JP4147247B2 - Method for reducing pitch of fine concavo-convex lattice and fine concavo-convex lattice member obtained thereby - Google Patents
Method for reducing pitch of fine concavo-convex lattice and fine concavo-convex lattice member obtained thereby Download PDFInfo
- Publication number
- JP4147247B2 JP4147247B2 JP2006002100A JP2006002100A JP4147247B2 JP 4147247 B2 JP4147247 B2 JP 4147247B2 JP 2006002100 A JP2006002100 A JP 2006002100A JP 2006002100 A JP2006002100 A JP 2006002100A JP 4147247 B2 JP4147247 B2 JP 4147247B2
- Authority
- JP
- Japan
- Prior art keywords
- fine concavo
- stretched
- convex
- pitch
- lattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 59
- 229920005992 thermoplastic resin Polymers 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000012530 fluid Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 229920006127 amorphous resin Polymers 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 230000009477 glass transition Effects 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 31
- 229920005990 polystyrene resin Polymers 0.000 description 20
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 229910052759 nickel Inorganic materials 0.000 description 16
- 230000000737 periodic effect Effects 0.000 description 16
- 238000012546 transfer Methods 0.000 description 9
- 229920002545 silicone oil Polymers 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 102000016751 Fringe-like Human genes 0.000 description 1
- 108050006300 Fringe-like Proteins 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
本発明は、微細凹凸格子のピッチ縮小方法及びそれにより得られた微細凹凸格子部材に関する。 The present invention relates to a fine concavo-convex lattice pitch reduction method and a fine concavo-convex lattice member obtained thereby.
近年のフォトリソグラフィー技術の発達により、非常に狭いピッチのパターンを形成することができるようになってきている。このように狭いピッチ、特に光の波長レベルのピッチのパターンを形成することができると、このような狭ピッチパターンを有する部材や製品は、半導体分野だけでなく、光学分野においても利用することができる。特に、光学分野においては、100nmレベル又はそれ以下のピッチの微細凹凸格子を有する部材や製品は、利用範囲が広く、このような部材や製品に対する要求が高くなってきている。 With the recent development of photolithography technology, it has become possible to form patterns with a very narrow pitch. If a pattern having such a narrow pitch, particularly a light wavelength level pitch, can be formed, members and products having such a narrow pitch pattern can be used not only in the semiconductor field but also in the optical field. it can. In particular, in the optical field, members and products having a fine concavo-convex grating with a pitch of 100 nm or less are widely used, and demands for such members and products are increasing.
しかしながら、100nmレベル又はそれ以下のピッチの微細凹凸格子をcm2オーダー以上の大面積で実現することができないのが現状であった。 However, the present situation is that it is impossible to realize a fine concavo-convex grating with a pitch of 100 nm or less in a large area of the order of cm 2 or more.
本発明はかかる点に鑑みてなされたものであり、今まで実現できなかった100nmレベル又はそれ以下のピッチの微細凹凸格子をcm2オーダー以上の大面積で実現することができる微細凹凸格子のピッチ縮小方法及びそれにより得られた微細凹凸格子部材を提供することを目的とする。 The present invention has been made in view of the above points, and the pitch of the fine concavo-convex lattice that can realize a fine concavo-convex lattice having a pitch of 100 nm level or less, which has not been realized so far, in a large area of the order of cm 2 or more. An object is to provide a reduction method and a fine concavo-convex lattice member obtained thereby.
本発明の微細凹凸格子のピッチ縮小方法は、表面に0.01〜100μmピッチの微細凹凸格子を有する被延伸部材を、前記被延伸部材を構成する材料が軟化する温度まで加熱する工程と、前記凹凸格子の長手方向と略直交する方向の前記被延伸部材の幅を自由にした状態で前記長手方向に略平行な方向に前記被延伸部材を一軸延伸する工程と、前記材料が硬化する温度まで前記被延伸部材を冷却する工程と、を具備することを特徴とする。 The method for reducing the pitch of the fine concavo-convex grid of the present invention includes a step of heating a stretched member having a fine concavo-convex grid having a pitch of 0.01 to 100 μm on the surface to a temperature at which a material constituting the stretched member softens, A step of uniaxially stretching the stretched member in a direction substantially parallel to the longitudinal direction in a state where the width of the stretched member in a direction substantially orthogonal to the longitudinal direction of the concavo-convex lattice is free, and a temperature at which the material is cured And a step of cooling the stretched member.
この方法によれば、表面に0.01〜100μmピッチの微細凹凸格子を有する被延伸部材に一軸延伸処理を施すことにより、被延伸部材の長さが長くなり、それに応じて幅方向が縮小する。これにより、今まで実現できなかった100nmレベル又はそれ以下のピッチの微細凹凸格子をcm2オーダー以上の大面積で実現することができる。 According to this method, the length of the stretched member is increased by subjecting the stretched member having a fine concavo-convex lattice with a pitch of 0.01 to 100 μm to the surface, and the width direction is reduced accordingly. . As a result, it is possible to realize a fine concavo-convex lattice having a pitch of 100 nm or less, which could not be realized until now, in a large area of the order of cm 2 or more.
本発明の微細凹凸格子のピッチ縮小方法によれば、前記微細凹凸格子の延伸前後のピッチをそれぞれp0,p1とし、延伸前後の前記微細凹凸格子の高さをそれぞれh0,h1としたとき、縮小比率r(=(h1/h0)/(p1/p0))が0.3<r<1.5となるように一軸延伸を行うことが好ましい。 According to the method for reducing the pitch of the fine concavo-convex grid of the present invention, the pitch before and after stretching of the fine concavo-convex grid is p 0 and p 1 , respectively, and the height of the fine concavo-convex grid before and after stretching is h 0 and h 1 , respectively. Then, it is preferable to perform uniaxial stretching so that the reduction ratio r (= (h 1 / h 0 ) / (p 1 / p 0 )) satisfies 0.3 <r <1.5.
また、本発明の微細凹凸格子のピッチ縮小方法によれば、前記被延伸部材が熱可塑性樹脂で構成されていることが好ましい。この熱可塑性樹脂は、一軸延伸の際のガラス転移点や転写の際の融点などを考慮して選定する。この場合、前記熱可塑性樹脂の貯蔵弾性率が10MPa〜2000MPaとなる温度範囲内で一軸延伸を行うことが好ましい。また、前記熱可塑性樹脂が非晶性樹脂であり、前記非晶性樹脂の示差熱分析計で測定したガラス転移温度Tgに対してTg−10℃〜Tg+20℃の温度範囲で一軸延伸を行うことが好ましい。また、本発明の微細凹凸格子のピッチ縮小方法によれば、前記微細凹凸格子表面に流体が存在する状態下で、前記被延伸部材を一軸延伸することが好ましい。 Further, according to the method for reducing the pitch of the fine concavo-convex lattice of the present invention, it is preferable that the stretched member is made of a thermoplastic resin. This thermoplastic resin is selected in consideration of the glass transition point during uniaxial stretching and the melting point during transfer. In this case, it is preferable to perform uniaxial stretching within a temperature range in which the storage elastic modulus of the thermoplastic resin is 10 MPa to 2000 MPa. Further, the thermoplastic resin is an amorphous resin, and uniaxial stretching is performed in a temperature range of Tg-10 ° C. to Tg + 20 ° C. with respect to the glass transition temperature Tg measured by the differential thermal analyzer of the amorphous resin. Is preferred. Moreover, according to the pitch reduction method of the fine concavo-convex grid of the present invention, it is preferable that the stretched member is uniaxially stretched in a state where a fluid exists on the surface of the fine concavo-convex grid.
本発明の微細凹凸格子のピッチ縮小方法は、表面に0.01μm〜100μmピッチの微細凹凸格子を有し、熱可塑性樹脂で構成された被延伸部材の微細凹凸格子の存在する側に流体を与える工程と、前記被延伸部材の前記微細凹凸格子の存在しない側を前記熱可塑性樹脂が軟化する温度まで加熱し、前記凹凸格子の長手方向と略平行な方向に前記延伸部分を一軸延伸する工程と、前記熱可塑性樹脂が硬化する温度まで前記延伸部分を冷却する工程と、を具備することを特徴とする。 The method for reducing the pitch of a fine concavo-convex grid according to the present invention has a fine concavo-convex grid with a pitch of 0.01 μm to 100 μm on the surface, and applies fluid to the side of the stretched member made of thermoplastic resin where the fine concavo-convex grid exists. Heating the side of the stretched member where the fine concavo-convex grid is not present to a temperature at which the thermoplastic resin is softened, and uniaxially stretching the stretched portion in a direction substantially parallel to the longitudinal direction of the concavo-convex grid; And cooling the stretched portion to a temperature at which the thermoplastic resin is cured.
本発明の微細凹凸格子部材は、上記方法により製造されたことを特徴とする。 The fine concavo-convex lattice member of the present invention is manufactured by the above method.
本発明の金属部材の製造方法は、上記方法により微細凹凸格子を有する延伸部材を得る工程と、前記延伸部材の前記凹凸格子を有する側を導電化する工程と、導電化された面上に金属層を形成する工程と、前記延伸部材を除去して前記金属部材を得る工程と、を具備することを特徴とする。また、本発明の金属部材は、前記方法により製造されたことを特徴とする。また、本発明の転写部材は、前記方法により表面に微細凹凸格子を有する金属部材を得る工程と、前記金属部材を用いて被転写部材に前記微細凹凸格子を転写する工程と、により得られたことを特徴とする。 The method for producing a metal member of the present invention includes a step of obtaining a stretched member having a fine concavo-convex grid by the above method, a step of conducting the side of the stretched member having the concavo-convex lattice, and a metal on a conductive surface. A step of forming a layer; and a step of removing the stretched member to obtain the metal member. The metal member of the present invention is manufactured by the above method. In addition, the transfer member of the present invention was obtained by the steps of obtaining a metal member having a fine concavo-convex lattice on the surface by the method and the step of transferring the fine concavo-convex lattice to a transferred member using the metal member. It is characterized by that.
本発明によれば、表面に0.01〜100μmピッチの微細凹凸格子を有する被延伸部材に一軸延伸処理を施すので、被延伸部材の長さが長くなり、それに応じて幅方向が縮小する。これにより、今まで実現できなかった100nmレベル又はそれ以下のピッチの微細凹凸格子をcm2オーダー以上の大面積で実現することができる。 According to the present invention, since the stretched member having a fine concavo-convex lattice with a pitch of 0.01 to 100 μm on the surface is subjected to uniaxial stretching, the length of the stretched member is increased, and the width direction is reduced accordingly. As a result, it is possible to realize a fine concavo-convex lattice having a pitch of 100 nm or less, which could not be realized until now, in a large area of the order of cm 2 or more.
現在、狭ピッチのパターンを形成する技術として干渉露光法がある。この干渉露光法は、波長λnmのレーザ光源を用い、レジスト面の法線方向とのなす角θで2光束干渉露光を行った場合の干渉縞を用いてパターニングする技術である。この干渉縞のピッチpは、p=λ/2sinθで表される。したがって、原理上、波長の2分の1以下のピッチは作れないことになる。また、干渉露光に使用できるレーザはTEM00モードのレーザに限定される。TEM00モードのレーザ発振ができる紫外光レーザとしては、アルゴンレーザ、YAGレーザの4倍波などが挙げられる。例えば、波長266nmのレーザを用いて90°の角度で干渉縞を作ったとしてもピッチは133nmとなる。したがって、干渉露光で作製できる干渉縞はピッチ133nmのものが限界である。本発明者らは、この点に着目し、ピッチが100nmを超える被延伸部材を干渉露光で作製し、これを延伸することによりピッチを100nmにできることを見出し本発明をするに至った。 Currently, there is an interference exposure method as a technique for forming a narrow pitch pattern. This interference exposure method is a technique of patterning using interference fringes when two-beam interference exposure is performed at an angle θ formed with the normal direction of the resist surface using a laser light source having a wavelength of λ nm. The pitch p of the interference fringes is expressed by p = λ / 2sinθ. Therefore, in principle, a pitch less than half the wavelength cannot be created. Further, lasers that can be used for interference exposure are limited to TEM 00 mode lasers. Examples of the ultraviolet laser capable of TEM 00 mode laser oscillation include an argon laser, a fourth harmonic of a YAG laser, and the like. For example, even if interference fringes are formed at an angle of 90 ° using a laser with a wavelength of 266 nm, the pitch is 133 nm. Therefore, the interference fringes that can be produced by interference exposure are limited to those having a pitch of 133 nm. The present inventors paid attention to this point, and found that a stretched member having a pitch exceeding 100 nm was produced by interference exposure, and the pitch was made 100 nm by stretching this, and the present invention was reached.
すなわち、本発明の骨子は、表面に0.01μm〜100μmピッチの微細凹凸格子を有する被延伸部材を凹凸格子の長手方向と略平行な方向に一軸延伸することにより100nmレベル又はそれ以下のピッチの微細凹凸格子をcm2オーダー以上の大面積で実現することである。 That is, the essence of the present invention is that a stretched member having a fine concavo-convex grid with a pitch of 0.01 μm to 100 μm on the surface is uniaxially stretched in a direction substantially parallel to the longitudinal direction of the concavo-convex grid and has a pitch of 100 nm level or less. This is to realize a fine concavo-convex lattice with a large area of the order of cm 2 or more.
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
本発明の微細凹凸格子のピッチ縮小方法においては、表面に0.01μm〜100μmピッチの微細凹凸格子を有する被延伸部材を、前記被延伸部材を構成する材料が軟化する温度まで加熱し、前記凹凸格子の長手方向と略直交する方向の前記被延伸部材の幅を自由にした状態で前記長手方向に略平行な方向に前記被延伸部材を一軸延伸し、延伸状態を保持したまま前記材料が硬化する温度まで前記被延伸部材を冷却する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In the fine concavo-convex grid pitch reduction method of the present invention, a stretched member having a fine concavo-convex grid with a pitch of 0.01 μm to 100 μm on the surface is heated to a temperature at which the material constituting the stretched member softens, The stretched member is uniaxially stretched in a direction substantially parallel to the longitudinal direction with the width of the stretched member in a direction substantially orthogonal to the longitudinal direction of the lattice being set free, and the material is cured while maintaining the stretched state. The member to be stretched is cooled to a temperature at which it is performed.
被延伸部材が有する微細凹凸格子のピッチは、0.01μm〜100μmの範囲に設定するが、要求する微細凹凸格子のピッチや延伸倍率に応じて適宜変更することができる。すなわち、この範囲は本発明の目的や効果を逸脱しない範囲において変更可能である。 The pitch of the fine concavo-convex lattice of the stretched member is set in the range of 0.01 μm to 100 μm, but can be appropriately changed according to the required pitch of the fine concavo-convex lattice and the draw ratio. That is, this range can be changed without departing from the object and effect of the present invention.
被延伸部材とは、本発明の一軸延伸処理が施される部材をいい、板状体、フィルム状体、シート状体などを挙げることができる。この被延伸部材の厚さや大きさなどについては、一軸延伸処理が可能な範囲であれば特に制限はない。また、被延伸部材は、熱可塑性樹脂で構成されていることが好ましい。これにより一軸延伸処理を簡単に行うことができる。熱可塑性樹脂としては、ポリ塩化ビニル樹脂、アクリル樹脂、スチレン系樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリエーテルケトン樹脂などの非晶性樹脂や、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、全芳香族ポリエステル樹脂、ポリアセタール樹脂、ポリアミド系樹脂、ポリエーテルエーテルケトン樹脂などの結晶性樹脂などを挙げることができる。また、上記樹脂を混合したものを用いることもできる。 The stretched member refers to a member to which the uniaxial stretching process of the present invention is applied, and examples thereof include a plate-like body, a film-like body, and a sheet-like body. The thickness and size of the stretched member are not particularly limited as long as uniaxial stretching is possible. The stretched member is preferably made of a thermoplastic resin. Thereby, a uniaxial stretching process can be performed easily. As thermoplastic resins, polyvinyl chloride resin, acrylic resin, styrene resin, polyarylate resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate resin, polyetherimide resin, polyether sulfone resin, polysulfone resin, polyether Amorphous resins such as ketone resins, crystalline resins such as polyethylene resins, polypropylene resins, polyethylene terephthalate resins, polybutylene terephthalate resins, wholly aromatic polyester resins, polyacetal resins, polyamide resins, and polyether ether ketone resins Can be mentioned. Moreover, what mixed the said resin can also be used.
被延伸部材に微細凹凸格子を形成する方法としては、特定の波長のレーザ光を角度θの2つの方向から照射して形成される干渉縞を用いて露光を行う干渉露光法などを用いてパターン形成した金型(スタンパ)でパターンを転写する方法を用いることができる。転写方法としては、熱プレス法などを用いることができる。干渉露光に使用できるレーザとしては、TEM00モードのレーザを用いることができる。TEM00モードのレーザ発振できる紫外光レーザとしては、アルゴンレーザ(波長364nm,351nm,333nm)や、YAGレーザの4倍波(波長266nm)などが挙げられる。なお、干渉露光に用いるレーザ光の波長及び入射角は、形成する微細凹凸格子のピッチに応じて適宜設定する。 As a method of forming a fine concavo-convex lattice on a stretched member, a pattern is formed using an interference exposure method in which exposure is performed using interference fringes formed by irradiating laser light of a specific wavelength from two directions of angle θ. A method of transferring a pattern with a formed mold (stamper) can be used. As a transfer method, a hot press method or the like can be used. As a laser that can be used for interference exposure, a TEM 00 mode laser can be used. Examples of the ultraviolet laser capable of laser oscillation in the TEM 00 mode include an argon laser (wavelengths 364 nm, 351 nm, and 333 nm) and a fourth harmonic wave (wavelength 266 nm) of a YAG laser. The wavelength and incident angle of the laser beam used for interference exposure are appropriately set according to the pitch of the fine concavo-convex grating to be formed.
本発明における一軸延伸処理は、被延伸部材に対して、被延伸部材の幅方向(微細凹凸格子の長手方向と直交する方向)は自由であり、被延伸部材の長手方向の一方向に延伸処理を行う方法である。この一軸延伸処理を行う装置としては、通常の一軸延伸処理を行う装置を用いることができる。この一軸延伸処理においては、被延伸部材を構成する材料、例えば熱可塑性樹脂が軟化する温度まで被延伸部材を加熱し、微細凹凸格子の長手方向と略平行な方向に被延伸部材を一軸延伸し、延伸状態を保持したまま材料が硬化する温度まで被延伸部材を冷却することにより行う。このような一軸延伸処理により、100nmピッチレベルの微細凹凸格子を実現することができる。また、加熱条件や冷却条件については被延伸部材を構成する材料に応じて適宜決定する。 In the uniaxial stretching process in the present invention, the width direction of the stretched member (direction perpendicular to the longitudinal direction of the fine concavo-convex lattice) is free with respect to the stretched member, and the stretching process is performed in one direction in the longitudinal direction of the stretched member. It is a method to do. As an apparatus for performing this uniaxial stretching process, an apparatus for performing a normal uniaxial stretching process can be used. In this uniaxial stretching treatment, the stretched member is heated to a temperature at which the material constituting the stretched member, for example, the thermoplastic resin is softened, and the stretched member is uniaxially stretched in a direction substantially parallel to the longitudinal direction of the fine concavo-convex lattice. The member to be stretched is cooled to a temperature at which the material is cured while maintaining the stretched state. By such a uniaxial stretching process, a fine concavo-convex lattice with a 100 nm pitch level can be realized. Further, the heating condition and the cooling condition are appropriately determined according to the material constituting the stretched member.
一軸延伸処理における延伸倍率は、微細凹凸格子の延伸前後のピッチをそれぞれp0,p1とし、延伸前後の微細凹凸格子の高さをそれぞれh0,h1としたとき(図1(c),(d)参照)、縮小比率r(=(h1/h0)/(p1/p0))が0.3<r<1.5となるように設定することが好ましく、0.8<r<1.1が特に好ましい。また、1.0以上の縮小比率rを得るためには、延伸方向と直角方向にあらかじめ延伸ひずみを持った被延伸部材を用いることが好ましい。これにより、微細凹凸格子の形状を良好に保ったまま一軸延伸を行うことができる。なお、被延伸部材の体積が一定で、延伸により幅方向、厚み方向が均等に縮小されると、延伸倍率x=(L1/L0)(L1:延伸後の長さ、L0:延伸前の長さ)と、延伸前後のピッチ(p0,p1)及び高さ(h0,h1)の間には、p1=p0/x1/2(式1)、h1=h0/x1/2(式2)のような関係がある。延伸倍率は、目的とするピッチに応じて適宜決定する。 The stretching ratio in the uniaxial stretching treatment is such that the pitch before and after stretching of the fine concavo-convex lattice is p 0 and p 1, and the height of the fine concavo-convex lattice before and after stretching is h 0 and h 1 , respectively (FIG. 1C). , (D)), and the reduction ratio r (= (h 1 / h 0 ) / (p 1 / p 0 )) is preferably set such that 0.3 <r <1.5. 8 <r <1.1 is particularly preferred. In order to obtain a reduction ratio r of 1.0 or more, it is preferable to use a member to be stretched that has a stretching strain in a direction perpendicular to the stretching direction. Thereby, uniaxial stretching can be performed while the shape of the fine concavo-convex lattice is kept good. When the volume of the stretched member is constant and the width direction and the thickness direction are uniformly reduced by stretching, the stretching ratio x = (L 1 / L 0 ) (L 1 : length after stretching, L 0 : Between the length before stretching) and the pitch (p 0 , p 1 ) and height (h 0 , h 1 ) before and after stretching, p 1 = p 0 / x 1/2 (formula 1), h 1 = h 0 / x 1/2 (Formula 2) The draw ratio is appropriately determined according to the target pitch.
また、一軸延伸処理において、被延伸部材が熱可塑性樹脂で構成されている場合、硬化している熱可塑性樹脂が延伸できるほぼ限界の温度(できるだけ硬い状態)で一軸延伸を行うことが好ましい。すなわち、後述するような相対的に高い弾性率の領域(低温)で被延伸部材を延伸した場合には、上記式1、式2に近い結果(理論値)が得られるが、相対的に低い弾性率の領域で被延伸部材を延伸した場合には、p1は理論値に近い値になるが、h1は理論値よりも低い値になる。したがって、相対的に高い弾性率の領域(低温)で被延伸部材を延伸することが好ましい。この場合、樹脂の白化や破断を防止するために、比較的ゆっくりと時間をかけて延伸を行うことが好ましい。例えば、ひずみ速度としては、0.5%/秒〜5%/秒であることが好ましく、0.5%/秒〜2%/秒であることが特に好ましい。これにより、微細凹凸格子の形状を良好に保ったまま一軸延伸を行うことができる。熱可塑性樹脂の貯蔵弾性率Eが10MPa〜2000MPaとなる温度範囲内で一軸延伸処理を行うことが好ましい。動的粘弾性測定を行うと、貯蔵弾性率と損失弾性率の値が得られる。本明細書における貯蔵弾性率は動的粘弾性測定において得られる貯蔵弾性率をいう。
Further, in the uniaxial stretching treatment, when the member to be stretched is made of a thermoplastic resin, it is preferable to perform uniaxial stretching at an almost limit temperature (a state as hard as possible) at which the cured thermoplastic resin can be stretched. That is, when the member to be stretched is stretched in a relatively high elastic modulus region (low temperature) as will be described later, results (theoretical values) close to the
また、被延伸部材が熱可塑性樹脂で構成されている場合において、熱可塑性樹脂が非晶性樹脂であるとき、非晶性樹脂のガラス転移温度Tgに対してTg−10℃〜Tg+20℃の温度範囲で一軸延伸を行うことが好ましく、Tg+3℃〜Tg+8℃の温度範囲で一軸延伸を行うことが特に好ましい。本発明におけるガラス転移温度は、熱可塑性樹脂に対する示差熱走査型熱量計(DSC)の測定において、20℃/分で昇温するときに得られる温度−熱流量グラフのオンセット温度で、オンセット温度が複数ある場合にはその内の最高の温度とする。非晶性樹脂においては、図3に示すような弾性率と温度の関係を示し、弾性率が急激に変化する温度域Rが存在する。この温度域Rは、選択した非晶性樹脂により異なるが、上記DSC測定により得られたTg−10℃〜Tg+20℃の範囲内に存在する。したがって、樹脂の白化や破断などを考慮して、温度の上昇と共に弾性率が急激に低下する範囲である、Tg−10℃〜Tg+20℃の温度範囲Rにおいて一軸延伸を行うと、微細凹凸格子の形状を良好に保ったまま一軸延伸を行うことができる。 Further, when the stretched member is made of a thermoplastic resin, when the thermoplastic resin is an amorphous resin, the temperature is Tg-10 ° C. to Tg + 20 ° C. with respect to the glass transition temperature Tg of the amorphous resin. It is preferable to perform uniaxial stretching in a range, and it is particularly preferable to perform uniaxial stretching in a temperature range of Tg + 3 ° C. to Tg + 8 ° C. The glass transition temperature in the present invention is the onset temperature of the temperature-heat flow graph obtained when the temperature is raised at 20 ° C./min in the differential thermal scanning calorimeter (DSC) measurement for the thermoplastic resin. If there are multiple temperatures, the highest temperature is selected. In the amorphous resin, there is a temperature range R in which the elastic modulus changes rapidly as shown in FIG. This temperature range R varies depending on the selected amorphous resin, but exists in the range of Tg-10 ° C. to Tg + 20 ° C. obtained by the DSC measurement. Therefore, in consideration of resin whitening or breakage, when the uniaxial stretching is performed in the temperature range R of Tg-10 ° C. to Tg + 20 ° C., which is a range in which the elastic modulus rapidly decreases as the temperature rises, Uniaxial stretching can be performed while maintaining a good shape.
また、一軸延伸処理においては、被延伸部材が熱可塑性樹脂で構成されている場合において、微細凹凸格子表面に流体が存在する状態下で、すなわち微細凹凸格子が流体で濡れた状態下で、被延伸部材を一軸延伸することが好ましい。この流体としては、被延伸部材を構成する材料とぬれ性が高く、被延伸部材を溶解せず、大きく膨潤させず、延伸温度において揮発性が低い流体であることが好ましい。このような流体の存在下では、微細凹凸格子の凹部に流体が流れ込んで延伸が行われるので、凸部同士の接触を流体が防止された状態で延伸が行われる。これにより、微細凹凸格子の形状を良好に保ったまま一軸延伸を行うことができる。このような流体としては、上記条件を満たすシリコーンオイルやシリコーン系界面活性剤などの粘性液体などを用いることができる。特に、水溶性のシリコーン系界面活性剤は、水洗により容易に除去できることから、洗浄の簡略化の点で好ましい。 Further, in the uniaxial stretching treatment, when the stretched member is made of a thermoplastic resin, the fluid is present on the surface of the fine concavo-convex lattice, that is, the fine concavo-convex lattice is wet with the fluid. The stretching member is preferably uniaxially stretched. The fluid is preferably a fluid that has high wettability with the material constituting the member to be stretched, does not dissolve the member to be stretched, does not swell greatly, and has low volatility at the stretching temperature. In the presence of such a fluid, since the fluid flows into the concave portions of the fine concavo-convex lattice and stretching is performed, the stretching is performed in a state where the fluid is prevented from contacting the convex portions. Thereby, uniaxial stretching can be performed while the shape of the fine concavo-convex lattice is kept good. As such a fluid, a viscous liquid such as silicone oil or silicone surfactant satisfying the above conditions can be used. In particular, a water-soluble silicone surfactant is preferable from the viewpoint of simplification of washing because it can be easily removed by washing with water.
熱可塑性樹脂と親和性のある(ぬれ性のある)流体の存在下で、被延伸部材を一軸延伸する場合、流体内で被延伸部材を一軸延伸処理を行っても良く、被延伸部材の微細凹凸格子の存在する側に流体を塗布し、温度調節されたオーブン内で一軸延伸処理を行っても良い。あるいは、被延伸部材に流体を与え、その被延伸部材を、延伸部分のみを加熱しながら被延伸部材に対して一軸延伸処理を行っても良い。この場合には、例えば、熱可塑性樹脂で構成された被延伸部材の微細凹凸格子の存在する側に流体を塗布し、この被延伸部材の微細凹凸格子の存在しない側を加熱し、微細凹凸格子の長手方向と略平行な方向に一軸延伸する。なお、これらの場合においては、流体の温度、オーブンの温度などを一軸延伸処理の加熱温度に設定する。 When the member to be stretched is uniaxially stretched in the presence of a fluid having affinity (wetting property) with the thermoplastic resin, the member to be stretched may be uniaxially stretched in the fluid. A fluid may be applied to the side where the concavo-convex grid exists, and uniaxial stretching may be performed in a temperature-controlled oven. Alternatively, a fluid may be applied to the stretched member, and the stretched member may be subjected to a uniaxial stretching process while heating only the stretched portion. In this case, for example, a fluid is applied to the side of the stretched member made of thermoplastic resin on the side where the fine concavo-convex grid exists, and the side of the stretched member where the fine concavo-convex grid does not exist is heated. The film is uniaxially stretched in a direction substantially parallel to the longitudinal direction. In these cases, the temperature of the fluid, the temperature of the oven, etc. are set to the heating temperature of the uniaxial stretching process.
一軸延伸する被延伸部材の形状は、延伸方向と略直交する方向の幅Wを一定とした場合、延伸方向の長さLが長い方が、延伸時に幅W方向の縮小を妨げることが少ないので好ましい。延伸前の被延伸部材の幅Wと長さLの比W/Lは、大きくとも1以下が好ましく、0.8以下が特に好ましい。 As for the shape of the stretched member that is uniaxially stretched, when the width W in the direction substantially perpendicular to the stretching direction is constant, the longer length L in the stretching direction is less likely to prevent reduction in the width W direction during stretching. preferable. The ratio W / L between the width W and the length L of the stretched member before stretching is preferably 1 or less, and particularly preferably 0.8 or less.
次に、本発明の微細凹凸格子のピッチ縮小方法を用いて、微細凹凸格子を有する微細凹凸格子部材、金属部材及びこの金属部材を用いて微細凹凸格子が転写された転写部材を製造する方法について説明する。 Next, using the method for reducing the pitch of the fine concavo-convex grid of the present invention, a method for producing a fine concavo-convex grid member having a fine concavo-convex grid, a metal member, and a transfer member having the fine concavo-convex grid transferred using the metal member explain.
図1(a)〜(f)は、本発明の一実施の形態に係る微細凹凸格子のピッチ縮小方法を用いて、微細凹凸格子を有する微細凹凸格子部材及び金属部材を製造する断面図である。 1A to 1F are cross-sectional views for manufacturing a fine concavo-convex lattice member and a metal member having a fine concavo-convex lattice by using the pitch concavo-convex method of the fine concavo-convex lattice according to one embodiment of the present invention. .
まず、図1(a)に示す表面に0.01〜100μmピッチの微細凹凸格子1aを有する金型(スタンパ)1を準備する。このスタンパ1は、ガラス基板上にレジスト材料をスピンコートにより塗布してレジスト層を形成し、そのレジスト層に対して干渉露光法を用いて露光を行い、レジスト層を現像する。これにより0.01〜100μmピッチの微細凹凸格子を有するレジスト層が得られる。次いで、レジスト層上にニッケルをスパッタリングしてレジスト層を導電化する。次いで、スッパタリングしたニッケル上にニッケルの電気メッキを行ってニッケル板を形成する。その後、ニッケル板をガラス板から剥離し、ニッケル板からレジスト層を除去することにより、表面に0.01〜100μmピッチの微細凹凸格子を有するスタンパ1を作製することができる。
First, the metal mold | die (stamper) 1 which has the fine uneven |
スタンパ1は、そのまま次の熱プレスなどに供することができるが、レジスト層上に形成した微細凹凸格子の断面形状に、熱プレスなどのパターン転写後の離型時にアンダーカットとなり得る部分が含まれて離型が難しくなる場合は、一旦、熱可塑性樹脂や紫外線硬化樹脂からなる転写部材に形状を反転して転写し、この転写部材を用いて、導電化処理、電気メッキによりスタンパ1を製作する。このようにすることで、転写部材の離型時に、アンダーカット部分の転写部材が適当に変形して、アンダーカット部分がなくなるもしくは減少するために、離型性を向上させることができる。なお、スタンパ1の作製方法としては、上記方法に限定されず、他の方法を用いても良い。
The
次いで、図1(a)に示すように、被延伸部材2にスタンパ1の微細凹凸格子1a側を熱プレスなどの処理により押圧して、図1(b)に示すように、被延伸部材2に微細凹凸格子1aのパターンを転写する。なお、被延伸部材2は、構成材料が熱可塑性樹脂である場合には、射出成形や押出成形などにより作製することができる。そして、スタンパ1を外すと、図1(c)に示すように、スタンパ1の微細凹凸格子1aが転写された微細凹凸格子2aを有する被延伸部材2が得られる。
Next, as shown in FIG. 1 (a), the
次いで、図1(d)に示すように、この被延伸部材2に対して幅方向を自由にした一軸延伸処理を施す。すなわち、図2(a)に示す被延伸部材2を矢印方向(微細凹凸格子2aの長手方向に略平行な方向)に一軸延伸する。このとき、被延伸部材2を構成する材料が軟化する温度まで加熱し、微細凹凸格子1aの長手方向と略平行な方向に被延伸部材2を一軸延伸し、延伸状態を保持したまま前記材料が硬化する温度まで被延伸部材2を冷却する。なお、これらの加熱温度や冷却温度は、被延伸部材2を構成する材料により適宜設定する。
Next, as shown in FIG. 1D, the stretched
この一軸延伸処理により、被延伸部材2は、矢印方向に長さが長くなり、それに応じて幅方向が縮小する。これにより、図2(b)に示すように、100nmレベル又はそれ以下のピッチの微細凹凸格子2a’を有する延伸部材(延伸済み部材)2’が得られる。なお、延伸倍率については、準備する被延伸部材の微細凹凸格子のピッチと必要とする延伸部材の微細凹凸格子のピッチに基づいて適宜設定する。例えば、延伸倍率が6倍でピッチが約2.5分の1に縮小する。例えば、微細凹凸格子1aのピッチ(p0)が250nmであると、6倍延伸することにより、微細凹凸格子2a’のピッチ(p1)は、p1=p0/61/2=250/2.449≒100となる。このようにして今まで実現できなかった100nmレベル又はそれ以下のピッチを有する微細凹凸格子を有する微細凹凸格子部材を製造することができる。このような微細凹凸格子部材は、液晶表示装置に使用する配向膜、(構造複屈折型)位相差板などに適用することができる。
By this uniaxial stretching treatment, the stretched
次いで、この延伸部材2’を用いて金属部材3を得る。この場合、まず、延伸部材2’の微細凹凸格子2a’を有する側を導電化する。例えば、蒸着法、スパッタリング法、無電解メッキ法などにより延伸部材2’上に金属膜を形成することにより延伸部材2’の微細凹凸格子2a’を有する側を導電化する。その後、導電化された面上に金属層を形成する。金属層を形成する方法としては、電気メッキ法などの方法を挙げることができる。金属層の厚さは、特に制限はなく、金属部材3の用途に応じて適宜設定される。これにより、図1(e)に示すように、延伸部材2’上に金属部材3が形成される。
Next, the
次いで、金属部材3から延伸部材2’を除去することにより、図1(f)に示すように、100nmレベル又はそれ以下のピッチの微細凹凸格子3aを有する金属部材3を得ることができる。金属部材3から延伸部材2’を除去する場合においては、金属部材3を延伸部材2’から剥離する方法や、延伸部材2’を構成する材料が可溶である溶剤を用いて、延伸部材2’を溶解して金属部材3を残存させる方法などを用いることができる。
Next, by removing the extending
このようにして得られた金属部材3は、100nmレベル又はそれ以下のピッチの微細凹凸格子3aを有するので、これをマスター型として使用することにより、100nmレベル又はそれ以下のピッチの微細凹凸格子3aを有する部材や製品を簡単に製造することができる。すなわち、この金属部材3で構成されたマスター型を被転写部材に押圧する、あるいは紫外線硬化型樹脂をマスター型に塗布した後、紫外線を照射して硬化させて離型する、あるいは熱硬化型樹脂をマスター型に塗布した後、加熱硬化させて離型することにより、微細凹凸格子を転写することができる。これにより、100nmレベル又はそれ以下のピッチの微細凹凸格子3aを有する部材や製品を得ることができる。
Since the
次に、本発明の効果を明確にするために行った実施例について説明する。
(実施例1)
ピッチ(p0)が250nmであり、微細凹凸格子の高さ(h0)が200nmである微細凹凸格子を表面に有するニッケルスタンパを準備した。この微細凹凸格子は、周期的サイン波の縞状格子形状であった。このニッケルスタンパを用いて、熱プレス法により厚さ500μmのポリスチレン樹脂板に表面形状を転写した。このポリスチレン樹脂のガラス転移温度(Tg)は94℃であった。また、ポリスチレン樹脂の100℃における貯蔵弾性率Eは1120MPaであった。
Next, examples performed for clarifying the effects of the present invention will be described.
(Example 1)
A nickel stamper having a fine concavo-convex grating with a pitch (p 0 ) of 250 nm and a fine concavo-convex height (h 0 ) of 200 nm on the surface was prepared. This fine concavo-convex lattice was a striped lattice shape of periodic sine waves. Using this nickel stamper, the surface shape was transferred to a polystyrene resin plate having a thickness of 500 μm by a hot press method. The glass transition temperature (Tg) of this polystyrene resin was 94 ° C. The storage elastic modulus E of the polystyrene resin at 100 ° C. was 1120 MPa.
具体的に、熱プレスは次のように行った。まず、プレス機の系内を真空排気し、ニッケルスタンパ及びポリスチレン樹脂板を190℃まで加熱した。ニッケルスタンパ及びポリスチレン樹脂板が190℃に達した後、プレス圧20kg/cm2、プレス時間4分でニッケルスタンパの微細凹凸格子をポリスチレン樹脂板に転写した。さらに、プレス圧を20kg/cm2に保持したままニッケルスタンパ及びポリスチレン樹脂板を40℃まで冷却した後、真空開放し、続けてプレス圧を開放した。このとき、ニッケルスタンパとポリスチレン樹脂板は、プレス圧を開放したときに容易に離型した。プレス後のポリスチレン樹脂板の厚さは約350μmであった。また、電界放出型走査型電子顕微鏡で、ポリスチレン樹脂板の表面形状を観察したところ、ニッケルスタンパに形成された周期的サイン波の縞状格子形状が忠実に転写されたことが確認された。 Specifically, the hot press was performed as follows. First, the inside of the press system was evacuated, and the nickel stamper and the polystyrene resin plate were heated to 190 ° C. After the nickel stamper and the polystyrene resin plate reached 190 ° C., the fine uneven lattice of the nickel stamper was transferred to the polystyrene resin plate at a press pressure of 20 kg / cm 2 and a press time of 4 minutes. Further, the nickel stamper and the polystyrene resin plate were cooled to 40 ° C. while the press pressure was maintained at 20 kg / cm 2 , then the vacuum was released, and then the press pressure was released. At this time, the nickel stamper and the polystyrene resin plate were easily released when the press pressure was released. The thickness of the polystyrene resin plate after pressing was about 350 μm. Further, when the surface shape of the polystyrene resin plate was observed with a field emission scanning electron microscope, it was confirmed that the striped lattice shape of the periodic sine wave formed on the nickel stamper was faithfully transferred.
次いで、この周期的サイン波の縞状格子形状が転写されたポリスチレン樹脂板をカッターナイフで30mm×25mmの長方形に切り出し、延伸用サンプルとした。このとき、30mm×25mmの長手方向と縞状格子の長手方向とが互いに略平行になるように切り出した。 Next, the polystyrene resin plate to which the striped lattice shape of the periodic sine wave was transferred was cut into a 30 mm × 25 mm rectangle with a cutter knife to obtain a stretching sample. At this time, it was cut out so that the longitudinal direction of 30 mm × 25 mm and the longitudinal direction of the striped lattice were substantially parallel to each other.
次いで、延伸用サンプルの長手方向の両端5mmを延伸機のチャックで固定し、その状態で100℃に温度調節されたシリコーンオイルバスに延伸用サンプルを3分間浸漬した。その後、2.5cm/分の速度(初期ひずみ速度125%/分)で4分間延伸したところで延伸を終え、15秒後に延伸用サンプルをシリコーンオイルバスから取り出した。これにより、延伸用サンプルは、幅方向が自由で一軸方向に6倍延伸されていることになる。シリコーンオイルバスから取り出した延伸用サンプルを、延伸状態を保持したまま室温のシリコーンオイルに浸漬して、ポリスチレン樹脂が硬化する温度まで速やかに冷却した。延伸を終えた延伸用サンプルは、中央部に近づくほどくびれており、最も幅が縮小されている部分は10mmになっていた。幅が10mmになっている領域は全体の40%程度であった。 Next, both ends 5 mm in the longitudinal direction of the stretching sample were fixed with a chuck of a stretching machine, and the stretching sample was immersed in a silicone oil bath whose temperature was adjusted to 100 ° C. for 3 minutes. Thereafter, the film was stretched for 4 minutes at a speed of 2.5 cm / min (initial strain rate of 125% / min). After 15 seconds, the sample for stretching was taken out from the silicone oil bath. As a result, the stretching sample is free in the width direction and stretched 6 times in the uniaxial direction. The stretching sample taken out from the silicone oil bath was immersed in silicone oil at room temperature while maintaining the stretched state, and quickly cooled to a temperature at which the polystyrene resin was cured. The stretched sample that had been stretched was constricted toward the center, and the portion with the smallest width was 10 mm. The area where the width was 10 mm was about 40% of the whole.
この延伸を終えた延伸用サンプルの表面を電界放出型走査型電子顕微鏡にて観察したところ、ピッチ(p1)が100nmであり、周期的サイン波の縞状格子形状の高さ(h1)が74nmであり、周期的サイン波の縞状格子形状は維持されていた。幅・高さ縮小比率r(=(h1/h0)/(p1/p0))は、(74/200)/(100/250)=0.925であり、ポリスチレン樹脂表面の周期的サイン波の縞状格子の凹凸形状は実質的に延伸前の形状と相似で縮小されていたことが分かった。すなわち、100nmレベルのピッチの微細凹凸格子を実現することができた。 When the surface of the stretched sample that had been stretched was observed with a field emission scanning electron microscope, the pitch (p 1 ) was 100 nm, and the height (h 1 ) of the striped lattice shape of the periodic sine wave Was 74 nm, and the striped lattice shape of the periodic sine wave was maintained. The width / height reduction ratio r (= (h 1 / h 0 ) / (p 1 / p 0 )) is (74/200) / (100/250) = 0.925, and the period of the polystyrene resin surface It was found that the concavo-convex shape of the sine wave striped lattice was reduced to be similar to the shape before stretching. That is, a fine concavo-convex lattice with a pitch of 100 nm level could be realized.
(実施例2)
実施例1と同様にしてニッケルスタンパを用いて周期的サイン波の縞状格子形状をプレス転写して、ピッチ(p0)が250nmであり、縞状格子の高さ(h0)が200nmである周期的サイン波の縞状格子形状を有する厚さ約350μmのポリスチレン樹脂板を作製した。このポリスチレン樹脂板をカッターナイフで30mm×20mmの長方形に切り出し、延伸用サンプルとした。このとき、30mm×20mmの長手方向と縞状格子の長手方向とが互いに略平行になるように切り出した。
(Example 2)
In the same manner as in Example 1, a striped lattice shape of a periodic sine wave was press-transferred using a nickel stamper, the pitch (p 0 ) was 250 nm, and the height (h 0 ) of the striped lattice was 200 nm. A polystyrene resin plate having a thickness of about 350 μm and a striped lattice shape of a certain periodic sine wave was produced. This polystyrene resin plate was cut into a 30 mm × 20 mm rectangle with a cutter knife and used as a sample for stretching. At this time, it was cut out so that the longitudinal direction of 30 mm × 20 mm and the longitudinal direction of the striped lattice were substantially parallel to each other.
この延伸用サンプルの周期的サイン波縞状格子形状が転写された面にシリコーンオイルを塗布し、次いで、延伸用サンプルの長手方向の両端5mmを延伸機のチャックで固定した状態で、100℃に温度調節されたSUS304の円筒形容器を周期的サイン波縞状格子形状の転写されていない側の面に3分間押し当てた。その後SUS304の円筒形容器を押し当てたまま2.5cm/分(初期ひずみ速度125%/分)の速度で延伸用サンプルを4分間延伸したところで延伸を終え、さらにSUS304表面をサンプルに押し当てた状態で15秒間保持し、その後サンプル表面からSUS容器を外した。これにより、延伸用サンプルは、幅方向が自由で一軸方向に6倍延伸されていることになる。表面からSUS容器を取り外された延伸用サンプルは、延伸状態を保持したまま室温のシリコーンオイルに浸漬して、ポリスチレン樹脂が硬化する温度まで速やかに冷却した。延伸を終えた延伸用サンプルは、中央部に近づくほどくびれており、最も幅が縮小されている部分は10mmになっていた。 Silicone oil is applied to the surface of the stretching sample on which the periodic sine wave fringe-like lattice shape has been transferred, and then the both ends 5 mm in the longitudinal direction of the stretching sample are fixed to 100 ° C. with a chuck of a stretching machine. A temperature-controlled SUS304 cylindrical container was pressed against the non-transferred side surface of the periodic sine wavy grid for 3 minutes. Thereafter, the sample for stretching was stretched for 4 minutes at a speed of 2.5 cm / min (initial strain rate of 125% / min) while the cylindrical container of SUS304 was pressed, and then the surface of SUS304 was pressed against the sample. The state was held for 15 seconds, and then the SUS container was removed from the sample surface. As a result, the stretching sample is free in the width direction and stretched 6 times in the uniaxial direction. The sample for stretching, from which the SUS container was removed from the surface, was immersed in silicone oil at room temperature while maintaining the stretched state, and quickly cooled to a temperature at which the polystyrene resin was cured. The stretched sample that had been stretched was constricted toward the center, and the portion with the smallest width was 10 mm.
この延伸を終えた延伸用サンプルの表面を電界放出型走査型電子顕微鏡にて観察したところ、ピッチ(p1)が100nmであり、周期的サイン波の縞状格子形状の高さ(h1)が75nmであり、周期的サイン波の縞状格子形状は維持されていた。幅・高さ縮小比率r(=(h1/h0)/(p1/p0))は、(75/200)/(100/250)=0.940であり、ポリスチレン樹脂表面の周期的サイン波の縞状格子の凹凸形状は実質的に延伸前の形状と相似で縮小されていたことが分かった。すなわち、100nmレベルのピッチの微細凹凸格子を実現することができた。 When the surface of the stretched sample that had been stretched was observed with a field emission scanning electron microscope, the pitch (p 1 ) was 100 nm, and the height (h 1 ) of the striped lattice shape of the periodic sine wave Was 75 nm, and the striped lattice shape of the periodic sine wave was maintained. The width / height reduction ratio r (= (h 1 / h 0 ) / (p 1 / p 0 )) is (75/200) / (100/250) = 0.940, and the period of the polystyrene resin surface It was found that the concavo-convex shape of the sine wave striped lattice was reduced to be similar to the shape before stretching. That is, a fine concavo-convex lattice with a pitch of 100 nm level could be realized.
(実施例3)
実施例1と同様にしてニッケルスタンパを用いて周期的サイン波の縞状格子形状をプレス転写して、ピッチ(p0)が230nmであり、縞状格子の高さ(h0)が250nmである周期的サイン波の縞状格子形状を有する厚さ約400μmのポリスチレン樹脂板を作製した。このポリスチレン樹脂板をカッターナイフで200mm×320mmの長方形に切り出し、延伸用サンプルとした。このとき、200mm×320mmの長手方向と縞状格子の長手方向とが互いに略平行になるように切り出した。
(Example 3)
In the same manner as in Example 1, a striped lattice shape of periodic sine waves was press-transferred using a nickel stamper, the pitch (p 0 ) was 230 nm, and the height of the striped lattice (h 0 ) was 250 nm. A polystyrene resin plate having a thickness of about 400 μm and a striped lattice shape of a certain periodic sine wave was produced. This polystyrene resin plate was cut into a 200 mm × 320 mm rectangle with a cutter knife, and used as a sample for stretching. At this time, it was cut out so that the longitudinal direction of 200 mm × 320 mm and the longitudinal direction of the striped lattice were substantially parallel to each other.
この延伸用サンプルの周期的サイン波縞状格子形状が転写された面に、全面がほぼ均一にぬれる程度にシリコーン系界面活性剤(GE東芝シリコーン製TSF4452)を薄くスプレー塗布し、次いで、延伸用サンプルの長手方向における両端10mmを延伸機のチャックで固定し、その状態で延伸機を100±1℃に温度調節された熱風炉に入れた。その後、10分間放置した後、3mm/秒(初期ひずみ速度1%/秒)の速度で延伸用サンプルを4倍延伸したところで延伸を終え、延伸終了後、延伸機のチャック間距離を保ったまま20秒で、延伸用サンプルを室温下の環境に取り出し冷却した。延伸を終えた延伸用サンプルは、中央部の約1/3でほぼ幅が均一にくびれており、幅は100mmになっていた。
A silicone-based surfactant (GE Toshiba Silicone TSF4452) is thinly spray-applied to the surface of the stretching sample on which the periodic sine-wave fringe lattice shape is transferred, and then the entire surface is wetted uniformly. Both ends 10 mm in the longitudinal direction of the sample were fixed with a chuck of a stretching machine, and in this state, the stretching machine was placed in a hot air oven whose temperature was adjusted to 100 ± 1 ° C. Then, after standing for 10 minutes, when the sample for stretching was stretched 4 times at a speed of 3 mm / sec (
この延伸を終えた延伸用サンプルの表面を電界放出型走査型電子顕微鏡にて観察したところ、ピッチ(p1)が115nmであり、周期的サイン波の縞状格子形状の高さ(h1)が120nmであり、周期的サイン波の縞状格子形状は維持されていた。幅・高さ縮小比率r(=(h1/h0)/(p1/p0))は、(120/250)/(115/230)=0.960であり、ポリスチレン樹脂表面の周期的サイン波の縞状格子の凹凸形状は実質的に延伸前の形状と相似で縮小されていたことが分かった。すなわち、100nmレベルのピッチの微細凹凸格子を実現することができた。 When the surface of the stretched sample that had been stretched was observed with a field emission scanning electron microscope, the pitch (p 1 ) was 115 nm, and the height (h 1 ) of the striped lattice shape of the periodic sine wave Was 120 nm, and the striped lattice shape of the periodic sine wave was maintained. The width / height reduction ratio r (= (h 1 / h 0 ) / (p 1 / p 0 )) is (120/250) / (115/230) = 0.960, and the period of the polystyrene resin surface It was found that the concavo-convex shape of the sine wave striped lattice was reduced to be similar to the shape before stretching. That is, a fine concavo-convex lattice with a pitch of 100 nm level could be realized.
本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態における寸法、材質などは例示的なものであり、適宜変更して実施することが可能である。その他、本発明の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 The present invention is not limited to the embodiment described above, and can be implemented with various modifications. For example, the dimensions, materials, and the like in the above-described embodiment are illustrative, and can be changed as appropriate. In addition, various modifications can be made without departing from the scope of the present invention.
1 スタンパ
1a,2a,2a’,3a 微細凹凸格子
2 被延伸部材
2’ 延伸部材
3 金型
DESCRIPTION OF
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006002100A JP4147247B2 (en) | 2005-01-21 | 2006-01-10 | Method for reducing pitch of fine concavo-convex lattice and fine concavo-convex lattice member obtained thereby |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005014012 | 2005-01-21 | ||
JP2006002100A JP4147247B2 (en) | 2005-01-21 | 2006-01-10 | Method for reducing pitch of fine concavo-convex lattice and fine concavo-convex lattice member obtained thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006224659A JP2006224659A (en) | 2006-08-31 |
JP4147247B2 true JP4147247B2 (en) | 2008-09-10 |
Family
ID=36986403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006002100A Active JP4147247B2 (en) | 2005-01-21 | 2006-01-10 | Method for reducing pitch of fine concavo-convex lattice and fine concavo-convex lattice member obtained thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4147247B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590915A (en) * | 2012-02-10 | 2012-07-18 | 中国科学院微电子研究所 | Method for manufacturing X-ray diffraction grating with large height-width ratio |
CN111146367A (en) * | 2020-01-20 | 2020-05-12 | 福州大学 | Preparation method of light extraction film with micro-nano composite structure |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070091314A (en) | 2004-11-30 | 2007-09-10 | 아구라 테크놀로지스, 인코포레이티드 | Application and manufacturing techniques for large scale wire grid polarizers |
US7351346B2 (en) | 2004-11-30 | 2008-04-01 | Agoura Technologies, Inc. | Non-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths |
JP4957173B2 (en) * | 2005-10-18 | 2012-06-20 | ソニー株式会社 | Embossed sheet manufacturing method |
JP2008100419A (en) * | 2006-10-18 | 2008-05-01 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for producing minute structure |
JP5227741B2 (en) * | 2008-10-28 | 2013-07-03 | 株式会社カネカ | Optical compensation film manufacturing method and optical compensation film |
KR101615092B1 (en) * | 2011-01-18 | 2016-04-25 | 신화인터텍 주식회사 | Method of manufacturing patternen functional film |
CN102879845B (en) * | 2012-10-10 | 2014-12-31 | 中北大学 | Method for manufacturing nanoscale grating based on polydimethylsiloxane (PDMS) |
-
2006
- 2006-01-10 JP JP2006002100A patent/JP4147247B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590915A (en) * | 2012-02-10 | 2012-07-18 | 中国科学院微电子研究所 | Method for manufacturing X-ray diffraction grating with large height-width ratio |
CN111146367A (en) * | 2020-01-20 | 2020-05-12 | 福州大学 | Preparation method of light extraction film with micro-nano composite structure |
Also Published As
Publication number | Publication date |
---|---|
JP2006224659A (en) | 2006-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4147247B2 (en) | Method for reducing pitch of fine concavo-convex lattice and fine concavo-convex lattice member obtained thereby | |
JP4275691B2 (en) | Manufacturing method of wire grid polarizing plate | |
Ahn et al. | High‐speed roll‐to‐roll nanoimprint lithography on flexible plastic substrates | |
US8361339B2 (en) | Antireflection structure formation method and antireflection structure | |
JP5026759B2 (en) | Wire grid polarizing plate and manufacturing method thereof | |
JP2008201029A (en) | Convex and concave pattern forming sheet and manufacturing method thereof, antireflection body, retardation plate and optical element manufacturing process sheet. | |
JP2006201540A (en) | Wire-grid polarizing plate and manufacturing method thereof | |
WO2011049097A1 (en) | Imprint mold, production method thereof, imprint device, and imprint method | |
JP2012096545A (en) | Method of manufacturing uneven pattern-forming sheet, and method of manufacturing optical element | |
US10710350B2 (en) | Nanometer wire grid structure fabrication method | |
Solmaz et al. | Patterning chalcogenide glass by direct resist-free thermal nanoimprint | |
US20100190340A1 (en) | Methods of forming fine patterns using a nanoimprint lithography | |
CN110891895A (en) | Methods for micro- and nano-fabrication by selective template removal | |
JP2013086388A (en) | Mold for fine structure transfer, surface fine structure member, method for producing fine structure transfer, and method for producing surface fine structure member | |
JP5544789B2 (en) | Endless pattern manufacturing method, resin pattern molded product manufacturing method, endless mold, and optical element | |
Khan et al. | Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography | |
Schelb et al. | Hot embossing of photonic crystal polymer structures with a high aspect ratio | |
JP6059967B2 (en) | Manufacturing method of resin molded products | |
JP5884555B2 (en) | Imprint mold and method for forming fine structure | |
JP7051256B2 (en) | A method for manufacturing a filler-filled film, a sheet-fed film, a laminated film, a laminated film, and a filler-filled film. | |
KR20240017023A (en) | How to replicate microstructure patterns | |
KR102096608B1 (en) | A Roll to Roll Imprint Flexible Mold with Enhanced Demolding and Method of Manufacturing Pptical Waveguide Using the Same | |
JP2005161529A (en) | Manufacturing method of embossed sheet | |
Unno et al. | Thermal roll-to-roll nanoimprinting using a replica mold without release agent | |
KR20140106970A (en) | Microtip arrays for nano lithography, manufacturing method of the same and nano lithography method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080623 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4147247 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140627 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |