JP4157202B2 - Process for producing spindle-shaped calcium carbonate - Google Patents
Process for producing spindle-shaped calcium carbonate Download PDFInfo
- Publication number
- JP4157202B2 JP4157202B2 JP27050798A JP27050798A JP4157202B2 JP 4157202 B2 JP4157202 B2 JP 4157202B2 JP 27050798 A JP27050798 A JP 27050798A JP 27050798 A JP27050798 A JP 27050798A JP 4157202 B2 JP4157202 B2 JP 4157202B2
- Authority
- JP
- Japan
- Prior art keywords
- calcium carbonate
- zinc
- spindle
- particle size
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、工業的規模でより簡便に小粒子径の紡錘状炭酸カルシウムを製造する方法に関する。より詳しくは水酸化カルシウム懸濁液の炭酸化反応において、特定金属の化合物を添加することにより、製紙用の顔料あるいは充填剤、プラスチックやゴム等の高分子材料の充填剤として好適に使用することのできる小粒子径の紡錘状炭酸カルシウムを製造する方法に関する。
【0002】
【従来の技術】
炭酸カルシウムには天然の白色石灰石を物理的に粉砕した重質炭酸カルシウムと化学的な沈殿反応による合成炭酸カルシウムとがある。前者の重質炭酸カルシウムは、単に天然物を粉砕するという製造プロセスからして比較的安価に製造できるが、粒度分布幅が広く物理的粉砕独特の不規則な形態をしているため、均一な粒子径や形態に由来して発現する優れた機能を有する粉体を製造することは容易なことではい。
【0003】
これに対し、後者の合成炭酸カルシウムは化学的な沈殿反応により製造されるため粒子径や形態をある範囲において制御することが可能であり、このようにして製造された紡錘状、立方体状、柱状等の独特の形態と狭い一定範囲の粒度からなる炭酸カルシウムは、それぞれが有している形態及び粒度等の違いに由来する特有の機能や特性を有しており、その機能や特性を生かして製紙や種々の高分子材料分野で使い分けられている。
【0004】
これらの合成炭酸カルシウムの中でも紡錘状炭酸カルシウムは、その名の通り長径3〜6μm、短径1〜2μmの紡錘形をなしており、主として製紙用顔料や填料として大量に使用されているものの、通常の反応条件下ではその粒子径は上記の限られた範囲のものしか製造できない。そのため粒子径制御に関しては古くより種々検討がなされてきており、これに関する提案には以下のとおりのものがある。
【0005】
すなわち。特公昭54−28399号公報の水酸化カルシウムを予め湿式磨砕し、懸濁液の濃度と温度を厳密に制御することによる方法、特公昭60−33765号公報の水酸化カルシウム懸濁液に水ガラスあるいはシリカゾルを添加し炭酸ガスを吹き込むことにより0.5〜1.0μmの紡錘形炭酸カルシウムを得る方法、特開平1−18911号公報の硫酸化合物を添加して、長径0.6〜3μm、短径0.1〜1μmの紡錘形炭酸カルシウムを製造する方法がある。
【0006】
さらに、特開平5−238730号公報の塩基性炭酸カルシウムが生成する条件下でバリウムまたはストロンチウム化合物存在下に炭酸化反応を行うことによる0.1〜1.0μmの紡錘状炭酸カルシウムの製造方法も提案されている。しかしながら、これらの製造方法は、製造工程の反応条件が厳密化することや複雑化することに起因していずれも発生するコスト増あるいは特殊な添加剤を使用する等の理由で工業的に採用された例は知られていない。
【0007】
【発明が解決しようとする課題】
このように紡錘状炭酸カルシウムは、合成炭酸カルシウムの中でも最も容易に生産できるものの1つで粒子径も適切であることから製紙用の填料として大量に使用されているが、製紙用顔料としてはむしろ立方体状や柱状炭酸カルシウムが良く使用されている。その一因には小粒径品の粒子径制御の困難さがある。この小粒径品の粒子径制御が工業生産レベルで容易に行えるようになれば、従来の合成炭酸カルシウムの粒子径の空白域である0.1〜3.0μmの粒子径の炭酸カルシウムが工業生産レベルで製造できることになり、製紙用顔料としての利用が可能となると共に高分子材料等への新規用途の更なる拡大が期待できる。
【0008】
このような事情に鑑み、本発明者らは紡錘状炭酸カルシウムの利用拡大を図るべく、小粒径品の粒子径制御について鋭意検討を重ね、水酸化カルシウム懸濁液の炭酸化反応に際し特定金属の化合物を添加するという簡便な手法により解決できることを見出し本発明を完成するに至った。すなわち本発明の課題は、効率よく安定して工業的に製造が可能で、しかも経済性にも優れる小粒子径、特に小さな長径を有し、かつその粒子径を所望の値に簡便に制御できる紡錘状炭酸カルシウムを製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明における上記課題を解決するための手段は、水酸化カルシウム懸濁液の炭酸化反応により紡錘状炭酸カルシウムを製造する際に、亜鉛化合物を添加することにより、小粒子径の紡錘状炭酸カルシウムを製造するものである。好ましくはその時の亜鉛化合物が、酸化亜鉛、水酸化亜鉛及び亜鉛の可溶性塩からなる群から選択される1種または2種以上で、かつ亜鉛化合物の添加量が水酸化カルシウム100重量部当たりで金属量に換算して0.01〜5.0重量部であるという簡便なものであり、この手法により先の従来技術の製造方法の問題点を解決した。また添加量を調節することにより所望の小粒子径の紡錘状炭酸カルシウムを製造可能とした。
【0010】
【発明の実施の形態】
以下に本発明の詳細について説明する。
本発明で製造する紡錘状炭酸カルシウムの主製造原料である水酸化カルシウム懸濁液の調製に使用する石灰原料には特に制限はないが、国内天然資源として豊富にある高品質の石灰石を焼成して得た生石灰あるいはこれを更に消化して製造された消石灰が使用できる。これらを水に懸濁させることにより水酸化カルシウム懸濁液が得られる。その懸濁液濃度は、水酸化カルシウム濃度で30重量%以下、望ましくは1〜20重量%である。濃度が低すぎると製造効率が低下し、高すぎると十分な攪拌ができず均一な反応が行われない。
【0011】
炭酸化反応には二酸化炭素を使用するのが、品質上でもまた経済的にも有利である。この場合にはボンベにて供給される純ガスを使用しても良いし、生石灰製造時にキルンより発生する廃ガスあるいはその他の燃焼廃ガス等の二酸化炭素含有ガスを洗浄して利用することができる。二酸化炭素含有ガスの濃度には制限はないが、低濃度では反応効率が低下し炭酸化に長時間を要するため5%以上であることが望ましく10%以上であれば好適である。
【0012】
その際の炭酸化の開始温度については20〜45℃、望ましくは25〜40℃にするのがよい。温度が低すぎるとコロイド状炭酸カルシウムが生成し、目的とする紡錘状炭酸カルシウムが得られない。他方、温度が高すぎると長柱状〜針状のアラゴナイトが混入し、炭酸カルシウムの粒径や形態が不揃いとなり、使用にあたって不都合が生じる。
【0013】
この炭酸化反応の温度に関し特に開始温度を問題とするのは、開始温度を調節し、その後は成り行きまかせにしても何等差し支えないことが判明したからである。例えば温度上昇を成り行きまかせにし温度制御もしなければ反応熱により炭酸化終了までの間に常温下では通常10〜15℃の温度上昇があるが、温度制御して反応終了時まで開始温度を維持したものと比較しても生成物には特段差異がないことがわかった。その理由は明確ではないが、本発明者らの観察では、炭酸化の極めて初期の1〜数分の間に結晶核生成が行われており、その後は反応温度が生成物に与える影響が小さいものと考えている。
【0014】
亜鉛化合物の添加方法については、石灰石焼成時に炭酸亜鉛、水酸化亜鉛、塩化亜鉛等を添加して、原料となる生石灰中に混合させる方法、生石灰水和時に酸化亜鉛、水酸化亜鉛、亜鉛の可溶性塩を混合する方法、水酸化カルシウム懸濁液調製後、酸化亜鉛、水酸化亜鉛や亜鉛の可溶性塩を添加する方法等があり特に制限はない。なお第1の方法である石灰石焼成時に亜鉛化合物を添加する方法では、水酸化亜鉛及び塩化亜鉛等は焼成時の加熱によって酸化亜鉛に変化する。
【0015】
その際に添加する亜鉛の可溶性塩としては、塩化亜鉛、硫酸亜鉛、硝酸亜鉛等の亜鉛塩や亜鉛酸塩、アンミン錯塩があげられる。また亜鉛化合物の添加時期としては、炭酸化開始前に亜鉛が水酸化カルシウム懸濁液に含有されていることが必要で、炭酸化開始後では期待する効果が低下したり得られないことがある。
【0016】
そして、その亜鉛化合物の添加量については、目的とする粒子径により調整する。すなわち亜鉛化合物の添加量を調節することにより所望の粒子径の紡錘状炭酸カルシウムを得ることができるのであり、この添加量の調節によって粒子径を制御することができる。その添加量は、水酸化カルシウム100重量部に対して亜鉛の金属量に換算し0.01〜5.0重量部が適当で、添加量が多くなるほど粒子径は小さくなる傾向がある。0.01重量部より少ないと十分な効果が得られず、多量に添加しても効果には限界がある上、生成物は凝集が著しくなり実用に適さない。
【0017】
この水酸化カルシウム懸濁液の炭酸化反応においては、亜鉛化合物無添加の際には、得られた紡錘状炭酸カルシウムは、例えば炭酸化開始温度が30℃では長径が3μm、35℃では5μmになるのに対し、本発明では亜鉛化合物を添加することにより0.3〜5.0μmの間で連続的に安定して粒子径をコントロールすることができ、その結果所望の粒子径の紡錘状炭酸カルシウムを製造することができるようになった。それによりこれまでの用途である製紙用填料はもちろん、製紙用高級顔料や各種高分子材料の機能性フィラーとして、ユーザーからの各種粒子径に対するニーズに対応できる点で、実用性が極めて高いという特徴を有している。
【0018】
【実施例】
本発明の実施例及び比較例をあげて更に具体的に説明するが、本発明はこの実施例によって何等限定されるものではなく、特許請求の範囲の記載によって特定されるものであることはいうまでもないことである。なお以下の実施例及び比較例における亜鉛化合物量は全て水酸化カルシウム100重量部に対する亜鉛の重量部であり、紡錘状炭酸カルシウムの粒子径は透過型電子顕微鏡で観察された長径で示す。
【0019】
[実施例1〜5]
容量3リットルの筒型セパラブルフラスコに水道水1kgを入れ、この中に石灰石を焼成して製造した工業用生石灰130gと所定量の試薬酸化亜鉛を投入し攪拌した。この水酸化カルシウム懸濁液を100meshの篩に通し粗粒物を取り除き、更に水道水を加え全体量を2kgにして所定温度に調製した。この懸濁液を攪拌しながら二酸化炭素濃度20%の空気との混合ガスを1.6リットル/分の速度で導入し、pHの急激な低下(12.5→6.2)により炭酸化の終了を確認した。得られた紡錘状炭酸カルシウムの粒子径を透過型電子顕微鏡で観察した。
【0020】
その結果を表1に示す。この結果をみると同一温度で紡錘状炭酸カルシウムを製造した実施例1ないし3においては添加量が多いものほど粒子径が小さくなることが即座に理解できる。また開始温度が温度が高いと低い場合に比し粒子径が大きくなることもわかる。さらに、同一温度で紡錘状炭酸カルシウムを製造する後記する比較例1と対比すると本発明である亜鉛化合物を添加した場合の方が無添加の場合に比し粒子径が小さくなることも即座に理解できる。
【0021】
[実施例6〜8]
実施例1〜5同様に容量3リットルの筒型セパラブルフラスコに水道水1kgを入れ、この中に石灰石を焼成して製造した工業用生石灰130gを投入し攪拌した。この水酸化カルシウム懸濁液を100meshの篩に通し粗粒物を取り除き、全体量を2kgにして所定温度に調製した。この懸濁液に硫酸亜鉛7水和物を所定量添加し、500rpmで攪拌しながら二酸化炭素濃度20%の空気との混合ガスを1.6リットル/分の速度で導入し、pHの低下により炭酸化の終了を確認した。得られた紡錘状炭酸カルシウムの粒子径を透過型電子顕微鏡で観察した。その結果を表2に示す。
【0022】
[実施例9〜11]
容量3リットルの筒型セパラブルフラスコに水道水1kgを入れ、この中に石灰石を焼成して製造した工業用生石灰110gを投入し攪拌した。この水酸化カルシウム懸濁液を100meshの篩に通し粗粒物を取り除き、全体量を2kgにして所定温度に調製した。この懸濁液に塩化亜鉛を所定量添加し、500rpmで攪拌しながら二酸化炭素を0.5リットル/分の速度で導入し、pHの低下により炭酸化の終了を確認した。得られた紡錘状炭酸カルシウムの粒子径を透過型電子顕微鏡で観察した。その結果を表3に示す。
【0023】
[実施例12〜14]
容量3リットルの筒型セパラブルフラスコに水道水1.7kgを入れ、この中に石灰石を焼成・消化して−200meshに粉砕して製造された工業用消石灰300gを投入した。この水酸化カルシウム懸濁液に塩化亜鉛を添加した後、所定温度に調整し、この懸濁液を500rpmで攪拌しながら二酸化炭素を1.0リットル/分の速度で導入し、pHの低下により炭酸化の終了を確認した。得られた紡錘状炭酸カルシウムの粒子径を透過型電子顕微鏡で観察した。その結果を表4に示す。
【0024】
[実施例15]
試薬炭酸カルシウム200gに試薬塩化亜鉛3.09gを添加し十分に混合した後、電気炉にて1000℃で4時間焼成した。この亜鉛化合物含有酸化カルシウムを水道水を1.888kg入れた容量3リットルの筒型セパラブルフラスコに投入し、亜鉛含有量が1.0重量部の水酸化カルシウム懸濁液を調製した。この懸濁液を30℃に維持し500rpmで攪拌しながら二酸化炭素を1.0リットル/分の速度で導入し、pHの低下により炭酸化の終了を確認した。得られた炭酸カルシウムを透過型電子顕微鏡で観察したところ長経が1.7μmの紡錘状炭酸カルシウムであった。
【0025】
[実施例16]
工業用生石灰(サイズ20〜40mm)を水和させ、有効容積1m3の反応槽に温度32℃、水酸化カルシウム濃度8.3重量%の水酸化カルシウム懸濁液1043kgを調製した。この中に酸化亜鉛を2.16kg添加して亜鉛量で2.0重量部となるようにした後、二酸化炭素濃度25%の空気との混合ガスを80リットル/分の速度で導入し、pHの低下により炭酸化の終了を確認した。得られた炭酸カルシウムを透過型電子顕微鏡で観察したところ長径が2.0μmの紡錘状炭酸カルシウムであった。
【0026】
[比較例1]
容量3リットルの筒型セパラブルフラスコに水道水1kgを入れ、この中に石灰石の焼成により製造した工業用生石灰130gを投入し攪拌した。この水酸化カルシウム懸濁液を100meshの篩に通し粗粒物を取り除き、全体量を2kgにして30℃に調製した。この懸濁液を攪拌しながら二酸化炭素濃度20%の空気との混合ガスを1.6リットル/分の速度で導入し、pHの低下により炭酸化の終了を確認した。得られた炭酸カルシウムを透過型電子顕微鏡で観察したところ、長径3.0μmの紡錘状炭酸カルシウムであった。この結果を同一温度で紡錘状炭酸カルシウムを製造した実施例1ないし3と比較すると、前記したように本発明である亜鉛化合物を添加した場合の方が粒子径が小さいことが即座に理解できる。
【0027】
[比較例2]
炭酸化開始温度を35℃とし、懸濁液濃度を7.17重量%とした以外は、比較例1と同様の操作で炭酸カルシウムを得た。生成物を透過型電子顕微鏡で観察したところ、長径5.0μmの紡錘状炭酸カルシウムであった。
【0028】
[比較例3]
水酸化カルシウム懸濁液濃度を7.20重量%とし、その液中に酸化亜鉛を0.007g添加して亜鉛量を0.004重量部とした以外は、実施例2と同様の手順及び条件で実験を行った。得られた紡錘状炭酸カルシウムを透過型電子顕微鏡で観察したところ、酸化亜鉛の添加効果は認められず、無添加と同様の長径3.0μmの紡錘状炭酸カルシウムが生成した。
【0029】
[比較例4]
水酸化カルシウム懸濁液濃度を7.28重量%とし、その液中に塩化亜鉛を24.4g添加して亜鉛量を8.04重量部とした以外は、実施例11と同様の手順及び条件で実験を行った。得られた紡錘状炭酸カルシウムを透過型電子顕微鏡で観察したところ、実施例11の塩化亜鉛の添加量が4.61重量部の場合と粒子径には変化が見られなかったが、著しく凝集しており、その凝集粒子径は20〜50μmであった。
【0030】
[比較例5]
実施例2と同様の手順で、炭酸化開始温度を15℃と50℃として実験を行った。得られた炭酸カルシウムを透過型電子顕微鏡で観察したところ、15℃では平均粒子径が0.04μmのコロイド状炭酸カルシウムが生成した。また50℃では長径3.0μmの紡錘状炭酸カルシウムの他に長さ5〜10μmの長柱状〜針状の粒子が混在しており、粉末X線回折を行ったところアラゴナイトのピークが確認された。
【0031】
【発明の効果】
本発明の紡錘状炭酸カルシウムの製造方法は、亜鉛化合物を添加するという簡便な手法で、無添加の場合に比し小粒子径のものが得られるという優れた効果を奏するものである。またそれと同時に添加量を調節するという簡単な手法で粒子径を制御できるという優れたものである。その結果、実用性に優れ、工業的レベルでの採用が容易な技術であり、これまでの用途である製紙用填料はもちろん、製紙用顔料や各種高分子材料の機能性フィラーとして、ユーザーからの粒子径に関するニーズに対応できる点で、実用性が極めて高いという特徴を有している。
【表1】
【表2】
【表3】
【表4】
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing spindle-shaped calcium carbonate having a small particle diameter more easily on an industrial scale. More specifically, in the carbonation reaction of a calcium hydroxide suspension, by adding a compound of a specific metal, it can be suitably used as a pigment or filler for papermaking, or as a filler for polymer materials such as plastic and rubber. The present invention relates to a method for producing spindle-shaped calcium carbonate having a small particle size capable of forming a small particle.
[0002]
[Prior art]
Calcium carbonate includes heavy calcium carbonate obtained by physically pulverizing natural white limestone and synthetic calcium carbonate by chemical precipitation. The former heavy calcium carbonate can be manufactured at a relatively low cost from the manufacturing process of simply crushing a natural product, but it has a wide particle size distribution range and an irregular shape unique to physical crushing. It is not easy to produce a powder having an excellent function that is derived from the particle size and form.
[0003]
On the other hand, since the latter synthetic calcium carbonate is produced by a chemical precipitation reaction, it is possible to control the particle diameter and form within a certain range, and the spindle shape, cube shape, columnar shape produced in this way. Calcium carbonate, which consists of a unique form such as, and a narrow range of particle sizes, has unique functions and properties derived from differences in the form and particle size of each, and makes use of these functions and properties. It is used properly in papermaking and various polymer material fields.
[0004]
Among these synthetic calcium carbonates, spindle-shaped calcium carbonate has a spindle shape with a major axis of 3 to 6 μm and a minor axis of 1 to 2 μm as its name suggests, and is usually used in large quantities as a papermaking pigment or filler. Under the above reaction conditions, the particle size can be produced only in the above limited range. For this reason, various studies have been made on particle size control for a long time, and there are the following proposals related to this.
[0005]
That is. Japanese Patent Publication No. Sho 54-28399, a method in which calcium hydroxide is previously wet-ground and the concentration and temperature of the suspension are strictly controlled. A method of obtaining a spindle-shaped calcium carbonate of 0.5 to 1.0 μm by adding glass or silica sol and blowing carbon dioxide gas, adding a sulfuric acid compound of JP-A-1-18911, a major axis of 0.6 to 3 μm, short There is a method for producing spindle-shaped calcium carbonate having a diameter of 0.1 to 1 μm.
[0006]
Furthermore, a method for producing a spindle-shaped calcium carbonate of 0.1 to 1.0 μm by conducting a carbonation reaction in the presence of a barium or strontium compound under the conditions for producing basic calcium carbonate in JP-A-5-238730 is also provided. Proposed. However, these production methods have been adopted industrially for reasons such as increased costs and the use of special additives, which are all caused by stricter and more complicated reaction conditions in the production process. There are no known examples.
[0007]
[Problems to be solved by the invention]
As described above, spindle-shaped calcium carbonate is one of the most easily produced calcium carbonates and has a suitable particle size, so it is used in large quantities as a filler for papermaking. Cubic and columnar calcium carbonate is often used. One reason is the difficulty in controlling the particle size of small-sized products. If this small particle size product can be easily controlled at the industrial production level, calcium carbonate having a particle size of 0.1 to 3.0 μm, which is a blank region of the particle size of conventional synthetic calcium carbonate, is industrially available. Since it can be produced at the production level, it can be used as a pigment for papermaking, and further expansion of new applications to polymer materials can be expected.
[0008]
In view of such circumstances, the present inventors have made extensive studies on the particle size control of small-diameter products in order to expand the use of spindle-shaped calcium carbonate, and in the carbonation reaction of a calcium hydroxide suspension, a specific metal is used. The present invention has been completed by finding that it can be solved by a simple method of adding the above compound. That is, an object of the present invention is to have a small particle diameter, particularly a small long diameter, which can be efficiently and stably manufactured industrially and is excellent in economic efficiency, and the particle diameter can be easily controlled to a desired value. The object is to provide a method for producing spindle-shaped calcium carbonate.
[0009]
[Means for Solving the Problems]
Means for solving the above-mentioned problems in the present invention are as follows. Spindle-like calcium carbonate having a small particle diameter can be obtained by adding a zinc compound when producing spindle-like calcium carbonate by a carbonation reaction of a calcium hydroxide suspension. Is to be manufactured. Preferably, the zinc compound at that time is one or more selected from the group consisting of zinc oxide, zinc hydroxide and a soluble salt of zinc, and the amount of zinc compound added is metal per 100 parts by weight of calcium hydroxide. The amount is 0.01 to 5.0 parts by weight in terms of amount, and this method solves the problems of the prior art manufacturing method. Further, by adjusting the amount added, spindle-shaped calcium carbonate having a desired small particle diameter can be produced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
The lime raw material used for the preparation of the calcium hydroxide suspension, which is the main production raw material of spindle-shaped calcium carbonate produced in the present invention, is not particularly limited, but high-quality limestone that is abundant as a domestic natural resource is calcined. Quick lime obtained by the above or slaked lime produced by further digestion thereof can be used. A calcium hydroxide suspension is obtained by suspending these in water. The concentration of the suspension is not more than 30% by weight, desirably 1 to 20% by weight in terms of calcium hydroxide concentration. If the concentration is too low, the production efficiency is lowered.
[0011]
The use of carbon dioxide for the carbonation reaction is advantageous in terms of quality and economy. In this case, pure gas supplied in a cylinder may be used, and carbon dioxide-containing gas such as waste gas generated from the kiln or other combustion waste gas during the production of quicklime can be washed and used. . The concentration of the carbon dioxide-containing gas is not limited. However, if the concentration is low, the reaction efficiency decreases, and a long time is required for carbonation. Therefore, the concentration is preferably 5% or more, and preferably 10% or more.
[0012]
In this case, the carbonation start temperature is 20 to 45 ° C., preferably 25 to 40 ° C. If the temperature is too low, colloidal calcium carbonate is produced, and the target spindle-shaped calcium carbonate cannot be obtained. On the other hand, if the temperature is too high, long columnar to needle-shaped aragonite is mixed, and the particle size and form of calcium carbonate are not uniform, resulting in inconvenience in use.
[0013]
The reason why the start temperature is particularly a problem with respect to the temperature of the carbonation reaction is that it has been found that there is no problem even if the start temperature is adjusted and then allowed to proceed. For example, if the temperature rise is not controlled and the temperature is not controlled, there is usually a temperature rise of 10 to 15 ° C. at normal temperature by the heat of reaction until the end of carbonation, but the temperature is controlled and the start temperature is maintained until the end of the reaction. It was found that the product was not significantly different from that of the product. The reason for this is not clear, but according to the observations of the present inventors, crystal nucleation occurred during the very first one to several minutes of carbonation, and thereafter the reaction temperature has little effect on the product. I believe that.
[0014]
As for the method of adding zinc compounds, zinc carbonate, zinc hydroxide, zinc chloride, etc. are added during limestone firing and mixed in the raw lime as raw material, and zinc oxide, zinc hydroxide, zinc are soluble during quick lime hydration There are no particular restrictions, such as a method of mixing a salt, a method of adding zinc oxide, zinc hydroxide or a soluble salt of zinc after preparing a calcium hydroxide suspension. In the first method of adding a zinc compound during limestone firing, zinc hydroxide, zinc chloride, and the like change to zinc oxide by heating during firing.
[0015]
Examples of the soluble salt of zinc added at that time include zinc salts such as zinc chloride, zinc sulfate, and zinc nitrate, zinc salts, and ammine complex salts. In addition, it is necessary for zinc compound to be added to the calcium hydroxide suspension before the start of carbonation, and the expected effect may not be reduced or obtained after the start of carbonation. .
[0016]
And about the addition amount of the zinc compound, it adjusts with the target particle diameter. That is, by adjusting the addition amount of the zinc compound, spindle-shaped calcium carbonate having a desired particle size can be obtained, and the particle size can be controlled by adjusting the addition amount. The addition amount is suitably 0.01 to 5.0 parts by weight in terms of the amount of zinc metal with respect to 100 parts by weight of calcium hydroxide, and the particle diameter tends to decrease as the addition amount increases. If the amount is less than 0.01 parts by weight, a sufficient effect cannot be obtained, and even if it is added in a large amount, the effect is limited, and the product is not suitable for practical use because of significant aggregation.
[0017]
In the carbonation reaction of this calcium hydroxide suspension, when the zinc compound is not added, the obtained spindle-shaped calcium carbonate has a major axis of 3 μm at a carbonation start temperature of 30 ° C. and 5 μm at 35 ° C., for example. On the other hand, in the present invention, by adding a zinc compound, the particle diameter can be controlled continuously and stably between 0.3 to 5.0 μm, and as a result, spindle-shaped carbonic acid having a desired particle diameter can be obtained. Calcium can be produced. As a result, it can be used not only as a filler for papermaking, but also as a high-grade pigment for papermaking and a functional filler for various polymer materials, and it can be used to meet the needs for various particle sizes from users. have.
[0018]
【Example】
The present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to these examples, but is defined by the description of the scope of claims. It is not to be over. In the following examples and comparative examples, the amount of zinc compound is all parts by weight of zinc with respect to 100 parts by weight of calcium hydroxide, and the particle diameter of spindle-shaped calcium carbonate is shown by the long diameter observed with a transmission electron microscope.
[0019]
[Examples 1 to 5]
Into a cylindrical separable flask having a capacity of 3 liters, 1 kg of tap water was put, and 130 g of industrial quicklime produced by calcining limestone and a predetermined amount of reagent zinc oxide were added and stirred. The calcium hydroxide suspension was passed through a 100 mesh sieve to remove coarse particles, and tap water was further added to make the total amount 2 kg and adjusted to a predetermined temperature. While stirring this suspension, a mixed gas with air having a carbon dioxide concentration of 20% was introduced at a rate of 1.6 liters / minute, and carbonation was effected by a rapid drop in pH (12.5 → 6.2). Confirmed termination. The particle diameter of the obtained spindle-shaped calcium carbonate was observed with a transmission electron microscope.
[0020]
The results are shown in Table 1. From this result, it can be immediately understood that in Examples 1 to 3 in which spindle-shaped calcium carbonate was produced at the same temperature, the larger the amount added, the smaller the particle size. It can also be seen that when the starting temperature is high, the particle size is larger than when the temperature is low. Further, as compared with Comparative Example 1 described later, which produces spindle-shaped calcium carbonate at the same temperature, it is immediately understood that the particle size is smaller when the zinc compound of the present invention is added than when it is not added. it can.
[0021]
[Examples 6 to 8]
In the same manner as in Examples 1 to 5, 1 kg of tap water was put into a cylindrical separable flask having a capacity of 3 liters, and 130 g of industrial quicklime produced by firing limestone was put into the flask and stirred. The calcium hydroxide suspension was passed through a 100 mesh sieve to remove coarse particles, and the whole amount was adjusted to 2 kg and adjusted to a predetermined temperature. A predetermined amount of zinc sulfate heptahydrate was added to this suspension, and a mixed gas with air with a carbon dioxide concentration of 20% was introduced at a rate of 1.6 liters / minute while stirring at 500 rpm. The end of carbonation was confirmed. The particle diameter of the obtained spindle-shaped calcium carbonate was observed with a transmission electron microscope. The results are shown in Table 2.
[0022]
[Examples 9 to 11]
1 kg of tap water was placed in a cylindrical separable flask having a capacity of 3 liters, and 110 g of industrial quicklime produced by calcining limestone was added thereto and stirred. The calcium hydroxide suspension was passed through a 100 mesh sieve to remove coarse particles, and the whole amount was adjusted to 2 kg and adjusted to a predetermined temperature. A predetermined amount of zinc chloride was added to this suspension, carbon dioxide was introduced at a rate of 0.5 liter / min while stirring at 500 rpm, and the completion of carbonation was confirmed by lowering the pH. The particle diameter of the obtained spindle-shaped calcium carbonate was observed with a transmission electron microscope. The results are shown in Table 3.
[0023]
[Examples 12 to 14]
Into a cylindrical separable flask having a capacity of 3 liters, 1.7 kg of tap water was put, and 300 g of industrial slaked lime produced by calcining and digesting limestone into -200 mesh was added thereto. After adding zinc chloride to the calcium hydroxide suspension, the temperature is adjusted to a predetermined temperature, and carbon dioxide is introduced at a rate of 1.0 liter / min while stirring the suspension at 500 rpm. The end of carbonation was confirmed. The particle diameter of the obtained spindle-shaped calcium carbonate was observed with a transmission electron microscope. The results are shown in Table 4.
[0024]
[Example 15]
The reagent zinc carbonate (3.09 g) was added to the reagent calcium carbonate (200 g) and mixed well, followed by firing in an electric furnace at 1000 ° C. for 4 hours. This zinc compound-containing calcium oxide was put into a 3 liter cylindrical separable flask containing 1.888 kg of tap water to prepare a calcium hydroxide suspension having a zinc content of 1.0 part by weight. While maintaining this suspension at 30 ° C. and stirring at 500 rpm, carbon dioxide was introduced at a rate of 1.0 liter / min, and the completion of carbonation was confirmed by lowering the pH. When the obtained calcium carbonate was observed with a transmission electron microscope, it was a spindle-like calcium carbonate having a length of 1.7 μm.
[0025]
[Example 16]
Industrial quicklime (size 20-40 mm) was hydrated, and 1043 kg of calcium hydroxide suspension having a temperature of 32 ° C. and a calcium hydroxide concentration of 8.3 wt% was prepared in a reaction vessel having an effective volume of 1 m 3 . 2.16 kg of zinc oxide was added to the mixture so that the amount of zinc was 2.0 parts by weight. Then, a mixed gas with air having a carbon dioxide concentration of 25% was introduced at a rate of 80 liters / minute, and the pH was adjusted. The end of carbonation was confirmed by a decrease in. When the obtained calcium carbonate was observed with a transmission electron microscope, it was a spindle-shaped calcium carbonate having a major axis of 2.0 μm.
[0026]
[Comparative Example 1]
1 kg of tap water was put into a cylindrical separable flask having a capacity of 3 liters, and 130 g of industrial quicklime produced by calcination of limestone was put into this and stirred. This calcium hydroxide suspension was passed through a 100 mesh sieve to remove coarse particles, and the total amount was adjusted to 2 kg and adjusted to 30 ° C. While stirring this suspension, a mixed gas with air having a carbon dioxide concentration of 20% was introduced at a rate of 1.6 liters / minute, and the completion of carbonation was confirmed by lowering the pH. When the obtained calcium carbonate was observed with a transmission electron microscope, it was spindle-shaped calcium carbonate having a major axis of 3.0 μm. When this result is compared with Examples 1 to 3 in which spindle-shaped calcium carbonate was produced at the same temperature, it can be immediately understood that the particle diameter is smaller when the zinc compound of the present invention is added as described above.
[0027]
[Comparative Example 2]
Calcium carbonate was obtained in the same manner as in Comparative Example 1 except that the carbonation start temperature was 35 ° C. and the suspension concentration was 7.17% by weight. When the product was observed with a transmission electron microscope, it was spindle-shaped calcium carbonate having a major axis of 5.0 μm.
[0028]
[Comparative Example 3]
The same procedure and conditions as in Example 2 except that the calcium hydroxide suspension concentration was 7.20% by weight and 0.007g of zinc oxide was added to the liquid to make the amount of zinc 0.004 parts by weight. The experiment was conducted. When the obtained spindle-shaped calcium carbonate was observed with a transmission electron microscope, the effect of adding zinc oxide was not recognized, and spindle-shaped calcium carbonate having a major axis of 3.0 μm was formed as in the case of no addition.
[0029]
[Comparative Example 4]
The same procedure and conditions as in Example 11 except that the calcium hydroxide suspension concentration was 7.28% by weight, and 24.4 g of zinc chloride was added to the solution to make the amount of zinc 8.04 parts by weight. The experiment was conducted. When the obtained spindle-shaped calcium carbonate was observed with a transmission electron microscope, the particle diameter did not change as compared with the case where the amount of zinc chloride added in Example 11 was 4.61 parts by weight, but the aggregate was remarkably aggregated. The aggregate particle diameter was 20 to 50 μm.
[0030]
[Comparative Example 5]
The experiment was conducted in the same procedure as in Example 2, with the carbonation start temperature set at 15 ° C and 50 ° C. When the obtained calcium carbonate was observed with a transmission electron microscope, colloidal calcium carbonate having an average particle size of 0.04 μm was formed at 15 ° C. Further, at 50 ° C., long columnar to acicular particles having a length of 5 μm to 10 μm were mixed in addition to spindle-shaped calcium carbonate having a major diameter of 3.0 μm. When powder X-ray diffraction was performed, an aragonite peak was confirmed. .
[0031]
【The invention's effect】
The method for producing spindle-shaped calcium carbonate of the present invention is a simple method of adding a zinc compound, and has an excellent effect that a product having a small particle size can be obtained as compared with the case of no addition. At the same time, the particle size can be controlled by a simple method of adjusting the addition amount. As a result, it is a technology that has excellent practicality and can be easily adopted at an industrial level, and as a functional filler for papermaking pigments and various polymer materials, as well as papermaking fillers that have been used so far, It is characterized by extremely high practicality in that it can meet the needs related to particle size.
[Table 1]
[Table 2]
[Table 3]
[Table 4]
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27050798A JP4157202B2 (en) | 1998-09-09 | 1998-09-09 | Process for producing spindle-shaped calcium carbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27050798A JP4157202B2 (en) | 1998-09-09 | 1998-09-09 | Process for producing spindle-shaped calcium carbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000086237A JP2000086237A (en) | 2000-03-28 |
JP4157202B2 true JP4157202B2 (en) | 2008-10-01 |
Family
ID=17487219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27050798A Expired - Fee Related JP4157202B2 (en) | 1998-09-09 | 1998-09-09 | Process for producing spindle-shaped calcium carbonate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4157202B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001354415A (en) * | 2000-06-09 | 2001-12-25 | Hokkaido Kyodo Sekkai Kk | Method for manufacturing lightweight calcium carbonate |
JP2001354416A (en) * | 2000-06-09 | 2001-12-25 | Hokkaido Kyodo Sekkai Kk | Method for manufacturing aragonite type calcium carbonate |
JP2002128521A (en) * | 2000-10-20 | 2002-05-09 | Hokkaido Kyodo Sekkai Kk | Method of manufacturing calcium carbonate |
JP4310134B2 (en) * | 2003-05-26 | 2009-08-05 | 白石工業株式会社 | Surface treatment colloidal calcium carbonate |
EP1712597A1 (en) | 2005-04-11 | 2006-10-18 | Omya Development AG | Process for preparing precipitated calcium carbonate pigment, especially for use in inkjet printing pater coatings and precipitated calcium carbonate |
EP1712523A1 (en) * | 2005-04-11 | 2006-10-18 | Omya Development AG | Precipitated calcium carbonate pigment, especially for use in inkjet printing paper coatings |
GB2502085A (en) * | 2012-05-15 | 2013-11-20 | Univ Newcastle | Carbon capture by metal catalysed hydration of carbon dioxide |
-
1998
- 1998-09-09 JP JP27050798A patent/JP4157202B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000086237A (en) | 2000-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4888160A (en) | Process for producing calcium carbonate and products thereof | |
CA2290816C (en) | Seeding of aragonite calcium carbonate and the product thereof | |
US20020009410A1 (en) | Precisely sized precipitated calcium carbonate (PCC) crystals of preselected crystal habit, manufactured using pressure carbonation | |
WO2001064585A1 (en) | Silica-calcium carbonate composite particle | |
JP4157202B2 (en) | Process for producing spindle-shaped calcium carbonate | |
JP2001026419A (en) | Manufacture of calcium carbonate and whitening of precipitated calcium carbonate from limestone | |
KR100283527B1 (en) | Method of preparing calcium carbonate | |
CN114291835B (en) | Preparation method of large-small cubic dispersion precipitated calcium carbonate | |
CN110563015B (en) | Preparation method of light calcium carbonate for food | |
JP5081438B2 (en) | Method for producing magnesium oxide | |
JPS6335571B2 (en) | ||
JP2002234725A (en) | Method for producing calcium carbonate of aragonite crystal system | |
JP2002234726A (en) | Continuous producing method of calcium carbonate | |
JP2001302238A (en) | Method for producing spindle-shaped calcium carbonate having small particle diameter | |
CN110104666B (en) | Method for preparing anhydrous magnesium carbonate based on hydrothermal carbonization reaction | |
JP2549857B2 (en) | Method for producing calcium carbonate with controlled particle size | |
JPS62113718A (en) | Production of hexagonal complex of calcium carbonate | |
JP2001114514A (en) | Method for producing spindle-shaped calcium carbonate with excellent dispersibility | |
CN112408448A (en) | Preparation method of mulberry fruit-shaped calcite micron calcium carbonate | |
KR100208370B1 (en) | Manufacturing method of calcium carbonate | |
JP2001302239A (en) | Method for producing spindle-shaped calcium carbonate having small particle size | |
JP3626620B2 (en) | Method for producing calcium carbonate | |
JPH11157833A (en) | Production of calcium carbonate | |
CN114314618B (en) | Magnesium carbonate double salt crystal, amorphous carbonate containing magnesium and preparation method of active magnesium oxide | |
CN115557524A (en) | High-whiteness and high-dispersibility nano calcium carbonate and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080711 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |