in the vortex chamber (2). Spread left and right near the space.
  Next, the left and right side compressed air streams (42) and (42) that have passed through the pair of left and right side nozzle holes (22) and (22) enter the vortex chamber (2) and proceed a little, and then the main compressed air stream (41) Collide with each other at the intersection (24) farther below (24), reflect, and spread left and right. For this reason, the air vortices (44) (44) on both sides mainly separate from the central space portion in the vortex chamber (2) and spread to the left and right side space portions.
[0031]
  As a result, the main air vortex (43) and the pair of left and right side air vortices (44) (44) spread widely from the central space portion of the vortex chamber (2) to both side space portions. For this reason, the mixing performance of air and fuel in the vortex chamber (2) is improved, and the air utilization rate is improved.
[0032]
  "Action2. The lateral width of the main air vortex (43) is expanded by the negative pressure pulling action of the main nozzle hole smooth connection surface (13). "
[0033]
  As shown in FIGS. 4 (C) and 4 (D), the main compressed air flow (41) that is press-fitted into the vortex chamber (2) from the main chamber (1) through the main nozzle hole (21) in the compression step is: In the stage of passing through the main nozzle hole (21), after being guided by the main nozzle hole (21) and going straight, the stage of passing over the main nozzle hole smooth connection surface (13), the main nozzle hole smooth connection surface ( Due to the negative pressure generated on the 13) side, it draws toward the main nozzle hole smooth connection surface (13) side and bends, and quickly and strongly presses against the vortex chamber peripheral surface (12) of the vortex chamber (2) from an early stage. It is done and pushed to the left and right.
[0034]
  Along with this, the main air vortex (43) is pushed and expanded from the central space portion in the vortex chamber (2) toward the left and right space portions, and the air and fuel in the vortex chamber (2) The mixing performance is improved, and the air utilization rate is improved.
[0035]
  "Action 3. Collision and reflection of the pair of left and right side compressed air flows (42) and (42) are accelerated by the negative pressure pulling action of the main compressed air flow (41) on the main nozzle hole smooth connection surface (13). "
[0036]
  The above action2When the main compressed air flow (41) is strongly pressed against the peripheral surface (12) of the vortex flow chamber by the negative pressure drawing action of the main nozzle hole smooth connection surface (13), The side compressed air flow (42), (42) is impacted and reflected at the intersection (24) and pressed strongly from above to accelerate the collision / reflection.
[0037]
  As a result, both side air vortex flows (44) and (44) are spread over a wide range of both side space portions in the vortex flow chamber (12), so the mixing performance in the vortex flow chamber (2) The air utilization rate is further improved.
[0038]
  "Action 4. The above action1-3Synergism of "
  The above action1-3As a result, the mixing performance of air and fuel in the vortex chamber (2) is enhanced, and the air utilization rate is greatly improved. Thereby, PM (particulate material = particulate matter) could be reduced without deteriorating NOx (nitrogen oxide) in the combustion exhaust gas.
[0039]
  [B.6).The groove-passing air flow (45) that has passed through the micro-eddy current generating groove (32) generates a large amount of micro-eddy current (46).7).As the lateral width of the main air vortex flow (43) is expanded by the negative pressure pulling action of the main nozzle hole smooth connection surface (13), the micro vortex flow (46) generated in the groove passing air flow (45) is the main. Spreading widely in the transverse direction of the air vortex (43), and8).Accompanied by acceleration of collision and reflection between the pair of left and right side compressed air flows (42) and (42) by the negative pressure pulling action of the main compressed air flow (41) on the main nozzle hole smooth connection surface (13) Thus, due to the synergistic action of the three, the micro vortex flow (46) generated in the groove passing air flow (45) is diffused rapidly and widely in the lateral width direction of the side compressed air flow (42) (42). A large amount of micro vortex (46) diffuses rapidly over a wide range in the vortex chamber (21), increasing the contact rate and contact speed between air and fuel, and the ignition delay time from the start of fuel injection to the start of ignition To reduce the amount of NOx (nitrogen oxide) generated in the combustion exhaust gas. ]
[0040]
  "Action6. The groove passing air flow (45) passing through the micro eddy current generating groove (32) generates a large amount of micro eddy current (46). "
  As shown in FIG. 3 (C), the groove passing air flow (45) that has passed through the micro eddy current generating groove (32) jumps into the vortex chamber (21), and near the vortex chamber peripheral surface (12). The air in the space is engulfed by negative pressure and entrained while actively generating a large amount of micro eddy current (46).
[0041]
  "Action7. As the lateral width of the main air vortex flow (43) is expanded by the negative pressure pulling action of the main nozzle hole smooth connection surface (13), the micro vortex flow (46) generated in the groove passing air flow (45) is the main. It is diffused widely in the width direction of the air vortex (43). "
  “Action” of the above effect [I]2As shown in FIGS. 4 (C) and 4 (D), the lateral width of the main air vortex (43) is expanded by the negative pressure pulling action of the main nozzle hole smooth connection surface (13). go. Along with this, the micro vortex flow (46) generated in the groove passing air flow (45) is pushed in the lateral width direction of the main air vortex flow (43) and rapidly spreads widely.
[0042]
  [Action8. Accompanied by acceleration of collision and reflection between the pair of left and right side compressed air flows (42) and (42) by the negative pressure pulling action of the main compressed air flow (41) on the main nozzle hole smooth connection surface (13) Thus, the micro vortex flow (46) generated in the groove passing air flow (45) is rapidly and widely diffused in the lateral width direction of the side compressed air flow (42) (42). "
[0043]
  “Action” of the above effect [I]32 (A) and 2 (B), as shown in FIGS. 2 (A) and 2 (B), the main compressed air flow (41) at the main nozzle hole smooth connection surface (13) attracts the left and right sides by the negative pressure pulling action. Accelerates collision and reflection between compressed air flows (42) and (42).
  Along with this, as shown in FIG. 3C, the micro vortex flow (46) generated in the groove passing air flow (45) is involved in the collision and reflection between the side compressed air flows (42) and (42). Then, it rides on this collision / reflected flow and rapidly spreads widely in the lateral width direction in the side compressed air flow (42) (42).
[0044]
  "Action9. The above action6-8Synergy. "
  The above action6-8As a result of this synergistic action, a large amount of micro vortex flow (46) diffuses rapidly over a wide range in the vortex flow chamber (21), increasing the contact rate and contact speed between air and fuel, and starting ignition from the start of fuel injection. The ignition delay time is shortened, and the amount of NOx (nitrogen oxide) generated in the combustion exhaust gas is reduced.
  [E. Side nozzle surface for smooth connection (29) Side air vortex due to negative pressure generated on the side (44) Vortex chamber ( 2 ) The vortex chamber is as wide as it spreads over a wider area to the corners of the left and right sides of the interior. ( 2 ) The mixing performance and air utilization rate in the interior are dramatically improved, PM is greatly reduced, and the vortex chamber ( 2 ) Micro vortex flow in (46) Diffuses better and reduces NOx better. ]
[0045]
    ○ Invention 2. Claim 2. See FIG. 4 (C), (D), and FIG. 5 (B).
  The invention 2 has the following effects in addition to the effects [A] and [B] of the invention 1.
  [C. The main compressed air flow (41) is bent in multiple stages and is drawn more smoothly toward the side of the continuous inclined surface (16). The mixing performance and air utilization rate in the chamber (2) are improved and PM is further reduced, and the micro eddy current (46) in the vortex chamber (2) is better diffused to further reduce NOx. Reduce well. ]
[0046]
  As shown in FIG. 5 (B), the main nozzle hole smooth connection surface (13) is shown in FIGS. 4 (C) and (D) by the amount improved to the multi-step bent continuous inclined surface (16). The main compressed air flow (41) bends in a multi-stage bent continuous sloping surface (16) side and is bent more smoothly, and is strongly pressed by the peripheral surface (12) of the vortex chamber. It will be spread.
[0047]
  As a result, the above effects [A] and [B] can be improved by the amount that the main air vortex (43) spreads more widely from the central space portion in the vortex chamber (2) to the left and right side space portions. That is, the improvement of the mixing performance and the air utilization rate in the vortex chamber (2) was further improved, and PM (particulate material = particulate matter) could be further reduced.
[0048]
  Furthermore, when the main air vortex (43) spreads widely, the micro eddy current (46) generated in large quantities due to the air flow (45) passing through the grooves (32) and (32) for generating micro eddy currents is also The eddy current (43) spreads over a wider area and was able to reduce NOx (nitrogen oxide) better.
[0049]
    ○ Invention 3. Claim 3. See FIG. 4 (C), (D), and FIG. 5 (C).
  The invention 3 has the following effects in addition to the effects [A] and [B] of the invention 1.
  [D. As the main compressed air flow (41) is further smoothly drawn and bent toward the gentle convex curved surface (17), the main air vortex flow (43) is further expanded widely and the vortex chamber ( 2) Mixing performance and air utilization rate in the interior are further improved, PM is further reduced, and the micro eddy current (46) in the vortex chamber (2) is further diffused to further improve NOx. Reduce better. ]
[0050]
  As shown in FIG. 5 (C), the main compressed air shown in FIGS. 4 (C) and 4 (D) is obtained by improving the smooth connecting surface (17) of the main nozzle hole smooth connection surface (13). The flow (41) is more smoothly drawn toward the gentle convex curved surface (17) side, bent, and pressed more strongly against the peripheral surface (12) of the vortex flow chamber, and is further broadened to the left and right. Go.
[0051]
  As a result, the main air vortex flow (43) is further expanded widely from the central space portion to the left and right side space portions in the vortex flow chamber (2), and the mixing performance / air in the vortex flow chamber (2) is increased. The utilization rate was further improved and PM (particulate material = particulate matter) could be further reduced.
[0052]
  Furthermore, when the main air vortex (43) spreads widely, the micro eddy current (46) generated in large quantities due to the air flow (45) passing through the grooves (32) and (32) for generating micro eddy currents is also The eddy current (43) spreads over a wider area and was able to reduce NOx (nitrogen oxide) better.
[0053]
    ○ Invention 4. Claim 4. See FIG. 1, FIG. 3, FIG. 4 (C) and (D).
  This invention 4 is the above invention.2 or 3 effectsIn addition to the following effects.
  [E. The side air vortex flow (44) spreads over a wider area to the corners of the left and right side spaces in the vortex chamber (2) due to the negative pressure generated on the side nozzle smooth connection surface (29) side. However, the mixing performance and air utilization rate in the vortex chamber (2) are greatly improved, the PM is significantly reduced, and the micro vortex (46) in the vortex chamber (2) is better diffused. Reduce NOx better. ]
[0054]
  The side compressed air flow (42) shown in FIG. 3 is attracted by the negative pressure action by the side nozzle hole smooth connection surface (29) shown in FIG. 1, and is further strongly and strongly pressed against the peripheral surface (12) of the vortex chamber. It is done, and it is pushed to the left and right.
[0055]
  As a result, the side air vortex flow (44) extends to the corners of the left and right side space portions in the vortex flow chamber (2) in a wider range, and the mixing performance and air utilization obtained by the above effect [A] are obtained. The improvement of the rate was significantly improved, and PM (particulate material = particulate matter) could be reduced significantly without deteriorating NOx (nitrogen oxide) in the combustion exhaust gas.
[0056]
  Moreover, when the side air vortex (44) spreads widely, the micro eddy current (46) generated in a large amount by the groove passing air flow (45) of the micro eddy current generating groove (32) (32) is also The eddy current (44) spreads over a wider area and was able to reduce NOx (nitrogen oxide) better.
[0057]
    ○ Invention 5. Claim 5. See FIG. 1, FIG. 3 and FIG. 5 (B).
  This invention 5 is the above invention.1 orFoureffectIn addition to the following effects.
  [F. The side compressed air flow (42) is bent in multiple steps, and the side air vortex flow (44) is expanded more smoothly by bending more smoothly toward the continuous inclined surface (30) side. The mixing performance and air utilization rate in the chamber (2) are improved and PM is further reduced, and the micro eddy current (46) in the vortex chamber (2) is better diffused to further reduce NOx. Reduce well. ]
[0058]
  As shown in FIG. 5 (B), the side compressed air flow (42) shown in FIG. 3 is equivalent to the improvement of the side injection hole smooth connection surface (29) into a multi-step bent continuous inclined surface (30). Is bent more smoothly toward the side of the continuous inclined surface (30) and bent, and is strongly pressed by the peripheral surface (12) of the vortex chamber to be spread more widely to the left and right.
[0059]
  As a result, the side air vortex flow (44) is more widely spread from the central space portion in the vortex flow chamber (2) to the left and right side space portions, and the vortex flow chamber (2) obtained by the above effect [d] The improvement of the mixing performance and the air utilization rate in the inside is improved, and PM (particulate material = particulate material) can be further reduced.
[0060]
  Moreover, when the side air vortex (44) spreads widely, the micro eddy current (46) generated in a large amount by the groove passing air flow (45) of the micro eddy current generating groove (32) (32) is also The eddy current (44) spreads over a wider area and was able to reduce NOx (nitrogen oxide) better.
[0061]
    ○ Invention 6. Claim 6. See FIGS. 3 and 5C.
  This invention 6 is the above invention.1 orFoureffectIn addition to the following effects.
  [G. As the side compressed air flow (42) is further smoothly drawn and bent toward the gently convex curved surface (31) side, the side air vortex flow (44) is further expanded more widely and the vortex chamber ( 2) Mixing performance and air utilization rate in the interior are further improved, PM is further reduced, and the micro eddy current (46) in the vortex chamber (2) is better diffused to further reduce NOx. Reduce well. ]
[0062]
  As shown in FIG. 5 (C), the side compressed air flow (42) shown in FIG. 3 is gentle by the amount that the side nozzle hole smooth connection surface (29) is improved to a gentle convex surface (31). The curved surface is further smoothly drawn toward the convex curved surface (31), and is further strongly pressed against the peripheral surface (12) of the vortex chamber to be further broadened to the left and right.
[0063]
  As a result, the side air vortex flow (44) is further expanded widely in the left and right side space portions in the vortex flow chamber (2), and the vortex flow flow in the vortex flow chamber (2) obtained by the above effect [d] The improvement in the mixing performance and the air utilization rate of the material was further improved, and PM (particulate material = particulate material) could be further reduced.
[0064]
  Moreover, when the side air vortex (44) spreads widely, the micro eddy current (46) generated in a large amount by the groove passing air flow (45) of the micro eddy current generating groove (32) (32) is also The eddy current (44) spreads over a wider area and was able to reduce NOx (nitrogen oxide) better.
[0065]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of a vortex chamber combustion chamber of a diesel engine according to the present invention will be described below with reference to the drawings.
    Embodiment 1 Claims 1, 4, and 7. See FIG. 1 to FIG.
[0066]
  FIG. 1 to FIG. 5 (A) show Embodiment 1 of the vortex chamber type combustion chamber of the diesel engine of the present invention. 1A is a vertical right side view of the nozzle mouthpiece, and FIG. 1B is a plan view of FIG. FIG. 1C is an enlarged view of a main part of the nozzle hole in FIG. 1D is a plan view of FIG. 1C, FIG. 1E is a bottom view of FIG. 1C, and FIG. 1F is a view taken in the direction of arrow F in FIG. FIG. 1G is a perspective view of the nozzle hole of FIG. 1C viewed from obliquely above, and FIG. 1H is a perspective view of the nozzle hole of FIG. 1C viewed obliquely from below.
[0067]
  FIG. 2 is a vertical right side view of a vortex chamber combustion chamber of a diesel engine. 3A is a longitudinal front view schematically showing the function of the main nozzle hole and the side nozzle hole of the nozzle hole, and FIG. 3B is a vertical right side view of FIG. 3A. FIG. 3C is a front view of a longitudinal section of a main part schematically showing the function of the micro eddy current generating groove.
[0068]
  FIG. 4 is a diagram schematically showing the function of the nozzle hole. 4A is a vertical right side view of a conventional nozzle and vortex chamber, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A. 4C is a longitudinal right side view of the nozzle and vortex chamber of the present invention, and FIG. 4D is a cross-sectional view taken along line DD of FIG. 4C. FIG. 5A is a vertical right side view of the smooth connection surface of the nozzle hole.
[0069]
  In FIG. 2, reference numeral (51) denotes a cylinder of a water-cooled vertical multi-cylinder diesel engine, (52) denotes a cylinder head, (53) denotes a piston, and (54) denotes a vortex chamber base of the vortex chamber type combustion chamber.
  As shown in FIG. 1, a vortex chamber (2) is communicated with a main chamber (1) of a vortex chamber type combustion chamber of a diesel engine through a nozzle (3). The compressed air flow (6) that has been press-fitted into the vortex chamber (2) from the main chamber (1) through the nozzle (3) in the compression process turns into an air vortex (7) in the vortex chamber (2). To be configured. The fuel injection nozzle (8) faces the vortex chamber (2).
[0070]
  The shape of the nozzle hole (3) is formed by connecting the lateral sides of the pair of left and right side nozzle holes (22), (22) to the left and right sides of the main nozzle hole (21). The axial centers (23) and (23) of the side nozzle holes (22) and (22) are inclined to each other at a converging point and intersect at an intersection (24). This intersection (24) is located closer to the vortex chamber peripheral surface (12) of the vortex chamber (2) than the axis (25) of the main nozzle hole (21). The main injection hole (21) is formed in a cylindrical shape. The side injection holes (22) and (22) are formed in a truncated conical shape with an upper concavity.
[0071]
  Of the main nozzle hole peripheral edge (9) where the main nozzle hole (21) is connected to the vortex chamber (2), the main nozzle hole (21) is seen from the center (5) of the vortex chamber (2). In the outer peripheral side peripheral portion (10) located outside the axis (25), the outer peripheral portion (11) closer to the outer periphery of the main nozzle hole (21) and the vortex chamber peripheral surface (12) of the vortex chamber (2) The main nozzle hole smooth connection surface (13) for smoothly connecting the two is formed.
[0072]
  As shown in FIG. 5 (A), the vertical cross-sectional shape of the main nozzle hole smooth connection surface (13) is a vortex flow between the outer peripheral surface portion (11) of the main nozzle hole (21) and the vortex chamber (2). It is a one-step inclined surface that is gently inclined with respect to both the chamber peripheral surface (12). The angle at which the main nozzle hole smooth connection surface (13) is inclined with respect to the outer circumferential surface portion (11) of the nozzle hole (3) is in the range of 15.2 ° to 16 °.
[0073]
  In the inner peripheral side peripheral portion (14) located on the opposite side of the outer peripheral side peripheral portion (10) of the main injection hole end peripheral portion (9), the inner peripheral peripheral surface portion ( 15) and the vortex chamber peripheral surface (12) of the vortex chamber (2) can be directly connected with an acute angle.
[0074]
  In the peripheral edge portion (26) of the side nozzle hole where the side nozzle holes (22) are connected to the vortex chamber (2), the peripheral surface portion (28) of the side nozzle hole (22) and the vortex flow in the vortex chamber (2) A side injection hole smooth connection surface (29) for smoothly connecting the chamber peripheral surface (12) is formed.
[0075]
  As shown in FIG. 5 (A), the vertical cross-sectional shape of the side nozzle hole smooth connection surface (29) is the peripheral surface portion (28) of the side nozzle hole (22) and the vortex chamber circumference of the vortex chamber (2). It is a one-step inclined surface that is gently inclined with respect to both the surface (12). The angle at which the side injection hole smooth connection surface (29) is inclined with respect to the peripheral surface portion (28) of the side injection hole (22) is in the range of 15.2 ° to 16 °.
[0076]
  Grooves for generating micro eddy currents along all the boundary parts of the total of four boundary parts before and after the main nozzle hole (21) and the left and right side nozzle holes (22) and (22). (32) (32) ・ (33) (33) are formed, and the groove end of this micro eddy current generation groove (32) (32) ・ (33) (33) is the circumference of the vortex chamber (2). It is an opening in the surface (12).
[0077]
    ○ Other embodiments.
  In the second, third, and fourth embodiments described below, a part of the configuration of the first embodiment is changed as follows.
    Embodiment 2 Claims 2 and 5. See FIGS. 1 and 5B.
  FIG. 5B is a vertical right side view of the smooth connection surface of the nozzle hole according to the second embodiment.
[0078]
  In the second embodiment, a part of the configuration of the first embodiment is changed as follows.
  The vertical cross-sectional shape of the main nozzle hole smooth connection surface (13) gradually approaches from the outer peripheral surface portion (11) of the main nozzle hole (21) to the vortex chamber peripheral surface (12) of the vortex chamber (2). It consists of a multi-step bent continuous inclined surface (16).
[0079]
  The vertical cross-sectional shape of the side nozzle hole smooth connection surface (29) gradually approaches the peripheral surface portion (28) of the side nozzle hole (22) from the peripheral surface (12) of the vortex chamber (2). It consists of a multi-step bent continuous inclined surface (30).
[0080]
  In the main nozzle hole smooth connection surface (13) and the side nozzle hole smooth connection surface (29), the first inclined surface of the two-stage bent continuous inclined surfaces (16) is the injection port ( 3) The angle (Θ1) for inclining with respect to the peripheral surface portion (11) closer to the outer periphery is set to 16 °, and the angle (2 Θ2) is set to 6 °.
[0081]
    Embodiment 3 Claims 3 and 6. See FIGS. 1 and 5C.
  FIG. 5C is a vertical right side view of the smooth connection surface of the nozzle hole according to the third embodiment.
  The third embodiment is obtained by changing a part of the configuration of the first embodiment as follows.
[0082]
  The vertical cross-sectional shape of the main nozzle hole smooth connection surface (13) gradually approaches from the outer peripheral surface portion (11) of the main nozzle hole (21) to the vortex chamber peripheral surface (12) of the vortex chamber (2). Consists of gently convex curved surface (17).
[0083]
  The vertical cross-sectional shape of the side nozzle hole smooth connection surface (29) gradually approaches the peripheral surface portion (28) of the side nozzle hole (22) from the peripheral surface (12) of the vortex chamber (2). It consists of a gentle convex surface (31).
[0084]
    Embodiment 4 Claim2.3. See FIG.
  FIG. 6 shows the shape of a nozzle hole according to Embodiment 4 of the present invention. FIG. 6A is a vertical right side view of the nozzle hole. 6 (B) is a plan view of FIG. 6 (A), FIG. 6 (C) is a bottom view of FIG. 6 (A), and FIG. 6 (D) is a view taken in the direction of arrow D in FIG. 6E is a perspective view of the nozzle hole of FIG. 6A viewed from obliquely above, and FIG. 6F is a perspective view of the nozzle hole of FIG. 6A viewed from diagonally below.
[0085]
  In the fourth embodiment, a part of the configuration of the first, second, or third embodiment is changed as follows.
  That is, the side injection hole smooth connection surface (29) of the main injection hole smooth connection surface (13) and the side injection hole smooth connection surface (29) shown in FIG. The connection surface (13) is left.
[0086]
    ○ Other embodiments. The figure is omitted.
  In Embodiment 1-4, the shape of the main injection hole (21) is changed from a cylindrical shape to an elliptical column shape, a triangular column shape, a quadrangular column shape, a pentagonal column shape, a hexagonal column shape, or any other arbitrary shape. It is possible to change. It is also conceivable to change each of these columnar shapes to a tapered shape with an upward constriction.
[0087]
  The shape of the side nozzle hole (22) may be a truncated conical shape, a cylindrical shape, an elliptical column shape, a triangular column shape, a quadrangular column shape, a pentagonal column shape, a hexagonal column shape, or any other arbitrary shape. It is conceivable to change the shape. It is also conceivable to change each of these columnar shapes to a tapered shape with an upward constriction.
[Brief description of the drawings]
FIG. 1 to FIG. 5 (A) show Embodiment 1 of a vortex chamber type combustion chamber of a diesel engine of the present invention. 1A is a vertical right side view of the nozzle mouthpiece, and FIG. 1B is a plan view of FIG. FIG. 1C is an enlarged view of a main part of the nozzle hole in FIG. 1D is a plan view of FIG. 1C, FIG. 1E is a bottom view of FIG. 1C, and FIG. 1F is a view taken in the direction of arrow F in FIG. FIG. 1G is a perspective view of the nozzle hole of FIG. 1C viewed from obliquely above, and FIG. 1H is a perspective view of the nozzle hole of FIG. 1C viewed obliquely from below.
FIG. 2 is a vertical right side view of a vortex chamber combustion chamber of a diesel engine.
3A is a longitudinal front view schematically showing the functions of the main nozzle hole and the side nozzle hole of the nozzle hole, and FIG. 3B is a vertical right side view of FIG. 3A. FIG. 3C is a front view of a longitudinal section of a main part schematically showing the function of the micro eddy current generating groove.
FIG. 4 is a diagram schematically showing the function of a nozzle hole. 4A is a vertical right side view of a conventional nozzle and vortex chamber, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A. 4C is a vertical right side view of the nozzle hole and the vortex chamber of the present invention, and FIG. 4D is a cross-sectional view taken along the line DD of FIG.
FIG. 5 is a vertical right side view of a smooth connection surface of an injection hole showing Embodiments 1, 2, and 3 of the present invention. 5A shows the first embodiment, FIG. 5B shows the second embodiment, and FIG. 5C shows the third embodiment.
FIG. 6 shows the shape of a nozzle hole according to Embodiment 4 of the present invention. FIG. 6A is a vertical right side view of the nozzle hole. 6 (B) is a plan view of FIG. 6 (A), FIG. 6 (C) is a bottom view of FIG. 6 (A), and FIG. 6 (D) is a view taken in the direction of arrow D in FIG. 6E is a perspective view of the nozzle hole of FIG. 6A viewed from obliquely above, and FIG. 6F is a perspective view of the nozzle hole of FIG. 6A viewed obliquely from below.
FIG. 7 shows the shape of a nozzle hole according to the prior art. FIG. 7A is a vertical right side view of the nozzle hole. 7B is a plan view of FIG. 7A, FIG. 7C is a bottom view of FIG. 7A, and FIG. 7D is a view as viewed from the direction of arrow D in FIG. 7A. FIG. 7E is a perspective view of the nozzle hole of FIG. 7A viewed from obliquely above, and FIG. 7F is a perspective view of the nozzle hole of FIG. 7A viewed from diagonally below.
[Explanation of symbols]
  DESCRIPTION OF SYMBOLS 1 ... Main chamber, 2 ... Swirl chamber, 3 ... Jet hole, 5 ... Center of vortex chamber, 6 ... Compressed air flow, 7 ... Air vortex flow, 8 ... Fuel injection nozzle, 9 ... Main nozzle end peripheral part, 10 ... Outer circumference side Peripheral part, 11 ... Outer peripheral surface part, 12 ... Eddy current chamber peripheral surface, 13 ... Main nozzle hole smooth connection surface, 14 ... Inner peripheral side peripheral part, 15 ... Inner peripheral side peripheral surface part, 16 ... Continuously bent in multiple steps Inclined surface, 17: gentle convex curved surface, 21 ... main injection hole, 22 ... side injection hole, 23 ... axis of side injection hole, 24 ... intersection, 25 ... axis of main injection hole, 26 ... end of side injection hole Peripheral part, 28 ... peripheral surface part, 29 ... side nozzle hole smooth connection surface, 30 ... multi-stage bent continuous inclined surface, 31 ... gentle convex curved surface 32 ... groove for generating micro eddy currents.

Claims (6)

ディーゼルエンジンの渦流室式燃焼室の主室(1)に渦流室(2)を噴口(3)を介して連通させ、圧縮工程で主室(1)から噴口(3)を経て渦流室(2)内に圧入されてきた圧縮空気流(6)が、渦流室(2)内で空気渦流(7)となって旋回するように構成し、この渦流室(2)に燃料噴射ノズル(8)を臨ませ、
噴口(3)の形状は、主噴孔(21)の左右両横側部に左右一対の各脇噴孔(22)(22)の横側部を連通させて形成し、両脇噴孔(22)(22)の軸心(23)(23)同士は互いに先すぼまりに傾斜させて交点(24)で交差させ、この交点(24)は主噴孔(21)の軸心(25)よりも渦流室(2)の渦流室周面(12)に近い側に位置させ、
て構成したディーゼルエンジンの渦流室式燃焼室において、
前記主噴孔(21)が渦流室(2)につながる部分の主噴孔終端周縁部(9)のうちの、渦流室(2)の中心(5)から見て主噴孔(21)の軸心(25)よりも外側に位置する外回り側周縁部分(10)において、主噴孔(21)の外回り寄り周面部分(11)と渦流室(2)の渦流室周面(12)とを滑らかに接続させる主噴孔円滑接続用面(13)を形成し、
主噴孔終端周縁部(9)のうちの、前記外回り側周縁部分(10)とは反対側に位置する内回り側周縁部分(14)において、主噴孔(21)の内回り寄り周面部分(15)と渦流室(2)の渦流室周面(12)とを直接鋭角を成すままにつながらせ、
主噴孔(21)と左右の脇噴孔(22)(22)とが成す前後左右の合計4箇所の境界部分のうちの、少なくとも前部左右の2箇所の各境界部分に沿わせて、それぞれ微小渦流生成用溝(32)(32)を形成し、この微小渦流生成用溝(32)(32)の溝終端部を渦流室(2)の渦流室周面(12)に開口し、
前記各脇噴孔 (22) が渦流室 ( ) につながる部分の脇噴孔終端周縁部 (26) に、脇噴孔 (22) の周面部分 (28) と渦流室 ( ) の渦流室周面 (12) とを滑らかに接続させる脇噴孔円滑接続用面 (29) を形成し、
て構成したことを特徴とするディーゼルエンジンの渦流室式燃焼室。
The vortex chamber (2) is communicated with the main chamber (1) of the vortex chamber type combustion chamber of the diesel engine through the nozzle (3), and the vortex chamber (2) from the main chamber (1) through the nozzle (3) in the compression process. ) The compressed air flow (6) that has been press-fitted into the vortex chamber (2) is swirled as an air vortex flow (7) in the vortex chamber (2). ,
The shape of the nozzle hole (3) is formed by connecting the left and right side holes of the pair of left and right side nozzle holes (22) and (22) to the right and left sides of the main nozzle hole (21). 22) (22) axis centers (23) and (23) are inclined to each other and intersect at an intersection (24), and this intersection (24) is the axis (25) of the main nozzle hole (21). ) Is located closer to the peripheral surface (12) of the vortex chamber (2) than
In the vortex chamber combustion chamber of a diesel engine constructed
Of the main nozzle hole peripheral edge (9) where the main nozzle hole (21) is connected to the vortex chamber (2), the main nozzle hole (21) is seen from the center (5) of the vortex chamber (2). In the outer peripheral side peripheral portion (10) located outside the axis (25), the outer peripheral portion (11) closer to the outer periphery of the main nozzle hole (21) and the vortex chamber peripheral surface (12) of the vortex chamber (2) Forming the main nozzle hole smooth connection surface (13) to connect smoothly,
In the inner peripheral side peripheral portion (14) located on the opposite side of the outer peripheral side peripheral portion (10) of the main injection hole end peripheral portion (9), the inner peripheral peripheral surface portion ( 15) and the vortex chamber peripheral surface (12) of the vortex chamber (2) can be connected directly at an acute angle,
Along the front and right and left and right boundary portions of the front and right and left and right side nozzle holes (22) and (22), respectively, at least two front and left boundary portions, The micro eddy current generating grooves (32) and (32) are formed respectively, and the groove end portions of the micro eddy current generating grooves (32) and (32) are opened to the peripheral surface (12) of the vortex chamber (2),
Wherein the side nozzle hole end periphery (26) of the portion each side nozzle hole (22) is connected to the swirl chamber (2), the peripheral surface portion (28) and the swirl chamber of the side injection hole (22) a vortex (2) A side nozzle hole smooth connection surface (29) for smoothly connecting the chamber peripheral surface (12) is formed,
A vortex chamber type combustion chamber of a diesel engine characterized by comprising
ディーゼルエンジンの渦流室式燃焼室の主室 ( ) に渦流室 ( ) を噴口 ( ) を介して連通させ、圧縮工程で主室 ( ) から噴口 ( ) を経て渦流室 ( ) 内に圧入されてきた圧縮空気流 ( ) が、渦流室 ( ) 内で空気渦流 ( ) となって旋回するように構成し、この渦流室 ( ) に燃料噴射ノズル ( ) を臨ませ、
噴口 ( ) の形状は、主噴孔 (21) の左右両横側部に左右一対の各脇噴孔 (22)(22) の横側部を連通させて形成し、両脇噴孔 (22)(22) の軸心 (23)(23) 同士は互いに先すぼまりに傾斜させて交点 (24) で交差させ、この交点 (24) は主噴孔 (21) の軸心 (25) よりも渦流室 ( ) の渦流室周面 (12) に近い側に位置させ、
て構成したディーゼルエンジンの渦流室式燃焼室において、
前記主噴孔 (21) が渦流室 ( ) につながる部分の主噴孔終端周縁部 ( ) のうちの、渦流室 ( ) の中心 ( ) から見て主噴孔 (21) の軸心 (25) よりも外側に位置する外回り側周縁部分 (10) において、主噴孔 (21) の外回り寄り周面部分 (11) と渦流室 ( ) の渦流室周面 (12) とを滑らかに接続させる主噴孔円滑接続用面 (13) を形成し、
主噴孔終端周縁部 ( ) のうちの、前記外回り側周縁部分 (10) とは反対側に位置する内回り側周縁部分 (14) において、主噴孔 (21) の内回り寄り周面部分 (15) と渦流室 ( ) の渦流室周面 (12) とを直接鋭角を成すままにつながらせ、
主噴孔 (21) と左右の脇噴孔 (22)(22) とが成す前後左右の合計4箇所の境界部分のうちの、少なくとも前部左右の2箇所の各境界部分に沿わせて、それぞれ微小渦流生成用溝 (32)(32) を形成し、この微小渦流生成用溝 (32)(32) の溝終端部を渦流室 ( ) の渦流室周面 (12) に開口し、
前記主噴孔円滑接続用面(13)の縦断面形状は、主噴孔(21)の外回り寄り周面部分(11)から渦流室(2)の渦流室周面(12)へと次第に近づいて行く複数段折曲り連続傾斜面(16)から成る、 ことを特徴とするもの。
Swirl chamber type combustion chamber of the main chamber of the diesel engine (1) to the vortex chamber (2) the injection port (3) communicates through a main chamber in the compression process from (1) through the nozzle hole (3) swirl chamber (2 ) compressed air stream that has been pressed into (6), swirl chamber (2) in an air vortex (7) and is configured to pivot, the fuel injection nozzle into the swirl chamber (2) (8) ,
The shape of the nozzle hole (3) is formed to communicate with the lateral sides of the left and right of each side injection holes in both right and left lateral sides of the main nozzle hole (21) (22) (22), both sides nozzle hole ( 22) (22) axis centers (23) and (23) are inclined to each other and intersect at an intersection (24) , and this intersection (24) is the axis (25 ) of the main nozzle hole (21). ) Is located closer to the vortex chamber peripheral surface (12 ) than the vortex chamber ( 2 ) ,
In the vortex chamber combustion chamber of a diesel engine constructed
Said main injection hole (21) is a main nozzle hole end circumference of the portion leading to the swirl chamber (2) of the (9), the main injection hole viewed from the center (5) of the swirl chamber (2) (21) in the axial outer-side peripheral portion located outside the (25) (10), outer loop near the peripheral surface portion of the main nozzle hole (21) and (11) swirl chamber peripheral surface of the swirl chamber (2) and (12) Forming the main nozzle hole smooth connection surface (13) to connect smoothly ,
In the inner periphery side peripheral portion (14) located on the opposite side of the outer periphery side peripheral portion (10) of the main injection hole end peripheral portion ( 9 ) , the peripheral surface portion (14) closer to the inner periphery of the main injection hole (21) ( 15) and the vortex chamber peripheral surface (12) of the vortex chamber ( 2 ) can be connected directly at an acute angle,
The main nozzle hole (21) and left and right side injection holes (22) (22) and is out of the boundary portion of the total four places of the right and left front and rear forming and along a respective boundary of two portions of at least the front left and right, The micro eddy current generating grooves (32) and (32) are formed, respectively, and the groove end portions of the micro eddy current generating grooves (32) and (32 ) are opened to the vortex chamber peripheral surface (12) of the vortex chamber ( 2 ) ,
The vertical cross-sectional shape of the main nozzle hole smooth connection surface (13) gradually approaches from the outer peripheral surface portion (11) of the main nozzle hole (21) to the vortex chamber peripheral surface (12) of the vortex chamber (2). It consists of a multi-step bent continuous inclined surface (16).
ディーゼルエンジンの渦流室式燃焼室の主室 ( ) に渦流室 ( ) を噴口 ( ) を介して連通させ、圧縮工程で主室 ( ) から噴口 ( ) を経て渦流室 ( ) 内に圧入されてきた圧縮空気流 ( ) が、渦流室 ( ) 内で空気渦流 ( ) となって旋回するように構成し、この渦流室 ( ) に燃料噴射ノズル ( ) を臨ませ、
噴口 ( ) の形状は、主噴孔 (21) の左右両横側部に左右一対の各脇噴孔 (22)(22) の横側部を連通させて形成し、両脇噴孔 (22)(22) の軸心 (23)(23) 同士は互いに先すぼまりに傾斜させて交点 (24) で交差させ、この交点 (24) は主噴孔 (21) の軸心 (25) よりも渦流室 ( ) の渦流室周面 (12) に近い側に位置させ、
て構成したディーゼルエンジンの渦流室式燃焼室において、
前記主噴孔 (21) が渦流室 ( ) につながる部分の主噴孔終端周縁部 ( ) のうちの、渦流室 ( ) の中心 ( ) から見て主噴孔 (21) の軸心 (25) よりも外側に位置する外回り側周縁部分 (10) において、主噴孔 (21) の外回り寄り周面部分 (11) と渦流室 ( ) の渦流室周面 (12) とを滑らかに接続させる主噴孔円滑接続用面 (13) を形成し、
主噴孔終端周縁部 ( ) のうちの、前記外回り側周縁部分 (10) とは反対側に位置する内回り側周縁部分 (14) において、主噴孔 (21) の内回り寄り周面部分 (15) と渦流室 ( ) の渦流室周面 (12) とを直接鋭角を成すままにつながらせ、
主噴孔 (21) と左右の脇噴孔 (22)(22) とが成す前後左右の合計4箇所の境界部分のうちの、少なくとも前部左右の2箇所の各境界部分に沿わせて、それぞれ微小渦流生成用溝 (32)(32) を形成し、この微小渦流生成用溝 (32)(32) の溝終端部を渦流室 ( ) の渦流室周面 (12) に開口し、
前記主噴孔円滑接続用面(13)の縦断面形状は、主噴孔(21)の外回り寄り周面部分(11)から渦流室(2)の渦流室周面(12)へと次第に近づいて行くなだらかな凸曲面(17)から成る、 ことを特徴とするもの。
Swirl chamber type combustion chamber of the main chamber of the diesel engine (1) to the vortex chamber (2) the injection port (3) communicates through a main chamber in the compression process from (1) through the nozzle hole (3) swirl chamber (2 ) compressed air stream that has been pressed into (6), swirl chamber (2) in an air vortex (7) and is configured to pivot, the fuel injection nozzle into the swirl chamber (2) (8) ,
The shape of the nozzle hole (3) is formed to communicate with the lateral sides of the left and right of each side injection holes in both right and left lateral sides of the main nozzle hole (21) (22) (22), both sides nozzle hole ( 22) (22) axis centers (23) and (23) are inclined to each other and intersect at an intersection (24) , and this intersection (24) is the axis (25 ) of the main nozzle hole (21). ) Is located closer to the vortex chamber peripheral surface (12 ) than the vortex chamber ( 2 ) ,
In the vortex chamber combustion chamber of a diesel engine constructed
Said main injection hole (21) is a main nozzle hole end circumference of the portion leading to the swirl chamber (2) of the (9), the main injection hole viewed from the center (5) of the swirl chamber (2) (21) in the axial outer-side peripheral portion located outside the (25) (10), outer loop near the peripheral surface portion of the main nozzle hole (21) and (11) swirl chamber peripheral surface of the swirl chamber (2) and (12) Forming the main nozzle hole smooth connection surface (13) to connect smoothly ,
In the inner periphery side peripheral portion (14) located on the opposite side of the outer periphery side peripheral portion (10) of the main injection hole end peripheral portion ( 9 ) , the peripheral surface portion (14) closer to the inner periphery of the main injection hole (21) ( 15) and the vortex chamber peripheral surface (12) of the vortex chamber ( 2 ) can be connected directly at an acute angle,
The main nozzle hole (21) and left and right side injection holes (22) (22) and is out of the boundary portion of the total four places of the right and left front and rear forming and along a respective boundary of two portions of at least the front left and right, The micro eddy current generating grooves (32) and (32) are formed, respectively, and the groove end portions of the micro eddy current generating grooves (32) and (32 ) are opened to the vortex chamber peripheral surface (12) of the vortex chamber ( 2 ) ,
The vertical cross-sectional shape of the main nozzle hole smooth connection surface (13) gradually approaches from the outer peripheral surface portion (11) of the main nozzle hole (21) to the vortex chamber peripheral surface (12) of the vortex chamber (2). It consists of a gently convex curved surface (17).
請求項2または3に記載のディーゼルエンジンの渦流室式燃焼室において、
前記各脇噴孔(22)が渦流室(2)につながる部分の脇噴孔終端周縁部(26)に、脇噴孔(22)の周面部分(28)と渦流室(2)の渦流室周面(12)とを滑らかに接続させる脇噴孔円滑接続用面(29)を形成した、ことを特徴とするもの。
In the vortex chamber combustion chamber of the diesel engine according to claim 2 or 3 ,
In the peripheral edge portion (26) of the side nozzle hole where the side nozzle holes (22) are connected to the vortex chamber (2), the peripheral surface portion (28) of the side nozzle hole (22) and the vortex flow in the vortex chamber (2) A side nozzle hole smooth connection surface (29) for smoothly connecting the chamber peripheral surface (12) is formed.
請求項1または4に記載のディーゼルエンジンの渦流室式燃焼室において、
前記脇噴孔円滑接続用面(29)の縦断面形状は、脇噴孔(22)の周面部分(28)から渦流室(2)の渦流室周面(12)へと次第に近づいて行く複数段折曲り連続傾斜面(30)から成る、 ことを特徴とするもの。
In the vortex chamber combustion chamber of the diesel engine according to claim 1 or 4,
The vertical cross-sectional shape of the side nozzle hole smooth connection surface (29) gradually approaches the peripheral surface portion (28) of the side nozzle hole (22) from the peripheral surface (12) of the vortex chamber (2). It consists of a multi-step bent continuous inclined surface (30).
請求項1または4に記載のディーゼルエンジンの渦流室式燃焼室において、
前記脇噴孔円滑接続用面(29)の縦断面形状は、脇噴孔(22)の周面部分(28)から渦流室(2)の渦流室周面(12)へと次第に近づいて行くなだらかな凸曲面(31)から成る、 ことを特徴とするもの。
In the vortex chamber combustion chamber of the diesel engine according to claim 1 or 4,
The vertical cross-sectional shape of the side nozzle hole smooth connection surface (29) gradually approaches the peripheral surface portion (28) of the side nozzle hole (22) from the peripheral surface (12) of the vortex chamber (2). It consists of a gentle convex curved surface (31).
JP2001293546A 2001-09-26 2001-09-26 Diesel engine swirl chamber combustion chamber Expired - Fee Related JP4157691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293546A JP4157691B2 (en) 2001-09-26 2001-09-26 Diesel engine swirl chamber combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293546A JP4157691B2 (en) 2001-09-26 2001-09-26 Diesel engine swirl chamber combustion chamber

Publications (2)

Publication Number Publication Date
JP2003097270A JP2003097270A (en) 2003-04-03
JP4157691B2 true JP4157691B2 (en) 2008-10-01

Family

ID=19115312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293546A Expired - Fee Related JP4157691B2 (en) 2001-09-26 2001-09-26 Diesel engine swirl chamber combustion chamber

Country Status (1)

Country Link
JP (1) JP4157691B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201922A (en) * 1983-04-30 1984-11-15 Mazda Motor Corp Construction of auxiliary combustion chamber of diesel engine
JPS60122224A (en) * 1983-12-03 1985-06-29 Mitsubishi Heavy Ind Ltd Combustion chamber of vortex chamber type engine
JPH0619802Y2 (en) * 1985-08-13 1994-05-25 三菱重工業株式会社 Subchamber diesel engine combustion chamber
JPH0826769B2 (en) * 1989-08-09 1996-03-21 株式会社クボタ The nozzle of the swirl chamber combustion chamber of the diesel engine
JP3268344B2 (en) * 1994-08-09 2002-03-25 株式会社クボタ Combustion chamber of a swirl chamber diesel engine
JP3030491B2 (en) * 1995-03-24 2000-04-10 株式会社クボタ Diesel engine subchamber combustion chamber
JP3332694B2 (en) * 1995-09-22 2002-10-07 三菱重工業株式会社 Combustion chamber of subchamber internal combustion engine
JPH1054243A (en) * 1996-08-12 1998-02-24 Kubota Corp Volute chamber type combustion chamber for diesel engine
JP3191003B2 (en) * 1996-09-06 2001-07-23 株式会社クボタ Diesel engine subchamber combustion chamber
JP3344950B2 (en) * 1998-09-22 2002-11-18 株式会社クボタ Diesel engine communication hole base with sub-chamber combustion chamber
JP2001152858A (en) * 1999-11-30 2001-06-05 Kubota Corp Swirl chamber type combustion chamber for diesel engine
JP2003097271A (en) * 2001-09-26 2003-04-03 Kubota Corp Vortex type combustion chamber for diesel engine

Also Published As

Publication number Publication date
JP2003097270A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP5338268B2 (en) Diesel engine combustion chamber structure
JP2002210392A (en) Fluid injection nozzle and fluid injection valve provided with the fluid injection nozzle
JP2003201846A (en) Cylinder direct injection engine
JP4157691B2 (en) Diesel engine swirl chamber combustion chamber
JPH01200012A (en) Combustion chamber for vortex current chamber type diesel engine
JP4157690B2 (en) Diesel engine swirl chamber combustion chamber
JPH0842427A (en) Fuel injection valve of internal combustion engine
JP2003097271A (en) Vortex type combustion chamber for diesel engine
JP2603559B2 (en) Diesel engine swirl chamber
JP3013571B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2001271646A (en) Swirl chamber type combustion chamber of diesel engine
JP2603561B2 (en) Diesel engine swirl chamber
JPH0842390A (en) Suction port structure for internal combustion engine
JP2660687B2 (en) Whirlpool combustion chamber for diesel engine
JP2565516Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2797794B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3013570B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH0648108Y2 (en) Combustion chamber of swirl chamber type diesel engine
JP2003013823A (en) Fuel injection valve of internal combustion engine
JP2565517Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3013567B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH05179952A (en) Combustion chamber of swirl chamber type diesel engine
JP3523545B2 (en) Engine swirl intake port
JP3277067B2 (en) Whirlpool engine
JPH0868327A (en) Combustion chamber for swirl chamber type diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees