以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例であるハイブリッド車両用の駆動装置10を説明する骨子図である。図1において、駆動装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12と表す)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された動力分配機構16と、その動力分配機構16と駆動装置出力軸22との間において伝達部材18を介して動力分配機構16に直列に連結されている有段式の自動変速機20と、この自動変速機20に連結されている出力回転部材としての駆動装置出力軸22とを備えている。
この駆動装置10は、車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、図7に示すように、走行用の駆動力源としてのエンジン8と一対の駆動輪38との間に設けられて、動力を差動歯車装置(終減速機)36および一対の車軸等を順次介して一対の駆動輪38へ伝達する。なお、駆動装置10はその軸心に対して対称的に構成されているため、図1の駆動装置10を表す部分においてはその下側が省略されている。
動力分配機構16は、入力軸14に入力されたエンジン8の出力を機械的に合成し或いは分配する機械的機構であって、エンジン8の出力を第1電動機M1および伝達部材18に分配し、或いはエンジン8の出力とその第1電動機M1の出力とを合成して伝達部材18へ出力する。本実施例の第1電動機M1および第2電動機M2は、発電機能をも有する所謂モータジェネレータであるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は駆動力を出力するためのモータ(電動機)機能を少なくとも備える。
動力分配機構16は、差動機構として機能するシングルピニオン型の第1遊星歯車装置24と、切換クラッチC0および切換ブレーキB0とを備えている。この第1遊星歯車装置24は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素(要素)として備えており、例えば「0.418」程度の所定のギヤ比ρ1を有する。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。
この動力分配機構16においては、第1キャリヤCA1は入力軸14すなわちエンジン8に連結され、第1サンギヤS1は第1電動機M1に連結され、第1リングギヤR1は伝達部材18に連結されている。また、切換ブレーキB0は第1サンギヤS1とケース12との間に設けられ、切換クラッチC0は第1サンギヤS1と第1キャリヤCA1との間に設けられている。それら切換クラッチC0および切換ブレーキB0が解放されると、第1サンギヤS1、第1キャリヤCA1、第1サンギヤS1がそれぞれ相互に相対回転可能な差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配され、第1電動機M1に分配されたエンジン8の出力で第1電動機M1が発電され、その発電された電気エネルギや、蓄電されていた電気エネルギで第2電動機M2が回転駆動されるので、例えば無段変速状態とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が、電気的にその変速比γ0(入力軸14の回転速度/伝達部材18の回転速度)が最小値γ0minから最大値γ0maxまで変化させられる差動状態例えば変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する差動状態例えば無段変速状態とされる。
この状態で、エンジン8の出力で車両走行中に上記切換クラッチC0が係合させられて第1サンギヤS1と第1キャリヤCA1とが一体的に係合させられると、第1遊星歯車装置24の3要素S1、CA1、R1が一体回転させられるロック状態である非差動状態とされることから、エンジン8の回転と伝達部材18の回転速度とが一致する状態となるので、第1遊星歯車装置24は変速比γ0が「1」に固定された変速機として機能する定変速状態とされる。また、上記切換クラッチC0に替えて切換ブレーキB0が係合させられると、第1サンギヤS1が非回転状態とされるロック状態である非差動状態となって、第1リングギヤR1は第1キャリヤCA1よりも増速回転させられるので、第1遊星歯車装置24は変速比γ0が「1」より小さい値例えば0.7程度に固定された増速変速機として機能する定変速状態となる。このように、本実施例では、上記切換クラッチC0および切換ブレーキB0は、第1遊星歯車装置24を、差動状態例えば変速比が連続的変化可能な電気的な無段変速機として作動可能な差動状態(無段変速状態)と、非差動状態例えば電気的な無段変速機として作動させず無段変速作動を非作動として変速比変化をロックするロック状態、すなわち1または2種類の変速比の単段または複数段の変速機として作動可能な定変速状態とに選択的に切換える差動状態切換装置或いは差動制限装置として機能している。
自動変速機20は、複数の遊星歯車装置、すなわち、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28、およびシングルピニオン型の第4遊星歯車装置30を備えている。第2遊星歯車装置26は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.562」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.425」程度の所定のギヤ比ρ3を有している。第4遊星歯車装置30は、第4サンギヤS4、第4遊星歯車P4、その第4遊星歯車P4を自転および公転可能に支持する第4キャリヤCA4、第4遊星歯車P4を介して第4サンギヤS4と噛み合う第4リングギヤR4を備えており、例えば「0.421」程度の所定のギヤ比ρ4を有している。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3、第4サンギヤS4の歯数をZS4、第4リングギヤR4の歯数をZR4とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3、上記ギヤ比ρ4はZS4/ZR4である。
自動変速機20では、第2サンギヤS2と第3サンギヤS3とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第2キャリヤCA2は第2ブレーキB2を介してケース12に選択的に連結され、第4リングギヤR4は第3ブレーキB3を介してケース12に選択的に連結され、第2リングギヤR2と第3キャリヤCA3と第4キャリヤCA4とが一体的に連結されて駆動装置出力軸22に連結され、第3リングギヤR3と第4サンギヤS4とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。
前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3は従来の車両用自動変速機においてよく用いられている油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介装されている両側の部材を選択的に連結するためのものである。
以上のように構成された駆動装置10では、例えば、図2の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第5速ギヤ段(第5変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、動力分配機構16は前述した無段変速機として作動可能な無段変速状態に加え、1または2種類以上の変速比の単段または複数段の変速機として作動可能な定変速状態を構成することが可能とされている。従って、駆動装置10では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた動力分配機構16と自動変速機20とで有段変速機が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた動力分配機構16と自動変速機20とで無段変速機が構成される。
例えば、駆動装置10が有段変速機として機能する場合には、図2に示すように、切換クラッチC0、第1クラッチC1および第3ブレーキB3の係合により、変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ5が第4速ギヤ段よりも小さい値例えば「0.705」程度である第5速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換クラッチC0のみが係合される。
しかし、駆動装置10が無段変速機として機能する場合には、図2に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、動力分配機構16が無段変速機として機能し、それに直列の自動変速機20が有段変速機として機能することにより、自動変速機20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速機20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。従って、その各ギヤ段の間が無段的に連続変化可能な変速比となって駆動装置10全体としてのトータル変速比γTが無段階に得られるようになる。
図3は、無段変速部或いは第1変速部として機能する動力分配機構16と有段変速部或いは第2変速部として機能する自動変速機20とから構成される駆動装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、横軸方向において各遊星歯車装置24、26、28、30のギヤ比ρの相対関係を示し、縦軸方向において相対的回転速度を示す二次元座標であり、3本の横軸のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度NEを示し、横軸XGが伝達部材18の回転速度を示している。また、動力分配機構16の3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する第1サンギヤS1、第1回転要素(第1要素)RE1に対応する第1キャリヤCA1、第3回転要素(第3要素)RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。すなわち、縦線Y1とY2との間隔を1に対応するとすると、縦線Y2とY3との間隔はギヤ比ρ1に対応するものとされる。さらに、自動変速機20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第2サンギヤS2および第3サンギヤS3を、第5回転要素(第5要素)RE5に対応する第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する第4リングギヤR4を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第2リングギヤR2、第3キャリヤCA3、第4キャリヤCA4を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第3リングギヤR3、第4サンギヤS4をそれぞれ表し、それらの間隔は第2、第3、第4遊星歯車装置26、28、30のギヤ比ρ2、ρ3、ρ4に応じてそれぞれ定められている。すなわち、図3に示すように、各第2、第3、第4遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が1に対応するものとされ、キャリヤとリングギヤとの間がρに対応するものとされる。
上記図3の共線図を用いて表現すれば、本実施例の駆動装置10は、動力分配機構(無段変速部)16において、第1遊星歯車装置24の3回転要素(要素)の1つである第1回転要素RE1(第1キャリヤCA1)が入力軸14に連結されるとともに切換クラッチC0を介して他の回転要素の1つである第1サンギヤS1と選択的に連結され、その他の回転要素の1つである第2回転要素RE2(第1サンギヤS1)が第1電動機M1に連結されるとともに切換ブレーキB0を介してトランスミッションケース12に選択的に連結され、残りの回転要素である第3回転要素RE3(第1リングギヤR1)が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を前記伝達部材18を介して自動変速機(有段変速部)20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。
図4および図5は上記図3の共線図の動力分配機構16部分に相当する図である。図4は上記切換クラッチC0および切換ブレーキB0の解放により無段変速状態に切換えられたときの動力分配機構16の状態の一例を表している。例えば、第1電動機M1の発電による反力を制御することによって直線L0と縦線Y1との交点で示される第1サンギヤS1の回転が上昇或いは下降させられると、直線L0と縦線Y3との交点で示される第1リングギヤR1の回転速度が下降或いは上昇させられる。
また、図5は切換クラッチC0の係合により有段変速状態に切換えられたときの動力分配機構16の状態を表している。つまり、第1サンギヤS1と第1キャリヤCA1とが連結されると、上記3回転要素が一体回転するので、直線L0は横線X2と一致させられ、エンジン回転速度NEと同じ回転で伝達部材18が回転させられる。或いは、切換ブレーキB0の係合によって第1サンギヤS1の回転が停止させられると、直線L0は図3に示す状態となり、その直線L0と縦線Y3との交点で示される第1リングギヤR1すなわち伝達部材18の回転速度は、エンジン回転速度NEよりも増速された回転で自動変速機20へ入力される。
また、自動変速機20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は駆動装置出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結されている。
自動変速機20では、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線X2との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、駆動装置出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速の駆動装置出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と駆動装置出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速の駆動装置出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と駆動装置出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速の駆動装置出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と駆動装置出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速の駆動装置出力軸22の回転速度が示される。上記第1速乃至第4速では、切換クラッチC0が係合させられている結果、エンジン回転速度NEと同じ回転速度で第8回転要素RE8に動力分配機構16からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、動力分配機構16からの動力がエンジン回転速度NEよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L5と駆動装置出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第5速の駆動装置出力軸22の回転速度が示される。また、第2クラッチC2と第3ブレーキB3とが係合させられることにより決まる斜めの直線LRと駆動装置出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で後進Rの駆動装置出力軸22の回転速度が示される。
図6は、本実施例の駆動装置10を制御するための電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、電動機M1、M2に関するハイブリッド駆動制御、前記自動変速機20の変速制御等の駆動制御を実行するものである。
上記電子制御装置40には、図6に示す各センサやスイッチから、エンジン水温を示す信号、シフトポジションを表す信号、エンジン8の回転速度であるエンジン回転速度NEを表す信号、ギヤ比列設定値を示す信号、M(モータ走行)モードを指令する信号、エアコンの作動を示すエアコン信号、駆動装置出力軸22の回転速度に対応する車速信号、自動変速機20の作動油温を示す油温信号、サイドブレーキ操作を示す信号、フットブレーキ操作を示す信号、触媒温度を示す触媒温度信号、アクセルペダルの操作量を示すアクセル開度信号、カム角信号、スノーモード設定を示すスノーモード設定信号、車両の前後加速度を示す加速度信号、オートクルーズ走行を示すオートクルーズ信号、車両の重量を示す車重信号、各駆動輪の車輪速を示す車輪速信号、駆動装置10を有段変速機として機能させるために動力分配機構16を定変速状態に切り換えるための有段スイッチ操作の有無を示す信号、駆動装置10を無段変速機として機能させるために動力分配機構16を無段変速状態に切り換えるための無段スイッチ操作の有無を示す信号、第1電動機M1の回転速度NM1を表す信号、第2電動機M2の回転速度NM2を表す信号などが、それぞれ供給される。また、上記電子制御装置40からは、スロットル弁の開度を操作するスロットルアクチュエータへの駆動信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、エンジン8の点火時期を指令する点火信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、動力分配機構16や自動変速機20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42に含まれる電磁弁を作動させるバルブ指令信号、上記油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図7は、駆動装置10の制御方法すなわち電子制御装置40による制御機能の要部を説明する機能ブロック線図である。切換制御手段50は、例えば図8或いは図9に示す予め記憶された関係に基づいて、駆動装置10を無段変速状態とする無段制御領域内であるか或いは駆動装置10を有段変速状態とする有段制御領域内であるかを判定する。図8に示す関係(切換マップ)を用いる場合には、実際のエンジン回転速度NEとハイブリッド車両の駆動力に関連する駆動力関連値、例えばエンジン出力トルクTEとで表される車両状態に基づいて上記判定を行う。
図8に示される関係では、エンジン8の出力トルクTEが予め設定された所定値TE1以上の高トルク領域(高出力走行領域)、エンジン回転速度NEが予め設定された所定値NE1以上の高回転領域すなわちエンジン回転速度NEとトータル変速比γTとで一意的に決められる車両状態の1つである車速が所定値以上の高車速領域、或いはそれらエンジン8の出力トルクTEおよび回転速度NEから算出される出力が所定以上の高出力領域が、有段制御領域として設定されている。従って、エンジン8の比較的高出力トルク、比較的高回転速度、或いは比較的高出力時には有段変速制御が実行され、アップシフトに伴うエンジン回転速度NEの変化すなわち変速に伴うリズミカルなエンジン8の回転速度の変化が発生する。或いは、他の考え方として、この高出力走行においては燃費に対する要求より運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態(定変速状態)に切り換えられるのである。これによって、ユーザは、リズミカルなエンジン回転速度NEの変化を楽しむことができる。一方、エンジン8の比較的低出力トルク、比較的低回転速度、或いは比較的低出力時すなわちエンジン8の常用出力域では無段変速制御が実行されるようになっている。図8における有段制御領域と無段制御領域との間の境界線は、例えば高車速判定値の連なりである高車速判定線および高出力走行判定値の連なりである高出力走行判定線に対応している。
一方、図9に示す関係を用いる場合には、実際の車速Vと駆動力関連値である出力トルクTOUTとに基づいて上記判定を行う。図9では、破線が、無段変速を有段変速に切り換える所定条件を定める判定車速V1および判定出力トルクT1を示し、二点差線が、有段変速を無段変速に切り換える際の条件を示している。このように、有段制御領域と無段制御領域と切換の判定にヒステリシスが設けられている。なお、図9において、太線51で示す境界よりも低出力トルク側および低車速側は電動機の駆動力で走行するモータ走行領域である。また、図9には、車速Vと出力トルクTOUTとをパラーメタとする変速線図も示されている。
そして、切換制御手段50は、有段変速制御領域であると判定した場合は、ハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可(禁止)とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速制御を許可する。このときの有段変速制御手段54は、前記判定が図8に基づいて行われた場合には、予め記憶された図示しない変速線図に従って自動変速制御を実行し、前記判定が図9に基づいて行われた場合には、その図9に示される変速線図に従って自動変速制御を実行する。
図2は、このときの変速制御において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。この有段自動変速制御モードの第1速乃至第4速では、切換クラッチC0が係合させられることにより動力分配機構16が固定の変速比γ0が1の副変速機として機能しているが、第5速では、その切換クラッチC0の係合に替えて切換ブレーキB0が係合させられることにより動力分配機構16が固定の変速比γ0が例えば0.7程度の副変速機として機能している。すなわち、この有段自動変速制御モードでは、副変速機として機能する動力分配機構16と自動変速機20とを含む駆動装置10全体が所謂自動変速機として機能している。
なお、前記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば自動変速機20の出力トルクTOUT、エンジン出力トルクTE、車両加速度や、例えばアクセル開度或いはスロットル開度(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度NEとによって算出されるエンジン出力トルクTEなどの実際値や、運転者のアクセルペダル操作量或いはスロットル開度に基づいて算出されるエンジン出力トルクTEや要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力トルクTOUT等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。
一方、上記切換制御手段50において無段制御領域内であると判定した場合は、前記動力分配機構16を電気的な無段変速可能とするように切換クラッチC0および切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号を出力するか、或いは予め記憶された変速線図に従って自動変速することを許可する信号を出力する。後者の場合、有段変速制御手段54により、図2の係合表内において切換クラッチC0および切換ブレーキB0の係合を除いた作動により自動変速が行われる。このように、動力分配機構16が無段変速機として機能し、それに直列の自動変速機20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、前述のように、自動変速機20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速機20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。従って、その各ギヤ段の間が無段的に連続変化可能な変速比となって駆動装置10全体としてのトータル変速比γTが無段階に得られるようになる。
上記ハイブリッド制御手段52は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第1電動機M1および/または第2電動機M2との駆動力の配分を最適になるように変化させる。例えば、そのときの走行車速において、アクセルペダル操作量や車速から運転者の要求出力を算出し、運転者の要求出力と充電要求値から必要な駆動力を算出し、エンジンの回転速度とトータル出力とを算出し、そのトータル出力とエンジン回転速度NEとに基づいて、エンジン出力を得るようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。ハイブリッド制御手段52は、その制御を自動変速機20の変速段を考慮して実行したり、或いは燃費向上などのために自動変速機20に変速指令を行う。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度NEと車速および自動変速機20の変速段で定まる伝達部材18の回転速度とを整合させるために、動力分配機構16が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は無段変速走行の時に運転性と燃費性とを両立した予め記憶された最適燃費率曲線に沿ってエンジン8が作動させられるように駆動装置10のトータル変速比γTの目標値を定め、その目標値が得られるように動力分配機構16の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御することになる。
このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通して電気エネルギが第2電動機M2或いは第1電動機M1へ供給され、その第2電動機M2或いは第1電動機M1から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。また、ハイブリッド制御手段52は、エンジン8の停止又はアイドル状態に拘わらず、動力分配機構16の電気的CVT機能によってモータ走行させることができる。
上記切換制御手段50、ハイブリッド制御手段52、有段変速制御手段54により、車両の低中速走行および低中出力走行となるようなエンジンの常用出力域では動力分配機構16が無段変速状態とされてハイブリッド車両の燃費性能が確保されるが、高速走行或いはエンジン8の高回転域では動力分配機構16が定変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて動力と電気との間の変換損失が抑制されて燃費が向上させられる。また、エンジン8の高出力域では動力分配機構16が定変速状態とされて無段変速状態として作動させる領域が車両の低中速走行および低中出力走行となるので、第1電動機M1が発生すべき電気的エネルギすなわちが第1電動機M1が伝える電気的エネルギの最大値を小さくできて、換言すれば第1電動機M1の保障すべき電気的反力を小さくできてその第1電動機M1や第2電動機M2、或いはそれを含む駆動装置10が一層小型化される。
図10は手動変速操作装置であるシフト操作装置46の一例を示す図である。シフト操作装置46は、例えば運転席の横に配設され、複数種類のシフトポジションを選択するために操作されるシフトレバー48を備えている。そのシフトレバー48は、例えば図2の係合作動表に示されるようにクラッチC1およびクラッチC2のいずれもが係合されないような駆動装置10内つまり自動変速機20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速機20の駆動装置出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、駆動装置10内の動力伝達経路が遮断された中立状態とする中立ポジション「N(ニュートラル)」、前進自動変速走行ポジション「D(ドライブ)」、または前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。上記「P」乃至「M」ポジションに示す各シフトポジションは、「P」ポジションおよび「N」ポジションは車両を走行させないときに選択される非走行ポジションであり、「R」ポジション、「D」ポジションおよび「M」ポジションは車両を走行させるときに選択される走行ポジションである。また、「D」ポジションは最高速走行ポジションでもあり、「M」ポジションにおける例えば「4」レンジ乃至「L」レンジはエンジンブレーキ効果が得られるエンジンブレーキレンジでもある。
上記「M」ポジションは、例えば車両の前後方向において上記「D」ポジションと同じ位置において車両の幅方向に隣接して設けられており、シフトレバー48が「M」ポジションへ操作されることにより、「D」レンジ乃至「L」レンジの何れかがシフトレバー48の操作に応じて変更される。具体的には、この「M」ポジションには、車両の前後方向にアップシフト位置「+」、およびダウンシフト位置「−」が設けられており、シフトレバー48がそれ等のアップシフト位置「+」またはダウンシフト位置「−」へ操作されると、「D」レンジ乃至「L」レンジの何れかへ切り換えられる。例えば、「M」ポジションにおける「D」レンジ乃至「L」レンジの5つの変速レンジは、駆動装置10の自動変速制御が可能なトータル変速比γTの変化範囲における高速側(変速比が最小側)のトータル変速比γTが異なる複数種類の変速レンジであり、また自動変速機20の変速が可能な最高速側変速段が異なるように変速段(ギヤ段)の変速範囲を制限するものである。また、シフトレバー48はスプリング等の付勢手段により上記アップシフト位置「+」およびダウンシフト位置「−」から、「M」ポジションへ自動的に戻されるようになっている。また、シフト操作装置46にはシフトレバー48の各シフトポジションを検出するための図示しないシフトポジションセンサが備えられており、そのシフトレバー48のシフトポジションや「M」ポジションにおける操作回数等を電子制御装置40へ出力する。
例えば、「D」ポジションがシフトレバー48の操作により選択された場合には、前記切換制御手段50により駆動装置10の変速状態の自動切換制御が実行され、ハイブリッド制御手段52により動力分配機構16の無段変速制御が実行され、有段変速制御手段54により自動変速機20の自動変速制御が実行される。例えば、駆動装置10が有段変速状態に切り換えられる有段変速走行時には駆動装置10が例えば図2に示すような第1速ギヤ段乃至第5速ギヤ段の範囲で自動変速制御され、或いは駆動装置10が無段変速状態に切り換えられる無段変速走行時には駆動装置10が動力分配機構16の無段的な変速比幅と自動変速機20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる駆動装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御される。この「D」ポジションは駆動装置10の自動変速制御が実行される制御様式である自動変速走行モード(自動モード)を選択するシフトポジションでもある。
或いは、「M」ポジションがシフトレバー48の操作により選択された場合には、変速レンジの最高速側変速段或いは変速比を越えないように、切換制御手段50、ハイブリッド制御手段52、および有段変速制御手段54により駆動装置10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。例えば、駆動装置10が有段変速状態に切り換えられる有段変速走行時には駆動装置10が各変速レンジで駆動装置10が変速可能なトータル変速比γTの範囲で自動変速制御され、或いは駆動装置10が無段変速状態に切り換えられる無段変速走行時には駆動装置10が動力分配機構16の無段的な変速比幅と各変速レンジに応じた自動変速機20の変速可能な変速段の範囲で自動変速制御される各ギヤ段とで得られる駆動装置10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。この「M」ポジションは駆動装置10の手動変速制御が実行される制御様式である手動変速走行モード(手動モード)を選択するシフトポジションでもある。
図11は上記駆動装置10の要部断面図である。図11に示すように、駆動装置10のケース12は、第1電動機M1および動力分配機構16を収容する第1ケース12aと、第2電動機M2および図11には図示しない自動変速機20を収容する第2ケース12bとからなる。なお、第1ケース12aと、それに収容される第1電動機M1および動力分配機構16により第1ユニット70が構成され、第2ケース12bと、それに収容される第2電動機M2および自動変速機20により第2ユニット100が構成される。
第1ケース12aは、略筒状の外形形状をしており、動力分配機構16を収容している部分の外径は略一定とされている一方、第1電動機M1を収容している部分の外径は、エンジン8側(図左側)へ向かうほど大きくなっている。また、第1ケース12aは、軸方向の両側が開口しており、動力分配機構16と第1電動機M1との間に、第1ケース12aと一体化された第1支持壁72が形成されている。この第1支持壁72は、入力軸14に対して略垂直な円盤状の垂直部72aと、その垂直部72aの内周端に軸方向の一端が連結され第1遊星歯車装置24側へ延びる筒部72bと、上記垂直部72aの第1電動機M1側の側面の内周部から第1電動機M1方向へ軸方向に突き出す凸部72cとを有しており、筒部72bの軸心には、軸方向に貫通する貫通孔73が形成されている。この第1支持壁72によって仕切られることにより、第1ケース12a内は、第1電動機M1を収容するエンジン8側の第1収容空間74と、動力分配機構16を収容する第2収容空間76とに分割されている。そして、第1電動機M1は、図左側から第1収容空間74に収容され、動力分配機構16は図右側から第2収容空間76に収容される。
また、第1ケース12aに、入力軸14と平行に軸方向のエンジン8側に突き出す環状の突部78が形成されることにより、第1収容空間74は径が略一定とされており、その突部78に側面の外周縁が当接するように、蓋板80が第1ケース12aに固定されている。
第1電動機M1は、第1ステータ(固定子)82と、第1ロータ(回転子)84と、その第1ロータ84と一体的に構成された第1ロータ支持軸(すなわちロータのハブ)86とからなる。前記第1支持壁72は支持部材として機能し、第1ロータ支持軸86の一方の端は、ベアリング88を介して第1ケース12aの一部である第1支持壁72の凸部72cの内周面に回転可能に支持されている。また、第1ロータ支持軸86の他方の端は、ベアリング90および第1ケース12aに固定されている蓋板80を介して第1ケース12aに回転可能に支持されている。
第1サンギヤS1と一体的に構成されたサンギヤ軸92の一端は、貫通孔73を貫通して、すなわち第1支持壁72の筒部72bを貫通して、上記第1ロータ支持軸86の第1支持壁72側の端の内周まで延びている。前記入力軸14は、上記第1ロータ支持軸86およびサンギヤ軸92の内周側となる第1ケース12aの軸心において、それら第1ロータ支持軸86およびサンギヤ軸92に対して相対回転可能とされ、また、一方の端は、第1キャリヤCA1と一体的に連結されているので、図11には図示しないエンジン8の出力はこの入力軸14を介して第1キャリヤCA1に入力される。
第1遊星歯車装置24の第1リングギヤR1には、第2ユニット100側の端部の内周面に、環状板94が軸方向および周方向に相対移動不能に固定されている。この環状板94は、入力軸14の軸心に垂直であり、また、その軸心に穴が設けられている。第1遊星歯車装置24の出力軸(すなわち動力分配機構16の出力軸)96は、第2ユニット100側に突き出す筒状の軸部96aと、その軸部96aの第1遊星歯車装置24側において径方向に突き出すフランジ部96bとを有している。このフランジ部96bが上記環状板94に接合しており、出力軸96と環状板94とは一体回転させられるようになっている。また、切換クラッチC0は、第1支持壁72と第1遊星歯車装置24との間に配置され、切換ブレーキB0は、第1遊星歯車装置24の外周側に配置されている。
第2電動機M2は、第2ステータ102と、第2ロータ104と、その第2ロータ104と一体回転する第2ロータ支持軸106とを備えている。この第2電動機M2よりも第2ケース12bの開口側(第1ケース12a側)には、第2支持壁108が配置されている。この第2支持壁108は、ボルト110により第2ケース12bに固定されており、また、その径方向の中心に軸方向に貫通する貫通孔112が形成されている。また、第2支持壁108には、第2ステータ102のステータコイル102aよりも内径側にて軸方向の第2ロータ104側に突き出す凸部108aが形成されており、この凸部108aの内周面にはベアリング114が当接させられている。
第2ロータ支持軸106の一方の端は、上記ベアリング114を介して第2支持壁108に支持されている。また、第2ロータ支持軸106は、第2支持壁108側の端部において、上記ベアリング114の内周側に設けられたベアリング116を介して自動変速機20の入力軸すなわち変速機入力軸118を支持している。この変速機入力軸118は、貫通孔112を貫通して第1ユニット70側へ突き出しており、変速機入力軸118は、貫通孔112と対向する部分において第1遊星歯車装置24の出力軸96とスプライン嵌合されている。なお、図1の伝達部材18は、スプライン結合されることにより一体回転させられる変速機入力軸118および出力軸96から構成される。
また、この変速機入力軸118の第1ユニット70側の先端部は、前記入力軸14の第2ユニット100側の端部の内周まで延設されており、入力軸14の第2ユニット100側の端部は、第1サンギヤS1の内径側において入力軸14と変速機入力軸118との間に介装された軸受120を介して変速機入力軸118に支持されている。そして、この変速機入力軸118は、ベアリング116、第2ロータ支持軸106、ベアリング114および第2支持壁108を介して第2ケース12bに支持されていることから、入力軸14の第2ユニット100側の端部は、それらの部材120、118、116、106、114、108を介して第2ケース12bに支持されていることになる。また、入力軸14は、第1ロータ支持軸86の蓋板80側の端部の内周面と入力軸14との間に介装された軸受122を介して第1ロータ支持軸86に支持されており、その第1ロータ支持軸86は、ベアリング90および蓋板80を介して第1ケース12aに支持されていることから、入力軸14は、それらの部材122、86、90、80を介して第1ケース12aにも支持されている。このように入力軸14は2箇所においてケース12に支持されており、また、その2箇所は比較的軸方向に離れていることから、入力軸14の軸心精度が高精度となっている。
図12は、図11の動力分配機構16部分を拡大した図である。第1サンギヤS1は、その第1サンギヤS1と入力軸14との間に介装された軸受124を介してその入力軸14に支持されている。また、第1サンギヤS1と一体とされたサンギヤ軸92の他方の端部は、前述のように、第1ロータ支持軸86の内周まで延設されており、スプライン(スプライン嵌合部)126により、第1ロータ支持軸86とサンギヤ軸92とは一体回転させられるようになっている。また、サンギヤ軸92の上記スプライン嵌合部126における内周面と入力軸14との間には軸受128が介装されており、その軸受128を介してサンギヤ軸92のスプライン嵌合部126側の端部は入力軸14に支持されている。従って、第1サンギヤS1およびそれと一体的に構成されたサンギヤ軸92は、軸受124、128を介して入力軸14に二箇所で支持されており、前述のように入力軸14の軸心精度は高精度であることから、第1サンギヤS1およびサンギヤ軸92の軸心精度も高精度に定まる。
切換クラッチC0は、前記第1支持壁72の筒部72bに外嵌されれるクラッチシリンダ130と、そのクラッチシリンダ130に収容されるクラッチピストン132と、そのクラッチピストン132に押圧されることにより互いに係合させられる複数のプレッシャープレート134および複数の摩擦板ディスク136を有している。上記クラッチシリンダ130は、第1支持壁72の垂直部72aに平行な底部130aと、その底部130aの内周端に連結されるとともに、第1支持壁72の筒部72bに外嵌される内周側筒部130bと、底部130aの外周端に連結された外周側筒部130cとを有している。そして、このクラッチシリンダ130にクラッチピストン132が収容されることにより、クラッチシリンダ130の底部130aとクラッチピストン132との間に油室135が形成されている。
サンギヤ軸92には、上記クラッチシリンダ130の内周側筒部130bに向けて径方向に突き出し、その外周端が第1サンギヤS1よりも径方向外側となるように径方向突起部92aが形成されており、切換クラッチC0の一部であるクラッチシリンダ130の内周側筒部130bの内周端とサンギヤ軸92の径方向突起部92aの外周端とは溶接部137において互いに接合(連結)されている。これにより、サンギヤ軸92に一体的に構成された第1サンギヤS1とクラッチシリンダ130とが一体的に構成されており、前述のように、第1サンギヤS1およびサンギヤ軸92の軸心精度は高精度に定まっていることから、クラッチシリンダ130の軸心精度も高精度に定まる。また、溶接によりクラッチシリンダ130とサンギヤ軸92とが連結されていることから、スプライン嵌合により両部材を連結する場合よりも連結部分の軸方向寸法が短くなるとともに、スプライン嵌合により連結される場合のような径方向のがたつきもない。
また、上記サンギヤ軸92の径方向突起部92aの側面と、それに対向する第1支持壁72の筒部72bの端面との間にはスラストベアリング138が設けられており、第1サンギヤS1の第1電動機M1方向のスラスト力がこのスラストベアリング138を介して第1支持壁72によって受けられ、また、サンギヤ軸92と第1ロータ支持軸86との間はスプライン126によって嵌合されているので、第1サンギヤS1の第1電動機M1方向のスラスト力は、第1ロータ支持軸86に伝達されることはない。また、これとは反対方向の第1サンギヤS1のスラスト力は、第1サンギヤS1の側面と第1キャリヤCA1の側面との間に設けられたスラストベアリング139を介して、第1キャリヤCA1と一体化された入力軸14によって受けられる。
前記複数のプレッシャープレート134は、クラッチシリンダ130の外周側筒部130cの内周面にスプライン嵌合させられている。また、外周側筒部130cの内周面には、最もクラッチシリンダ130の開口側のプレッシャープレート134よりもさらにその開口側に、スナップリング140が固定されている。一方、複数のプレッシャープレート134の間に介装されている複数の摩擦板ディスク136は、第1キャリヤCA1の外周端に連結されてクラッチピストン132側へ軸方向に平行に突き出すクラッチハブ141の外周面にスプライン嵌合されている。さらに、クラッチシリンダ130の内周側筒部130bの外周面であって、上記クラッチハブ141の内径側となるクラッチシリンダ130の開口側端部には、径方向に延出するスプリング係止板142が軸方向の第1遊星歯車装置24側へ移動不能に設けられており、そのスプリング係止板142とクラッチピストン132との間にリターンスプリング144が介装されている。
上記のように構成された切換クラッチC0の油室135へ作動油を供給するための油路が前記第1支持壁72に形成されている。すなわち、第1支持壁72の垂直部72aには第1径方向油路146が形成されており、第1支持壁72の筒部72bには、その第1径方向油路146に一方の端が連通する軸方向油路148およびその軸方向油路148に一方の端が連通するとともに他方の端が筒部72bの外周面に開口する第2径方向油路150が形成されている。また、クラッチシリンダ130の内周側筒部130bには、上記第2径方向油路150と油室135とを連通する第3径方向油路152が形成されている。なお、本実施例では、サンギヤ軸92を、第1支持壁72の筒部72bを貫通してその筒部72bから第1サンギヤS1と反対側に突き出すように構成し、その筒部72bに隣接して配置されているベアリング88の内径側においてサンギヤ軸92と第1ロータ支持軸86とがスプライン126により嵌合されるようにしたことから、第1ロータ支持軸86を筒部72bの内径側まで延設し、筒部72bの内径側で第1ロータ支持軸86とサンギヤ軸92とを嵌合する場合に比較して、筒部72bの肉厚(径方向厚み)を比較的厚く設定することが可能となるので、上記軸方向油路148および第2径方向油路150の形成が比較的容易となる。
ブレーキハブ156は、上記クラッチシリンダ130の外周側筒部130cの外周に嵌合された内周側筒部156aと、その内周側筒部156aの第1支持壁72とは反対側の端に内周端が連結されて径方向外側へ延びる連結部156bと、その連結部156bの外周端に一方の端が連結されて軸方向の内周側筒部156aとは反対側へ延びる外周側筒部156cとからなり、内周側筒部156aがクラッチシリンダ130の外周側筒部130cに溶接されることにより、ブレーキハブ156はその位置が定まるとともにクラッチシリンダ130と一体回転させられる。
切換ブレーキB0は、上記ブレーキハブ156と、第1ケース12aに内嵌めされるブレーキシリンダ158と、そのブレーキシリンダ158に収容されるブレーキピストン160と、そのブレーキピストン160に押圧されることにより互いに係合させられる複数のプレッシャープレート162および摩擦板ディスク164とを有している。
第1支持壁72の垂直部72aの外周端部は、切換ブレーキB0側へ延びる肉厚形状となっており、第1ケース12aの内周面には、第1支持壁72の垂直部72aの切換ブレーキB0側の端面からブレーキシリンダ158の第1支持壁72側の端面にかけてスプライン歯166が形成されている。このスプライン歯166に、複数のプレッシャープレート162がスプライン嵌合されている。また、その複数のプレッシャープレート162のうちの最も第1支持壁72側の内向プレッシャープレート162と、第1支持壁72との間には、筒状のスペーサ部材168が介装されている。一方、複数の摩擦板ディスク164は、ブレーキハブ156の外周側筒部156cの外周面にスプライン嵌合されている。
前記ブレーキシリンダ158は、スプライン歯166の側面に当接させられることにより軸方向の一方への移動が禁止され、また、軸方向の他方への移動は、第1ケース12aに固定されたスナップリング170により禁止されている。ブレーキシリンダ158の開口端には、その開口側へ突き出すスプリング係止板172が軸方向の第1支持壁72側へ移動不能に設けられており、そのスプリング係止板172とブレーキピストン160との間にリターンスプリング174が介装されている。
上述のように、本実施例によれば、エンジン8の出力を第1電動機M1および伝達部材18へ分配する動力分配機構16には、その動力分配機構16を差動作用が作動可能な差動状態例えば変速比が連続的変化可能な電気的な無段変速機として作動可能な無段変速状態と、差動作用が不能な非差動状態例えば定変速比を有する変速機として作動可能な定変速状態とに選択的に切換える差動制限装置としての切換クラッチC0および切換ブレーキB0が設けられていることから、多様な動力伝達状態が可能となる。加えて、エンジン8の高出力域では動力分配機構16が定変速状態とされて無段変速状態として作動させる領域が車両の低中速走行および低中出力走行となるので、第1電動機M1が発生すべき電気的エネルギすなわちが第1電動機M1が伝える電気的エネルギの最大値を小さくできて、換言すれば第1電動機M1の保障すべき電気的反力を小さくできてその第1電動機M1や第2電動機M2が小型化される。
また、第1ロータ支持軸86がケース12に支持され、その第1ロータ支持軸86に入力軸14が支持され、その入力軸14に第1サンギヤS1が支持され、その第1サンギヤS1にクラッチシリンダ130が一体的に構成されているので、切換クラッチC0の径方向の位置が定まって、その切換クラッチC0の支持精度が向上する。
また、本実施例によれば、第1ロータ支持軸86とサンギヤ軸92とがスプライン嵌合により一体回転するように構成されていることから、その第1ロータ支持軸86とサンギヤ軸92との結合が容易となるとともに、第1サンギヤS1からのスラスト力が第1ロータ84に伝達されることを抑制でき、また、第1ロータ支持軸86とサンギヤ軸92とのスプライン嵌合部126が、第1ロータ支持軸86の内径側に位置されていることから、駆動装置10の軸方向寸法が短くなる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例の駆動装置10は、動力分配機構16が差動状態と非差動状態とに切り換えられることで電気的な無段変速機としての機能する無段変速状態と有段変速機として機能する有段変速状態とに切り換え可能に構成されていたが、無段変速状態と有段変速状態との切換えは動力分配機構16の差動状態と非差動状態との切換えにおける一態様であり、例えば動力分配機構16が差動状態であっても動力分配機構16の変速比を連続的ではなく段階的に変化させて有段変速機として機能させられてもよい。言い換えれば、駆動装置10(動力分配機構16)の差動状態/非差動状態と、無段変速状態/有段変速状態とは必ずしも一対一の関係にある訳ではないので、駆動装置10は必ずしも無段変速状態と有段変速状態とに切り換え可能に構成される必要はない。
また、前述の実施例の動力分配機構16では、第1キャリヤCA1がエンジン8に連結され、第1サンギヤS1が第1電動機M1に連結され、第1リングギヤR1が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、第1遊星歯車装置24の3要素CA1、S1、R1のうちのいずれと連結されていても差し支えない。
また、前述の実施例では、エンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14の回転中心を回転中心として配置されて、第1電動機M1は第1サンギヤS1に連結され、第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト等を介して作動的に第1電動機M1は第1サンギヤS1に連結され、第2電動機M2は伝達部材18に連結されてもよい。
また、前述の動力分配機構16には、差動制限装置として、切換クラッチC0に加えて切換ブレーキB0が備えられていたが、切換ブレーキB0が備えられていなくてもよい。また、上記切換クラッチC0は、サンギヤS1とキャリヤCA1とを選択的に連結するものであったが、サンギヤS1とリングギヤR1との間や、キャリヤCA1とリングギヤR1との間を選択的に連結するものであってもよい。要するに、第1遊星歯車装置24の3要素のうちのいずれか2つを相互に連結するものであればよい。
また、前述の実施例の駆動装置10では、ニュートラル「N」とする場合には切換クラッチC0が係合されていたが、必ずしも係合される必要はない。
また、前述の実施例の切換クラッチC0および切換ブレーキB0などの油圧式摩擦係合装置が、パウダー(磁粉)クラッチ、電磁クラッチ、噛み合い型のドグクラッチなどの磁粉式、電磁式、機械式係合装置から構成されていてもよい。
また、前述の実施例では、駆動装置10はエンジン8以外に第1電動機M1或いは第2電動機M2のトルクによって駆動輪38が駆動されるハイブリッド車両用の駆動装置であったが、例えば、動力分配機構16がハイブリッド制御されない電気的CVTと称される無段変速機としての機能のみを有するような車両用の駆動装置であっても本発明は適用され得る。
また、前述の実施例では、支持部材として機能する第1支持壁72は、ケース12と一体的に形成されていたが、第1支持壁72がケース12と別体とされ、ボルト等によりケース12に固定されていてもよい。
また、前述の実施例の動力分配機構16は、1組の遊星歯車装置から構成されていたが、2以上の遊星歯車装置から構成されて、定変速状態では3段以上の変速機として機能するものであってもよい。
また、前述の実施例では、伝達部材18と駆動装置出力軸22との間に、3つの遊星歯車装置26、28、30を有する自動変速機20が備えられていたが、自動変速機の構造は前述の実施例のものに限定されず、遊星歯車装置の数や、変速段数、およびクラッチC、ブレーキBが遊星歯車装置のどの要素と選択的に連結されているかなどに特に限定はない。また、自動変速機20に代えて、前記特許文献1のように、1つの遊星歯車装置を有する減速機構が備えられていてもよいし、それら、自動変速機や減速機構が備えられていなくてもよい。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
8:エンジン(駆動力源)、 10:車両用駆動装置、 12:ケース、 14:入力軸、 16:動力分配機構、 18:伝達部材、 24:第1遊星歯車装置(差動機構)、 86:第1ロータ支持軸(ロータのハブ)、 C0:切換クラッチ(差動制限装置)、 S1:第1サンギヤ、 M1:第1電動機