[go: up one dir, main page]

JP4157436B2 - Waste plastic oil processing equipment - Google Patents

Waste plastic oil processing equipment Download PDF

Info

Publication number
JP4157436B2
JP4157436B2 JP2003182371A JP2003182371A JP4157436B2 JP 4157436 B2 JP4157436 B2 JP 4157436B2 JP 2003182371 A JP2003182371 A JP 2003182371A JP 2003182371 A JP2003182371 A JP 2003182371A JP 4157436 B2 JP4157436 B2 JP 4157436B2
Authority
JP
Japan
Prior art keywords
recovery tower
oil
heat transfer
pipe
product oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003182371A
Other languages
Japanese (ja)
Other versions
JP2005015635A (en
Inventor
英一 杉山
正明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003182371A priority Critical patent/JP4157436B2/en
Publication of JP2005015635A publication Critical patent/JP2005015635A/en
Application granted granted Critical
Publication of JP4157436B2 publication Critical patent/JP4157436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック廃棄物を熱分解して、油化処理する廃プラスチック油化処理装置にかかり、その加熱部分の改良に関する。
【0002】
【従来の技術】
近年、プラスチック廃棄物を熱分解処理して、油成分を取り出す廃プラスチック油化処理装置が用いられるようになってきた。
【0003】
この種の廃プラスチック油化処理装置では、プラスチック廃棄物を熱分解装置にて分解し、発生した分解ガス(油蒸気)を凝縮し、得られた分解油を一旦分解油ドラムに回収する。この分解油を生成油回収塔(蒸留塔)に送り、ここで沸点の差により、軽質油、中質油、重質油に分留処理し、各々軽質油タンク、中質油タンク、重質油タンクに貯留する(例えば、特許文献1参照)。
【0004】
この例では熱分解装置にて発生した分解ガス(油蒸気)を凝縮して分解油ドラムに回収しているが、以下に説明する内容はこのようなシステムに限らず、発生した分解ガス(油ガス)をそのまま生成油回収塔(蒸留塔)に送る場合等にも適用できるものである。
【0005】
分解油を生成油回収塔で分留処理する際、分解油に熱を加えるため、分解油を回収塔加熱炉で加熱する。このとき、分解油は、効率よく加熱するため、回収塔加熱炉内に配設された、比較的細く、かつ折曲げ形成された伝熱管内に通され、この伝熱管外部に設けられた熱源によって加熱される。
【0006】
ところで、プラスチック廃棄物を熱分解した分解油は不飽和分が多い。このため、生成油回収塔(蒸留塔)にて分解油を蒸留する際、上述のように回収塔加熱炉にて加熱すると、回収塔加熱炉内の伝熱管内で再分解・再重合を起こし易い。また、腐食性物質の存在により、伝熱管内でコーキングを起こしたり、腐食が進展する問題がある。
【0007】
【特許文献1】
特開2002−173690号公報
【0008】
【発明が解決しようとする課題】
このように、廃プラスチック油化処理工程で得られる分解油を蒸留処理するために、分解油を加熱する際、加熱炉の伝熱管内でコーキングを起こしたり、腐食が進展することがある。
【0009】
本発明の目的は、分解油を蒸留処理すべく加熱炉内で加熱する際、伝熱管内でのコーキングを防止し、腐食を起こすことなく、安定運転できる廃プラスチック油化処理装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明による廃プラスチック油化処理装置は、熱分解によりプラスチック廃棄物から分解された分解油を沸点の差により蒸留する生成油回収塔と、伝熱管及びこの伝熱管をその外部から加熱する熱源を有する回収塔加熱炉と、前記分解油を生成油回収塔の下段に送る分解油供給路と、前記生成油回収塔の生成油が抜き出される部分を管路により前記回収塔加熱炉の伝熱管の入り側に直接連結し、この伝熱管の出側を管路により生成油回収の前記下段に連結し、前記生成油回収塔で生成された生成油のみを回収塔加熱炉で加熱させ、この加熱された生成油を生成油回収塔の下段に供給する熱循環ループとを備えたことを特徴とする。
【0011】
本発明では、回収塔加熱炉は、筒状を成し、その内部下方に熱源となるバーナが設置され、上部から排気する炉体を有し、伝熱管は、上記炉体内のバーナ近くの下部内壁面に沿って配置された輻射加熱管部と、炉体内の上部に設置され前記バーナの排気ガスにより加熱される対流加熱管部とからなり、熱循環ループの入り側管路は前記伝熱管の対流加熱管部に連結され、熱循環ループの出側管路は輻射加熱管部に連結し、生成油回収塔から抜き出された生成油は、伝熱管の対流加熱管部から輻射加熱管部に流れ、輻射加熱管部から前記生成油回収塔の下部に流れるように構成する。
【0012】
また、本発明では、熱循環ループの出側管路に圧力制御弁を設置し回収塔加熱炉からの伝熱管出口部分の液の比率が30%wt以上となるように管路内圧力を調整する。
【0013】
また、本発明では、圧力調整弁は、管路内圧力を検出し、その検出圧力により開度を制御できる構成とする。
【0015】
さらに、本発明では、生成油回収塔の運転圧力を減圧し、回収塔加熱炉の伝熱管出口温度を350℃以下となるように設定するとよい。
【0016】
これらの発明では、生成油回収塔によって生成された生成油の一部を回収塔加熱炉の伝熱管に流して加熱し、加熱後の生成油を生成油回収塔の分解油貯留部に供給するようにしたので、伝熱管内でコーキングが生じたりすることなく安定した蒸留運転を行なうことができる。
【0017】
【発明の実施の形態】
以下、本発明による廃プラスチック油化処理装置の一実施の形態を、図面を参照して説明する。
【0018】
始に、図7によって一般的な廃プラスチック油化処理設備のシステム構成を概略説明する。
【0019】
この廃プラスチック油化処理システムは、前処理工程11と、脱塩化水素・熱分解工程12と、塩酸処理工程13と生成油回収工程14と、排ガス処理工程15とで構成されている。
【0020】
前処理工程11では、ペール状に減容化されたプラスチック廃棄物17が搬入され、破砕機18で破砕された後、乾燥機19で乾燥される。そして、乾燥機サイクロン20から風選機21及び磁選機22を経て不純物が除去され、造粒機23にて造粒され、造粒サイロ24に貯留される。
【0021】
脱塩化水素・熱分解工程12では、前処理工程11で造粒されたプラスチックが、脱塩装置ホッパー26から脱塩装置27に投入され、脱塩処理された後、溶融状態で溶融槽28に一旦貯留される。
【0022】
脱塩処理により分離された脱塩ガスは塩酸処理工程13に送られ、脱塩ガス燃焼炉32、塩化水素吸収塔33で処理され、生成された塩酸は塩酸タンク34に貯留される。
【0023】
また、脱塩処理された溶融状態の被処理物は、溶融槽28から熱分解装置29に供給され、ここで分解ガス(油蒸気)と残渣とに分離される。このうち残渣は、残渣冷却コンベア30により冷却された後、図示しない残渣処理部に排出される。一方、分解ガスは、凝縮され分解油となって、生成油回収工程14に設けられた分解油ドラム36に蓄積される。
【0024】
生成油回収工程14では、分解油ドラム36に貯留した分解油を生成油回収塔37に送り、ここで沸点の差により軽質油、中質油、重質油に分留処理し、それぞれ軽質油タンク38、中質油タンク39、重質油タンク40に貯留する。
【0025】
なお、この生成油回収工程14及び前記塩酸処理工程13で生じた排ガスは、排ガス処理工程15において排ガス燃焼装置42で燃焼処理され、無害化されて大気に放出される。
【0026】
本発明は、生成油回収工程14に関するもので、以下詳細に説明する。
【0027】
図1において、熱分解によりプラスチック廃棄物から分解された分解油は、分解油ドラム36から分解油ポンプ45により、分解油供給路46を通って生成油回収塔37の下段に送られる。この分解油供給路46の途中には、分解油加熱器47が設けられている。この分解油加熱器47は、生成油回収塔37から取出された高温の重質油により分解油を加熱する。
【0028】
50は回収塔加熱炉(以下、単に加熱炉と呼ぶ)で、内部に伝熱管51と、この伝熱管51を加熱する熱源52とを有する。この加熱炉50の詳細構造については後述する。この加熱炉50に設けられた伝熱管51の入り側は、中間部にポンプ53を有する管路54Aにより、生成油回収塔37の生成油(例えば、中質油)が抜き出される部分(例えば、中段部分)に連結している。また、この伝熱管51の出側は管路54Bにより、生成油回収塔3の下段に連結し、熱循環ループ54を形成している。なお、前記管路54Aを熱循環ループ54の入り側管路と呼び、54Bを同出側管路と呼ぶ。
【0029】
上記入り側管路54Aの、ポンプ53の吐出側部分からは、戻し管路55及び中質油取出し管路56が分岐接続されている。戻し管路55は生成油回収塔37から取出された中質油の一部を生成油回収塔37の中段に戻す。また、中質油取出し管路56は生成油回収塔37から取出された中質油の一部を冷却器57で冷却し、図示しない中質油タンクに送油する。
【0030】
生成油回収塔37の底部には、重質油取出し管路59が連結されており、蒸留運転時、生成油回収塔37の底部に滞留する重質油をポンプ60により取出す。この管路59には、前記分解油加熱器47及び冷却器61が設けられており、取り出された重質油は、これらによって冷却された後、図示しない重質油タンクに送油される。また、この重質油取出し管路59からは戻し管路62が分岐しており、取出された重質油の一部を、生成油回収塔37の下段に戻している。
【0031】
生成油回収塔37の塔頂部には塔頂ガス取出し管路64が連結しており、前記分解油ドラム36からの管路65と合体し、凝縮器66を介して塔頂ドラム67に連結している。このため、生成油回収塔37の塔頂ガスは、分解油ドラム37内のガス成分と共に凝縮器66で凝縮され、塔頂ドラム67内に貯留される。この登頂ドラム67内に貯留された油成分は軽質油として、ポンプ68により図示しない軽質油タンクに送油される。また、この軽質油の一部は、戻し管路69により生成油回収塔37の上段に戻される。
【0032】
塔頂ドラム67内に滞留するガス成分は、真空ポンプ70によって吸引され、オフガスとして排ガス処理工程に送られる。また、この真空ポンプ70は、生成油回収塔37内の塔頂ガスを吸引する機能を有し、生成油回収塔37内の運転圧力を調整することができる。
【0033】
次に、加熱炉50の詳細構成を図2により説明する。
【0034】
71は炉体で、細首部を有する筒状を成し、その内部下方に熱源となるバーナ52が設置されている。また、上部には排気筒72が一体的に連結され、バーナ52による燃焼排ガスは、この排気筒72を通して上部から排気される。伝熱管51は、炉体71内の下部に設置される輻射加熱管部51Aと、上方に配置される対流加熱管部51Bとからなる。輻射加熱管部51Aは、炉体71内において、バーナ52の炎を囲むように、下部内壁面に沿って配置され、バーナ炎の輻射熱により加熱される。対流加熱管部51Bは、炉体71上部の排気筒72によって形成される排気通路内に設置され、バーナ52の排気ガスにより加熱される。
【0035】
対流加熱管部51Bは、1本のフィン付の細管を、図3(a)(b)で示すように、多数回折返して、全体として直方体状を成すように形成したもので、図2で示すように、排気筒72によって形成される排気通路を横断するように設置される。また、図3(b)で示すように、対流加熱管部51Bの一端51Baは、図1で示した熱循環ループ54の入り側管路54Aと連結しており、他端51Bbは、クロスオーバ管51Cに連結し、このクロスオーバ管51Cを介して、下方に配置される輻射加熱管部51Aと連通する。
【0036】
輻射加熱管部51Aは、1本の細管を図4で示すように多数回折返して平面状に形成し、これを図5で示すように、炉体71の内壁面に沿って筒状に設置している。そして、図4で示す一端51Aaはクロスオーバ管51Cに連結し、このクロスオーバ管51Cを介して上方に配置された対流加熱管部51Bと連通する。また、図4で示す他端51Abは、図1で示した熱循環ループ54の出側管路54Bと連結している。
【0037】
したがって、生成油回収塔37からの中質油の一部は、加熱炉50において、伝熱管51の対流加熱管部51Bに入り、この対流加熱管部51Bから輻射加熱管部51Aに流れ、この輻射加熱管部51Aにおいて一部が気化するように構成されている。
【0038】
上記構成において、分解油ドラム36内の分解油は分解油供給路46を通って、生成油回収塔37の下段に直接送り込まれる。蒸留運転時、生成油回収塔37の中段から中質油が管路54Aに設けられたポンプ53よって抜き出される。生成油回収塔37の中段から抜き出された中質油は、中質油取出し管路56により、中質油冷却器57を経て図示しない中質油タンクに回収される。また、その一部は戻し管55により生成油回収塔37の中段に循環すると共に、加熱炉50に送られ加熱される。
【0039】
すなわち、生成油回収塔37の中段からポンプ53により送油され加熱炉50内に流入した中質油は、まず加熱炉50内の上部に設置された対流加熱管部51Bを流れて加熱される。その後、下部に円筒状に配列された輻射加熱管部51Aを流れることによりさらに加熱される。そして、この輻射加熱管部51A内で中質油が一部気化し気液2相流となり、加熱炉50から管路54Bに流出する。
【0040】
加熱炉50で加熱され、一部気化して気液2相流となった中質油は、管路54Bにより生成油回収塔37の下段に戻される。すなわち、生成油回収塔37の中段から加熱炉50を通り、生成油回収塔37の下段にいたる熱循環ループ54が形成される。したがって、常時安定的に生成油回収塔37に熱を供給しつつ、分解油を生成油回収塔37で蒸留することができる。
【0041】
このように、一旦蒸留処理後の安定した生成油(例えば、中質油)を加熱炉50で加熱し、その熱を生成油回収塔37に供給するように構成したので、従来の、不飽和分が多い分解油を直接回収塔加熱炉に送り込む場合のように、回収塔加熱炉内で分解油が再重合したり、コーキングして、それが濃くなり、伝熱管が閉塞することを防止できる。すなわち、加熱炉50内に流入した生成油(中質油)は、細管で連続形成された対流加熱管部51Bから輻射加熱管部51Aに流れるが、途中に滞留部が無い為、入口から出口まで連続的に流れることになり、生成油が滞留しコーキングし、それが濃くなって伝熱管内部を閉塞することはなく、加熱炉50内での再重合やコーキングを防止し、常時安定的に生成油回収塔37を加熱できる。
【0042】
なお、軽質油は生成油回収塔37の頭頂部から抜き出した塔頂ガスから回収され、重質油は生成油回収塔37の下部ボトムより抜出し、回収される。
【0043】
また、蒸留運転の起動時は、生成油回収塔37から生成油が取り出せないため、図示しない起動用配管により、別途用意した生成油を加熱炉50供給して加熱すればよい。
【0044】
ここで、加熱炉50内で加熱され、管路54Bを経て生成油回収塔37に熱を供給する中質油を、その一部が気化した気液2相流としている。これは、気体成分を含んでいる方が、生成油回収塔37の下段部において、そこに貯留されている分解油とよく混合し、効率的に加熱できるためである。そこで、この気液の割合を好ましい割合に制御することが考えられる。
【0045】
図6はこのような考えに基づくもので、熱循環ループ54の出側管路54Bに圧力制御弁74を設置し、加熱炉50からの伝熱管出口部分の液の比率が30%wt以上(蒸気成分70%wt未満)となるように管路内圧力を調整する。すなわち、圧力制御弁74の開度を制御し、管路54Bを含む伝熱管51内の圧力を高めることにより、伝熱管51内の出口の液の比率を30%wt以上にする。この圧力制御弁74の設置位置は、できるだけ生成油回収塔37直近に設置するのがよい。これは、伝熱管51出口から生成油回収塔37までのできるだけ広い範囲で圧力が均一な方がよいためである。
【0046】
このように、加熱炉50の伝熱管51の出口側に圧力制御弁74を設置することにより、伝熱管51内出口の液の比率が調整可能となり、伝熱管51内出口で液の比率を低くすることにより、伝熱管51内で加熱温度が高まる。このため、伝熱管51の内壁での生成油のコーキングを防止し、コーキングに基づく伝熱管51内部の閉塞を防止することができ、安定的に生成油回収塔37を加熱できる。
【0047】
圧力調整弁74の開度は、手動によって操作してもよいが、図示のように、管路54B内の圧力を圧力センサー75で検出し、その検出圧力により圧力調整弁74の開度を自動制御してもよい。このように構成すると、圧力制御弁74の開度は、管路54B内の圧力変動に対し自動的に制御されるため、運転中における伝熱管51内出口の液の比率を常に一定に調整可能となり、伝熱管51内出口で液の比率が極端に低くなるのを防止でき、より安定した運転を行なうことができる。
【0048】
加熱炉50の伝熱管51は口径を細く設定し、管内流速が、起動時及び立下げ時においても常に乱流域になるようにした。すなわち、管内流量によって異なるが、伝熱管51の口径を細くすると管内流速が速くなって乱流域となり、熱伝達効率が高くなり、伝熱管51内の再重合、コーキングを有効に防止することができる。
【0049】
また、加熱炉50に設けられた伝熱管51の出口温度は350℃以下にすることが望ましい。すなわち、加熱炉50の伝熱管出口温度が350℃を越えると、加熱炉50内に流入した生成油は加熱され過ぎ、直ぐにコーキングしやすい条件になるためである。このように伝熱管51の出口温度を制限するためには、伝熱管51を含む管路内の圧力を調整すればよい。このように管路内圧力を下げるには生成油回収塔37の運転圧力を減圧すればよい。
【0050】
通常、生成油回収塔37は、図1で示した真空ポンプ70により負圧または負圧に近い状態で運転されている。中質油は熱循環ループ54の入り側管路54Aに設けたポンプ53により生成油回収塔37から抜き出され、このポンプ以降の加熱炉50内の伝熱管51を含む管路内は正圧に維持される。この管路内圧力を高めると、前述のように伝熱管51内の出口の液の比率を30%wt以上にすることができるが、出口温度も上昇する。そこで、このように圧力を高めた状態においても伝熱管51の出口温度が350℃以下となるように、生成油回収塔37の運転圧力を減圧する。
【0051】
すなわち、真空ポンプ70により、生成油回収塔37の運転圧力を減圧し、加熱炉50の伝熱管出口温度が350℃以下になるようにする。この結果、伝熱管51内での再重合やコーキングを防止できる。また、伝熱管51内出口の液の比率も一定に調整しやすくなり、液の比率か極端に低くなるのを防止することもできる。
【0052】
【発明の効果】
本発明によれば、廃プラスチックの分解油を蒸留処理するために分解油を加熱する際、回収塔加熱炉の伝熱管内での再集合やコーキング発生を有効に防止できるので、安定した廃プラスチック油化処理を行なうことができる。
【図面の簡単な説明】
【図1】本発明による廃プラスチック油化処理装置の一実施の形態を示す系統図である。
【図2】同上一実施の形態に用いる回収塔加熱炉の断面図である。
【図3】同上一実施の形態に用いる対流加熱部を示しており(a)は正面図、(b)は側面図である。
【図4】同上一実施の形態に用いる輻射加熱部を示す展開正面図である。
【図5】同上一実施の形態における輻射加熱部の取付け状態を示す平断面図である。
【図6】本発明の他の実施の形態を示す系統図である。
【図7】一般的な廃プラスチック油化処理装置の全体構成を示す模式図である。
【符号の説明】
36 分解油ドラム
37 生成油回収塔
46 分解油供給路
50 回収塔加熱炉
51 伝熱管
51A 輻射加熱管部
51B 対流加熱管部
52 熱源(バーナ)
54 熱循環ループ
54A 熱循環ループの入り側
54B 熱循環ループの出側
71 炉体
74 圧力調整弁
75 圧力センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste plastic oil processing apparatus for thermally decomposing plastic waste and converting it into an oil, and relates to an improvement of a heating portion thereof.
[0002]
[Prior art]
In recent years, waste plastic oil converting apparatuses that thermally decompose plastic waste and extract oil components have come to be used.
[0003]
In this type of waste plastic oil processing apparatus, plastic waste is decomposed by a thermal decomposition apparatus, the generated cracked gas (oil vapor) is condensed, and the obtained decomposed oil is once recovered in a cracked oil drum. This cracked oil is sent to the product oil recovery tower (distillation tower), where it is fractionated into light oil, medium oil and heavy oil due to the difference in boiling point. It stores in an oil tank (for example, refer patent document 1).
[0004]
In this example, the cracked gas (oil vapor) generated in the thermal cracking device is condensed and recovered in the cracked oil drum. However, the contents described below are not limited to such a system, and the generated cracked gas (oil The present invention can also be applied to a case where (gas) is directly sent to a product oil recovery tower (distillation tower).
[0005]
When fractionating the cracked oil in the product oil recovery tower, the cracked oil is heated in the recovery tower heating furnace in order to apply heat to the cracked oil. At this time, in order to efficiently heat the cracked oil, it is passed through a relatively thin and bent heat transfer tube disposed in the recovery tower heating furnace, and a heat source provided outside the heat transfer tube Heated by.
[0006]
By the way, the cracked oil obtained by thermally decomposing plastic waste has many unsaturated components. For this reason, when distilling cracked oil in the product oil recovery tower (distillation tower), if it is heated in the recovery tower heating furnace as described above, re-decomposition / repolymerization occurs in the heat transfer tube in the recovery tower heating furnace. easy. In addition, due to the presence of corrosive substances, there is a problem that coking occurs in the heat transfer tube and corrosion progresses.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-173690
[Problems to be solved by the invention]
Thus, in order to distill the cracked oil obtained in the waste plastic oil converting process, when the cracked oil is heated, coking may occur in the heat transfer tube of the heating furnace, or corrosion may develop.
[0009]
An object of the present invention is to provide a waste plastic oil converting apparatus that prevents coking in a heat transfer tube and can be stably operated without causing corrosion when heated in a heating furnace for distillation treatment of cracked oil. It is in.
[0010]
[Means for Solving the Problems]
The waste plastic oil converting apparatus according to the present invention comprises a product oil recovery tower for distilling cracked oil decomposed from plastic waste by thermal decomposition due to a difference in boiling point, a heat transfer tube, and a heat source for heating the heat transfer tube from the outside. A recovery tower heating furnace, a cracked oil supply path for sending the cracked oil to a lower stage of the generated oil recovery tower, and a portion through which the generated oil of the generated oil recovery tower is withdrawn by a pipe. Directly connected to the inlet side of the heat transfer tube, the outlet side of this heat transfer tube is connected to the lower stage of the product oil recovery tower through a conduit, and only the product oil generated in the product oil recovery tower is heated in the recovery tower heating furnace, And a heat circulation loop for supplying the heated product oil to the lower stage of the product oil recovery tower .
[0011]
In the present invention, the recovery tower heating furnace has a cylindrical shape, a burner serving as a heat source is installed below the inside thereof, has a furnace body that exhausts from the upper part, and the heat transfer tube is a lower part near the burner in the furnace body. It consists of a radiant heating pipe part arranged along the inner wall surface and a convection heating pipe part installed in the upper part of the furnace body and heated by the exhaust gas of the burner. The convection heating pipe part of the heat circulation loop is connected to the radiant heating pipe part, and the product oil extracted from the product oil recovery tower is radiated from the convection heating pipe part of the heat transfer pipe to the radiant heating pipe. flows in part, constitutes the flow so that the radiant heating tube portion at the bottom of the product oil recovery column.
[0012]
In the present invention, a pressure control valve is installed in the outlet side pipe of the thermal circulation loop, and the pressure in the pipe is adjusted so that the ratio of the liquid at the outlet portion of the heat transfer pipe from the recovery tower heating furnace is 30% wt or more. To do.
[0013]
In the present invention, the pressure regulating valve is configured to detect the pressure in the pipe line and to control the opening degree by the detected pressure.
[0015]
Furthermore, in the present invention, the operating pressure of the product oil recovery tower is reduced, and the heat transfer tube outlet temperature of the recovery tower heating furnace is preferably set to 350 ° C. or lower.
[0016]
In these inventions, a part of the product oil generated by the product oil recovery tower is heated by flowing through the heat transfer tube of the recovery tower heating furnace, and the heated product oil is supplied to the cracked oil reservoir of the product oil recovery tower. As a result, a stable distillation operation can be performed without coking in the heat transfer tube.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a waste plastic oil processing apparatus according to the present invention will be described with reference to the drawings.
[0018]
First, a system configuration of a general waste plastic oil processing facility will be schematically described with reference to FIG.
[0019]
The waste plastic oil treatment system includes a pretreatment step 11, a dehydrochlorination / thermal decomposition step 12, a hydrochloric acid treatment step 13, a product oil recovery step 14, and an exhaust gas treatment step 15.
[0020]
In the pretreatment step 11, the plastic waste 17 reduced in a pail shape is carried in, crushed by a crusher 18, and then dried by a dryer 19. Then, impurities are removed from the dryer cyclone 20 through the wind separator 21 and the magnetic separator 22, granulated by the granulator 23, and stored in the granulating silo 24.
[0021]
In the dehydrochlorination / pyrolysis step 12, the plastic granulated in the pretreatment step 11 is fed from the desalinator hopper 26 to the desalinator 27 and desalted, and then in the molten state into the melting tank 28. Once stored.
[0022]
The desalted gas separated by the desalting treatment is sent to the hydrochloric acid treatment step 13, treated in the desalting gas combustion furnace 32 and the hydrogen chloride absorption tower 33, and the generated hydrochloric acid is stored in the hydrochloric acid tank 34.
[0023]
In addition, the desalted processed material to be processed is supplied from the melting tank 28 to the thermal decomposition apparatus 29 where it is separated into decomposition gas (oil vapor) and residue. Of these, the residue is cooled by the residue cooling conveyor 30 and then discharged to a residue processing unit (not shown). On the other hand, the cracked gas is condensed into cracked oil and accumulated in the cracked oil drum 36 provided in the product oil recovery step 14.
[0024]
In the product oil recovery step 14, the cracked oil stored in the cracked oil drum 36 is sent to the product oil recovery tower 37, where it is fractionated into light oil, medium oil, and heavy oil according to the difference in boiling points. It is stored in a tank 38, a medium oil tank 39, and a heavy oil tank 40.
[0025]
The exhaust gas generated in the product oil recovery step 14 and the hydrochloric acid treatment step 13 is burned in the exhaust gas combustion device 42 in the exhaust gas treatment step 15, detoxified and released to the atmosphere.
[0026]
The present invention relates to the product oil recovery step 14 and will be described in detail below.
[0027]
In FIG. 1, the cracked oil decomposed from the plastic waste by pyrolysis is sent from the cracked oil drum 36 to the lower stage of the product oil recovery tower 37 through the cracked oil supply path 46 by the cracked oil pump 45. In the middle of the cracked oil supply passage 46, a cracked oil heater 47 is provided. The cracked oil heater 47 heats the cracked oil with the high-temperature heavy oil extracted from the product oil recovery tower 37.
[0028]
Reference numeral 50 denotes a recovery tower heating furnace (hereinafter simply referred to as a heating furnace), which includes a heat transfer tube 51 and a heat source 52 for heating the heat transfer tube 51. The detailed structure of the heating furnace 50 will be described later. The entrance side of the heat transfer tube 51 provided in the heating furnace 50 is a portion (for example, medium oil) from which the product oil (for example, medium oil) of the product oil recovery tower 37 is extracted by a pipe line 54A having a pump 53 in the middle part (for example, , Middle part). Also, the delivery side pipe 54B of the heat transfer tube 51, connected to the lower part of the product oil recovery tower 3 7, to form a heat circulation loop 54. The pipe 54A is referred to as the inlet side pipe of the thermal circulation loop 54, and 54B is referred to as the outlet side pipe.
[0029]
A return pipe 55 and a medium oil take-out pipe 56 are branched from the discharge side portion of the pump 53 of the inlet pipe 54A. The return pipe 55 returns a part of the medium oil extracted from the product oil recovery tower 37 to the middle stage of the product oil recovery tower 37. Further, the medium oil take-out pipeline 56 cools a part of the medium oil taken out from the product oil collecting tower 37 by the cooler 57 and sends it to a medium oil tank (not shown).
[0030]
A heavy oil take-out pipeline 59 is connected to the bottom of the product oil recovery tower 37, and heavy oil staying at the bottom of the product oil recovery tower 37 is taken out by the pump 60 during the distillation operation. The line 59 is provided with the cracked oil heater 47 and the cooler 61, and the extracted heavy oil is cooled by these and then sent to a heavy oil tank (not shown). A return pipe 62 branches off from the heavy oil take-out pipe 59, and a part of the taken-out heavy oil is returned to the lower stage of the product oil recovery tower 37.
[0031]
A tower top gas extraction pipe 64 is connected to the top of the product oil recovery tower 37, and is joined with a pipe 65 from the cracked oil drum 36 and connected to a tower top drum 67 through a condenser 66. ing. Therefore, the top gas of the product oil recovery tower 37 is condensed by the condenser 66 together with the gas components in the cracked oil drum 37 and stored in the top drum 67. The oil component stored in the climbing drum 67 is sent as light oil to a light oil tank (not shown) by a pump 68. A part of this light oil is returned to the upper stage of the product oil recovery tower 37 by the return pipe 69.
[0032]
The gas component staying in the tower top drum 67 is sucked by the vacuum pump 70 and sent to the exhaust gas treatment process as off-gas. Further, the vacuum pump 70 has a function of sucking the top gas in the product oil recovery tower 37 and can adjust the operating pressure in the product oil recovery tower 37.
[0033]
Next, a detailed configuration of the heating furnace 50 will be described with reference to FIG.
[0034]
A furnace body 71 has a cylindrical shape having a narrow neck portion, and a burner 52 serving as a heat source is installed below the inside of the furnace body. An exhaust pipe 72 is integrally connected to the upper part, and combustion exhaust gas from the burner 52 is exhausted from the upper part through the exhaust pipe 72. The heat transfer tube 51 includes a radiant heating tube portion 51A installed at the lower portion in the furnace body 71 and a convection heating tube portion 51B disposed above. The radiant heating tube portion 51A is disposed along the lower inner wall surface so as to surround the flame of the burner 52 in the furnace body 71, and is heated by the radiant heat of the burner flame. The convection heating pipe portion 51 </ b> B is installed in an exhaust passage formed by the exhaust cylinder 72 above the furnace body 71 and is heated by the exhaust gas from the burner 52.
[0035]
As shown in FIGS. 3A and 3B, the convection heating pipe portion 51B is formed by diffracting a large number of finned thin tubes so as to form a rectangular parallelepiped as a whole. As shown, it is installed so as to cross the exhaust passage formed by the exhaust cylinder 72. Further, as shown in FIG. 3B, one end 51Ba of the convection heating pipe portion 51B is connected to the inlet side conduit 54A of the thermal circulation loop 54 shown in FIG. 1, and the other end 51Bb is cross-over. It connects with the pipe | tube 51C, It connects with 51 A of radiation heating pipe parts arrange | positioned below via this crossover pipe | tube 51C.
[0036]
As shown in FIG. 4, the radiant heating tube portion 51A is formed in a flat shape by diffracting a large number of narrow tubes as shown in FIG. 4, and is installed in a cylindrical shape along the inner wall surface of the furnace body 71 as shown in FIG. is doing. And one end 51Aa shown in FIG. 4 is connected to the crossover pipe 51C, and communicates with the convection heating pipe section 51B disposed above via the crossover pipe 51C. Further, the other end 51Ab shown in FIG. 4 is connected to the outlet side conduit 54B of the thermal circulation loop 54 shown in FIG.
[0037]
Therefore, a part of the medium oil from the product oil recovery tower 37 enters the convection heating pipe part 51B of the heat transfer pipe 51 in the heating furnace 50, and flows from the convection heating pipe part 51B to the radiant heating pipe part 51A. A part of the radiant heating tube portion 51A is vaporized.
[0038]
In the above configuration, the cracked oil in the cracked oil drum 36 is directly sent to the lower stage of the product oil recovery tower 37 through the cracked oil supply passage 46. During the distillation operation, medium oil is extracted from the middle stage of the product oil recovery tower 37 by the pump 53 provided in the pipeline 54A. The medium oil extracted from the middle stage of the product oil recovery tower 37 is recovered by a medium oil take-out line 56 to a medium oil tank (not shown) via a medium oil cooler 57. A part of the refrigerant is circulated to the middle stage of the product oil recovery tower 37 through the return pipe 55 and is sent to the heating furnace 50 to be heated.
[0039]
That is, the medium oil sent from the middle stage of the product oil recovery tower 37 by the pump 53 and flowing into the heating furnace 50 first flows through the convection heating pipe portion 51B installed at the upper part of the heating furnace 50 and is heated. . Then, it further heats by flowing through the radiation heating pipe part 51A arranged in a cylindrical shape in the lower part. Then, a part of the medium oil is vaporized in the radiant heating pipe portion 51A to become a gas-liquid two-phase flow and flows out from the heating furnace 50 to the pipe line 54B.
[0040]
The medium oil heated in the heating furnace 50 and partially vaporized into a gas-liquid two-phase flow is returned to the lower stage of the product oil recovery tower 37 through the pipe 54B. That is, a thermal circulation loop 54 is formed from the middle stage of the product oil recovery tower 37 through the heating furnace 50 to the lower stage of the product oil recovery tower 37. Therefore, the cracked oil can be distilled in the product oil recovery tower 37 while constantly supplying heat to the product oil recovery tower 37.
[0041]
As described above, since the stable produced oil (for example, medium oil) after the distillation treatment is heated in the heating furnace 50 and the heat is supplied to the produced oil recovery tower 37, the conventional unsaturated oil is used. The cracked oil can be prevented from re-polymerizing or coking in the recovery tower heating furnace, causing it to thicken and clogging the heat transfer tubes, as in the case of sending a large amount of cracked oil directly to the recovery tower heating furnace. . That is, the produced oil (medium oil) that has flowed into the heating furnace 50 flows from the convection heating tube portion 51B continuously formed by the narrow tube to the radiant heating tube portion 51A. The product oil stays and coking, and it does not thicken and clog the inside of the heat transfer tube, preventing repolymerization and coking in the heating furnace 50, and always stable. The product oil recovery tower 37 can be heated.
[0042]
The light oil is recovered from the top gas extracted from the top of the product oil recovery tower 37, and the heavy oil is extracted from the bottom bottom of the product oil recovery tower 37 and recovered.
[0043]
In addition, when the distillation operation is started, the generated oil cannot be taken out from the generated oil recovery tower 37. Therefore, the separately prepared generated oil may be supplied to the heating furnace 50 and heated by a starting pipe (not shown).
[0044]
Here, the medium oil which is heated in the heating furnace 50 and supplies heat to the product oil recovery tower 37 through the pipe 54B is a gas-liquid two-phase flow partially vaporized. This is because the gas component containing the gas component can be well mixed with the cracked oil stored in the lower stage of the product oil recovery tower 37 and heated efficiently. Therefore, it can be considered to control the ratio of the gas and liquid to a preferable ratio.
[0045]
FIG. 6 is based on such an idea. A pressure control valve 74 is installed in the outlet side pipe 54B of the thermal circulation loop 54, and the ratio of the liquid at the outlet of the heat transfer pipe from the heating furnace 50 is 30% wt or more ( The pressure in the pipeline is adjusted so that the vapor component is less than 70% wt. That is, by controlling the opening degree of the pressure control valve 74 and increasing the pressure in the heat transfer pipe 51 including the pipe 54B, the ratio of the liquid at the outlet in the heat transfer pipe 51 is set to 30% wt or more. The pressure control valve 74 should be installed as close as possible to the product oil recovery tower 37. This is because the pressure should be uniform over as wide a range as possible from the outlet of the heat transfer tube 51 to the product oil recovery tower 37.
[0046]
In this way, by installing the pressure control valve 74 on the outlet side of the heat transfer tube 51 of the heating furnace 50, the ratio of the liquid at the outlet in the heat transfer tube 51 can be adjusted, and the ratio of the liquid at the outlet in the heat transfer tube 51 is lowered. As a result, the heating temperature increases in the heat transfer tube 51. For this reason, it is possible to prevent coking of the generated oil on the inner wall of the heat transfer tube 51, to prevent the heat transfer tube 51 from being blocked due to coking, and to stably heat the generated oil recovery tower 37.
[0047]
The opening degree of the pressure adjustment valve 74 may be manually operated. However, as shown in the figure, the pressure in the conduit 54B is detected by the pressure sensor 75, and the opening degree of the pressure adjustment valve 74 is automatically detected based on the detected pressure. You may control. With this configuration, the opening degree of the pressure control valve 74 is automatically controlled with respect to the pressure fluctuation in the pipe line 54B, so that the ratio of the liquid at the outlet of the heat transfer pipe 51 during operation can always be adjusted to be constant. Thus, the ratio of the liquid at the outlet of the heat transfer tube 51 can be prevented from becoming extremely low, and a more stable operation can be performed.
[0048]
The diameter of the heat transfer tube 51 of the heating furnace 50 was set to be narrow so that the flow velocity in the tube was always in a turbulent region even at the time of startup and at the time of shutdown. That is, although it varies depending on the flow rate in the tube, if the diameter of the heat transfer tube 51 is narrowed, the flow velocity in the tube is increased to become a turbulent flow region, heat transfer efficiency is increased, and repolymerization and coking in the heat transfer tube 51 can be effectively prevented. .
[0049]
In addition, the outlet temperature of the heat transfer tube 51 provided in the heating furnace 50 is desirably 350 ° C. or lower. That is, when the outlet temperature of the heat transfer tube of the heating furnace 50 exceeds 350 ° C., the produced oil that has flowed into the heating furnace 50 is overheated and becomes a condition where coking is easily performed immediately. Thus, in order to restrict | limit the exit temperature of the heat exchanger tube 51, what is necessary is just to adjust the pressure in the pipe line containing the heat exchanger tube 51. FIG. Thus, the operating pressure of the product oil recovery tower 37 may be reduced in order to reduce the pressure in the pipe line.
[0050]
Normally, the product oil recovery tower 37 is operated under a negative pressure or a state close to a negative pressure by the vacuum pump 70 shown in FIG. The medium oil is extracted from the product oil recovery tower 37 by the pump 53 provided in the inlet side pipe 54A of the thermal circulation loop 54, and the inside of the pipe including the heat transfer pipe 51 in the heating furnace 50 after this pump has a positive pressure. Maintained. When the pressure in the pipe line is increased, the ratio of the liquid at the outlet in the heat transfer pipe 51 can be increased to 30% wt or more as described above, but the outlet temperature also increases. Therefore, the operating pressure of the product oil recovery tower 37 is reduced so that the outlet temperature of the heat transfer tube 51 is 350 ° C. or lower even in such a state where the pressure is increased.
[0051]
That is, the operating pressure of the product oil recovery tower 37 is reduced by the vacuum pump 70 so that the heat transfer tube outlet temperature of the heating furnace 50 is 350 ° C. or lower. As a result, repolymerization and coking in the heat transfer tube 51 can be prevented. In addition, the ratio of the liquid at the outlet of the heat transfer tube 51 can be easily adjusted to be constant, and the liquid ratio can be prevented from becoming extremely low.
[0052]
【The invention's effect】
According to the present invention, when the cracked oil is heated in order to distill the cracked oil of the waste plastic, it is possible to effectively prevent re-aggregation and coking in the heat transfer tube of the recovery tower heating furnace. Oiling can be performed.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a waste plastic oil converting apparatus according to the present invention.
FIG. 2 is a cross-sectional view of a recovery tower heating furnace used in the embodiment.
FIGS. 3A and 3B show a convection heating unit used in the embodiment, in which FIG. 3A is a front view, and FIG. 3B is a side view.
FIG. 4 is a developed front view showing a radiation heating unit used in the embodiment.
FIG. 5 is a cross-sectional plan view showing a mounting state of the radiation heating unit according to the embodiment.
FIG. 6 is a system diagram showing another embodiment of the present invention.
FIG. 7 is a schematic diagram showing an overall configuration of a general waste plastic oil processing apparatus.
[Explanation of symbols]
36 Cracked oil drum 37 Generated oil recovery tower 46 Cracked oil supply path 50 Recovery tower heating furnace 51 Heat transfer pipe 51A Radiation heating pipe part 51B Convection heating pipe part 52 Heat source (burner)
54 Thermal circulation loop 54A Thermal circulation loop entry side 54B Thermal circulation loop exit side 71 Furnace body 74 Pressure regulating valve 75 Pressure sensor

Claims (5)

熱分解によりプラスチック廃棄物から分解された分解油を沸点の差により蒸留する生成油回収塔と、
伝熱管及びこの伝熱管をその外部から加熱する熱源を有する回収塔加熱炉と、
前記分解油を生成油回収塔の下段に送る分解油供給路と、
前記生成油回収塔の生成油が抜き出される部分を管路により前記回収塔加熱炉の伝熱管の入り側に直接連結し、この伝熱管の出側を管路により生成油回収の前記下段に連結し、前記生成油回収塔で生成された生成油のみを回収塔加熱炉で加熱させ、この加熱された生成油を生成油回収塔の下段に供給する熱循環ループと、
を備えたことを特徴とする廃プラスチック油化処理装置。
A product oil recovery tower that distills cracked oil decomposed from plastic waste by pyrolysis according to the difference in boiling point;
A recovery tower heating furnace having a heat transfer tube and a heat source for heating the heat transfer tube from the outside;
A cracked oil supply passage for sending the cracked oil to the lower stage of the generated oil recovery tower;
The portion from which the product oil of the product oil recovery tower is extracted is directly connected to the inlet side of the heat transfer tube of the recovery tower heating furnace through a conduit, and the outlet side of the heat transfer tube is connected to the lower stage of the product oil recovery tower by the conduit. A thermal circulation loop that heats only the product oil generated in the product oil recovery tower in a recovery tower heating furnace and supplies the heated product oil to the lower stage of the product oil recovery tower;
A waste plastic oil processing apparatus characterized by comprising:
回収塔加熱炉は、
筒状を成し、その内部下方に熱源となるバーナが設置され、上部から排気する炉体を有し、
伝熱管は、上記炉体内のバーナ近くの下部内壁面に沿って配置された輻射加熱管部と、炉体内の上部に設置され前記バーナの排気ガスにより加熱される対流加熱管部とからなり、
熱循環ループの入り側管路は前記伝熱管の対流加熱管部に連結され、熱循環ループの出側管路は輻射加熱管部に連結し、
生成油回収塔から抜き出された生成油は、伝熱管の対流加熱管部から輻射加熱管部に流れ、輻射加熱管部から前記生成油回収塔の下部に流れるように構成した
ことを特徴とする請求項1に記載の廃プラスチック油化処理装置。
Recovery tower heating furnace
It has a cylindrical shape, a burner serving as a heat source is installed below the inside, and has a furnace body that exhausts from the top,
The heat transfer tube is composed of a radiant heating tube portion arranged along the lower inner wall surface near the burner in the furnace body, and a convection heating tube portion installed on the upper portion of the furnace body and heated by the exhaust gas of the burner,
The inlet side pipe of the heat circulation loop is connected to the convection heating pipe part of the heat transfer pipe, and the outlet side pipe of the heat circulation loop is connected to the radiation heating pipe part,
The product oil extracted from the product oil recovery tower flows from the convection heating pipe part of the heat transfer pipe to the radiation heating pipe part, and flows from the radiation heating pipe part to the lower part of the product oil recovery tower. The waste plastic oil processing apparatus of Claim 1.
熱循環ループの出側管路に圧力制御弁を設置し回収塔加熱炉からの伝熱管出口部分の液の比率が30%wt以上となるように管路内圧力を調整する
ことを特徴とする請求項1に記載の廃プラスチック油化処理装置。
A pressure control valve is installed in the outlet pipe of the thermal circulation loop, and the pressure in the pipe is adjusted so that the ratio of the liquid at the outlet of the heat transfer pipe from the recovery tower heating furnace is 30% wt or more. The waste plastic oil processing apparatus according to claim 1.
圧力調整弁は、管路内圧力を検出し、その検出圧力により開度を制御できる構成とした
ことを特徴とする請求項3に記載の廃プラスチック油化処理装置。
The waste plastic oil converting apparatus according to claim 3, wherein the pressure regulating valve is configured to detect the pressure in the pipe line and control the opening degree by the detected pressure.
生成油回収塔の運転圧力を減圧し、回収塔加熱炉の伝熱管出口温度が350℃以下となるように設定した
ことを特徴とする請求項1に記載の廃プラスチック油化処理装置。
2. The waste plastic oil treatment apparatus according to claim 1, wherein the operating pressure of the product oil recovery tower is reduced and the heat transfer tube outlet temperature of the recovery tower heating furnace is set to 350 ° C. or lower.
JP2003182371A 2003-06-26 2003-06-26 Waste plastic oil processing equipment Expired - Fee Related JP4157436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182371A JP4157436B2 (en) 2003-06-26 2003-06-26 Waste plastic oil processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182371A JP4157436B2 (en) 2003-06-26 2003-06-26 Waste plastic oil processing equipment

Publications (2)

Publication Number Publication Date
JP2005015635A JP2005015635A (en) 2005-01-20
JP4157436B2 true JP4157436B2 (en) 2008-10-01

Family

ID=34182776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182371A Expired - Fee Related JP4157436B2 (en) 2003-06-26 2003-06-26 Waste plastic oil processing equipment

Country Status (1)

Country Link
JP (1) JP4157436B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255159A (en) * 2007-04-02 2008-10-23 Sanei Kogyo:Kk Method for synthesizing oligomer having on its one end vinylidene-type double bond and/or oligomer having on its both ends vinylidene-type double bonds
US9920262B1 (en) * 2016-11-22 2018-03-20 Rj Lee Group, Inc. Methods of separation of pyrolysis oils
GB2589936B (en) * 2019-12-20 2021-12-29 Plastic Energy Ltd A method for pyrolysing plastic material and a system therefor

Also Published As

Publication number Publication date
JP2005015635A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP5828719B2 (en) Ammonia separation device and ammonia separation method
JP5000679B2 (en) Improved sulfur-containing residue treatment system
NO317605B1 (en) Method and apparatus for cleaning cuttings
JPH0269593A (en) Decomposition treatment method for low-grade raw materials
BRPI0409312B1 (en) apparatus and process for the production of vinyl chloride by thermal cracking of 1,2-dichloroethane
KR100983721B1 (en) Method and apparatus for producing a purified liquid
JP4157436B2 (en) Waste plastic oil processing equipment
FR2635695A1 (en) PROCESS FOR EXTRACTING SOLID MATERIALS USING A SOLVENT AND APPARATUS FOR IMPLEMENTING SAID METHOD
KR100362246B1 (en) Pyrolysis Treatment Device of Polymer Waste
KR950008273B1 (en) Method for the production of vinyl chloride by pyrolysis of 1,2-dichloroethan
WO2001003810A2 (en) sAPOUR MANAGEMENT SYSTEM
JP4907652B2 (en) Method for recovering cyclododecatriene by evaporation
US8491706B2 (en) Oil vapor cleaner
JP2003267896A (en) Method for recovery of monomer and apparatus for recovery
CN113166041B (en) Process for producing N-vinylcarboxylic acid amide
JP2014240460A (en) System for treating waste tire, waste plastic, etc. for conversion into pyrolysis oil
JP5113396B2 (en) Pyrolysis treatment system
JPH09279158A (en) Method for treating carbon residue discharged from solid-liquid separator
JP6461596B2 (en) Precision distillation purification apparatus and method
JP4322365B2 (en) Oil waste treatment method and apparatus for plastic waste
KR102341860B1 (en) waste acrylic treatment apparatus
KR100963062B1 (en) Chemical Waste Treatment Device
JPH11128602A (en) Spray evaporator
JPS6254039A (en) Metal recovering apparatus
CN115910410A (en) Method for treating radioactive waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees