[go: up one dir, main page]

JP4157682B2 - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP4157682B2
JP4157682B2 JP2001008938A JP2001008938A JP4157682B2 JP 4157682 B2 JP4157682 B2 JP 4157682B2 JP 2001008938 A JP2001008938 A JP 2001008938A JP 2001008938 A JP2001008938 A JP 2001008938A JP 4157682 B2 JP4157682 B2 JP 4157682B2
Authority
JP
Japan
Prior art keywords
water
ozone
treated
wavelength
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001008938A
Other languages
Japanese (ja)
Other versions
JP2002210479A (en
Inventor
裕 村上
薫 増田
忠広 吉田
隆 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001008938A priority Critical patent/JP4157682B2/en
Publication of JP2002210479A publication Critical patent/JP2002210479A/en
Application granted granted Critical
Publication of JP4157682B2 publication Critical patent/JP4157682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水処理装置及び水処理方法に関する技術分野に属し、特には、排水中の環境ホルモン・ダイオキシン等の難分解性環境微量有害物質を分解して除去するための水処理装置及び水処理方法に関する技術分野に属するものである。
【0002】
【従来の技術】
オゾンと紫外線とを併用した系において水中の有機物を促進酸化法により分解して除去処理する技術(以下、オゾン/紫外線併用系促進酸化処理技術)は、浄水及び下水処理分野における高度処理技術として知られており、近年では、最終処分場侵出水中に含まれているダイオキシン類の分解処理技術として有望視されている。
【0003】
このようなオゾン/紫外線併用系促進酸化処理技術としては、例えば、特開平7−108285号公報や特開平10−52693号公報に記載されたものがあるが、以下の方式のものが一般的である(図1)。
【0004】
図1に示す如く、空気あるいは酸素富化ガスをオゾナイザー(オゾン発生器)へ送り込み、オゾンを発生させる。このオゾンを散気装置を用いて、185nm波長あるいは254nm波長の紫外線ランプを有する反応塔の内部の被処理水中に吹き込む。
【0005】
そうすると、紫外線ランプが254nm波長の紫外線ランプである場合には、上記の吹き込まれたオゾンが紫外線〔UV(254) 〕と下記(1)式のように反応し、更に(2)式のような反応が起こり、これにより、ヒドロキシラジカルが発生する。
【0006】
紫外線ランプが185nm波長の紫外線ランプである場合には、紫外線〔UV(185) 〕が溶存酸素と下記(3)式のように反応し、オゾンが発生すると共に、紫外線が水と下記(4)式のように反応し、ヒドロキシラジカルが発生する。また、185nm波長の紫外線ランプは185nm波長の紫外線を発生するだけでなく、同時に254nm波長の紫外線も発生するため、(3)式で発生したオゾンより、さらに(1)、(2)式の反応でヒドロキシラジカル(OH. )が発生する。
【0007】
これらの反応で発生したヒドロキシラジカルにより、被処理水中の環境ホルモン・ダイオキシン等の難分解性環境微量有害物質が分解される。
【0008】
3 +UV(254) →O2 +O(1D) --------(1)
O(1D)+H2 O→2OH. --------(2)
3O2 +UV(185) →2O3 --------(3)
2 O+UV(185) →OH. +H. --------(4)
【0009】
【発明が解決しようとする課題】
酸素富化ガスから発生させたオゾンを水中に吹き込むと、溶存酸素濃度も高くなり、例えば水温15℃の場合にはオゾンの飽和濃度は25.9mg/Lであるのに対し、酸素の飽和濃度は48mg/Lとなる。このような豊富な溶存酸素よりヒドロキシラジカルを発生させることができれば、環境ホルモン・ダイオキシン等の難分解性環境微量有害物質の分解効率を更に向上させることができる。即ち、このような豊富な溶存酸素をオゾンに変換させることができれば、このオゾンより大量のヒドロキシラジカルを発生させることができ、それにより難分解性環境微量有害物質の分解効率を高めることができる。
【0010】
ところが、前記従来のオゾン/紫外線併用系促進酸化処理技術では、このような豊富な溶存酸素の大部分はオゾンに変換されず、ヒドロキシラジカルを発生させることなく、被処理水と共に排出されてしまう。この詳細を以下説明する。
【0011】
前記従来のオゾン/紫外線併用系促進酸化処理技術では、紫外線ランプは反応塔内に挿入されて設けられており、この紫外線ランプには185nm波長あるいは254nm波長の紫外線ランプのいずれかが用いられる。
【0012】
上記紫外線ランプとして185nm波長の紫外線ランプが用いられる場合、前記(3)式の反応で、溶存酸素よりオゾンを発生させることができ、そして、このオゾンより、前記(1)、(2)式の反応でヒドロキシラジカルを発生させることができる。しかし、185nm波長の紫外線〔UV(185) 〕の水中での到達距離は10mm以下であるため、紫外線ランプの表面近傍でしか前記(3)式及び(4)式の反応は進まず、このため、溶存酸素の大部分はUV(185) によってオゾンに変換されることなく、被処理水と共に排出されてしまう。
【0013】
上記紫外線ランプとして254nm波長の紫外線ランプが用いられる場合、254nm波長の紫外線〔UV(254) 〕はUV(185) に比べて水中での到達距離が大きく、数倍以上の距離を透過するが、UV(254) は溶存酸素を励起させることができず、溶存酸素をオゾンに変換することができないため、溶存酸素は反応には用いられず(オゾンに変換されることなく)、被処理水と共に排出されてしまう。
【0014】
そこで、この解決策として、反応塔をUV(185) が反応塔内壁に到達する程度にまで細長くすることが考えられるが、そのようにした場合は反応塔の容積が非常に小さいものとなってしまい、反応塔内でのオゾンとの反応時間も非常に短くなる。また、反応塔は被処理水の水質変動を吸収する役目もあるため、ある程度の容量が必要である。これらの点から、反応塔を上記の如く細長くすることは現実的な解決策とはならない。
【0015】
本発明は、このような事情に着目してなされたものであって、その目的は、前記従来のオゾン/紫外線併用系促進酸化処理技術では利用されずに排出されていた溶存酸素をオゾンに変換させることができ、このオゾンよりヒドロキシラジカルを発生させることができ、ひいては環境ホルモン・ダイオキシン等の難分解性環境微量有害物質の分解効率を更に向上させることができる水処理装置及び水処理方法を提供しようとするものである。
【0016】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る水処理装置及び水処理方法は、請求項1記載の水処理装置、請求項2記載の水処理方法としており、それは次のような構成としたものである。
【0017】
即ち、請求項1記載の水処理装置は、254nm波長の紫外線ランプを有する反応塔と、酸素富化ガスからオゾンを発生させるオゾン発生器と、前記オゾン発生器により発生したオゾンを前記反応塔内の被処理水中へ吹き込む手段とを有する水処理装置において、前記反応塔に被処理水の循環ラインを設けると共に、この循環ラインの途中に185nm波長の紫外線ランプを有する紫外線処理塔を設けたことを特徴とする水処理装置である(第1発明)。
【0018】
請求項2記載の水処理方法は、254nm波長の紫外線ランプを有する反応塔に被処理水を導入し、一方、オゾン発生器により酸素富化ガスからオゾンを発生させ、このオゾンを前記反応塔内の被処理水中に吹き込むと共に、185nm波長の紫外線ランプを有する紫外線処理塔を途中に有する被処理水の循環ラインに前記反応塔内の被処理水を循環させることを特徴とする水処理方法である(第2発明)。
【0019】
【発明の実施の形態】
本発明は、例えば次のような形態で実施する。
図2に示す如く、254nm波長の紫外線ランプを有する反応塔に、被処理水の循環ラインを設けると共に、この循環ラインの途中に185nm波長の紫外線ランプを有する紫外線処理塔を設ける。一方、酸素PSAと、酸素富化ガスからオゾンを発生させるオゾン発生器(オゾナイザー)とを管接続し、このオゾン発生器からオゾンを前記反応塔内の被処理水中へ吹き込む手段を設ける。そうすると、本発明に係る水処理装置が得られる。
【0020】
上記水処理装置の反応塔に被処理水を導入し、一方、オゾン発生器により酸素富化ガスからオゾンを発生させ、このオゾンを前記反応塔内の被処理水中に吹き込むと共に、被処理水の循環ラインに前記反応塔内の被処理水を循環させる。このような形態で本発明が実施される。
【0021】
以下、本発明について主にその作用効果を説明する。
【0022】
本発明に係る水処理装置は、前述のように、254nm波長の紫外線ランプを有する反応塔と、酸素富化ガスからオゾンを発生させるオゾン発生器と、前記オゾン発生器により発生したオゾンを前記反応塔内の被処理水中へ吹き込む手段とを有する水処理装置において、前記反応塔に被処理水の循環ラインを設けると共に、この循環ラインの途中に185nm波長の紫外線ランプを有する紫外線処理塔を設けたことを特徴とする水処理装置である。
【0023】
従って、254nm波長の紫外線ランプを有する反応塔において吹き込まれたオゾンよりヒドロキシラジカルが発生するだけでなく、循環ラインの途中に設けられた185nm波長の紫外線ランプを有する紫外線処理塔において溶存酸素をオゾンに変換させることができ、このオゾンよりヒドロキシラジカルを発生させることができ、更には、上記紫外線処理塔において水から直接ヒドロキシラジカルを発生させることができ、このため、環境ホルモン・ダイオキシン等の難分解性環境微量有害物質の分解効率を向上させることができる。この詳細を以下説明する。
【0024】
254nm波長の紫外線ランプを有する反応塔に被処理水を導入し、一方、オゾン発生器により酸素富化ガスからオゾンを発生させ、このオゾンを前記反応塔内の被処理水中に吹き込むと、前記反応塔において、吹き込まれたオゾンがUV(254) と下記(1)式のように反応し、更に(2)式のような反応が起こり、これにより、ヒドロキシラジカル(OH. )が発生する。
【0025】
一方、185nm波長の紫外線ランプを有する紫外線処理塔を途中に有する被処理水の循環ラインに前記反応塔内の被処理水を循環させると、前記紫外線処理塔において、UV(185) が溶存酸素と下記(3)式のように反応してオゾンが発生し、さらに、185nm波長の紫外線ランプはUV(254) も発生するために下記(1)、(2)式の反応も進行してヒドロキシラジカルが発生する。また、UV(185) が水と下記(4)式のように反応してヒドロキシラジカルが発生する。
【0026】
また、前記紫外線処理塔において発生したオゾンの中、この処理塔でのUV(254) と反応せずに残ったオゾンは、前記反応塔に入り、この反応塔においてUV(254) と下記(1)式のように反応し、更に(2)式のような反応が起こり、これにより、ヒドロキシラジカルが発生する。
【0027】
3 +UV(254) →O2 +O(1D) --------(1)
O(1D)+H2 O→2OH. --------(2)
3O2 +UV(185) →2O3 --------(3)
2 O+UV(185) →OH. +H. --------(4)
【0028】
従って、254nm波長の紫外線ランプを有する反応塔において吹き込まれたオゾンよりヒドロキシラジカルが発生するだけでなく、循環ラインの途中に設けられた185nm波長の紫外線ランプを有する紫外線処理塔において溶存酸素をオゾンに変換させることができ、このオゾンより上記紫外線処理塔及び/又は反応塔においてヒドロキシラジカルを発生させることができ、更には、上記紫外線処理塔において水から直接ヒドロキシラジカルを発生させることができ、このため、環境ホルモン・ダイオキシン等の難分解性環境微量有害物質の分解効率を向上させることができる。このとき、循環ラインでの被処理水の循環に支障がない限り、紫外線処理塔を細長くしてもよいので、例えばUV(185) が紫外線処理塔の内壁に到達する程度に細長くすることができ、このように細長くすると溶存酸素の大部分をUV(185) によってオゾンに変換することができ、このオゾンより大量のヒドロキシラジカルを発生させることができるので、難分解性環境微量有害物質の分解効率を大幅に向上させることができる。
【0029】
本発明に係る水処理方法は、254nm波長の紫外線ランプを有する反応塔に被処理水を導入し、一方、オゾン発生器により酸素富化ガスからオゾンを発生させ、このオゾンを前記反応塔内の被処理水中に吹き込むと共に、185nm波長の紫外線ランプを有する紫外線処理塔を途中に有する被処理水の循環ラインに前記反応塔内の被処理水を循環させることを特徴とする水処理方法である。従って、以上のことからわかる如く、前記従来のオゾン/紫外線併用系促進酸化処理技術では利用されずに排出されていた溶存酸素をオゾンに変換させることができ、このオゾンよりヒドロキシラジカルを発生させることができ、ひいては環境ホルモン・ダイオキシン等の難分解性環境微量有害物質の分解効率を更に向上させることができる。
【0030】
【実施例】
本発明の実施例を以下説明する。尚、本発明はこの実施例に限定されるものではない。
【0031】
本発明の実施例に係る水処理装置を図2に示す。この水処理装置は、254nm波長の紫外線ランプを有する反応塔に、被処理水の循環ラインが設けられ、この循環ラインの途中に循環ポンプと185nm波長の紫外線ランプを有する紫外線処理塔とが設けられている。そして、前記反応塔外に酸素富化ガスからオゾンを発生させるオゾン発生器(オゾナイザー)が配置され、このオゾン発生器からオゾンを前記反応塔内の被処理水中へ吹き込む手段が設けられている。
【0032】
尚、前記反応塔は、直径:Φ100mm、高さ:1500mmであり、254nm波長の紫外線ランプは、直径:Φ30mm、高さ:1000mmである。前記循環ラインは、紫外線処理塔以外の個所において直径:Φ10−12mmである。前記紫外線処理塔は、直径:Φ60mm、長さ:500mmであり、185nm波長の紫外線ランプは、直径:Φ40mm、長さ:500mmである。この185nm波長の紫外線ランプと紫外線処理塔の内壁との間の距離は、10mmである。
【0033】
上記水処理装置を用い、ダイオキシン模擬物質(ペンタクロロベンゼン)を含有する水を被処理水として、水処理を行った。この詳細を以下説明する。
【0034】
上記水処理装置の254nm波長の紫外線ランプ及び185nm波長の紫外線ランプを点灯させ、反応塔に被処理水を導入し、一方、オゾン発生器により酸素富化ガスからオゾンを発生させ、このオゾンを前記反応塔内の被処理水中に吹き込むと共に、循環ポンプを作動させて被処理水の循環ラインに前記反応塔内の被処理水を循環させた。このとき、被処理水が処理水として反応塔から排出されるまでに被処理水を数回(3回以上)循環させた。そして、反応塔から排出された処理水について分析し、ペンタクロロベンゼンの分解速度定数を求めた。
【0035】
また、比較のために、上記循環ラインの紫外線処理塔の紫外線ランプとして、上記実施例での185nm波長の紫外線ランプに代えて254nm波長の紫外線ランプを設け、この点を除き上記実施例の場合と同様の水処理装置(比較例1に係る水処理装置)を準備し、そして、この水処理装置を用い、上記実施例の場合と同様の被処理水について、同様の方法により水処理を行い、ペンタクロロベンゼンの分解速度定数を求めた。
【0036】
また、上記循環ラインに紫外線処理塔を設けず、この点を除き上記実施例の場合と同様の水処理装置を準備した。即ち、図1に示す水処理装置において反応塔の紫外線ランプとして254nm波長の紫外線ランプを選択して設けたもの(比較例2に係る水処理装置)を準備した。そして、この水処理装置を用い、上記実施例の場合と同様の被処理水について、同様の方法により水処理を行い、ペンタクロロベンゼンの分解速度定数を求めた。
【0037】
上記ペンタクロロベンゼンの分解速度定数の測定結果を表1に示す。実施例の場合、比較例2の場合に比べてペンタクロロベンゼンの分解速度定数が約2倍に上昇しており、分解効率が著しく向上している。これは、従来の場合よりも処理時間あるいは装置の大きさを約半分にすることができることを意味しており、本発明の効果が顕著であることを示している。
【0038】
比較例1の場合、比較例2の場合に比べて分解効率が上昇しているが、その上昇の程度は約1.3倍である。実施例の場合、この比較例1の場合に比べても分解効率が高く、約1.5倍の向上が認められた。
【0039】
【表1】

Figure 0004157682
【0040】
【発明の効果】
本発明によれば、従来のオゾン/紫外線併用系促進酸化処理技術では利用されずに排出されていた溶存酸素をオゾンに変換させることができ、このオゾンよりヒドロキシラジカルを発生させることができ、このため、従来のオゾン/紫外線併用系促進酸化処理技術の場合に比べて、大量のヒドロキシラジカルを発生させることができ、ひいては環境ホルモン・ダイオキシン等の難分解性環境微量有害物質の分解効率を大幅に向上させることができる。
【図面の簡単な説明】
【図1】 従来の水処理装置の概要を示す模式図である。
【図2】 本発明の実施例に係る水処理装置の概要を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field related to a water treatment apparatus and a water treatment method, and in particular, a water treatment apparatus and a water treatment for decomposing and removing refractory environmental trace harmful substances such as environmental hormones and dioxins in waste water. It belongs to the technical field related to methods.
[0002]
[Prior art]
Technology that decomposes and removes organic substances in water in a system using both ozone and ultraviolet rays by the accelerated oxidation method (hereinafter referred to as ozone / ultraviolet combined system accelerated oxidation treatment technology) is known as an advanced treatment technology in the field of water purification and sewage treatment. In recent years, it has been regarded as promising as a technology for decomposing dioxins contained in the final disposal site leachate.
[0003]
As such an ozone / ultraviolet combined system-accelerated oxidation treatment technique, for example, there are those described in JP-A-7-108285 and JP-A-10-52693, but the following methods are generally used. Yes (Figure 1).
[0004]
As shown in FIG. 1, air or oxygen-enriched gas is sent to an ozonizer (ozone generator) to generate ozone. This ozone is blown into the water to be treated inside the reaction tower having an ultraviolet lamp having a wavelength of 185 nm or 254 nm using a diffuser.
[0005]
Then, when the ultraviolet lamp is an ultraviolet lamp having a wavelength of 254 nm, the blown ozone reacts with the ultraviolet ray [UV (254)] as shown in the following formula (1), and further, as shown in the formula (2) A reaction occurs, which generates a hydroxy radical.
[0006]
When the ultraviolet lamp is an ultraviolet lamp having a wavelength of 185 nm, ultraviolet rays [UV (185)] react with dissolved oxygen as shown in the following formula (3) to generate ozone, and ultraviolet rays are converted into water with the following formula (4). It reacts as in the formula to generate hydroxy radicals. In addition, since the 185 nm wavelength UV lamp generates not only 185 nm wavelength UV but also 254 nm wavelength UV, the reaction of the formulas (1) and (2) is further performed than the ozone generated by the formula (3). Generates hydroxy radicals (OH . ).
[0007]
Hydroxyl radicals generated by these reactions decompose indestructible environmental trace harmful substances such as environmental hormones and dioxins in the water to be treated.
[0008]
O 3 + UV (254) → O 2 + O ( 1 D) -------- (1)
O (1 D) + H 2 O → 2OH. -------- (2)
3O 2 + UV (185) → 2O 3 -------- (3)
H 2 O + UV (185) → OH. + H. -------- (4)
[0009]
[Problems to be solved by the invention]
When ozone generated from oxygen-enriched gas is blown into water, the dissolved oxygen concentration also increases. For example, when the water temperature is 15 ° C., the saturated ozone concentration is 25.9 mg / L, whereas the saturated oxygen concentration Is 48 mg / L. If hydroxy radicals can be generated from such abundant dissolved oxygen, it is possible to further improve the decomposition efficiency of refractory environmental trace harmful substances such as environmental hormones and dioxins. That is, if such abundant dissolved oxygen can be converted into ozone, a larger amount of hydroxy radicals than ozone can be generated, thereby improving the decomposition efficiency of the hardly decomposable environmental trace harmful substances.
[0010]
However, in the conventional ozone / ultraviolet combined system-promoted oxidation treatment technique, most of such abundant dissolved oxygen is not converted to ozone and is discharged together with the water to be treated without generating hydroxyl radicals. Details will be described below.
[0011]
In the conventional ozone / ultraviolet combined system accelerated oxidation treatment technique, an ultraviolet lamp is inserted in a reaction tower, and either an 185 nm wavelength lamp or a 254 nm wavelength ultraviolet lamp is used as the ultraviolet lamp.
[0012]
When an ultraviolet lamp having a wavelength of 185 nm is used as the ultraviolet lamp, ozone can be generated from dissolved oxygen by the reaction of the formula (3), and from the ozone, the formulas (1) and (2) Hydroxyl radicals can be generated by the reaction. However, since the reach distance of the ultraviolet ray [UV (185)] having a wavelength of 185 nm in water is 10 mm or less, the reactions of the equations (3) and (4) do not proceed only near the surface of the ultraviolet lamp. Most of the dissolved oxygen is discharged together with the water to be treated without being converted into ozone by UV (185).
[0013]
When an ultraviolet lamp having a wavelength of 254 nm is used as the ultraviolet lamp, the ultraviolet ray having a wavelength of 254 nm [UV (254)] has a larger reach in water than UV (185) and transmits a distance several times or more. Since UV (254) cannot excite dissolved oxygen and cannot convert dissolved oxygen to ozone, dissolved oxygen is not used in the reaction (without being converted to ozone), and with treated water It will be discharged.
[0014]
Therefore, as a solution, it is conceivable that the reaction tower is elongated to such an extent that UV (185) reaches the inner wall of the reaction tower, but in such a case, the volume of the reaction tower becomes very small. As a result, the reaction time with ozone in the reaction tower becomes very short. Moreover, since the reaction tower also has a role of absorbing the water quality fluctuation of the water to be treated, a certain amount of capacity is required. From these points, elongating the reaction column as described above is not a realistic solution.
[0015]
The present invention has been made paying attention to such circumstances, and its purpose is to convert dissolved oxygen, which has been exhausted without being used in the conventional ozone / ultraviolet combined accelerated oxidation technology, into ozone. A water treatment apparatus and a water treatment method that can generate hydroxyl radicals from this ozone, and that can further improve the decomposition efficiency of environmentally-degradable environmental trace harmful substances such as environmental hormones and dioxins are provided. It is something to try.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a water treatment apparatus and a water treatment method according to the present invention are the water treatment apparatus according to claim 1 and the water treatment method according to claim 2, respectively. Is.
[0017]
That is, the water treatment apparatus according to claim 1 is a reaction tower having an ultraviolet lamp having a wavelength of 254 nm, an ozone generator for generating ozone from an oxygen-enriched gas, and ozone generated by the ozone generator in the reaction tower. In the water treatment apparatus having a means for blowing water into the water to be treated, a circulation line for water to be treated is provided in the reaction tower, and an ultraviolet treatment tower having an ultraviolet lamp with a wavelength of 185 nm is provided in the circulation line. 1 is a water treatment apparatus according to the present invention (first invention).
[0018]
The water treatment method according to claim 2, wherein water to be treated is introduced into a reaction tower having an ultraviolet lamp having a wavelength of 254 nm, while ozone is generated from an oxygen-enriched gas by an ozone generator, and this ozone is introduced into the reaction tower. In this water treatment method, the water to be treated in the reaction tower is circulated through a circulation line of water to be treated having an ultraviolet treatment tower having an ultraviolet lamp having a wavelength of 185 nm. (Second invention).
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is implemented, for example, in the following form.
As shown in FIG. 2, a circulation line for water to be treated is provided in a reaction tower having an ultraviolet lamp having a wavelength of 254 nm, and an ultraviolet treatment tower having an ultraviolet lamp having a wavelength of 185 nm is provided in the middle of the circulation line. On the other hand, an oxygen PSA and an ozone generator (ozonizer) for generating ozone from the oxygen-enriched gas are connected by a pipe, and means for blowing ozone from the ozone generator into the water to be treated in the reaction tower is provided. Then, the water treatment apparatus according to the present invention is obtained.
[0020]
Water to be treated is introduced into the reaction tower of the water treatment apparatus, while ozone is generated from the oxygen-enriched gas by an ozone generator, and this ozone is blown into the water to be treated in the reaction tower. The water to be treated in the reaction tower is circulated through the circulation line. The present invention is implemented in such a form.
[0021]
Hereinafter, the effects of the present invention will be mainly described.
[0022]
As described above, the water treatment apparatus according to the present invention includes a reaction tower having an ultraviolet lamp having a wavelength of 254 nm, an ozone generator that generates ozone from an oxygen-enriched gas, and the ozone generated by the ozone generator. In the water treatment apparatus having means for blowing into the water to be treated in the tower, a circulation line for the water to be treated is provided in the reaction tower, and an ultraviolet treatment tower having an ultraviolet lamp having a wavelength of 185 nm is provided in the circulation line. This is a water treatment device characterized by that.
[0023]
Therefore, not only hydroxy radicals are generated from ozone blown in a reaction tower having a 254 nm wavelength ultraviolet lamp, but also dissolved oxygen is converted into ozone in an ultraviolet treatment tower having a 185 nm wavelength ultraviolet lamp provided in the middle of the circulation line. Hydroxyl radicals can be generated from this ozone, and further, hydroxyl radicals can be generated directly from water in the UV treatment tower, which makes it difficult to decompose environmental hormones, dioxins, etc. The decomposition efficiency of environmental trace harmful substances can be improved. Details will be described below.
[0024]
When water to be treated is introduced into a reaction tower having an ultraviolet lamp having a wavelength of 254 nm, ozone is generated from an oxygen-enriched gas by an ozone generator, and this ozone is blown into the water to be treated in the reaction tower. In the tower, the blown ozone reacts with UV (254) as shown in the following formula (1), and further a reaction as shown in the formula (2) occurs, thereby generating a hydroxy radical (OH . ).
[0025]
On the other hand, when the water to be treated in the reaction tower is circulated through the circulation line of the water to be treated having an ultraviolet treatment tower having an ultraviolet lamp having a wavelength of 185 nm, UV (185) is dissolved in the ultraviolet treatment tower. Reaction occurs as shown in the following formula (3), and ozone is generated. Furthermore, since an ultraviolet lamp with a wavelength of 185 nm also generates UV (254), the reactions of the following formulas (1) and (2) also proceed to generate hydroxyl radicals. Will occur. Further, UV (185) reacts with water as shown in the following formula (4) to generate hydroxy radicals.
[0026]
Of the ozone generated in the ultraviolet treatment tower, ozone remaining without reacting with UV (254) in the treatment tower enters the reaction tower, and UV (254) and the following (1) ) Reaction, and further a reaction as shown in formula (2) occurs, whereby a hydroxy radical is generated.
[0027]
O 3 + UV (254) → O 2 + O ( 1 D) -------- (1)
O (1 D) + H 2 O → 2OH. -------- (2)
3O 2 + UV (185) → 2O 3 -------- (3)
H 2 O + UV (185) → OH. + H. -------- (4)
[0028]
Therefore, not only hydroxy radicals are generated from ozone blown in a reaction tower having a 254 nm wavelength ultraviolet lamp, but also dissolved oxygen is converted into ozone in an ultraviolet treatment tower having a 185 nm wavelength ultraviolet lamp provided in the middle of the circulation line. Hydroxyl radicals can be generated from the ozone in the UV treatment tower and / or reaction tower, and further, hydroxyl radicals can be generated directly from water in the UV treatment tower. In addition, it is possible to improve the decomposition efficiency of environmentally-degradable environmental trace harmful substances such as environmental hormones and dioxins. At this time, as long as there is no hindrance to the circulation of the water to be treated in the circulation line, the ultraviolet treatment tower may be elongated. For example, it can be elongated so that UV (185) reaches the inner wall of the ultraviolet treatment tower. In this way, most of the dissolved oxygen can be converted into ozone by UV (185), and a larger amount of hydroxy radicals can be generated than this ozone. Can be greatly improved.
[0029]
In the water treatment method according to the present invention, water to be treated is introduced into a reaction tower having an ultraviolet lamp having a wavelength of 254 nm, while ozone is generated from an oxygen-enriched gas by an ozone generator, and this ozone is contained in the reaction tower. The water treatment method is characterized in that the water to be treated in the reaction tower is circulated through a circulation line of the water to be treated having an ultraviolet treatment tower having an ultraviolet lamp having a wavelength of 185 nm while being blown into the water to be treated. Therefore, as can be seen from the above, it is possible to convert dissolved oxygen that has been exhausted without being used in the conventional ozone / ultraviolet combined accelerated oxidation technology into ozone, and to generate hydroxy radicals from this ozone. As a result, it is possible to further improve the decomposition efficiency of environmentally harmful trace amounts of harmful substances such as environmental hormones and dioxins.
[0030]
【Example】
Examples of the present invention will be described below. In addition, this invention is not limited to this Example.
[0031]
A water treatment apparatus according to an embodiment of the present invention is shown in FIG. In this water treatment apparatus, a circulation line for water to be treated is provided in a reaction tower having an ultraviolet lamp of 254 nm wavelength, and a circulation pump and an ultraviolet treatment tower having an ultraviolet lamp of 185 nm wavelength are provided in the middle of the circulation line. ing. An ozone generator (ozonizer) for generating ozone from the oxygen-enriched gas is disposed outside the reaction tower, and means for blowing ozone from the ozone generator into the water to be treated in the reaction tower is provided.
[0032]
The reaction tower has a diameter of Φ100 mm and a height of 1500 mm, and the ultraviolet lamp having a wavelength of 254 nm has a diameter of Φ30 mm and a height of 1000 mm. The circulation line has a diameter of Φ10-12 mm at a place other than the ultraviolet treatment tower. The ultraviolet treatment tower has a diameter of Φ60 mm and a length of 500 mm, and the 185 nm wavelength ultraviolet lamp has a diameter of Φ40 mm and a length of 500 mm. The distance between the 185 nm wavelength UV lamp and the inner wall of the UV processing tower is 10 mm.
[0033]
Using the water treatment apparatus, water treatment was performed using water containing a dioxin simulation substance (pentachlorobenzene) as water to be treated. Details will be described below.
[0034]
The 254 nm wavelength ultraviolet lamp and the 185 nm wavelength ultraviolet lamp of the water treatment apparatus are turned on, and water to be treated is introduced into the reaction tower, while ozone is generated from the oxygen-enriched gas by an ozone generator, While blowing into the to-be-processed water in a reaction tower, the to-be-processed water in the said reaction tower was circulated to the circulation line of the to-be-processed water by operating the circulation pump. At this time, the treated water was circulated several times (three times or more) before the treated water was discharged from the reaction tower as treated water. And the treated water discharged | emitted from the reaction tower was analyzed, and the decomposition rate constant of pentachlorobenzene was calculated | required.
[0035]
For comparison, an ultraviolet lamp with a wavelength of 254 nm is provided instead of the ultraviolet lamp with a wavelength of 185 nm in the above embodiment as an ultraviolet lamp of the ultraviolet treatment tower in the circulation line. A similar water treatment device (water treatment device according to Comparative Example 1) is prepared, and using this water treatment device, water to be treated is treated in the same manner as in the case of the above-described example, The decomposition rate constant of pentachlorobenzene was determined.
[0036]
Moreover, the ultraviolet treatment tower was not provided in the said circulation line, and the water treatment apparatus similar to the case of the said Example except this point was prepared. That is, the water treatment apparatus shown in FIG. 1 was prepared by selecting an ultraviolet lamp with a wavelength of 254 nm as the ultraviolet lamp of the reaction tower (water treatment apparatus according to Comparative Example 2). And using this water treatment apparatus, water to be treated was treated in the same manner as in the case of the above example, and the decomposition rate constant of pentachlorobenzene was determined.
[0037]
Table 1 shows the measurement results of the decomposition rate constant of pentachlorobenzene. In the case of the example, the decomposition rate constant of pentachlorobenzene is increased about twice as compared with the case of Comparative Example 2, and the decomposition efficiency is remarkably improved. This means that the processing time or the size of the apparatus can be halved as compared with the conventional case, and the effect of the present invention is remarkable.
[0038]
In the case of Comparative Example 1, the decomposition efficiency is increased as compared with the case of Comparative Example 2, but the degree of the increase is about 1.3 times. In the case of the example, the decomposition efficiency was higher than in the case of Comparative Example 1, and an improvement of about 1.5 times was recognized.
[0039]
[Table 1]
Figure 0004157682
[0040]
【The invention's effect】
According to the present invention, it is possible to convert dissolved oxygen that has been exhausted without being used in the conventional ozone / ultraviolet combined system accelerated oxidation treatment technology into ozone, and to generate hydroxy radicals from this ozone. Therefore, it can generate a large amount of hydroxyl radicals compared to the conventional ozone / ultraviolet combined oxidation-promoted oxidation treatment technology, which greatly improves the decomposition efficiency of environmentally-degradable environmental trace hazardous substances such as environmental hormones and dioxins. Can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of a conventional water treatment apparatus.
FIG. 2 is a schematic view showing an outline of a water treatment apparatus according to an embodiment of the present invention.

Claims (2)

254nm波長の紫外線ランプを有する反応塔と、酸素富化ガスからオゾンを発生させるオゾン発生器と、前記オゾン発生器により発生したオゾンを前記反応塔内の被処理水中へ吹き込む手段とを有する水処理装置において、前記反応塔に被処理水の循環ラインを設けると共に、この循環ラインの途中に185nm波長の紫外線ランプを有する紫外線処理塔を設けたことを特徴とする水処理装置。Water treatment comprising a reaction tower having an ultraviolet lamp with a wavelength of 254 nm, an ozone generator for generating ozone from an oxygen-enriched gas, and means for blowing ozone generated by the ozone generator into the water to be treated in the reaction tower In the apparatus, a water treatment apparatus is provided, wherein a circulation line for water to be treated is provided in the reaction tower, and an ultraviolet treatment tower having an ultraviolet lamp having a wavelength of 185 nm is provided in the middle of the circulation line. 254nm波長の紫外線ランプを有する反応塔に被処理水を導入し、一方、オゾン発生器により酸素富化ガスからオゾンを発生させ、このオゾンを前記反応塔内の被処理水中に吹き込むと共に、185nm波長の紫外線ランプを有する紫外線処理塔を途中に有する被処理水の循環ラインに前記反応塔内の被処理水を循環させることを特徴とする水処理方法。Water to be treated is introduced into a reaction tower having an ultraviolet lamp with a wavelength of 254 nm, while ozone is generated from an oxygen-enriched gas by an ozone generator, and this ozone is blown into the water to be treated in the reaction tower, and a wavelength of 185 nm A water treatment method comprising circulating the water to be treated in the reaction tower through a circulation line of water to be treated having an ultraviolet treatment tower having an ultraviolet lamp in the middle.
JP2001008938A 2001-01-17 2001-01-17 Water treatment apparatus and water treatment method Expired - Lifetime JP4157682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001008938A JP4157682B2 (en) 2001-01-17 2001-01-17 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008938A JP4157682B2 (en) 2001-01-17 2001-01-17 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2002210479A JP2002210479A (en) 2002-07-30
JP4157682B2 true JP4157682B2 (en) 2008-10-01

Family

ID=18876492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008938A Expired - Lifetime JP4157682B2 (en) 2001-01-17 2001-01-17 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP4157682B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023481B2 (en) * 2005-12-08 2012-09-12 株式会社日立製作所 Liquid processing method and liquid processing apparatus
JP5097933B2 (en) * 2008-02-29 2012-12-12 独立行政法人科学技術振興機構 Method and apparatus for decomposing hardly decomposable organic substances using both ultraviolet rays and fine bubbles
CN114702179A (en) * 2021-12-10 2022-07-05 广东凯链环保科技有限公司 Multidimensional catalytic organic wastewater treatment device

Also Published As

Publication number Publication date
JP2002210479A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
Gehringer et al. Radiation-induced OH radical generation and its use for groundwater remediation
JP2007203290A (en) Method for treating exhaust gas
CA2338668A1 (en) Polluted soil remediation apparatus, polluted soil remediation method, pollutant degrading apparatus and pollutant degrading method
JP4157682B2 (en) Water treatment apparatus and water treatment method
JP2004105870A (en) Method and apparatus for purifying soil and groundwater
JP2005074409A (en) Method for treating 1,4-dioxane
CN105709577A (en) Refuse leachate malodorous gas purification complete device and refuse leachate malodorous gas purification method
EP0242941B1 (en) Process and apparatus for the deodorization of air
JP2000005562A (en) Treatment of organic chlorine compound
JPH11300334A (en) Decomposing and removing method of organic chlorine compound such as dioxins in soil
JP2000325971A (en) Method and apparatus for purifying contaminated water
JPH0466628B2 (en)
JPH09234338A (en) Photolysis of organochlorine compounds
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
JP3739169B2 (en) Organochlorine compound decomposition equipment
JP2001149964A (en) Water treating method
JPH11262780A (en) Decomposition treatment method for organic halogen compounds
JP2008000729A (en) Waste liquid treatment apparatus and waste liquid treatment method
JP2669375B2 (en) Decomposition equipment for organic chlorine compounds in water
JP2003003152A (en) Method for producing oxidation decomposable gas of organic substance
JP2000051656A (en) Method and apparatus for treating volatile organic chlorine compound
CN207654946U (en) A kind of VOCs processing units generating negative oxygen ion
JP2004267934A (en) Method and apparatus for treating waste water containing hardly decomposable organic chlorine compound
JP2002273173A (en) Apparatus and method for decomposing and removing volatile organic compounds
JP2004114005A (en) Method of purifying polluted water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4157682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

EXPY Cancellation because of completion of term