[go: up one dir, main page]

JP4156748B2 - Metal injection molding method and apparatus, and molded product - Google Patents

Metal injection molding method and apparatus, and molded product Download PDF

Info

Publication number
JP4156748B2
JP4156748B2 JP13249599A JP13249599A JP4156748B2 JP 4156748 B2 JP4156748 B2 JP 4156748B2 JP 13249599 A JP13249599 A JP 13249599A JP 13249599 A JP13249599 A JP 13249599A JP 4156748 B2 JP4156748 B2 JP 4156748B2
Authority
JP
Japan
Prior art keywords
metal material
injection molding
runner
metal
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13249599A
Other languages
Japanese (ja)
Other versions
JP2000317603A5 (en
JP2000317603A (en
Inventor
晃 宝
圭三 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13249599A priority Critical patent/JP4156748B2/en
Publication of JP2000317603A publication Critical patent/JP2000317603A/en
Publication of JP2000317603A5 publication Critical patent/JP2000317603A5/ja
Application granted granted Critical
Publication of JP4156748B2 publication Critical patent/JP4156748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加熱溶融した金属を成形金型に射出して成形する金属射出成形方法およびその装置並びに成形品に関するものである。
【0002】
【従来の技術】
チクソトロピ現象は、液体金属を液相線温度(全てが液体となる温度)よりも低い温度に冷却しながら激しい攪拌を加えることにより、固液共存状態(半凝固状態)にある金属溶湯の見掛け上の粘度が低くなる現象であり、このチクソトロピ現象を利用することによってマグネシウム合金やアルミニウム合金などの金属材料を用いて精度の良い成形品を得るように図った射出成形方法が従来から知られている(米国特許第3902544 号参照)。
【0003】
一方、我が国においては、固体金属を射出成形装置内に供給して一工程でチクソトロピ性金属を製造する方法が知られており(特許登録第1550760 号参照)、この射出成形方法について図7を参照しながら説明する。同図には従来のスクリュー式射出成形装置を示してある。マグネシウム合金やアルミニウム合金などの金属材料(図示せず)は、溶融するのに好都合な比較的小さな粒径にチップ化されて、射出機1におけるホッパー4からスロート2を介してシリンダ3内に供給される。この金属材料は、モータ7により回転駆動されるスクリュー8のスクリュー溝9に沿ってシリンダ3の先端出口であるノズル10に向け搬送されながら、シリンダ3の外部に巻かれたヒータ11により加熱されて溶融する。シリンダ3の温度は、これの外周面に取り付けられた熱電対12により測温されるとともに、その測定温度に基づきヒータ11がフィードバック制御されて、常に所定値を保持するよう制御される。
【0004】
したがって、チップ化された金属材料は、スクリュー溝9に沿って搬送されながらヒータ11により十分に加熱溶融されて液体を形成したのちに、回転中のスクリュー8によって剪断力を与えられながら、その液相線温度よりも低い温度となるように制御される。すなわち、シリンダ3内で溶融した金属材料は、固相線温度以上であって液相線温度以下の温度範囲に降温されて、その降温により生成してくる樹枝晶組織の少なくとも一部分を破壊するのに十分な剪断力で剪断され、固液共存状態でチクソトロピ性を発現した金属となってノズル10から成形金型13に対し射出される。したがって、金属材料は、ノズル10から成形金型13における固定側成形型14のスプール流路18に流入した時点で既に液相線温度以下になっており、成形金型13における固定側成形型14と可動側成形型17との間にこれらの型閉じによって形成されるランナ流路19を通ってキャビティ20内に充填される。
【0005】
上記のようにチクソトロピ性を発現した固液共存状態での金属材料による成形では、液体状態での成形と異なり、流体の粘度が低いスラリー状であることから層流となるので、成形金型13の流路18,19の内壁への衝突や流れる溶湯同士の衝突などによる流れの乱れの発生が少なく、且つ射出した溶湯の温度が低いために、凝固に至るまでの温度差が少なく、その結果、凝固収縮に起因する引けなどの欠陥が発生しないという利点がある。したがって、金属材料を固液共存状態の溶湯としての成形では、成形型14,17の成形品への転写性が極めて優れていることから、表面の粗さや平行度などの表面精度が極めて良好な成形品を得ることができる。その上に、成形型14,17に及ぼす熱負荷も少ないので、成形型14,17の寿命を延ばすことができる効果もある。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような固液共存状態での金属材料の成形においては、完全液相状態からの成形に比較してその金属材料の固相線温度に対する温度差が小さいため、凝固状態になるのが早い。そのため、流路18,19の流路断面積が小さく、且つ流路18,19が長い場合には、固液共存状態の金属材料が流路18,19およびキャビティ20の全体に完全に充填する前に凝固してしまい、成形品には金属材料の未充填に起因する欠損などの欠陥が生じ易いという問題がある。
【0007】
そこで、上記のような問題を回避するためには、成形品自体の肉厚を大きくしてキャビティ20へ充填するときの金属材料の流動抵抗を減らす方法と、金属材料をノズル10から成形金型13へ高速で射出する方法とが考えられる。ところが、成形品の肉厚を大きくすると、成形品全体の寸法と重量が大きくなり、近年の軽薄化のニーズに十分に応えられる成形品を得ることができない。また、流路18,19の流動長については、従来の固液共存状態の溶湯とした金属材料をノズル10から射出する場合、流動長と成形品の肉厚の寸法比が200 対1を超える場合に成形が困難となることから、短くすると成形品の肉厚が大きくなってしまう。
【0008】
一方、金属材料を高速で射出する場合には、溶融した金属材料が成形型14,17の流路18,19の内壁に衝突した際に飛散して雰囲気ガスを巻き込んでしまい、成形品の空隙率が高くなったり、成形品に巣が発生するといった欠陥が生じる。さらに、高速で射出された金属材料は型閉じされた両成形型14,17における隙間から漏れ出し易く、成形品に多くのバリが発生して、その後加工に手間がかかる問題が新たに生じる。
【0009】
そこで本発明は、上記従来の課題に鑑みてなされたもので、固液共存状態としてチクソトロピ性を発現させた金属材料を成形金型に射出する成形において、欠損、引け、巣およびバリの発生を可及的に軽減した成形品を得ることができ、且つ長い流動長の流路を有する成形金型で薄肉で大型の成形品を得ることのできる金属射出成形方法およびその装置並びに成形品を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の金属射出成形方法は、固液共存状態の加熱溶融された金属材料を、成形金型のスプール流路内に射出して、前記スプール流路内の金属材料を液相線温度以上になるよう加熱しながら流動させ、前記成形金型における前記スプール流路とキャビティの間のランナ流路において金属材料を固相線温度以上であって液相線温度以下の温度範囲になるよう冷却するとともに、前記ランナ流路断面積に比較して小さな流路断面積に絞ったゲート部を通過させ、金属材料を前記キャビティ内に流入させて充填することを特徴としている。
【0012】
この金属射出成形方法では、加熱溶融された金属材料は、ランナ流路を流動するときに固相線温度以上であって液相線温度以下の温度範囲になるよう冷却されるとともに、ランナ流路断面積に比較して小さな流路断面積に絞られたゲート部を通過するときに十分な剪断力を与えられて、冷却によって生成してくる樹枝晶組織の少なくとも一部分を破壊される。これにより、金属材料は、再びチクソトロピ性を発現させてキャビティに流入するので、成形品は、冷却時の引けが殆ど発生せず、且つ成形金型に対する転写性に優れて高い表面精度を有するものとなる。
【0013】
しかも、金属材料は固液共存状態でキャビティ内に層流として流入するので、気泡の巻き込みが少ないことから、空隙率の低い高品質の成形品が得られ、さらに、金属材料が成形金型に対し層流として射出されるので、成形品にはガスの巻き込みによる巣やバリなどが殆ど発生しない。
【0014】
上記発明の成形方法において、成形金型のランナ流路におけるゲート部の近傍箇所において、前記ランナ流路に突き出る突起物によって金属材料に対し剪断力を付与するとともに、金属材料を前記突起物を通じ吸熱源に伝熱させて冷却する手段を設けることが好ましい。
【0015】
これにより、金属材料は、所定温度を維持したままランナ流路におけるゲート部の近傍箇所まで流動して、この箇所で突起物から吸熱源に直接的に伝熱して液相線温度以下の温度に効率的に冷却され、且つ突起物で極めて効果的に剪断力を付与されて、冷却によって生成してくる樹枝晶組織の少なくとも一部分を効率的に破壊される。そのため、上記発明の成形方法と同様の効果を得られるのに加えて、金属材料の冷却と剪断力の付与とを一層効果的に行うことができる。
【0016】
一方、上記発明の成形方法において、成形金型のランナ流路におけるゲート部の近傍箇所において、金属材料をその流動方向に沿って互いに平行な複数の流動路に分断させながら流動させて、金属材料をキャビティ内に流入させて充填するように構成することもできる。
【0017】
これにより、ランナ流路において金属材料を固相線温度以上であって液相線温度以下の温度範囲になるよう冷却したときに、その冷却により生成してくる樹枝晶組織は、十分に小さな流路断面積となったゲート部により剪断力を付与されるのに加えて、金属材料の流れが分断されることによっても一層効果的に剪断力を付与されることにより、効率的に破壊される。そのため、上記発明の成形方法と同様の効果を得られるのに加えて、金属材料への剪断力の付与を一層効果的に行うことができる利点がある。
【0018】
本発明の金属射出成形装置は、固液共存状態の金属材料をノズルから射出する射出機と、前記ノズルに連通するスプール流路およびランナ流路と、成形品の形状に対応する空間に形成されたキャビティと、前記ランナ流路と前記キャビティとの間に存在するゲート部とを有する成形金型とを備えてなり、前記成形金型に、前記スプール流路内の金属材料を液相線温度以上になるよう加熱する加熱手段と、前記ランナ流路および前記ゲート部の内部を流動する金属材料を固相線温度以上であって液相線温度以下の温度範囲になるよう冷却する冷却手段とを有し、前記ゲート部は、前記ランナ流路断面積に比較して小さな流路断面積に絞られていることを特徴とする。
【0019】
この金属射出成形装置は、上記発明の金属射出成形方法を忠実に具現化してその成形方法の効果を確実に得ることができる。
【0020】
上記発明の成形装置において、成形金型に、冷却手段を内蔵した冷却ユニット体と、前記冷却手段に対し伝熱可能な状態で前記冷却ユニット体から突出した複数の突出ピンとが、前記各突出ピンの先端部がランナ流路におけるゲート部の近傍箇所において金属材料の流動方向に対し直交方向に向け突き出る配置で設けられている構成を付設することが好ましい。
【0021】
これにより、上記発明の金属射出成形装置と同様の効果を得られるのに加えて、金属材料への剪断力の付与を一層効果的に行うことができる
一方、上記発明の成形装置において、成形金型のランナ流路におけるゲート部の近傍箇所に、金属材料の流動方向に沿って延びる複数の仕切り突壁が互いに平行な配置で突設されている構成を付設することもできる。
【0022】
これにより、上記発明の金属射出成形装置と同様の効果を得られるのに加えて、金属材料への剪断力の付与を一層効果的に行うことができる。
【0023】
また、上記発明の各金属射出成形方法の何れかによって射出成形される本発明の成形品には、欠損、引け、巣およびバリなどが殆ど発生せず、また、薄肉で大型の成形品であっても、高品質を有するものを確実に成形できる。
【0024】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら詳細に説明する。図1は本発明の第1の実施の形態に係る金属射出成形方法を具現化した金属射出成形装置を示す要部の縦断面図であり、同図において、図7と同一若しくは同等のものには同一の符号を付してある。成形金型21は、固定側成形型22と可動側成形型23とから構成されている。固定側成形型22には、スプール流路24の周囲にヒータ27が埋め込まれているとともに、このヒータ27の温度を測定するための熱電対28が設けられている。一方、可動側成形型23には、型閉じによって固定側成形型22との間に形成されるランナ流路29およびゲート部30の一側方箇所に冷却管32が埋設されているとともに、ゲート部30の温度を測定するための熱電対33が設けられている。ランナ流路29とキャビティ31との間に設けられたゲート部30は、ランナ流路29に比較して十分に小さな流路断面積に絞られている。
【0025】
つぎに、上記金属射出成形装置の作用について説明する。シリンダ3内において固液共存状態としてチクソトロピ性を発現させた金属材料は、射出機1のノズル10から固定側成形型22のスプール流路24内に射出されて、ヒータ27により加熱されるとともに、ヒータ27の温度がこれを測温する熱電対28の測定温度に基づき所定値になるようフィードバック制御されていることにより、液相線温度以上の所定温度を維持しながらランナ流路29におけるゲート部30の近傍箇所まで流動されるので、スプール流路24およびランナ流路29の合計流動長を長くしても、凝固することなくキャビティ31の直前のゲート部30まで凝固することなく確実に流動する。そのため、成形品には未充填に起因する欠損が生じないとともに、流動長を従来よりも長く設定して所望の薄肉で大型の成形品を得ることが可能となる。
【0026】
金属材料は、つぎにランナ流路29からゲート部30に流動するときに冷却管32により冷却されるとともに、ゲート部30の温度がこれを測温する熱電対33の測定温度に基づき所定値になるようフィードバック制御されていることにより、金属材料の温度は固相線温度以上であって液相線温度以下の所定温度に維持される。また、金属材料は、上述のようにランナ流路29に比較して十分に小さな流路断面積に絞られたゲート部30を通過するときに十分な剪断力を与えられるので、冷却管32による冷却によって生成してくる樹枝晶組織の少なくとも一部分を破壊される。これにより、金属材料は、液相線温度以下の所定温度に冷却され、且つ十分な剪断力が付与されることにより、再びチクソトロピ性を発現させてキャビティ31に流入するので、成形品は、冷却時の引けが殆ど発生せず、且つ成形金型21に対する転写性に優れて高い表面精度を有するものとなる。
【0027】
また、金属材料は固液共存状態でキャビティ31内に層流として流入するので、気泡の巻き込みが少ないことから、空隙率の低い高品質の成形品を得られる。
【0028】
さらに、金属材料はノズル10から成形金型21に対し層流として射出されるので、ガスの巻き込みによる巣やバリなどが殆ど発生しない成形品を得られる。
【0029】
図2は本発明の第2の実施の形態に係る金属射出成形方法を具現化した金属射出成形装置を示す要部の縦断面図、図3はその金属射出成形装置における可動側成形型23の斜視図である。これらの図において、図1と同一若しくは同等のものには同一の符号を付してある。この金属射出成形装置が図1のものと相違する点は、図1において可動側成形型23のランナ流路29の一側方箇所に冷却管32を設けた構成に代えて、吸熱源としての冷却管34が埋設された冷却ユニット体37を、これから一体に突出形成された複数本の突出ピン38の各々の先端部が、ランナ流路29におけるゲート部30の近傍箇所において金属材料の流動方向に対し直交方向に向けて突き出る配置として、可動側成形型23に埋設した構成のみである。
【0030】
したがって、スプール流路24でヒータ27により液相線温度以上の所定温度に加熱された金属材料は、ランナ流路29における流動方向の上流側を冷却されることなく流動して、所定温度を維持したままゲート部30の近傍箇所まで達し、この箇所で各突出ピン38および冷却ユニット体37を通じ冷却管34により効果的に吸熱されることにより、液相線温度以下の温度に効率的に冷却されるとともに、各突出ピン38で極めて効果的に剪断力を付与されて、上記冷却によって生成してくる樹枝晶組織の少なくとも一部分を効率的に破壊される。そのため、金属材料の冷却と剪断力の付与とを一層効果的に行うことができ、第1の実施の形態と同様の効果をさらに確実に得ることができる。
【0031】
図4は、上記第2の実施の形態における両成形型22,23を型開きしたときの成形物39を示し、この成形物39の製品部39aに続くランナ流路29による残留成形部39bには、突出ピン38による凹部39cが形成されている。この成形物39は、2点鎖線で示す切断線に沿って切断して残留成形部39bなどを除去することにより、製品部39aからなる所望の成形品を得られる。このようにして成形する成形品は、凝固収縮に伴う欠陥が著しく軽減され、成形型22,23の転写性が極めて良好であることから、表面精度が非常に良好なものとなり、特に、薄肉で比較的大型のものであっても、欠陥の少ない高品質なものとなる。
【0032】
図5は本発明の第3の実施の形態に係る金属射出成形方法を具現化した金属射出成形装置に用いる可動側成形型40を示す斜視図で、この可動側成形型40を図1の可動側成形型23と置き換えると、この実施の形態の金属射出成形装置となる。この可動側成形型40は、固定側成形型22と型閉じしたときに形成されるランナ流路29におけるゲート部30の近傍箇所に、金属材料の流れ方向に沿って延びる細長い複数本(この実施の形態では3本)の仕切り突壁41が互いに平行に突設されている。なお、この可動側成形型40は、図1の可動側成形型23と同様に、図示していないが、ランナ流路29の側部に冷却管32が埋設され、且つゲート部30の温度を測温するための熱電対33が設けられている。
【0033】
つぎに、この実施の形態の金属射出成形装置の作用について説明する。固液共存状態のノズル10から射出された金属材料は、スプール流路24内においてヒータ27で加熱されることによって液相線温度以上の温度を維持しながら流動して、ランナ流路29に流入したときに、冷却管32により固相線温度以上であって液相線温度以下の所定の温度になるよう冷却される。この冷却により生成してくる樹枝晶組織は、十分に小さな流路断面積となったゲート部30により剪断力を付与されるのに加えて、金属材料の流れが各仕切り突壁41によって分断されることによっても一層効果的に剪断力を付与されることにより、効率的に破壊される。そのため、金属材料への剪断力の付与を一層効果的に行うことができ、第1の実施形態と同様の効果をさらに確実に得ることができる。
【0034】
図6は、上記第3の実施の形態における両成形型22,40を型開きした状態における成形物42を示し、製品部42aに続くランナ流路29による残留成形部42bには仕切り突壁41による溝部42cが形成されている。この成形物42は、2点鎖線で示す切断線に沿って切断して残留成形部42bなどを除去することにより、製品部42aからなる所望の成形品を得られる。このようにして成形する成形品は、第2の実施の形態により成形した成形品と同様に、凝固収縮に伴う欠陥が著しく軽減され、成形型22,40の転写性が極めて良好であることから、表面精度が非常に良好なものとなり、特に、薄肉で比較的大型のものであっても、欠陥の少ない高品質なものとなる。
【0035】
【発明の効果】
以上のように、本発明の金属射出成形方法によれば、冷却に伴い生成してくる樹枝晶組織の少なくとも一部分を破壊できるので、冷却時の引けが殆ど発生せず、且つ成形金型に対する転写性に優れて高い表面精度を有する成形品を得られる。しかも、空隙率の低い高品質の成形品が得られ、さらに、ガスの巻き込みによる巣やバリなどが殆ど発生しない成形品を得られる。
【0036】
本発明の金属射出成形装置によれば、本発明金属射出成形方法を忠実に具現化してその成形方法の効果を確実に得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る金属射出成形方法を具現化した金属射出成形装置を示す要部の縦断面図。
【図2】本発明の第2の実施の形態に係る金属射出成形方法を具現化した金属射出成形装置を示す要部の縦断面図。
【図3】同上装置における可動側成形型の斜視図。
【図4】同上の成形後に成形金型の両成形型を型開きした状態における成形物を示す斜視図。
【図5】本発明の第3の実施の形態に係る金属射出成形方法を具現化した金属射出成形装置に用いる可動側成形型の斜視図。
【図6】同上の成形後に成形金型の両成形型を型開きした状態における成形物を示す斜視図。
【図7】従来の金属射出成形装置を示す縦断面図。
【符号の説明】
1 射出機
10 ノズル
21 成形金型
24 スプール流路
27 ヒータ(加熱手段)
29 ランナ流路
30 ゲート部
31 キャビティ
32,34 冷却管(冷却手段)
37 冷却ユニット体
38 突出ピン(突起物)
41 仕切り突壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal injection molding method, an apparatus, and a molded product for injecting and molding a heat-melted metal into a molding die.
[0002]
[Prior art]
The thixotropic phenomenon is the appearance of molten metal in a solid-liquid coexistence state (semi-solid state) by adding vigorous stirring while cooling the liquid metal to a temperature lower than the liquidus temperature (the temperature at which everything becomes liquid). The injection molding method is known in the past to obtain a highly accurate molded product using a metal material such as magnesium alloy or aluminum alloy by utilizing this thixotropic phenomenon. (See U.S. Pat. No. 3,902,544).
[0003]
On the other hand, in Japan, a method for producing a thixotropic metal in one step by supplying a solid metal into an injection molding apparatus is known (see Patent Registration No. 1550760). Refer to FIG. 7 for this injection molding method. While explaining. FIG. 1 shows a conventional screw type injection molding apparatus. A metal material (not shown) such as a magnesium alloy or an aluminum alloy is chipped into a relatively small particle size convenient for melting, and is supplied into the cylinder 3 from the hopper 4 in the injection machine 1 through the throat 2. Is done. The metal material is heated by a heater 11 wound around the outside of the cylinder 3 while being transported along a screw groove 9 of a screw 8 that is rotationally driven by a motor 7 toward a nozzle 10 that is a front end outlet of the cylinder 3. Melt. The temperature of the cylinder 3 is measured by the thermocouple 12 attached to the outer peripheral surface of the cylinder 3, and the heater 11 is feedback-controlled based on the measured temperature, and is controlled to always maintain a predetermined value.
[0004]
Therefore, the metal material formed into a chip is sufficiently heated and melted by the heater 11 while being conveyed along the screw groove 9 to form a liquid, and then a shearing force is applied by the rotating screw 8 while the liquid is formed. The temperature is controlled to be lower than the phase line temperature. That is, the metal material melted in the cylinder 3 is lowered to a temperature range not lower than the solidus temperature and not higher than the liquidus temperature, and at least a part of the dendrite structure formed by the temperature drop is destroyed. Then, the metal is sheared with a sufficient shearing force and becomes a metal that exhibits thixotropic properties in the coexistence state of solid and liquid, and is injected from the nozzle 10 to the molding die 13. Therefore, when the metal material flows from the nozzle 10 into the spool flow path 18 of the fixed-side mold 14 in the molding die 13, the metal material is already below the liquidus temperature, and the fixed-side molding die 14 in the molding die 13. The cavity 20 is filled through a runner flow path 19 formed by closing these molds between the movable mold 17 and the movable mold 17.
[0005]
Unlike the molding in the liquid state, the molding with the metal material in the coexisting state of the thixotropic property as described above is a laminar flow because the fluid has a low viscosity, so the molding die 13 As a result, there is little occurrence of flow turbulence due to collisions with the inner walls of the flow paths 18 and 19 and collisions between the flowing molten metal, and the temperature of the injected molten metal is low, resulting in a small temperature difference until solidification. There is an advantage that defects such as shrinkage due to solidification shrinkage do not occur. Therefore, in the molding of the metal material as a melt in the coexisting state of solid and liquid, the transferability of the molding dies 14 and 17 to the molded product is extremely excellent, and thus the surface accuracy such as surface roughness and parallelism is very good. A molded product can be obtained. In addition, since the heat load applied to the molds 14 and 17 is small, there is an effect that the life of the molds 14 and 17 can be extended.
[0006]
[Problems to be solved by the invention]
However, in the molding of the metal material in the solid-liquid coexistence state as described above, since the temperature difference with respect to the solidus temperature of the metal material is small compared to the molding from the complete liquid phase state, the metal material becomes a solidified state. Is early. Therefore, when the cross-sectional area of the flow paths 18 and 19 is small and the flow paths 18 and 19 are long, the metal material in the solid-liquid coexistence state completely fills the entire flow paths 18 and 19 and the cavity 20. There is a problem that the molded product has been solidified before, and defects such as defects due to unfilling of the metal material are likely to occur in the molded product.
[0007]
Therefore, in order to avoid the above problems, a method of reducing the flow resistance of the metal material when filling the cavity 20 by increasing the thickness of the molded product itself, and the metal material from the nozzle 10 to the molding die The method of injecting to 13 at high speed can be considered. However, when the thickness of the molded product is increased, the size and weight of the entire molded product increase, and it is impossible to obtain a molded product that can sufficiently meet the recent needs for lightening. As for the flow lengths of the flow paths 18 and 19, when a metal material in the form of a conventional solid-liquid coexisting state is injected from the nozzle 10, the dimensional ratio of the flow length to the thickness of the molded product exceeds 200: 1. In some cases, molding becomes difficult, and if the length is shortened, the thickness of the molded product increases.
[0008]
On the other hand, when the metal material is injected at a high speed, when the molten metal material collides with the inner walls of the flow paths 18 and 19 of the molds 14 and 17, the metal material is scattered and entrains the atmospheric gas, resulting in voids in the molded product. Defects such as an increase in the rate and formation of nests in the molded product occur. Furthermore, the metal material injected at a high speed is likely to leak from the gaps in the molds 14 and 17 that are closed, so that a lot of burrs are generated in the molded product, resulting in a new problem that it takes time to work.
[0009]
Therefore, the present invention has been made in view of the above-described conventional problems. Provided is a metal injection molding method and apparatus and molded product capable of obtaining a molded product reduced as much as possible and obtaining a thin and large molded product with a molding die having a flow path with a long flow length. It is intended to do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the metal injection molding method of the present invention injects a heated and melted metal material in a solid-liquid coexistence state into a spool flow path of a molding die , and the metal in the spool flow path. The material is allowed to flow while being heated to a temperature above the liquidus temperature, and the metal material is above the solidus temperature and below the liquidus temperature in the runner flow path between the spool flow path and the cavity in the molding die. The cooling is performed so that the temperature range is less than that of the runner channel cross-sectional area, and the gate part narrowed to a channel cross-sectional area that is smaller than the runner channel cross-sectional area is passed through, and the metal material flows into the cavity and is filled. Yes.
[0012]
In this metal injection molding method, the heated and melted metal material is cooled to a temperature range not lower than the solidus temperature and lower than the liquidus temperature when flowing through the runner flow path. compared to the cross-sectional area given a sufficient shear force when passing through a gate portion which is narrowed down to small flow passage cross-sectional area, is destroyed at least a portion of the dendritic crystal structure coming generated by the cooling. As a result, the metal material again exhibits thixotropic properties and flows into the cavity, so that the molded product hardly undergoes shrinkage at the time of cooling, and has excellent transferability to the molding die and high surface accuracy. It becomes.
[0013]
In addition, since the metal material flows as a laminar flow into the cavity in the coexistence state of solid and liquid, there is less entrainment of bubbles, resulting in a high-quality molded product with a low porosity, and further, the metal material is added to the mold. On the other hand, since it is injected as a laminar flow, almost no nests or burrs due to entrainment of gas occur in the molded product.
[0014]
In the molding method of the present invention, a shearing force is applied to the metal material by a protrusion protruding into the runner flow path at a location near the gate portion in the runner flow path of the molding die, and the metal material is absorbed through the protrusion. It is preferable to provide means for transferring the heat to the heat source for cooling.
[0015]
As a result, the metal material flows to the vicinity of the gate portion in the runner flow path while maintaining a predetermined temperature, and heat is transferred directly from the protrusion to the heat absorption source at this position to a temperature below the liquidus temperature. It is cooled efficiently, and the shear force is applied to the protrusions very effectively, so that at least a part of the dendrite structure generated by cooling is efficiently destroyed. Therefore, in addition to obtaining the same effect as the forming method of the above invention, cooling of the metal material and application of shearing force can be performed more effectively.
[0016]
On the other hand, in the molding method of the above invention, the metal material is caused to flow while being divided into a plurality of parallel flow paths along the flow direction in the vicinity of the gate portion in the runner flow path of the molding die. the can also configure to fill by flowing into the cavity.
[0017]
As a result, when the metal material is cooled in the runner channel so as to be in the temperature range above the solidus temperature and below the liquidus temperature, the dendrite structure generated by the cooling is sufficiently small. In addition to being given a shearing force by the gate section having a road cross-sectional area, the shearing force is more effectively applied by breaking the flow of the metal material, thereby efficiently destroying. . Therefore, in addition to obtaining the same effect as the forming method of the above invention, there is an advantage that the shearing force can be more effectively applied to the metal material.
[0018]
The metal injection molding apparatus according to the present invention is formed in a space corresponding to the shape of a molded product, an injection machine for injecting a metal material in a solid-liquid coexistence state from a nozzle, a spool channel and a runner channel communicating with the nozzle. A molding die having a cavity and a gate portion existing between the runner channel and the cavity, and the metal material in the spool channel is placed in the molding die at a liquidus temperature. Heating means for heating to the above, and cooling means for cooling the metal material flowing in the runner flow path and the gate portion to a temperature range not lower than the solidus temperature and not higher than the liquidus temperature, The gate portion is narrowed down to a flow passage cross-sectional area smaller than the runner flow passage cross-sectional area.
[0019]
This metal injection molding apparatus can faithfully embody the metal injection molding method of the present invention and reliably obtain the effects of the molding method.
[0020]
In the molding apparatus according to the above invention, each of the projecting pins includes a cooling unit body in which cooling means is incorporated in a molding die, and a plurality of projecting pins projecting from the cooling unit body in a state where heat can be transferred to the cooling means. It is preferable to attach a configuration in which the tip end portion of the runner channel is provided so as to protrude in a direction orthogonal to the flow direction of the metal material in the vicinity of the gate portion in the runner flow path.
[0021]
Thereby, in addition to obtaining the same effect as that of the metal injection molding apparatus of the present invention, it is possible to more effectively apply a shearing force to the metal material. A configuration in which a plurality of partition projecting walls extending along the flow direction of the metal material are provided in parallel with each other can be provided at a location in the vicinity of the gate portion in the runner flow path of the mold.
[0022]
Thereby, in addition to obtaining the same effect as that of the metal injection molding apparatus of the present invention, it is possible to more effectively apply a shearing force to the metal material.
[0023]
In addition, the molded product of the present invention which is injection-molded by any one of the metal injection molding methods of the present invention is almost free from defects, shrinkage, nests and burrs, and is a thin and large molded product. However, it is possible to reliably mold a product having high quality.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of a main part showing a metal injection molding apparatus that embodies a metal injection molding method according to a first embodiment of the present invention. In FIG. Are given the same reference numerals. The molding die 21 includes a fixed side molding die 22 and a movable side molding die 23. The fixed-side mold 22 has a heater 27 embedded around the spool flow path 24 and a thermocouple 28 for measuring the temperature of the heater 27. On the other hand, the movable side mold 23 has a runner channel 29 formed between the fixed side mold 22 by closing the mold and a cooling pipe 32 embedded in one side of the gate portion 30, and a gate. A thermocouple 33 for measuring the temperature of the unit 30 is provided. The gate portion 30 provided between the runner flow path 29 and the cavity 31 is restricted to a flow path cross-sectional area that is sufficiently smaller than that of the runner flow path 29.
[0025]
Next, the operation of the metal injection molding apparatus will be described. The metal material that has developed thixotropy as a solid-liquid coexistence state in the cylinder 3 is injected from the nozzle 10 of the injection machine 1 into the spool flow path 24 of the fixed side mold 22 and heated by the heater 27. Feedback control is performed so that the temperature of the heater 27 becomes a predetermined value based on the measured temperature of the thermocouple 28 that measures the temperature, so that the gate portion in the runner flow path 29 is maintained while maintaining the predetermined temperature that is higher than the liquidus temperature. Therefore, even if the total flow length of the spool flow path 24 and the runner flow path 29 is increased, the fluid flows surely without solidifying to the gate portion 30 immediately before the cavity 31. . Therefore, the molded product is free from defects due to unfilling, and the flow length is set to be longer than that of the conventional product so that a desired thin and large molded product can be obtained.
[0026]
The metal material is cooled by the cooling pipe 32 when it next flows from the runner flow path 29 to the gate portion 30, and the temperature of the gate portion 30 becomes a predetermined value based on the measured temperature of the thermocouple 33 that measures the temperature. The feedback control is performed so that the temperature of the metal material is maintained at a predetermined temperature not lower than the solidus temperature and not higher than the liquidus temperature. Further, since the metal material is given a sufficient shearing force when passing through the gate portion 30 which is narrowed to a sufficiently small channel cross-sectional area as compared with the runner channel 29 as described above, At least a part of the dendrite structure formed by cooling is destroyed. As a result, the metal material is cooled to a predetermined temperature below the liquidus temperature and given a sufficient shearing force, so that the thixotropic property is expressed again and flows into the cavity 31. The shrinkage of the time hardly occurs and the transferability to the molding die 21 is excellent and the surface accuracy is high.
[0027]
Further, since the metal material flows as a laminar flow into the cavity 31 in the state of solid-liquid coexistence, there is little bubble entrainment, so that a high-quality molded product with a low porosity can be obtained.
[0028]
Furthermore, since the metal material is injected as a laminar flow from the nozzle 10 to the molding die 21, a molded product can be obtained in which almost no burrs or burrs are generated due to gas entrainment.
[0029]
FIG. 2 is a longitudinal sectional view of a main part showing a metal injection molding apparatus embodying a metal injection molding method according to the second embodiment of the present invention, and FIG. 3 is a diagram of a movable side mold 23 in the metal injection molding apparatus. It is a perspective view. In these drawings, the same or equivalent parts as those in FIG. This metal injection molding apparatus is different from that shown in FIG. 1 in that a cooling pipe 32 is provided at one side of the runner flow passage 29 of the movable mold 23 in FIG. The cooling unit body 37 in which the cooling pipe 34 is embedded, the tip portions of the plurality of projecting pins 38 integrally projecting from the cooling unit body 37, the flow direction of the metal material in the vicinity of the gate portion 30 in the runner channel 29. However, as an arrangement protruding in the orthogonal direction, only the configuration embedded in the movable mold 23 is used.
[0030]
Therefore, the metal material heated to a predetermined temperature equal to or higher than the liquidus temperature in the spool flow path 24 by the heater 27 flows without being cooled on the upstream side in the flow direction in the runner flow path 29 and maintains the predetermined temperature. As it is, it reaches the vicinity of the gate part 30 and is effectively absorbed by the cooling pipe 34 through the protruding pins 38 and the cooling unit body 37 at this point, so that it is efficiently cooled to a temperature below the liquidus temperature. At the same time, shear force is applied to each protruding pin 38 very effectively, and at least a part of the dendrite structure generated by the cooling is efficiently destroyed. Therefore, the cooling of the metal material and the application of the shearing force can be performed more effectively, and the same effect as in the first embodiment can be obtained more reliably.
[0031]
FIG. 4 shows a molded product 39 when both the molds 22 and 23 in the second embodiment are opened. In the residual molded portion 39b by the runner channel 29 following the product portion 39a of the molded product 39, FIG. A recess 39c is formed by the protruding pin 38. The molded product 39 is cut along a cutting line indicated by a two-dot chain line to remove the remaining molded portion 39b and the like, thereby obtaining a desired molded product including the product portion 39a. The molded product thus molded has significantly reduced defects due to solidification shrinkage and the transferability of the molding dies 22 and 23 is very good, so that the surface accuracy is very good. Even a relatively large size has a high quality with few defects.
[0032]
FIG. 5 is a perspective view showing a movable side mold 40 used in a metal injection molding apparatus that embodies the metal injection molding method according to the third embodiment of the present invention. The movable side mold 40 is movable as shown in FIG. When the side mold 23 is replaced, the metal injection molding apparatus of this embodiment is obtained. The movable side mold 40 is formed of a plurality of elongated pieces extending along the flow direction of the metal material (this embodiment) in the vicinity of the gate portion 30 in the runner flow path 29 formed when the mold is closed with the fixed side mold 22. In this embodiment, three partition projection walls 41 project in parallel with each other. The movable side mold 40 is not shown in the figure, like the movable side mold 23 of FIG. 1, but the cooling pipe 32 is embedded in the side portion of the runner flow path 29 and the temperature of the gate portion 30 is adjusted. A thermocouple 33 for measuring the temperature is provided.
[0033]
Next, the operation of the metal injection molding apparatus according to this embodiment will be described. The metal material injected from the nozzle 10 in the solid-liquid coexistence state is heated by the heater 27 in the spool flow path 24 and flows while maintaining a temperature equal to or higher than the liquidus temperature and flows into the runner flow path 29. In this case, the cooling pipe 32 is cooled to a predetermined temperature not lower than the solidus temperature and not higher than the liquidus temperature. The dendrite structure generated by this cooling is given a shearing force by the gate portion 30 having a sufficiently small channel cross-sectional area, and the flow of the metal material is divided by the partition projection walls 41. By effectively applying a shearing force, it is efficiently destroyed. Therefore, the shearing force can be more effectively applied to the metal material, and the same effect as that of the first embodiment can be more reliably obtained.
[0034]
FIG. 6 shows a molded product 42 in a state where both the molds 22 and 40 in the third embodiment are opened, and a partition projection wall 41 is formed in a residual molded part 42b by a runner channel 29 following the product part 42a. The groove part 42c by is formed. The molded product 42 is cut along a cutting line indicated by a two-dot chain line to remove the remaining molded portion 42b and the like, thereby obtaining a desired molded product including the product portion 42a. Since the molded product molded in this way is similar to the molded product molded according to the second embodiment, defects due to solidification shrinkage are remarkably reduced, and the transferability of the molds 22 and 40 is extremely good. The surface accuracy is very good. In particular, even a thin and relatively large-sized one has a high quality with few defects.
[0035]
【The invention's effect】
As described above, according to the metal injection molding method of the present invention, it is possible to destroy at least a portion of the dendritic crystal structure coming generated due to cooling, shrinkage during cooling hardly occur, and for the molding die A molded product having excellent transferability and high surface accuracy can be obtained. In addition, the low sky porosity high-quality molded articles can be obtained, further, to obtain a molded article such as a nest and burrs due to entrainment of gas is hardly generated.
[0036]
According to the metal injection molding apparatus of the present invention , the metal injection molding method of the present invention can be faithfully realized and the effects of the molding method can be reliably obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a main part showing a metal injection molding apparatus embodying a metal injection molding method according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of an essential part showing a metal injection molding apparatus embodying a metal injection molding method according to a second embodiment of the present invention.
FIG. 3 is a perspective view of a movable side mold in the apparatus.
FIG. 4 is a perspective view showing a molded product in a state where both molding dies of the molding die are opened after the molding described above.
FIG. 5 is a perspective view of a movable side mold used in a metal injection molding apparatus that embodies a metal injection molding method according to a third embodiment of the present invention.
FIG. 6 is a perspective view showing a molded product in a state in which both molding dies of the molding die are opened after the molding described above.
FIG. 7 is a longitudinal sectional view showing a conventional metal injection molding apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Injection machine 10 Nozzle 21 Mold 24 Spool flow path 27 Heater (heating means)
29 runner flow path 30 gate part 31 cavity 32, 34 cooling pipe (cooling means)
37 Cooling unit body 38 Projection pin (projection)
41 partitioning wall

Claims (6)

固液共存状態の加熱溶融された金属材料を、成形金型のスプール流路内に射出して、前記スプール流路内の金属材料を液相線温度以上になるよう加熱しながら流動させ、
前記成形金型における前記スプール流路とキャビティの間のランナ流路において金属材料を固相線温度以上であって液相線温度以下の温度範囲になるよう冷却するとともに、前記ランナ流路断面積に比較して小さな流路断面積に絞ったゲート部を通過させ、金属材料を前記キャビティ内に流入させて充填することを特徴とする金属射出成形方法。
Injecting the heat-melted metal material in a solid-liquid coexistence state into the spool flow path of the molding die, and flowing the metal material in the spool flow path while heating to a temperature higher than the liquidus temperature ,
In the runner channel between the spool channel and the cavity in the molding die, the metal material is cooled to a temperature range not lower than the solidus temperature and not higher than the liquidus temperature. A metal injection molding method characterized in that a metal part is allowed to flow into the cavity and filled by passing through a gate portion narrowed to a smaller cross-sectional area of the flow path compared to the above.
成形金型のランナ流路におけるゲート部の近傍箇所において、前記ランナ流路に突き出る突起物によって金属材料に対し剪断力を付与するとともに、金属材料を前記突起物を通じ吸熱源に伝熱させて冷却するようにした請求項1に記載の金属射出成形方法。  In the vicinity of the gate portion of the runner channel of the molding die, a shearing force is applied to the metal material by the projection protruding into the runner channel, and the metal material is transferred to the heat absorption source through the projection and cooled. The metal injection molding method according to claim 1, wherein the metal injection molding method is performed. 成形金型のランナ流路におけるゲート部の近傍箇所において、金属材料をその流動方向に沿って互いに平行な複数の流動路に分断させながら流動させ、金属材料をキャビティ内に流入させて充填する請求項1に記載の金属射出成形方法。  The metal material is made to flow while being divided into a plurality of flow paths parallel to each other along the flow direction in the vicinity of the gate portion in the runner flow path of the molding die, and the metal material is caused to flow into the cavity for filling. Item 2. A metal injection molding method according to Item 1. 固液共存状態の金属材料をノズルから射出する射出機と、
前記ノズルに連通するスプール流路およびランナ流路と、成形品の形状に対応する空間に形成されたキャビティと、前記ランナ流路と前記キャビティとの間に存在するゲート部とを有する成形金型とを備えてなり、
前記成形金型に、前記スプール流路内の金属材料を液相線温度以上になるよう加熱する加熱手段と、前記ランナ流路および前記ゲート部の内部を流動する金属材料を固相線温度以上であって液相線温度以下の温度範囲になるよう冷却する冷却手段とを有し、
前記ゲート部は、前記ランナ流路断面積に比較して小さな流路断面積に絞られていることを特徴とする金属射出成形装置。
An injection machine for injecting a metal material in a solid-liquid coexistence state from a nozzle;
A molding die having a spool channel and a runner channel communicating with the nozzle, a cavity formed in a space corresponding to the shape of a molded product, and a gate portion existing between the runner channel and the cavity And
Heating means for heating the metal material in the spool flow path to the liquidus temperature or higher, and the metal material flowing in the runner flow path and the gate portion at the solidus temperature or higher. And having a cooling means for cooling to a temperature range below the liquidus temperature,
The metal injection molding apparatus according to claim 1, wherein the gate portion is narrowed to a flow passage cross-sectional area smaller than the runner flow passage cross-sectional area.
成形金型に、冷却手段を内蔵した冷却ユニット体と、前記冷却手段に対し伝熱可能な状態で前記冷却ユニット体から突出した複数の突出ピンとが、前記各突出ピンの先端部がランナ流路におけるゲート部の近傍箇所において金属材料の流動方向に対し直交方向に向け突き出る配置で設けられている請求項4に記載の金属射出成形装置。  A cooling unit body in which a cooling means is built in the molding die, and a plurality of projecting pins projecting from the cooling unit body in a state where heat can be transferred to the cooling means, and the tip of each projecting pin is a runner flow path The metal injection molding apparatus according to claim 4, wherein the metal injection molding apparatus is provided so as to protrude in a direction orthogonal to the flow direction of the metal material at a location in the vicinity of the gate portion. 成形金型のランナ流路におけるゲート部の近傍箇所に、金属材料の流動方向に沿って延びる複数の仕切り突壁が互いに平行な配置で突設されている請求項4に記載の金属射出成形装置。  5. The metal injection molding apparatus according to claim 4, wherein a plurality of partition projecting walls extending along the flow direction of the metal material are arranged in parallel with each other at a location near the gate portion in the runner flow path of the molding die. .
JP13249599A 1999-05-13 1999-05-13 Metal injection molding method and apparatus, and molded product Expired - Fee Related JP4156748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13249599A JP4156748B2 (en) 1999-05-13 1999-05-13 Metal injection molding method and apparatus, and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13249599A JP4156748B2 (en) 1999-05-13 1999-05-13 Metal injection molding method and apparatus, and molded product

Publications (3)

Publication Number Publication Date
JP2000317603A JP2000317603A (en) 2000-11-21
JP2000317603A5 JP2000317603A5 (en) 2006-06-29
JP4156748B2 true JP4156748B2 (en) 2008-09-24

Family

ID=15082719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13249599A Expired - Fee Related JP4156748B2 (en) 1999-05-13 1999-05-13 Metal injection molding method and apparatus, and molded product

Country Status (1)

Country Link
JP (1) JP4156748B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR721501A0 (en) * 2001-08-23 2001-09-13 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for producing shaped metal parts
CN103286294A (en) * 2012-02-29 2013-09-11 瑞鼎机电科技(昆山)有限公司 Injection chamber heating device for die-casting machines
JP5763584B2 (en) * 2012-05-29 2015-08-12 株式会社ダイエンジニアリング Chill vent
CN112808969A (en) * 2019-11-18 2021-05-18 昆山旭龙精密机械有限公司 Aluminum alloy casting die-casting die
CN112719239A (en) * 2020-12-10 2021-04-30 宁川钧 Cooling device for die-casting production
CN114273634B (en) * 2021-12-30 2023-10-20 内蒙古北方重工业集团有限公司 Production method for eliminating defects of die casting threaded holes

Also Published As

Publication number Publication date
JP2000317603A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP2009214166A (en) Multi-cavity mold
JP2003524525A (en) Magnesium pressure casting
EP0615476A1 (en) Casting of light metal alloys
JP3494020B2 (en) Method and apparatus for semi-solid injection molding of metal
JP4156748B2 (en) Metal injection molding method and apparatus, and molded product
KR950012850B1 (en) Injection molding method
JP2019181503A (en) Die casting mold, die cast product produced by die casting mold, and method for producing die cast product
JP2000504632A (en) Thixo molding equipment
JP3626046B2 (en) Molded product and its casting mold
JP3502575B2 (en) Mold for forming metal molded products
JP2000317603A5 (en)
JP3809057B2 (en) Mold for molding metal products
JP2000117411A (en) Die casting apparatus and die casting method
JP2004216724A (en) Mold assembly and molding method
JP2003220459A (en) Die-casting equipment
JP2005193634A (en) Injection-molded product manufacturing method and mold assembly therefor
JP2001205419A (en) Injection molding method for magnesium alloy and molded goods obtained by the same
JPH11333898A (en) Mold for injection molding
JPH06285910A (en) Injection molding method of thermoplastic resin, injection molding nozzle and hot runner
JP4359826B2 (en) Metal material forming equipment
JPS5917623Y2 (en) Mold gate for injection molding
JP2023044984A (en) RESIN MEMBER AND METHOD FOR MANUFACTURING RESIN MEMBER
JP3499776B2 (en) Injection molding method and molding die for metal molded product
PL190635B1 (en) Magnesium die casting process
JPH06238698A (en) Molding equipment for blow molding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees