[go: up one dir, main page]

JP4152704B2 - Stent - Google Patents

Stent Download PDF

Info

Publication number
JP4152704B2
JP4152704B2 JP2002271327A JP2002271327A JP4152704B2 JP 4152704 B2 JP4152704 B2 JP 4152704B2 JP 2002271327 A JP2002271327 A JP 2002271327A JP 2002271327 A JP2002271327 A JP 2002271327A JP 4152704 B2 JP4152704 B2 JP 4152704B2
Authority
JP
Japan
Prior art keywords
stent
center line
bent
substantially straight
bent portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002271327A
Other languages
Japanese (ja)
Other versions
JP2003117005A (en
JP2003117005A5 (en
Inventor
健 池内
浩二 森
博夫 岩田
和明 光藤
弘章 野見山
吉治 吉川
正年 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Stent Technology Co Ltd
SB Kawasumi Laboratories Inc
Original Assignee
Kawasumi Laboratories Inc
Japan Stent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasumi Laboratories Inc, Japan Stent Technology Co Ltd filed Critical Kawasumi Laboratories Inc
Priority to JP2002271327A priority Critical patent/JP4152704B2/en
Publication of JP2003117005A publication Critical patent/JP2003117005A/en
Publication of JP2003117005A5 publication Critical patent/JP2003117005A5/ja
Application granted granted Critical
Publication of JP4152704B2 publication Critical patent/JP4152704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は血管等の生体内に生じた狭窄部の改善に使用されるステントの改良に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
図11、図12は現在使用されているステント201、241の平面図である(図11、図12で(A)は拡張前、(B)は拡張後の平面図)。各ステント201、241には次の課題があった。
図11のステント201は、環状ユニット204を構成するセル206は3本の直線部207を平行に接続し、各セル206間の湾曲部206Aが他の環状ユニット204を構成するセル206近傍の空間206Bに対向して配置されている構造である。このため適度の放射支持力(ステントを拡張して血管壁に固定した時に、血管壁方向からの外圧に対抗してステントの拡張状態を維持しようとする力)と柔軟性に優れていることが知られているが、Aの部分において拡張時やデリバリー時に血管の屈曲部で曲線を描きながら挿入されるのでセル206の一部が外側突出し引っ掛かり、デリバリーが困難となる場合があった。(以下、これをフレアー現象と称する)。
図12のステント241は環状ユニット244を構成するセル246は、略<形状ストラット247が連結部245により連結されている構造である。このため放射支持力が強く、拡張時や血管の屈曲部通過時に略<形状ストラット247が外側に反ることがない等の利点を持つが、柔軟性に欠けるという課題があった。これは連結部245に屈曲部が1つであり連結部245の長さも短いことが原因であった。
そこで本発明者らは以上の課題を解決し柔軟性と放射支持力を有するステントを提供するために鋭意検討を重ねた結果次の発明に到達した。
【0003】
【課題を解決するための手段】
[1]本発明は、略管状体に形成されかつ管状体の内部より半径方向に伸張可能なステント(1)であって、
複数のセル(6)を上下に連結し、当該複数のセル(6)をステント(1)の中心軸(C1)を取り囲むように複数配列することにより環状ユニット(4)を構成し、
複数の前記環状ユニット(4)がステント(1)の軸方向に配置され、前記隣り合う環状ユニット(4)同士は少なくとも一箇所が連結部(5)により連結され、
前記連結部(5)は、少なくとも2個以上の屈曲部(8)と、当該屈曲部(8)を構成する弧と、当該屈曲部(8)と連続する略直線部(7)から形成され、前記屈曲部(8)の端部は、前記セル(6)の左ないし右端部と接続され、
前記複数のセル(6)は、それぞれステント軸方向の中心線(C2)を有し、それぞれ当該軸方向の中心線(C2)に対して略平行に配置された略直線部(11)と、当該中心線(C2)に対して鋭角(X)に配置された曲線部(13)とを屈曲部(12)を介して接続するものであって、
前記曲線部(13)は、その一部を構成しかつ前記屈曲部(12)と隣接する略直線部(15)を、前記屈曲部(12)を介してステント軸方向の中心線(C2)に対して略平行に配置された略直線部(11)と接続しており、
前記セル(6)は、ステント軸方向の中心線(C2)で上下に区画した場合、中心線(C2)に対して上下非対称に形成され、
前記ステント(1)は、少なくともφ2.5mmに拡張しうるものであって、
前記屈曲部(12)に隣接する前記略直線部(15)と前記略直線部(11)の拡張後の角度θを30°〜140°であるように形成し、
生理活性物質または抗血栓薬剤を被覆したステント(1)を提供する。
[2]本発明は、略管状体に形成されかつ管状体の内部より半径方向に伸張可能なステント(1A)であって、
複数のセル(6A)を上下に連結し、当該複数のセル(6A)をステント(1A)の中心軸(C1)を取り囲むように複数配列することにより環状ユニット(4A)を構成し、
複数の前記環状ユニット(4A)がステント(1A)の軸方向に配置され、前記隣り合う環状ユニット(4A)同士は少なくとも一箇所が連結部(5A)により連結され、
前記連結部(5A)は、少なくとも2個以上の屈曲部(8A)と、当該屈曲部(8A)を構成する弧と、当該屈曲部(8A)と連続する略直線部(7A)から形成され、前記屈曲部(8A)の端部は、前記セル(6A)の左ないし右端部と接続され、
前記複数のセル(6A)は、それぞれステント軸方向の中心線(C2)を有し、それぞれ当該軸方向の中心線(C2)に対して鋭角(X)に配置された略直線部(11A)と、当該軸方向の中心線(C2)に対して略平行に配置された曲線部(13A)とを屈曲部(12A)を介して接続するものであって、
前記曲線部(13A)は、その一部を構成しかつ前記屈曲部(12A)と隣接する略直線部(15A)を、前記屈曲部(12A)を介してステント軸方向の中心線(C2)に対して鋭角(X)に配置された略直線部(11A)と接続しており、
前記セル(6A)は、ステント軸方向の中心線(C2)で上下に区画した場合、中心線(C2)に対して上下非対称に形成され、
前記ステント(1A)は、少なくともφ2.5mmに拡張しうるものであって、
前記屈曲部(12A)に隣接する前記略直線部(15A)と前記略直線部(11A)の拡張後の角度θを30°〜140°であるように形成し、
生理活性物質または抗血栓薬剤を被覆したステント(1A)を提供する。
[3]本発明は、略管状体に形成されかつ管状体の内部より半径方向に伸張可能なステント(1B)であって、
複数のセル(6B)を上下に連結し、当該複数のセル(6B)をステント(1B)の中心軸(C1)を取り囲むように複数配列することにより環状ユニット(4B)を構成し、
複数の前記環状ユニット(4B)がステント(1B)の軸方向に配置され、前記隣り合う環状ユニット(4B)同士は少なくとも一箇所が連結部(5B)により連結され、
前記連結部(5B)は、少なくとも2個以上の屈曲部(8B)と、当該屈曲部(8B)を構成する弧と、当該屈曲部(8B)と連続する略直線部(7B)から形成され、前記屈曲部(8B)の端部は、前記セル(6B)の左ないし右端部と接続され、
前記複数のセル(6B)は、それぞれステント軸方向の中心線(C2)を有し、それぞれ当該軸方向の中心線(C2)に対して鋭角(X)を有する略直線部(11B)と、当該軸方向の中心線(C2)に対して略平行に配置された略直線部(13B)とを屈曲部(12B)を介して接続することにより形成しており、
前記セル(6B)は、ステント軸方向の中心線(C2)で上下に区画した場合、中心線(C2)に対して上下非対称に形成され、
前記ステント(1B)は、少なくともφ2.5mmに拡張しうるものであって、
前記屈曲部(12B)に隣接する前記略直線部(13B)と前記略直線部(11B)の拡張後の角度θを30°〜140°であるように形成し、
生理活性物質または抗血栓薬剤を被覆したステント(1B)を提供する。
【0004】
【発明の実施の形態】
図1は本発明のステントの平面図(図2は図1の拡大図、図3は拡張後の本発明のステントの状態を示す拡大図、図4はセルを構成するストラットの概念図)である。
ステント1は略管状体に形成されかつ管状体の内部より半径方向に伸張可能であって、複数のセル6を上下に連結し、これらをステント1の中心軸C1を取り囲むように複数配列することにより環状ユニット4を構成し、複数の前記環状ユニット4がステント1の軸方向に延設され、前記環状ユニット4同士は少なくとも一箇所が連結部5により連結されている。
【0005】
本発明で前記セル6とは、ステント1の表面を構成する模様の一つの構成単位を意味し、図2のように少なくとも一つ以上の鋭角Xを有する屈曲部12を有し、これを介して略直線部11と曲線部13を接続して構成される全ての形態を含む。さらに前記セル6はステント軸方向の中心線C2で上下に区画した場合、中心線C2に対して上下非対称に形成され、屈曲部12の拡張後の角度θを図3のように30°以上となるように形成している。
屈曲部12の拡張後の角度θとは図3のように屈曲部12上の点Oと略直線部11及び曲線部13の点O側に近い略直線部15との間に形成される角度を意味する。
セル6は屈曲部12を介して略直線部11と曲線部13を連結することにより構成され、曲線部13は鈍角Yを有する小屈曲部14を2箇所以上形成するのが良い。
【0006】
セル6を構成する略直線部11及び屈曲部12、小屈曲部14からなる曲線部13(略S形状部ともいう)は、ステントの拡張後において中心軸C1に対し垂直に近くなるほうが、ステントの放射支持力が大きくなる。これにより屈曲部12の拡張後の角度θは180°に近づくほどステントの放射支持力が大きくなることを見出した。すなわちステントの設計においては、少なくともφ2.5mmに拡張した時において、屈曲部12の拡張後の角度θは、少なくとも30°以上に設計するのが良い。
また、これらはセル6の配置数にも関係するため、セル6の半径方向の配置数は、4個以上が好ましい。さらに拡張後の径としてφ3.0mm以上となる場合においては6個以上、好ましくは6個から12個配置するのが良い。またステント軸方向においては10mmあたり3個以上好ましくは4個から8個配置し、ステント拡張の目標径(規格径、例えばφ3.0、φ4.0)となった時点において、例えば先に述べたように屈曲部12の拡張後の角度θが、少なくとも30°以上、好ましくは45°から140°、より好ましくは45°から120°の間に設計するのが良い。
目標径において140°を越えるように設計することは、ステントの放射支持力には有効であるが、屈曲部12の変形量が大きくなり強度に問題が出ること、拡張に伴うステントの全長短縮(フォーショートニング)が大きくなり、ステント留置時の位置決めが困難となる等の問題が起こり好ましくない。
【0007】
またセル6のストラットの形状はステント軸方向の中心線C2に対して図4(a)のように対称に形成するよりも図4(b)のように非対称に形成するほうがストラット全体の相対的な長さが大きくなり(例えば図4(a)と(b)を比較すると必ず2a<c+dとなる)、ステント自体の拡張性を高めるとともにフォーショートニングの抑制効果を高めることができる。
【0008】
前記連結部5は、少なくとも2個以上の屈曲部を有し、例えばステント1では中央の略直線部7の両側に屈曲部8を接続することにより構成され、屈曲部8の端部は接続部9を介してそれぞれ異なる環状ユニット4を構成する前記セル6の端部と接続されている。
前記連結部5は前記セル6の両端に左右非対称に接続されている。
連結部5は略直線部7と屈曲部8を合わせた全体の長さが1mm以上で長いほど柔軟性は向上すると考えられ良いが、長くすると比例して略S形状の連結部5が大きくなり、該ステントをバルーンカテーテルにマウントする時(バルーンカテーテル上で若干ステントの径を縮小することがある)や、血管の屈曲部通過時にステントは血管に沿って湾曲した時に、上下の連結部5が干渉しあい、逆に柔軟性を損なうこととなる。そのため、全体の長さが1mm以上、好ましくは1mmから2mmが良い。さらに屈曲部8を構成する弧のR(半径)も上述の理由により、R=0.05mm以上、好ましくは0.05mmから0.2mmに形成するのが良い。
さらに本発明では前記セル6のステント軸方向の長さ6Lと前記連結部5のステント軸方向5の長さ方向5Lの比率を、6Lを100とすると5Lを50から100に形成するのが好ましいが設計の都合上、50から90に形成するのが良い。これによりステントの拡張後やデリバリー時のフレアー現象を抑制するとともにステント自体に柔軟性を付与することができる。
【0009】
本発明のステント1のパターンの特徴は次のとおりである。
セル6は連結部5を介してステント軸方向に非対称に配置されているがステント軸方向に同じ向きで同じ高さに配置されている。ステント軸方向のセル6は仮にn列目から(n+1)列目にステント軸方向に移動させて見た時、相互に重なり合うように配置されている。また同じ列のセル6も同列の上または下にスライドさせて見た時、相互に重なり合うようにステント半径方向に同じ向きに配置されている。ここで略直線部11は、中心線C2に対し略水平(略平行)であるが、屈曲部12の拡張後の角度θが30゜未満とならない範囲で若干角度をつけ斜めにしても良い。
【0010】
連結部5もセル6を介してステント軸方向に非対称に配置されているが、ステント軸方向に同じ向きでかつ同じ高さに配置されている。ステント軸方向の連結部5は仮にn列目から(n+1)列目にステント軸方向に移動させて見た時、相互に重なり合うように配置されている。また同じ列の連結部5も同列の上または下にスライドさせて見た時、相互に重なり合うようにステント半径方向に同じ向きに配置されている。
また、セル6を構成するストラットの幅は連結部5を構成するストラットの幅よりも大きく形成され、ステント軸方向のセル6と連結部5の高さは連結部5かセル6よりも高い位置にずらして配置されている。
【0011】
以上のように本発明のステント1は前記屈曲部12の拡張後の角度θ、セル6のステント軸方向の長さ6Lとステント軸方向の長さ5Lの比率、前記連結部5とセル6の形態、連結部5とセル6のステントの半径方向並びに軸方向の配置(パターン)により、血管へのデリバリー時に、図5に示すようにステント1の径を縮小させた時に、セル6と連結部5がそれぞれお互いにステントの半径方向に立体的に重なることがなく、相互間のステントの半径方向の空間S内に納まるように形成されている。
【0012】
図6及び図8は本発明のステントのその他の実施例を示す平面図(図7及び図9は図6及び図8の一部拡大平面図)である。
図6(図7)のステント1Aは、図1のステント1と比較して、(a)セル6Aがステント1Aの軸方向の中心線C2に対して鋭角Xを有する略直線部11Aを屈曲部12Aを介して曲線部13Aと接続することにより構成されている(ステント1は、セル6がステント1の軸方向の中心線C2に対して略水平(略平行)に配置された略直線部11を屈曲部12を介して曲線部13と接続することにより構成されている)点、(b)セル6Aが連結部5Aを介してステント1Aの軸方向に左右対称に配置されている点、(c)ステント1A軸方向のセル6Aは仮にn列目から(n+2)列目に一列置きにステント1Aの軸方向に見た場合、相互に重なり合うように配置されている点等が異なるのみで、その他の各構成部材及びこれらの定義等はステント1と実質的に同じであるから詳細な説明は省略する。
【0013】
また図8(図9)のステントは1Bは、図1、図6(図7)のステント1、1Aと比較して、(a)セル6Bがステント1Bの軸方向の中心線C2に対して鋭角Xを有する略直線部11Bを屈曲部12Bを介してステント1の軸方向の中心線C2に対して略水平(略平行)に配置された略直線部13Bと接続することにより構成されている(ステント1、1Aは、セル6、6Aが略直線部11、11Aを屈曲部12を介して曲線部13、13Aと接続することにより構成されている)点等がステント1、1Aと異なるのみで、(b)セル6Bが連結部5Bを介してステント1Bの軸方向に左右対称に配置されている点及び(c)ステント1B軸方向のセル6Bは仮にn列目から(n+2)列目に一列置きにステント1Bの軸方向に見た場合、相互に重なり合うように配置されている点等はステント1と異なり、ステント1Aと実質的に同じである。その他の各構成部材及びこれらの定義等はステント1、1A実質的に同じであるから詳細な説明は省略する。
【0014】
また本発明の前記図1、6、8に例示したステント1、1A、1Bでは、各環状ユニット4、4A、4Bを構成するセル6、6A、6Bの連結部5、5A、5Bは、ステント1、1A、1Bの半径方向に隙間無く連続して配置されているが、半径方向に少なくとも一個以上の空間を空けて配置(一個置きあるいは一個または二個置きに空間を空けて配置する)ことにより、ステント1、1A、1B全体がより柔軟となり、分岐した血管へのデリバリー性が向上することが期待される。
【0015】
本発明のステント1(1A、1B)はSUS316L等のステンレス鋼、Ti−Ni合金、Cu−Al−Mn合金等の形状記憶合金、チタン合金、タンタル等からなる金属パイプから例えばレーザー加工法等により形成される。
またこれらの金属より形成されたステントにウレタン等の高分子材料やヘパリン、ウロキナーゼ等の生理活性物質、アルガトロバン等の抗血栓薬剤を被覆させるのも良い。
【0016】
実施例1
図10に示す略<形状のセル17と略S形状の接続部18からなる構成部19により構成されるステントA(B)において、拡張後の角度の違いによる放射支持力の差を評価するため、円周方向に構成部19の配置数が異なるステントA、Bを製作し放射支持力を評価した。
ステントA:構成部19の配置数 8
セル17のストラット幅 0.12mm
3mm拡張後の1θ角度 60゜
ステントB:構成部19の配置数 6
セル17のストラット幅 0.12mm
3mm拡張後の1θ角度 81゜
評価は、ステントをチャンバー内に配置したシリコンチューブ内にφ3mmまで拡張して留置した後、チャンバー内に空気にて圧力をかけステントの外径変化を測定することにより評価した。
【0017】
【表1】

Figure 0004152704
表1に示すように、拡張後の角度の大きいステントBが−0.04mm(外径が0.04mm減少した)で変化量が少なく放射支持力が大きいことが確認できた。
【0018】
実施例2
図1に示すステント1を製作し、放射支持力をステント201、241と比較し、柔軟性をステント201と比較し評価した。放射支持力の評価は実施例1と同じ方法で行い、柔軟性は4点曲げ法にて評価した。
【0019】
【表2】
Figure 0004152704
【0020】
【表3】
Figure 0004152704
以上のように、本発明のステント1は表2の結果よりステント201、241より外径変化量が少なく、表3の結果よりステント201より曲げ強度が小さいことが確認できた。したがって本発明のステント1は高い放射支持力と柔軟性を併せ持つステントであることが理解できる。
【0021】
実施例3
ステント1A、1Bも実施例1、2と同様に放射支持力と柔軟性を測定し評価したところステント1と実質的に同様の結果が得られた。
【0022】
【表4】
Figure 0004152704
【0023】
【表5】
Figure 0004152704
【0024】
実施例4
本発明のステント1、1A及び1Bについて、φ3.0mmに拡張したときのフォーショートニング値を測定した。測定は、拡張前の各ステント長(L1とする)を測定し、φ3.0まで拡張した後のステント長(L2)を計測し、全長の縮小率を算出しフォーショートニング値とした。比較例としてステント201、241も測定した。
【0025】
【表6】
Figure 0004152704
表6の結果より、本発明のステント1、1A、1Bはステント201、241よりもフォーショートニング値が小さいことが確認できた。
【0026】
【発明の作用効果】
本発明のステントは高い柔軟性と放射支持力を充分に確保するとともに、血管拡張性を高めフォーショートニング並びにフレアー現象を抑えることができる。
【図面の簡単な説明】
【図1】本発明のステントの平面図
【図2】図1の拡大図
【図3】拡張後の本発明のステントの状態を示す拡大図
【図4】セルを構成するストラットの概念図
【図5】血管へのデリバリー時に、ステント1の径を縮小させた時の拡大図
【図6】本発明のステントのその他の実施例を示す平面図
【図7】図6の一部拡大平面図
【図8】本発明のステントのその他の実施例を示す平面図
【図9】図8の一部拡大平面図
【図10】本発明のステントの参考例の拡大図
【図11】従来のステントの平面図
【図12】従来のステントの平面図
【符号の説明】
1、1A、1B ステント
4、4A、4B 環状ユニット
5、5A、5B 連結部
6、6A、6B セル
7 略直線部
8、8A、8B 屈曲部
9 接続部
11、11A、11B、13B 略直線部
12、12A、12B 屈曲部
13、13A 曲線部
14、14A 小屈曲部
15 略直線部
17 略<形状のセル
18 略S形状の接続部
19 ステントA、Bにおける構成部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a stent used to improve a stenosis that occurs in a living body such as a blood vessel.
[0002]
[Prior art and problems to be solved by the invention]
11 and 12 are plan views of the stents 201 and 241 that are currently used (in FIGS. 11 and 12, (A) is a plan view before expansion, and (B) is a plan view after expansion). Each of the stents 201 and 241 has the following problems.
In the stent 201 of FIG. 11, the cells 206 constituting the annular unit 204 connect three straight portions 207 in parallel, and a curved portion 206 </ b> A between the cells 206 is a space in the vicinity of the cell 206 constituting the other annular unit 204. This is a structure arranged to face 206B. For this reason, it should be excellent in moderate radiation support force (force to maintain the expanded state of the stent against the external pressure from the blood vessel wall direction when the stent is expanded and fixed to the blood vessel wall) and flexibility. As is known, since the portion A is inserted while drawing a curve at the bent portion of the blood vessel at the time of expansion or delivery, a part of the cell 206 protrudes outwardly and may be difficult to deliver. (Hereinafter, this is called a flare phenomenon).
The stent 241 in FIG. 12 has a structure in which the cells 246 constituting the annular unit 244 are substantially <shaped struts 247 are connected by a connecting portion 245. For this reason, the radiation supporting force is strong, and there is an advantage that the shape strut 247 does not warp outward when dilating or passing through the bent portion of the blood vessel, but there is a problem that it lacks flexibility. This is because the connecting portion 245 has one bent portion and the length of the connecting portion 245 is short.
Accordingly, the present inventors have intensively studied to solve the above problems and provide a stent having flexibility and radiation support force, and as a result, have reached the following invention.
[0003]
[Means for Solving the Problems]
[1] The present invention provides a stent (1) that is formed in a substantially tubular body and is radially expandable from the inside of the tubular body,
A plurality of cells (6) are connected vertically, and a plurality of the cells (6) are arranged so as to surround the central axis (C1) of the stent (1), thereby forming an annular unit (4).
A plurality of the annular units (4) are disposed in the axial direction of the stent (1), and the adjacent annular units (4) are connected to each other by at least one connection part (5),
The connecting portion (5) is formed of at least two or more bent portions (8), an arc constituting the bent portion (8), and a substantially straight portion (7) continuous with the bent portion (8). The end of the bent portion (8) is connected to the left or right end of the cell (6),
Each of the plurality of cells (6) has a center line (C2) in the stent axial direction, and a substantially straight line portion (11) disposed substantially parallel to the axial center line (C2), A curved portion (13) disposed at an acute angle (X) with respect to the center line (C2) is connected via a bent portion (12),
The curved portion (13) constitutes a part thereof and a substantially straight portion (15) adjacent to the bent portion (12) passes through the bent portion (12), and the center line (C2) in the stent axial direction. Connected to a substantially straight line portion (11) disposed substantially parallel to
The cell (6) is vertically asymmetric with respect to the center line (C2) when the cell (6) is vertically divided by the center line (C2) in the stent axial direction,
The stent (1) is expandable to at least φ2.5 mm,
Forming an angle θ after expansion of the substantially linear portion (15) adjacent to the bent portion (12) and the substantially linear portion (11) to be 30 ° to 140 °;
A stent (1) coated with a physiologically active substance or an antithrombotic agent is provided.
[2] The present invention provides a stent (1A) that is formed in a substantially tubular body and is radially expandable from the inside of the tubular body,
A plurality of cells (6A) are vertically connected, and a plurality of the cells (6A) are arranged so as to surround the central axis (C1) of the stent (1A) to constitute the annular unit (4A).
A plurality of the annular units (4A) are arranged in the axial direction of the stent (1A), and the adjacent annular units (4A) are connected to each other by at least one connection portion (5A),
The connecting portion (5A) is formed of at least two or more bent portions (8A), an arc constituting the bent portion (8A), and a substantially straight portion (7A) continuous with the bent portion (8A). The end of the bent portion (8A) is connected to the left or right end of the cell (6A),
Each of the plurality of cells (6A) has a center line (C2) in the axial direction of the stent, and is substantially linear (11A) arranged at an acute angle (X) with respect to the central line (C2) in the axial direction. And a curved portion (13A) arranged substantially parallel to the axial center line (C2) via a bent portion (12A),
The curved portion (13A) constitutes a part thereof and a substantially straight portion (15A) adjacent to the bent portion (12A) passes through the bent portion (12A) in the stent axial direction center line (C2). Connected to a substantially straight line portion (11A) disposed at an acute angle (X),
The cell (6A) is vertically asymmetric with respect to the center line (C2) when the cell (6A) is partitioned vertically by the center line (C2) in the stent axial direction,
The stent (1A) is expandable to at least φ2.5 mm,
Forming the angle θ after expansion of the substantially linear portion (15A) adjacent to the bent portion (12A) and the substantially linear portion (11A) to be 30 ° to 140 °;
Providing a physiologically active substance or antithrombotic drugs coated stents (1A).
[3] The present invention provides a stent (1B) that is formed in a substantially tubular body and is radially expandable from the inside of the tubular body,
A plurality of cells (6B) are vertically connected, and the plurality of cells (6B) are arranged so as to surround the central axis (C1) of the stent (1B) to constitute an annular unit (4B).
A plurality of the annular units (4B) are arranged in the axial direction of the stent (1B), and the adjacent annular units (4B) are connected to each other by at least one connection portion (5B),
The connecting portion (5B) is formed of at least two or more bent portions (8B), an arc constituting the bent portion (8B), and a substantially straight portion (7B) continuous with the bent portion (8B). The end of the bent portion (8B) is connected to the left or right end of the cell (6B),
The plurality of cells (6B) each have a center line (C2) in the stent axial direction, and a substantially straight portion (11B) having an acute angle (X) with respect to the axial center line (C2), respectively. It is formed by connecting a substantially straight part (13B) arranged substantially parallel to the axial center line (C2) via a bent part (12B),
The cell (6B) is vertically asymmetric with respect to the center line (C2) when the cell (6B) is partitioned vertically by the center line (C2) in the stent axial direction,
The stent (1B) is expandable to at least φ2.5 mm,
Forming the angle θ after expansion of the substantially linear portion (13B) and the substantially linear portion (11B) adjacent to the bent portion (12B) to be 30 ° to 140 °;
A stent (1B) coated with a physiologically active substance or an antithrombotic agent is provided.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
1 is a plan view of a stent of the present invention (FIG. 2 is an enlarged view of FIG. 1, FIG. 3 is an enlarged view showing a state of the stent of the present invention after expansion, and FIG. 4 is a conceptual view of struts constituting a cell). is there.
The stent 1 is formed in a substantially tubular body and is radially expandable from the inside of the tubular body, and a plurality of cells 6 are connected vertically, and a plurality of these cells are arranged so as to surround the central axis C1 of the stent 1. To form an annular unit 4, a plurality of the annular units 4 are extended in the axial direction of the stent 1, and at least one of the annular units 4 is connected by a connecting portion 5.
[0005]
In the present invention, the cell 6 means one structural unit of a pattern constituting the surface of the stent 1, and has at least one bent portion 12 having an acute angle X as shown in FIG. All forms configured by connecting the substantially linear portion 11 and the curved portion 13 are included. Further, when the cell 6 is vertically divided by the center line C2 in the stent axial direction, it is formed vertically asymmetric with respect to the center line C2, and the angle θ after expansion of the bent portion 12 is 30 ° or more as shown in FIG. It is formed to become.
The angle θ after expansion of the bent portion 12 is an angle formed between the point O on the bent portion 12 and the substantially straight portion 15 close to the point O side of the substantially straight portion 11 and the curved portion 13 as shown in FIG. Means.
The cell 6 is configured by connecting the substantially straight line portion 11 and the curved portion 13 via the bent portion 12, and the curved portion 13 is preferably formed with two or more small bent portions 14 having an obtuse angle Y.
[0006]
The curved portion 13 (also referred to as a substantially S-shaped portion) composed of the substantially straight portion 11, the bent portion 12, and the small bent portion 14 constituting the cell 6 is closer to being perpendicular to the central axis C1 after the stent is expanded. Increases the radiation support force. As a result, it has been found that the radiation support force of the stent increases as the angle θ after expansion of the bent portion 12 approaches 180 °. That is, in the design of the stent, the angle θ after expansion of the bent portion 12 is preferably designed to be at least 30 ° or more when expanded to at least φ2.5 mm.
Moreover, since these relate to the number of cells 6 arranged, the number of cells 6 arranged in the radial direction is preferably four or more. Further, when the diameter after expansion is φ3.0 mm or more, 6 or more, preferably 6 to 12 are arranged. Further, in the stent axial direction, 3 or more, preferably 4 to 8 are arranged per 10 mm, and when the target diameter of the stent expansion (standard diameter, for example, φ3.0, φ4.0) is reached, for example, as described above Thus, the angle θ after expansion of the bent portion 12 should be designed to be at least 30 ° or more, preferably 45 ° to 140 °, more preferably 45 ° to 120 °.
Designing the target diameter to exceed 140 ° is effective for the radial support force of the stent, but the amount of deformation of the bent portion 12 increases, causing a problem in strength, and shortening the total length of the stent accompanying expansion ( For shortening) becomes large, and problems such as difficulty in positioning during stent placement occur, which is not preferable.
[0007]
The strut shape of the cell 6 is relatively asymmetrical as shown in FIG. 4 (b) rather than symmetrically as shown in FIG. 4 (a) with respect to the center line C2 in the stent axial direction. (E.g., 2a <c + d when comparing FIGS. 4 (a) and 4 (b)), the expandability of the stent itself can be enhanced and the foreshortening suppressing effect can be enhanced.
[0008]
The connecting part 5 has at least two or more bent parts. For example, in the stent 1, the connecting part 5 is configured by connecting the bent parts 8 to both sides of the substantially straight part 7 at the center, and the end of the bent part 8 is a connecting part. 9 are connected to the end portions of the cells 6 constituting different annular units 4.
The connecting portion 5 is connected to both ends of the cell 6 asymmetrically.
The connecting portion 5 may be considered to be improved in flexibility as the total length of the substantially straight portion 7 and the bent portion 8 is longer than 1 mm. However, as the connecting portion 5 becomes longer, the substantially S-shaped connecting portion 5 becomes proportionally larger. When the stent is mounted on a balloon catheter (the diameter of the stent may be slightly reduced on the balloon catheter) or when the stent is bent along the blood vessel when passing through the bent portion of the blood vessel, the upper and lower connecting portions 5 are Interference, and conversely, flexibility is lost. Therefore, the total length is 1 mm or more, preferably 1 mm to 2 mm. Furthermore, the R (radius) of the arc constituting the bent portion 8 is also preferably set to R = 0.05 mm or more, preferably 0.05 mm to 0.2 mm, for the reason described above.
Further, in the present invention, it is preferable that the ratio of the length 6L of the cell 6 in the stent axial direction and the length direction 5L of the connecting portion 5 in the stent axial direction 5 is 5L from 50 to 100, where 6L is 100. However, it is preferable to form 50 to 90 for convenience of design. As a result, it is possible to suppress the flare phenomenon after expansion of the stent or during delivery and to impart flexibility to the stent itself.
[0009]
The features of the pattern of the stent 1 of the present invention are as follows.
The cells 6 are arranged asymmetrically in the stent axial direction via the connecting portion 5 but are arranged in the same direction and at the same height in the stent axial direction. The cells 6 in the stent axis direction are arranged so as to overlap each other when viewed from the nth column to the (n + 1) th column in the stent axis direction. The cells 6 in the same row are also arranged in the same direction in the radial direction of the stent so as to overlap each other when viewed by sliding up or down in the same row. Here, the substantially straight portion 11 is substantially horizontal (substantially parallel) with respect to the center line C2, but may be slightly inclined with an angle within a range where the angle θ of the bent portion 12 after expansion is not less than 30 °.
[0010]
The connecting portions 5 are also arranged asymmetrically in the stent axial direction via the cells 6, but are arranged in the same direction and at the same height in the stent axial direction. The connecting portions 5 in the stent axial direction are arranged so as to overlap each other when viewed from the nth row to the (n + 1) th row in the stent axial direction. Further, the connecting portions 5 in the same row are also arranged in the same direction in the radial direction of the stent so as to overlap each other when viewed in sliding up or down in the same row.
In addition, the width of the struts constituting the cell 6 is formed larger than the width of the struts constituting the connecting part 5, and the height of the cell 6 and the connecting part 5 in the stent axial direction is higher than the connecting part 5 or the cell 6. It is arranged to shift to.
[0011]
As described above, the stent 1 of the present invention has an angle θ after expansion of the bent portion 12, a ratio of the length 6L of the cell 6 in the stent axial direction to the length 5L in the stent axial direction, and the connection portion 5 and the cell 6. When the diameter of the stent 1 is reduced as shown in FIG. 5 at the time of delivery to the blood vessel due to the configuration, the radial arrangement and the axial arrangement (pattern) of the stent of the connection portion 5 and the cell 6, the cell 6 and the connection portion 5 are formed so as not to overlap each other in the radial direction of the stent and to fit within the space S in the radial direction of the stent.
[0012]
6 and 8 are plan views showing other embodiments of the stent of the present invention (FIGS. 7 and 9 are partially enlarged plan views of FIGS. 6 and 8).
The stent 1A of FIG. 6 (FIG. 7) is compared with the stent 1 of FIG. 1 in that (a) the cell 6A bends a substantially straight portion 11A having an acute angle X with respect to the axial center line C2 of the stent 1A. (Stent 1 has a substantially straight portion 11 in which cells 6 are arranged substantially horizontally (substantially parallel) with respect to the axial center line C2 of the stent 1). (B) the cell 6A is arranged symmetrically in the axial direction of the stent 1A via the connecting portion 5A, and (b) c) The cells 6A in the axial direction of the stent 1A differ only in that they are arranged so as to overlap each other when viewed in the axial direction of the stent 1A every other row from the nth row to the (n + 2) th row. Other components and their definitions The stent 1 substantially detailed description because it is the same will be omitted.
[0013]
In addition, the stent 1B of FIG. 8 (FIG. 9) is compared with the stents 1 and 1A of FIGS. 1 and 6 (FIG. 7). (A) The cell 6B is in relation to the axial center line C2 of the stent 1B. It is configured by connecting a substantially straight portion 11B having an acute angle X to a substantially straight portion 13B disposed substantially horizontally (substantially parallel) with respect to the axial center line C2 of the stent 1 via a bent portion 12B. (Stents 1 and 1A are formed by connecting cells 6 and 6A to substantially curved portions 13 and 13A through substantially straight portions 11 and 11A via bent portions 12). (B) The cells 6B are arranged symmetrically in the axial direction of the stent 1B via the connecting portion 5B, and (c) the cells 6B in the axial direction of the stent 1B are temporarily arranged from the n-th column to the (n + 2) -th column. When viewed in the axial direction of the stent 1B every other row, The points or the like are disposed so as each other overlap Unlike stent 1, a stent 1A substantially the same. Since the other constituent members and their definitions are substantially the same as those of the stent 1, 1A, detailed description thereof is omitted.
[0014]
In the stents 1, 1A and 1B illustrated in FIGS. 1, 6 and 8 of the present invention, the connecting portions 5, 5A and 5B of the cells 6, 6A and 6B constituting the annular units 4, 4A and 4B are stents. 1, 1A, 1B are arranged continuously in the radial direction with no gaps, but at least one space or more is arranged in the radial direction (place one or two or every other space). Thus, the stents 1, 1A, and 1B as a whole are more flexible, and delivery to a branched blood vessel is expected to be improved.
[0015]
The stent 1 (1A, 1B) of the present invention is formed from a metal pipe made of stainless steel such as SUS316L, shape memory alloy such as Ti—Ni alloy, Cu—Al—Mn alloy, titanium alloy, tantalum, etc. by, for example, laser processing. It is formed.
A stent formed from these metals may be coated with a polymer material such as urethane, a physiologically active substance such as heparin or urokinase, or an antithrombotic drug such as argatroban.
[0016]
Example 1
In order to evaluate the difference in the radiation support force due to the difference in angle after expansion in the stent A (B) constituted by the constituent part 19 including the substantially <shaped cell 17 and the substantially S-shaped connecting part 18 shown in FIG. Stents A and B having different arrangement numbers of the constituent portions 19 in the circumferential direction were manufactured, and the radiation supporting force was evaluated.
Stent A: Number of components 19 arranged 8
Strut width of cell 17 0.12 mm
1θ angle after 3 mm expansion 60 ° Stent B: Number of components 19 arranged 6
Strut width of cell 17 0.12 mm
1θ angle after 3 mm expansion 81 ° evaluation is performed by expanding the stent to φ3 mm in a silicon tube placed in the chamber and then measuring the change in the outer diameter of the stent by applying pressure in the chamber with air. evaluated.
[0017]
[Table 1]
Figure 0004152704
As shown in Table 1, it was confirmed that the stent B having a large angle after expansion was −0.04 mm (the outer diameter was decreased by 0.04 mm), and the amount of change was small and the radiation supporting force was large.
[0018]
Example 2
The stent 1 shown in FIG. 1 was manufactured, and the radiation support force was compared with the stents 201 and 241 and the flexibility was compared with the stent 201 for evaluation. Evaluation of the radiation supporting force was performed by the same method as in Example 1, and the flexibility was evaluated by a four-point bending method.
[0019]
[Table 2]
Figure 0004152704
[0020]
[Table 3]
Figure 0004152704
As described above, it was confirmed that the stent 1 of the present invention had a smaller outer diameter change amount than the stents 201 and 241 from the results in Table 2, and a bending strength smaller than the stent 201 from the results in Table 3. Therefore, it can be understood that the stent 1 of the present invention is a stent having both high radiation support force and flexibility.
[0021]
Example 3
Stents 1A and 1B were also measured and evaluated for radiation supporting force and flexibility in the same manner as in Examples 1 and 2, and substantially the same results as stent 1 were obtained.
[0022]
[Table 4]
Figure 0004152704
[0023]
[Table 5]
Figure 0004152704
[0024]
Example 4
For the stents 1, 1 </ b> A and 1 </ b> B of the present invention, the for shortening value when expanded to φ3.0 mm was measured. In the measurement, each stent length before expansion (referred to as L1) was measured, the stent length after expansion to φ3.0 (L2) was measured, and the reduction ratio of the total length was calculated to obtain a for shortening value. As comparative examples, stents 201 and 241 were also measured.
[0025]
[Table 6]
Figure 0004152704
From the results shown in Table 6, it was confirmed that the stents 1, 1 </ b> A, and 1 </ b> B of the present invention had smaller foreshortening values than the stents 201 and 241.
[0026]
[Effects of the invention]
The stent of the present invention can sufficiently secure high flexibility and radiation support force, and can enhance vasodilation and suppress foreshortening and flare phenomenon.
[Brief description of the drawings]
FIG. 1 is a plan view of a stent of the present invention. FIG. 2 is an enlarged view of FIG. 1. FIG. 3 is an enlarged view showing a state of the stent of the present invention after expansion. 5 is an enlarged view when the diameter of the stent 1 is reduced during delivery to a blood vessel. FIG. 6 is a plan view showing another embodiment of the stent of the present invention. FIG. 7 is a partially enlarged plan view of FIG. FIG. 8 is a plan view showing another embodiment of the stent of the present invention. FIG. 9 is a partially enlarged plan view of FIG. 8. FIG. 10 is an enlarged view of a reference example of the stent of the present invention. [Fig. 12] Plan view of a conventional stent [Explanation of symbols]
1, 1A, 1B Stent 4, 4A, 4B Annular unit 5, 5A, 5B Connecting portion 6, 6A, 6B Cell 7 Substantially straight portion 8, 8A, 8B bent portion 9 Connection portion 11, 11A, 11B, 13B Substantially straight portion 12, 12A, 12B Bent part 13, 13A Curved part 14, 14A Small bent part 15 Substantially straight part 17 Substantially <shaped cell 18 Substantially S-shaped connecting part 19 Constituent part in stents A and B

Claims (3)

略管状体に形成されかつ管状体の内部より半径方向に伸張可能なステント(1)であって、
複数のセル(6)を上下に連結し、当該複数のセル(6)をステント(1)の中心軸(C1)を取り囲むように複数配列することにより環状ユニット(4)を構成し、
複数の前記環状ユニット(4)がステント(1)の軸方向に配置され、前記隣り合う環状ユニット(4)同士は少なくとも一箇所が連結部(5)により連結され、
[1]前記連結部(5)は、少なくとも2個以上の屈曲部(8)と、当該屈曲部(8)を構成する弧(R)と、当該屈曲部(8)と連続する略直線部(7)から形成され、
前記2個以上の屈曲部(8)のうち左端部と右端部に位置する屈曲部(8)のそれぞれ左ないし右端部は、前記セル(6)のそれぞれ左ないし右端部と接続され、
[2]前記複数のセル(6)は、
(i)それぞれステント軸方向の中心線(C2)を有し、
(ii)それぞれ当該軸方向の中心線(C2)に対して略平行に配置された略直線部(11)と、
(iii)小屈曲部(14)と略直線部(15)とから構成される曲線部(13)であって、当該略直線部(15)が前記中心線(C2)に対して鋭角(X)に配置される当該曲線部(13)とを、
(iv)
)屈曲部(12)を介して接続することにより構成されるものであって、かつ、
b)当該略直線部(11)と当該曲線部(13)の接続は、前記曲線部(13)の一部を構成しかつ前記屈曲部(12)と隣接する前記略直線部(15)を、前記屈曲部(12)を介してステント軸方向の中心線(C2)に対して略平行に配置された前記略直線部(11)と接続することにより行われており、
(v)前記セル(6)は、ステント軸方向の前記中心線(C2)で上下に区画した場合、前記中心線(C2)に対して上下非対称に形成され、
[ ]前記ステント(1)は、少なくともφmmに拡張しうるものであって、
前記屈曲部(12)に隣接する前記略直線部(15)と前記略直線部(11)の拡張後の角度θを30°〜140°であるように形成し、かつ、
[4]生理活性物質または抗血栓薬剤を被覆したことを特徴とするステント(1)。
A stent (1) formed in a generally tubular body and extensible radially from the inside of the tubular body,
A plurality of cells (6) are connected vertically, and a plurality of the cells (6) are arranged so as to surround the central axis (C1) of the stent (1), thereby forming an annular unit (4).
A plurality of the annular units (4) are disposed in the axial direction of the stent (1), and the adjacent annular units (4) are connected to each other by at least one connection part (5),
[1] The connecting portion (5) includes at least two or more bent portions (8), an arc (R) constituting the bent portion (8), and a substantially straight portion continuous with the bent portion (8). Formed from (7),
Each left or right end portion of the bent portion (8) located at the left end and the right end portion of the two or more bent portions (8) is connected to the respective left or right end portion of the cell (6),
[2] The plurality of cells (6)
(I) each having a center line (C2) in the stent axial direction;
(Ii) a substantially straight line portion (11) disposed substantially parallel to the axial center line (C2),
(Iii) A curved portion (13) composed of a small bent portion (14) and a substantially straight portion (15), wherein the substantially straight portion (15) has an acute angle (X the curved portion disposed) and (13),
(Iv)
a ) constituted by connecting via a bent part (12), and
b) the substantially linear portion (11) with the curved portion connection (13), the curved portion forms a part of (13) and the bent portion (12) and the generally linear portion adjacent (15) has been carried out by connecting to the bent portion and the substantially straight portions arranged substantially parallel to (12) through the stent axis direction of the center line (C2) (11),
(V) the cell (6), when partitioned up and down in the stent axial direction of said center line (C2), is formed vertically asymmetrical with respect to the center line (C2),
[3] The stent (1) is a one which can be extended to at least phi 3 mm,
Forming an angle θ after expansion of the substantially linear portion (15) adjacent to the bent portion (12) and the substantially linear portion (11) to be 30 ° to 140 °; and
[4] A stent (1), which is coated with a physiologically active substance or an antithrombotic agent.
略管状体に形成されかつ管状体の内部より半径方向に伸張可能なステント(1A)であって、
複数のセル(6A)を上下に連結し、当該複数のセル(6A)をステント(1A)の中心軸(C1)を取り囲むように複数配列することにより環状ユニット(4A)を構成し、
複数の前記環状ユニット(4A)がステント(1A)の軸方向に配置され、前記隣り合う環状ユニット(4A)同士は少なくとも一箇所が連結部(5A)により連結され、
[1]前記連結部(5A)は、少なくとも2個以上の屈曲部(8A)と、当該屈曲部(8A)を構成する弧と、当該屈曲部(8A)と連続する略直線部(7A)から形成され、前記2個以上の屈曲部(8A)のうち左端部と右端部に位置する屈曲部(8A)のそれぞれ左ないし右端部は、前記セル(6A)のそれぞれ左ないし右端部と接続され、
[2]前記複数のセル(6A)は、
(i)それぞれステント軸方向の中心線(C2)を有し、
(ii)それぞれ当該軸方向の中心線(C2)に対して鋭角(X)に配置された略直線部(11A)と、
(iii)当該軸方向の中心線(C2)に対して略平行に配置された曲線部(13A)であって、前記曲線部(13A)は、小屈曲部(14A)と略直線部(15A)とから構成される当該曲線部(13A)とを、
(iv)
a)屈曲部(12A)を介して接続することにより構成されるものであって、かつ、
b)当該略直線部(11A)と当該曲線部(13A)の接続は、前記曲線部(13A)の一部を構成しかつ前記屈曲部(12A)と隣接する前記略直線部(15A)を、前記屈曲部(12A)を介してステント軸方向の中心線(C2)に対して鋭角(X)に配置された前記略直線部(11A)と接続することにより行われており、
(v)前記セル(6A)は、ステント軸方向の前記中心線(C2)で上下に区画した場合、中心線(C2)に対して上下非対称に形成され、
[3]前記ステント(1A)は、少なくともφmmに拡張しうるものであって、
前記屈曲部(12A)に隣接する前記略直線部(15A)と前記略直線部(11A)の拡張後の角度θを30°〜140°であるように形成し、かつ、
[4]生理活性物質または抗血栓薬剤を被覆したことを特徴とするステント(1A)。
A stent (1A) formed in a substantially tubular body and radially expandable from the inside of the tubular body,
A plurality of cells (6A) are vertically connected, and a plurality of the cells (6A) are arranged so as to surround the central axis (C1) of the stent (1A) to constitute the annular unit (4A).
A plurality of the annular units (4A) are arranged in the axial direction of the stent (1A), and the adjacent annular units (4A) are connected to each other by at least one connection portion (5A),
[1] The connecting portion (5A) includes at least two or more bent portions (8A), an arc constituting the bent portion (8A), and a substantially straight portion (7A) continuous with the bent portion (8A). formed from, respectively left or right end portion of the bent portion (8A) located at the left end and the right end portion of the two or more bent portions (8A) includes a respective left or right end portion of the cell (6A) Connected,
[2] The plurality of cells (6A)
(I) each having a center line (C2) in the stent axial direction;
Substantially straight portion and (11A) disposed at an acute angle (X) with respect to (ii), respectively the axial direction of the center line (C2),
(Iii) A curved portion (13A) disposed substantially parallel to the axial center line (C2) , wherein the curved portion (13A) includes a small bent portion (14A) and a substantially straight portion (15A). ) And the curved portion (13A) composed of
(Iv)
a) It is configured by connecting via a bent portion (12A), and
b) the substantially straight portion (11A) with the curved portion connection (13A), the form part of the curved portion (13A) and the bent portion (12A) and adjacent the substantially straight portion (15A) has been carried out by connecting the substantially straight portions arranged at an acute angle (X) and (11A) relative to the stent axis direction of the center line (C2) through the bent portion (12A),
(V) the cell (6A), when partitioned up and down in the stent axial direction of said center line (C2), is formed on the vertically asymmetric relative to the center line (C2),
[3] The stent (1A) is expandable to at least φ 3 mm,
Forming the angle θ after expansion of the substantially linear portion (15A) adjacent to the bent portion (12A) and the substantially linear portion (11A) to be 30 ° to 140 °, and
[4] A stent (1A) that is coated with a physiologically active substance or an antithrombotic agent.
略管状体に形成されかつ管状体の内部より半径方向に伸張可能なステント(1B)であって、
複数のセル(6B)を上下に連結し、当該複数のセル(6B)をステント(1B)の中心軸(C1)を取り囲むように複数配列することにより環状ユニット(4B)を構成し、
複数の前記環状ユニット(4B)がステント(1B)の軸方向に配置され、前記隣り合う環状ユニット(4B)同士は少なくとも一箇所が連結部(5B)により連結され、
[1]前記連結部(5B)は、少なくとも2個以上の屈曲部(8B)と、当該屈曲部(8B)を構成する弧と、当該屈曲部(8B)と連続する略直線部(7B)から形成され、前記屈曲部(8B)の2個以上の屈曲部(8B)のうち左端部と右端部に位置する屈曲部(8B)のそれぞれ左ないし右端部は、前記セル(6B)のそれぞれ左ないし右端部と接続され、
[2]前記複数のセル(6B)は、
(i)それぞれステント軸方向の中心線(C2)を有し、
(ii)それぞれ当該軸方向の中心線(C2)に対して鋭角(X)を有する略直線部(11B)と、
(iii)当該軸方向の中心線(C2)に対して略平行に配置された略直線部(13B)とを、
(iv)屈曲部(12B)を介して接続することにより構成されるものであって
(v)前記セル(6B)は、ステント軸方向の中心線(C2)で上下に区画した場合、前記中心線(C2)に対して上下非対称に形成され、
[3]前記ステント(1B)は、少なくともφmmに拡張しうるものであって、前記屈曲部(12B)に隣接する前記略直線部(13B)と前記略直線部(11B)の拡張後の角度閘を30°〜140°であるように形成し、かつ、
[4]生理活性物質または抗血栓薬剤を被覆したことを特徴とするステント(1B)。
A stent (1B) formed in a generally tubular body and radially expandable from the inside of the tubular body,
A plurality of cells (6B) are vertically connected, and the plurality of cells (6B) are arranged so as to surround the central axis (C1) of the stent (1B) to constitute an annular unit (4B).
A plurality of the annular units (4B) are arranged in the axial direction of the stent (1B), and the adjacent annular units (4B) are connected to each other by at least one connection portion (5B),
[1] The connecting portion (5B) includes at least two or more bent portions (8B), an arc constituting the bent portion (8B), and a substantially straight portion (7B) continuous with the bent portion (8B). It is formed from the two or more bends left end of (8B) and the bent portion located at the right end respectively left or right end portion of the (8B) of the bent portion (8B), the cells (6B) Each connected to the left or right edge,
[2] The plurality of cells (6B)
(I) each having a center line (C2) in the stent axial direction;
(Ii) a substantially straight portion (11B) having an acute angle (X) with respect to the axial center line (C2),
(Iii) a substantially straight line portion (13B) disposed substantially parallel to the axial center line (C2),
(Iv) It is configured by connecting via a bent portion (12B),
(V) the cell (6B), when partitioned up and down in the stent axial direction of the center line (C2), it is formed vertically asymmetrical with respect to the center line (C2),
[3] The stent (1B) is expandable to at least φ 3 mm, and is expanded after the substantially straight portion (13B) and the substantially straight portion (11B) adjacent to the bent portion (12B). And an angle 閘 of 30 ° to 140 °, and
[4] physiologically active substance or a stent, characterized in that coated with antithrombotic agents (1B).
JP2002271327A 2000-04-20 2002-09-18 Stent Expired - Fee Related JP4152704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271327A JP4152704B2 (en) 2000-04-20 2002-09-18 Stent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-118939 2000-04-20
JP2000118939 2000-04-20
JP2002271327A JP4152704B2 (en) 2000-04-20 2002-09-18 Stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000236340A Division JP3654627B2 (en) 2000-04-20 2000-08-04 Stent

Publications (3)

Publication Number Publication Date
JP2003117005A JP2003117005A (en) 2003-04-22
JP2003117005A5 JP2003117005A5 (en) 2007-08-16
JP4152704B2 true JP4152704B2 (en) 2008-09-17

Family

ID=26590444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271327A Expired - Fee Related JP4152704B2 (en) 2000-04-20 2002-09-18 Stent

Country Status (1)

Country Link
JP (1) JP4152704B2 (en)

Also Published As

Publication number Publication date
JP2003117005A (en) 2003-04-22

Similar Documents

Publication Publication Date Title
JP3654627B2 (en) Stent
JP3605388B2 (en) Stent
US10596018B2 (en) Intravascular stent
US5931867A (en) Radially expandable support device
US6132460A (en) Stent
JP3089124U (en) Support structure capable of radial expansion
US20100087912A1 (en) Stent with dual support structure
JP2000024117A (en) Supporting structure diametrally expandable in radial direction
JP2002518087A (en) Deployable stent and method of use thereof
JP5042417B2 (en) Low profile radiopaque stent with enhanced longitudinal flexibility and radial stiffness
JP2000316981A (en) Stent
JP3663192B2 (en) Stent
JP4842591B2 (en) Stent
JP4152704B2 (en) Stent
JP4197918B2 (en) Stent
JP2003019208A (en) Stent
JP2002360707A (en) Stent
JP2003102848A (en) Stent
JP4808331B2 (en) Stent
JP2001104488A (en) Stent
JP2003190295A (en) Stent
JP2004267492A (en) Flexible stent with superior retention of blood vessel diameter
JP2005027923A (en) Flexible stent having excellent blood vessel followup ability and extendability and gentle to blood vessel
JP2000334045A (en) Stent
JP2005027909A (en) Flexible stent having excellent blood vessel followup ability and extendability, and gentle to blood vessel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees