[go: up one dir, main page]

JP4142916B2 - Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus - Google Patents

Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus Download PDF

Info

Publication number
JP4142916B2
JP4142916B2 JP2002233103A JP2002233103A JP4142916B2 JP 4142916 B2 JP4142916 B2 JP 4142916B2 JP 2002233103 A JP2002233103 A JP 2002233103A JP 2002233103 A JP2002233103 A JP 2002233103A JP 4142916 B2 JP4142916 B2 JP 4142916B2
Authority
JP
Japan
Prior art keywords
photosensitive member
support
electrophotographic photosensitive
layer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002233103A
Other languages
Japanese (ja)
Other versions
JP2004070242A (en
Inventor
史隆 嶺岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002233103A priority Critical patent/JP4142916B2/en
Publication of JP2004070242A publication Critical patent/JP2004070242A/en
Application granted granted Critical
Publication of JP4142916B2 publication Critical patent/JP4142916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真感光体用支持体に関するものである。特に、高い基体寸法精度が要求される、フルカラー印刷に適した電子写真感光体用支持体に関するものである。
【0002】
【従来の技術】
従来、電子写真方式の複写機、レーザービームプリンター、ファクシミリ、印刷機などの画像形成装置における電子写真感光体は、所定の表面粗さに仕上げられた電子写真感光体用支持体(以下、支持体とよぶ)の外表面に感光体層を形成することによって製造されているが、支持体の寸法精度が低いと感光層に凹凸が生じ、その結果画像形成装置で得られる画像に欠陥が生じる。従って、画像欠陥の生じない画像形成装置を得るためには、支持体の寸法精度を高めることが必要とされた。
【0003】
そこで、特開平2−110570号公報に記載の発明では、押し出し、引抜加工し、所定の長さに切断された金属素管にインロー加工を施した後、外表面の切削加工を施し、所定の表面粗さに仕上げる方法が提案されている。該方法では、確かに従来必要とされた100〜150μm以下の振れ精度を十分に達成することができた。
また、特開平11−160901号公報に記載の発明では、インロー加工前の金属素管の外表面に粗切削加工を施すことにより、寸法精度の高い支持体を得るといった方法が記載されている。しかしながら、該発明では捨て引きするための工程が増えるため、コストアップとなっていた。
【発明が解決しようとする課題】
【0004】
しかし、最近のフルカラー印刷などの用途においては、多色の画像のずれが問題とされ、このずれの極小化を追求するために寸法精度の高い支持体を常に供給することが要求されるようになった。
【0005】
【課題を解決するための手段】
本発明者は、このような要求を満足することのできる支持体を提供すべく種々検討した結果、電子写真感光体用基体を製造する際の切削加工において、粗切削加工後の金属素管の振れをコントロールすることにより、仕上げ切削加工後の金属素管すなわち電子写真感光体用支持体として、寸法精度が高く、高精度な支持体を得ることができることがわかり、本発明に到達した。すなわち、本発明の要旨とするところは、金属素管に少なくとも粗切削加工、次いで仕上げ切削加工を施し製造される電子写真感光体用支持体において、粗切削加工後の金属素管の振れが0.015mm以下であり、かつ仕上げ切削加工後の金属素管の振れが0.007mm以下である電子写真感光体用支持体に存する。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の金属素管としては、電子写真感光体用導電性支持体に使用できる金属素管であれば限定されないが、アルミニウム製材料を使用したものが好ましい。本発明におけるアルミニウム製材料とは、アルミニウム或いはアルミニウム合金を示す。
【0007】
該金属素管は、通常、ポートホール法、マンドレル法等の押出加工により円筒状に加工された後、所定の肉厚、長さ、外径寸法の円筒とするため、引抜加工、切断加工等による処理加工が行なわれ製造されたものである。通常、押出加工だけでは、薄肉で高精度の素管が得られないため、引抜加工を行う。引抜加工は、常温で行われるので、押出加工よりも高精度に加工することができる。引抜加工の加工率(加工前の長さに対する加工後の長さの比率)は、通常、1.1〜1.4である。引抜加工は、内径側にプラグ、外径側にダイと呼ばれる金型を設置し、内径、外径を同時に引き伸ばす形で行われるが、この内側と外側の加工率のバランスが悪いと、残留応力の原因となる。また、切断加工は、素管を所定の長さにそろえるために行われる。
【0008】
このようにして得られた円筒状の金属素管に切削加工を施す。切削加工は、一般的に、インロー加工、外面切削加工(粗切削加工次いで仕上げ切削加工)の順に行われる。特開平11−160901号公報に記載の発明のように、インロー加工前に粗切削加工(外面切削加工)を施すこともできる。本発明においては、仕上げ切削加工の前に施される粗切削加工後の金属素管の振れを0.015mm以下とすることにより、常に、仕上げ切削加工後に高精度な金属素管を得ることができる。
【0009】
本発明では、粗切削加工後の金属素管の振れが0.015mm以下であることが重要であるが、かかる素管を得るためには、上記で説明したように押出加工、更には引抜加工された素管を、例えば、精密旋盤装置に載置し、ノーズRが1〜10mmのRバイトを用い、回転数1000〜5000rpmの範囲で0.2〜0.5mm/revの範囲の送りピッチの条件、切り込み量が100〜500μmの範囲から適切な条件を選択して粗切削加工を行うことにより得ることが出来る。
【0010】
ここで、本発明における振れとは外周基準での振れのことであり、素管の両端約5mm程度をコロで受け、コロを基準に管を1回転させたときの任意の断面での軸に対して垂直な方向の変位の最大値である。また、仕上げ切削加工後の金属素管とは、完成された電子写真感光体用支持体を意味する。本発明においては、粗切削加工後の金属素管の振れを0.015mm以下とすることにより、常に、仕上げ切削加工後の振れが0.007mm以下を達成することが可能である。
【0011】
切削加工について詳細を述べると、インロー加工とは、金属素管内側を切削してフランジを装着すべき段部(インロー部)を作る加工である。従って、装着するフランジの外径及び高さに合わせて、削減すべき肉厚及び奥行きが定められ、インロー部が形成される。インロー加工は、同軸度、端面直角度等を高精度にするため、両端同時加工が望ましい。このための機械として、両端加工機が用いられ、金属素管の外側又は内側をコレットチャックで把持し、金属素管または刃物を回転して加工する方法が採られている。
【0012】
金属素管の外面切削加工は、通常、粗切削及び仕上げ切削の2段階で行われる。これら外面切削は流体軸受けまたは固体軸受けを用い、振動を極力防止した精密旋盤が用いられる。これは切削によって形成される金属素管の表面の状態が電子写真感光体の特性に直接影響するためである。粗切削加工は、天然ダイヤモンドの単結晶のノーズRが10以下バイトを用い、切り込み100〜800μmで行われる。本発明では粗切削加工後の精度を確保するために、粗切削加工時の切削抵抗を小さくなるようにバイトの当たりを調節する。粗切削加工後、仕上げ切削加工が行われる。通常、仕上げ切削加工により支持体の表面形状或いは寸法精度が左右されるため、仕上げ切削加工は精密に行わなければならない。
【0013】
しかしながら、本発明は粗切削加工後の振れをコントロールすることにより、高い寸法精度の支持体を得られるため、仕上げ切削加工時には基体表面の粗さ形状を主に考え加工すればよい。仕上げ切削加工は、天然ダイヤモンドの単結晶または焼結体のバイトを用い、切り込み20〜30μmで行われる。
【0014】
前記の様にして作製された電子写真感光体用支持体は、支持体上にそのまま感光層を形成してもよいが、感光層塗布後の外観向上や、濃度ムラを防止する上でブロッキング層を形成した上に感光層を形成することが好ましい。ここで、ブロッキング層とは、陽極酸化被膜或いは下引き層等を示す。
【0015】
陽極酸化被膜は、支持体表面に陽極酸化処理を施すことにより形成される。陽極酸化処理を施す前に、酸、アルカリ、有機溶剤、界面活性剤、エマルジョン、電解などの各種脱脂洗浄方法により脱脂処理されることが好ましい。陽極酸化被膜は通常の方法、例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸などの酸性浴中で、陽極酸化処理することにより形成されるが、硫酸中での陽極酸化処理が最も良好な結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜300g/l、溶存アルミニウム濃度は2〜15g/l、液温は0〜30℃、電解電圧は10〜20V、電流密度は0.5〜2A/dm2の範囲内に設定されるのが好ましいが、これに限られるものではない。このようにして形成された陽極酸化被膜の膜厚としては、通常は20μm以下であり、好ましくは10μm以下、更に好ましくは7μm以下である。
【0016】
陽極酸化処理された支持体は封孔処理や染色処理を行うことができる。封孔処理は多孔質層中に水酸化アルミニウム等を成長させることにより封孔する工程である。封孔処理方法は通常の方法でよいが、例えばニッケルイオンを含む液(例えば酢酸ニッケルを含む液、フッ化ニッケルを含む液)に浸漬させ施されることが好ましい。また、染色処理を行う場合は、有機、無機化合物塩溶液中に支持体を浸漬しそれらの塩を吸着させる。具体的にはアゾ系などの水溶性有機染料1〜10g/l、液温20〜60℃、pH3〜9、浸漬時間1〜20分のような条件で行う。
【0017】
下引き層としては、ポリビニルアルコール、カゼイン、ポリビニルピロリドン、ポリアクリル酸、セルロース類、ゼラチン、デンプン、ポリウレタン、ポリイミド、ポリアミド等の有機層を用いることができる。なかでも、基体との接着性に優れ、電荷発生層塗布液に用いられる溶媒に対する溶解性の小さなポリアミド樹脂が好ましい。下引き層中には、アルミナ、チタニア等の金属酸化物微粒子や有機または無機の色素を含有させることが効果的である。
【0018】
下引き層の厚さは厚すぎると感光体の性能に悪影響を及ぼすので、20μm未満の厚みが望ましいが、より好ましくは10μm程度が塗布性も良く、塗布不良なども発生しにくい。また、下引き層は粘度が高く、透明性が少ない方が下地の欠陥を拾いにくい。本発明においては、陽極酸化処理、封孔処理、染色処理等が施された上に下引き層を形成することもできる。
【0019】
前記支持体上には感光層が形成される。感光層としては無機系感光層或いは有機系感光層が使用されるが、本発明の支持体には有機系感光層を形成させることが好ましい。感光層は電荷発生物質を含有する電荷発生層と電荷輸送層をこの順に積層したもの、逆に積層したもの、または電荷輸送媒体中に電荷発生物質粒子を分散したいわゆる単層型などいずれも用いることができるが、電荷発生層および電荷輸送層を有する積層型感光層が好ましい。感光層が単層構造の場合には、感光材料が結着材料に分散してなる公知のものが使用される。例えば、色素増感されたZnO感光層、CdS感光層、電荷発生物質を電荷輸送物質に分散させた感光層が挙げられる。
【0020】
電荷発生層には、電荷発生物質とバインダー樹脂とを含む。電荷発生物質としては、電子写真感光体に用いられる物質であれば特に限定されるものではなく、具体的にはセレン及びその合金、ヒ素−セレン、硫化カドミウム、酸化亜鉛、その他の無機光導電体、フタロシアニン、アゾ、キナクリドン、多環キノン、ペリレン、インジゴ、ベンズイミダゾールなどの有機顔料を使用することができる。特に銅、塩化インジウム、塩化カリウム、スズ、オキシチタニウム、亜鉛、バナジウムなどの金属、またはその酸化物や塩化物の配位したフタロシアニン類、無金属フタロシアニン類などのフタロシアニン顔料、または、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ類などのアゾ顔料が好ましい。これらのうち特にフタロシアニン顔料がより好ましく、特定結晶系を有するオキシチタニウムフタロシアニンが特に好ましい。これは、オキシチタニウムフタロシアニンが通常の顔料より熱による結晶変換が起きやすいためである。
【0021】
このようなオキシチタニウムフタロシアニンの例としては、CuKα線によるX線回折においてブラッグ角(2θ±0.2゜)27.3゜に最大回折ピークを示すものがあげられるが、これに限定されるものではない。このオキシチタニウムフタロシアニンの結晶型は、一般にはY型あるいはD型と呼ばれているものであり、例えば特開昭62−67094号公報の第2図(同公報ではII型と称されている)、特開平2−8256号公報の第1図、特開昭64−82045号公報の第1図、電子写真学会誌第92巻(1990年発行)第3号第250〜258頁(同刊行物ではY型と称されている)に示されたものである。この結晶型オキシチタニウムフタロシアニンは、27.3°に最大回折ピークを示すことが特徴であるが、これ以外に通常7.4°、9.7°、24.2°にピークを示す。
【0022】
回折ピークの強度は、結晶性、試料の配向性および測定法により変化する場合もあるが、粉末結晶のX線回折を行う場合に通常用いられるブラッグ−ブレンターノの集中法による測定では、上記の結晶型オキシチタニウムフタロシアニンは27.3°に最大回折ピークを有する。また、薄膜光学系(一般に薄膜法或いは平行法とも呼ばれる)により測定された場合には、試料の状態によっては27.3°が最大回折ピークとならない場合があるが、これは結晶粉末が特定の方向に配向しているためと考えられる。
【0023】
分散媒としては、電子写真感光体の製造工程で用いられるものであれば特に限定されるものではなく種々の溶媒を用いてよい。例えば、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,2−ジメトキシエタン等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;メタノール、エタノール、プロパノール等のアルコール類;トルエン、キシレン等の芳香族炭化水素を単独あるいは2種以上混合して使用することができる。用いる分散媒の量は分散が充分行え、且つ分散液中に有効量の電荷発生物質が含まれる限りいかなる量でもよく、通常は分散時の分散液中の電荷発生物質の濃度にして3〜20wt%、より好ましくは4〜20wt%程度が好ましい。
【0024】
バインダー樹脂としては、電子写真感光体に使用されるものであれば特に限定されるものではないが、具体的には、ポリビニルブチラール、ポリビニルアセタール、ポリエステル、ポリカーボネート、ポリスチレン、ポリアリレート、ポリスルホン、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル等のビニル重合体、及びその共重合体、フェノキシ、エポキシ、シリコーン樹脂等またこれらの部分的架橋硬化物等を単独あるいは2種以上用いることができる。バインダー樹脂と電荷発生物質との混合方法としては例えば、電荷発生物質を分散処理工程にバインダー樹脂を粉末のまま或いはそのポリマー溶液を加え同時に分散する方法、分散処理工程で得られた分散液をバインダー樹脂のポリマー溶液中に混合する方法、或いは逆に分散液中にポリマー溶液を混合する方法等のいずれかの方法を用いてもかまわない。
【0025】
次にここで得られた分散液は、塗布をするのに適した液物性にするために、種々の溶剤を用いて希釈してもかまわない。このような溶剤としては、例えば前記分散媒として例示した溶媒を使用することができる。電荷発生物質とバインダー樹脂との割合は特に制限はないが一般には樹脂100重量部に対して電荷発生物質が5〜500重量部の範囲より使用される。また必要に応じて電荷輸送物質を含むことができる。電荷輸送物質としては例えば、ポリビニルカルバゾール、ポリビニルピレン、ポリアセナフチレン等の有機高分子化合物、フルオレノン誘導体、テトラシアノキシジメタン、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体などの電子吸引性物質、カルバゾール、インドール、イミダゾール、オキサゾール、ピラゾール、オキサジアゾール、ピラゾリン、チアジアゾールなどの複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、或いはこれらの化合物からなる基を主鎖もしくは側鎖に有する重合体などの電子供与性物質が挙げられる。電荷輸送物質とバインダー樹脂との割合はバインダー樹脂100重量部に対して電荷輸送物質が5〜500重量部の範囲により使用される。
【0026】
この様にして調製された分散液を用いて、少なくとも下引き層の形成された支持体上に電荷発生層を形成させ、その上に電荷輸送層を積層させて感光層を形成する、或いは電荷輸送層を形成しその上に前記分散液を用いて電荷発生層を形成し感光層を形成する、或いは前記分散液を用いて電荷発生層を形成させ感光層とする、のいずれかの構造で感光層を形成することが出来る。電荷発生層の膜厚は電荷輸送層と積層させて感光層を形成する場合0.1〜10μmの範囲が好適であり電荷輸送層の膜厚は10〜40μmが好適である。単層構造で感光層を形成する場合の感光層の膜厚は5〜40μmの範囲が好適である。
【0027】
電荷輸送層は、上記電荷発生層の上に、バインダー樹脂として優れた性能を有する公知のポリマーと混合して電荷輸送物質と共に適当な溶剤中に溶解し、必要に応じて電子吸引性化合物、あるいは、可塑剤、顔料その他の添加剤を添加して得られる塗布液を塗布することにより、製造することができる。
【0028】
電荷輸送層中の電荷輸送物質としては、上記の電荷輸送物質を使用することができる。電荷輸送物質とともに使用されるバインダー樹脂としては種々の公知の樹脂が使用できる。ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、アクリル樹脂、メタクリレート樹脂、スチレン樹脂、シリコーン樹脂などの熱可塑性樹脂や硬化性の樹脂が使用できる。とくに摩耗、傷の発生の少ないポリカーボネート樹脂、ポリアリレート樹脂、ポリエステル樹脂が好ましい。ポリカーボネート樹脂は、そのビスフェノール成分としてビスフェノールA、ビスフェノールC、ビスフェノールP、ビスフェノールZ、あるいは、公知の種々の成分が使用出来る。また、これらの成分からなる共重合物であってもよい。電荷輸送物質とバインダー樹脂の配合比率は、バインダー樹脂100重量部に対して例えば10〜200重量部、好ましくは30〜150重量部の範囲で配合される。積層型感光体の場合、電荷輸送層として上記の成分を主成分として形成される。
【0029】
電荷輸送層用塗布液に用いる溶剤としては、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、アニソール等のエーテル類;メチルエチルケトン、2,4−ペンタンジオン、シクロヘキサノン等のケトン類;トルエン、キシレン等の芳香族炭化水素;酢酸エチル、蟻酸メチル、マロン酸ジメチル等のエステル類;3−メトキシブチルアセテート、プロピレングリコールメチルエーテルアセテート等のエーテルエステル類;ジクロロメタン、ジクロロエタン等の塩素化炭化水素などが挙げられる。もちろんこれらの中から1種または2種以上選択して用いてもよい。好ましくは、テトラヒドロフラン、1,4−ジオキサン、2,4−ペンタンジオン、アニソール、トルエン、マロン酸ジメチル、3−メトキシブチルアセテート、プロピレングリコールメチルエーテルアセテートの中から選択するのが好ましい。
【0030】
更に、本発明の電子写真感光体の感光層は成膜性、可とう性、塗布性、機械的強度を向上させるために周知の可塑剤、酸化防止剤、紫外線吸収剤、レベリング剤を含有していてもよい。更に、感光層の上に、機械的特性の向上及びオゾン,NOx等の耐ガス特性向上のために、オーバーコート層を設けても良い。更に必要に応じて、接着層、中間層、透明絶縁層等を有していてもよいことは言うまでもない。
【0031】
本発明において、前記の各層を形成するための塗布操作は、従来公知の塗布方法に従う。例えば、浸漬塗布法、スプレー塗布法、スピンナーコーティング法、ブレードコーティング法等を採用して行うことができる。
【0032】
本発明の画像形成装置としては、モノクロプリンター、複写機、カラープリンター、カラー複写機、ファクシミリなどがあげられる。特に、本発明の支持体、及び電子写真感光体は、濃度ムラの生じない高画質の画像を提供できることから、高解像度の画像形成装置に適している。特に、600dpi以上の解像度の画像を得る画像形成装置にも利用することができる。
【0033】
また、本発明の支持体を用いた感光体を使用する画像形成装置においては、通常、従来公知の波長域を有するレーザー光等の光源を利用することで本発明の効果を得ることが出来るが、380nm〜600nmに波長域を有する光源を利用する該画像形成装置においても、本発明の奏する効果は達成されると考えられる。
【0034】
該画像形成装置には、感光体を一様に帯電させる帯電ユニット、次いで、感光体を像露光することにより、露光された部分の電荷を消散させて静電潜像を形成する露光ユニット、荷電させたトナーを付着させることによってその静電潜像を可視化させて現像する現像ユニット、得られた可視像を転写紙等の転写材に転写せしめる転写ユニット、加熱、加圧等によってその可視像を転写材に定着させる定着ユニット、転写材へのトナー転写後に、感光体表面に残留するトナーを除去するクリーニングユニットが設けられている。また、場合によりクリーニング後に感光体表面に残存する電荷を取り除く除電ユニットが設けられる。さらには、記録媒体(用紙)を搬送する搬送ユニットが設けられる。
【0035】
本発明の画像形成装置において、帯電器としては、コロトロン、スコロトロンに代表されるコロナ帯電器等の非接触帯電器;帯電ローラー、帯電ブラシ等の接触帯電器等が用いられる。露光は、ハロゲンランプ、蛍光灯、レーザー(半導体、He−Ne)、LED等の光源を用いて、通常の感光体外部からの露光方式、感光体内部からの露光方式等により行われる。又、現像は、カスケード現像、非磁性一成分トナーによる接触或いは非接触現像、磁性一成分トナーによる接触或いは非接触現像、二成分磁気ブラシ現像等の乾式現像方式や液体トナーによる湿式現像方式等により行われる。転写は、コロナ転写、ローラー転写、ベルト転写等の静電転写法、圧力転写法、粘着転写法等により、定着は、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着等により行われる。又、クリーニングは、ブラシクリーニング、磁気ブラシクリーニング、静電ブラシクリーニング、磁気ローラクリーニング、ブレードクリーニング等により行われる。
【0036】
なお、画像形成装置としては、フルカラー印刷を行う場合には、電子写真感光体上に付着したトナー等の現像剤を、一旦一つの中間転写ベルトに転写し、中間転写ベルト状で各色のトナーを合わせ、カラー可視像とした後、転写手段を用いて記録媒体(用紙)にカラー画像を形成するものであってもよい。
【0037】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0038】
(電荷発生層用塗布液の作製)
[分散液Q1]
X線回折スペクトルにおいて、ブラッグ角(2θ±0.2゜) 9.3゜、10.6゜、13.2゜、15.1゜、15.7゜、16.1゜、20.8゜、23.3゜、26.3、27.1゜に主たる回折ピークを持つオキシチタニウムフタロシアニン10重量部を1,2−ジメトキシエタン150重量部に加え、サンドグラインドミルによって粉砕、分散処理を行ない分散液Q1を作製した。
【0039】
[分散液Q2]
X線回折スペクトルにおいて、ブラッグ角(2θ±0.2゜)9.7゜、24.2゜、27.3゜に主たる回折ピークを持つオキシチタニウムフタロシアニンを用いた他は、分散液Q1と同様にして分散液Q2を作製した。
【0040】
予め作製した分散液Q1、48重量部と、分散液Q2、112重量部を混合し、得られた160重量部の顔料分散液をポリビニルブチラール(電気化学工業(株)製、商品名#6000−C)の5%1,2−ジメトキシエタン溶液100重量部に加え、最終的に固形分濃度4.0%の分散液である電荷発生層用塗布液を作製した。
【0041】
(電荷輸送層用塗布液の作製)
下記のN,N−ジ−p−トリルアニリンジフェニルヒドラゾン54重量部と
【化1】

Figure 0004142916
【0042】
下記のN−メチルカルバゾールジフェニルヒドラゾン6重量部、
【化2】
Figure 0004142916
【0043】
下記のシアノ化合物1重量部、
【化3】
Figure 0004142916
【0044】
3,5-ジ- t ブチル-4-ヒドロキシトルエン(以下、BHTと略する)16部及び、特開平3−221962号公報の実施例中に記載された製造法により製造された、2つの繰り返し構造単位を有する下記ポリカーボネート樹脂(モノマーモル比1:1)100部
【0045】
【化4】
Figure 0004142916
【0046】
をトルエン、テトラヒドロフランの混合溶媒に溶解させ、電荷輸送層塗布液とした。
【0047】
(実施例1)JIS6063合金からなる押出管に冷間引抜加工を施し、さらに切断して、外径φ30.5mm、内径φ28mm、長さ342mmを作製した。この引抜管を両端加工機にてインロー加工を施した。次にこの素管を精密旋盤にセットし、回転数2000rpm、送り0.3mmの条件で、切り込み量0.225mmの粗切削加工を施した。このときの粗切削後の振れは0.015mmであった。最後に回転数3000rpm、送り0.3mmの条件で切り込み量0.025mmの仕上げ切削加工を実施した。
このようにして作製した基体の振れを測定したところ0.007mmであった。尚、前記振れは(株)キーエンス製レーザーLS5040により測定した。
【0048】
(参考例)粗切削後の振れが0.019mmであり、仕上げ加工後の振れが0.010mmであること以外は実施例1と同様に電子写真感光体用支持体を得た。
【0049】
(比較例1)粗切削後の振れが0.025mmであり、仕上げ加工後の振れが0.018mmであること以外は実施例1と同様に電子写真感光体用支持体を得た。
【0050】
上記、実施例及び比較例において製造された電子写真感光体用支持体に、陽極酸化処理にて陽極酸化被膜(アルマイト)6μmを形成した上に、上記の電荷発生層及び電荷輸送層を順次積層し、電子写真感光体を製造した。
【0051】
該電子写真感光体を多重現像方式でフルカラー印刷を行った結果、実施例で作製した支持体を用いた感光体を搭載した場合は、画像ズレのない良好な画像が得られたが、比較例で作製した支持体を用いた感光体を搭載した場合は、各色の印字位置にわずかなずれを生じていた。
【0052】
【発明の効果】
本発明の支持体は、粗切削加工後の振れをコントロールすることによって、寸法精度の良い、振れの小さい高精度な支持体である。また、本発明の支持体を用いて感光体を作製し、画像を形成すると、非常に良好な画像を得ることが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a support for an electrophotographic photosensitive member. In particular, the present invention relates to a support for an electrophotographic photosensitive member suitable for full color printing, which requires high substrate dimensional accuracy.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an electrophotographic photosensitive member in an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, a facsimile, or a printing machine is a support for an electrophotographic photosensitive member (hereinafter referred to as a support) that has been finished to a predetermined surface roughness. However, when the dimensional accuracy of the support is low, the photosensitive layer is uneven, and as a result, the image obtained by the image forming apparatus is defective. Therefore, in order to obtain an image forming apparatus free from image defects, it is necessary to increase the dimensional accuracy of the support.
[0003]
Therefore, in the invention described in Japanese Patent Application Laid-Open No. 2-110570, after extruding and drawing, applying an inlay to a metal base tube cut to a predetermined length, an outer surface is cut, and a predetermined A method of finishing to a surface roughness has been proposed. With this method, it was possible to sufficiently achieve a runout accuracy of 100 to 150 μm or less that was required in the past.
In addition, in the invention described in Japanese Patent Application Laid-Open No. 11-160901, a method is described in which a support having high dimensional accuracy is obtained by performing rough cutting on the outer surface of a metal base tube before inlay processing. However, in the invention, the number of steps for discarding is increased, resulting in an increase in cost.
[Problems to be solved by the invention]
[0004]
However, in recent applications such as full-color printing, misalignment of multi-colored images is a problem, and in order to pursue minimization of this misalignment, it is required to always supply a support with high dimensional accuracy. became.
[0005]
[Means for Solving the Problems]
As a result of various studies to provide a support capable of satisfying such requirements, the inventor of the present invention has found that the metal base tube after rough cutting has been processed in cutting when manufacturing a substrate for an electrophotographic photosensitive member. By controlling the runout, it was found that a high-precision support with high dimensional accuracy can be obtained as a metal blank after finishing cutting, that is, an electrophotographic photoreceptor support, and the present invention has been achieved. That is, the gist of the present invention is that, in a support for an electrophotographic photoreceptor produced by subjecting a metal tube to at least rough cutting and then finish cutting, the vibration of the metal tube after rough cutting is zero. .015mm Ri der less and deflection of metal tube after the finish machining resides in an electrophotographic photoreceptor support Ru der below 0.007 mm.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The metal element tube of the present invention is not limited as long as it is a metal element tube that can be used for a conductive support for an electrophotographic photosensitive member, but an aluminum material is preferable. The aluminum material in the present invention refers to aluminum or an aluminum alloy.
[0007]
The metal base tube is usually processed into a cylindrical shape by extrusion processing such as a porthole method, a mandrel method, etc., and then formed into a cylinder having a predetermined thickness, length, outer diameter, and so on. It is manufactured by performing processing according to the above. Usually, a thin-walled and high-precision raw tube cannot be obtained only by extrusion processing, and therefore drawing is performed. Since the drawing process is performed at room temperature, it can be processed with higher accuracy than the extrusion process. The drawing rate of drawing (ratio of the length after processing to the length before processing) is usually 1.1 to 1.4. Drawing is performed by installing a die called a die on the inner diameter side and a die called a die on the outer diameter side, and extending the inner diameter and the outer diameter at the same time. Cause. In addition, the cutting process is performed in order to align the raw tube to a predetermined length.
[0008]
The cylindrical metal tube thus obtained is cut. The cutting is generally performed in the order of inlay processing, outer surface cutting processing (rough cutting processing and then finishing cutting processing). As in the invention described in Japanese Patent Application Laid-Open No. 11-160901, rough cutting (outer surface cutting) can be performed before inlay processing. In the present invention, it is always possible to obtain a high-precision metal base tube after finish cutting by setting the runout of the metal base tube after rough cutting performed before finish cutting to 0.015 mm or less. it can.
[0009]
In the present invention, deflection of the metal tube after the rough machining it is important that at most 0.015 mm, in order to obtain such a blank tube is, extruded as described above, further drawing processing For example, the raw pipe is placed on a precision lathe device, and a feed pitch in the range of 0.2 to 0.5 mm / rev at a rotation speed of 1000 to 5000 rpm using an R tool having a nose radius of 1 to 10 mm. These conditions can be obtained by performing rough cutting by selecting appropriate conditions from the range of 100 to 500 μm.
[0010]
Here, the runout in the present invention is a runout on the basis of the outer circumference, and about 5 mm at both ends of the raw tube is received by the rollers, and the axis in an arbitrary cross section when the tube is rotated once based on the rolls. It is the maximum value of displacement in a direction perpendicular to the direction. Moreover, the metal blank after the finish cutting means a completed support for an electrophotographic photosensitive member. In the present invention, it is always possible to achieve a runout after finishing cutting of 0.007 mm or less by setting the runout of the metal tube after rough cutting to 0.015 mm or less.
[0011]
The details of the cutting process will be described. The inlay process is a process in which the inner part of the metal base tube is cut to form a step part (inlay part) to which the flange is to be attached. Accordingly, the thickness and depth to be reduced are determined in accordance with the outer diameter and height of the flange to be mounted, and the inlay portion is formed. The inlay processing is preferably simultaneous processing at both ends in order to make the coaxiality, the perpendicularity of the end face, etc. highly accurate. As a machine for this purpose, a both-end processing machine is used, and a method is adopted in which the outer side or the inner side of the metal base tube is held by a collet chuck and the metal base tube or the cutter is rotated for processing.
[0012]
The outer surface cutting of the metal pipe is usually performed in two stages: rough cutting and finish cutting. These external cuttings use fluid bearings or solid bearings, and a precision lathe that prevents vibration as much as possible is used. This is because the surface state of the metal tube formed by cutting directly affects the characteristics of the electrophotographic photosensitive member. The rough cutting is performed with a nose R of a single crystal of natural diamond having a cutting depth of 100 to 800 μm using a 10 or less bite. In the present invention, in order to ensure the accuracy after the rough cutting process, the hitting of the cutting tool is adjusted so as to reduce the cutting resistance during the rough cutting process. After rough cutting, finish cutting is performed. Usually, since the surface shape or dimensional accuracy of the support is influenced by the finish cutting, the finish cutting must be performed precisely.
[0013]
However, in the present invention, since a support having high dimensional accuracy can be obtained by controlling the runout after the rough cutting process, the rough surface shape of the substrate may be processed mainly in the finish cutting process. The finish cutting is performed using a natural diamond single crystal or sintered bit with a notch of 20 to 30 μm.
[0014]
The electrophotographic photoreceptor support prepared as described above may form a photosensitive layer as it is on the support, but the blocking layer is used to improve the appearance after coating the photosensitive layer and to prevent density unevenness. It is preferable to form a photosensitive layer on the substrate. Here, the blocking layer refers to an anodized film or an undercoat layer.
[0015]
The anodized film is formed by anodizing the surface of the support. Prior to the anodizing treatment, it is preferable to perform a degreasing treatment by various degreasing cleaning methods such as acid, alkali, organic solvent, surfactant, emulsion, electrolysis and the like. An anodized film is formed by an anodizing treatment in an ordinary method, for example, an acidic bath such as chromic acid, sulfuric acid, oxalic acid, boric acid, sulfamic acid, etc. Give good results. In the case of anodizing treatment in sulfuric acid, the sulfuric acid concentration is 100 to 300 g / l, the dissolved aluminum concentration is 2 to 15 g / l, the liquid temperature is 0 to 30 ° C., the electrolysis voltage is 10 to 20 V, and the current density is 0.5. It is preferably set within the range of ˜2 A / dm 2 , but is not limited thereto. The thickness of the anodic oxide film thus formed is usually 20 μm or less, preferably 10 μm or less, more preferably 7 μm or less.
[0016]
The anodized support can be sealed or dyed. The sealing treatment is a step of sealing by growing aluminum hydroxide or the like in the porous layer. The sealing treatment method may be a normal method, but is preferably performed by dipping in a liquid containing nickel ions (for example, a liquid containing nickel acetate or a liquid containing nickel fluoride). Moreover, when performing a dyeing | staining process, a support body is immersed in an organic and inorganic compound salt solution, and those salts are adsorbed. Specifically, it is carried out under conditions such as azo-based water-soluble organic dyes 1 to 10 g / l, liquid temperature 20 to 60 ° C., pH 3 to 9, and immersion time 1 to 20 minutes.
[0017]
As the undercoat layer, organic layers such as polyvinyl alcohol, casein, polyvinyl pyrrolidone, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, and polyamide can be used. Of these, a polyamide resin having excellent adhesion to the substrate and low solubility in the solvent used in the charge generation layer coating solution is preferable. In the undercoat layer, it is effective to contain fine metal oxide particles such as alumina and titania and organic or inorganic pigments.
[0018]
If the thickness of the undercoat layer is too thick, the performance of the photoreceptor is adversely affected. Therefore, a thickness of less than 20 μm is desirable, but a thickness of about 10 μm is more preferable, and application failure is less likely to occur. In addition, the undercoat layer has a higher viscosity and a lower transparency makes it difficult to pick up defects in the base. In the present invention, an undercoat layer can be formed on the anodic oxidation treatment, sealing treatment, dyeing treatment and the like.
[0019]
A photosensitive layer is formed on the support. As the photosensitive layer, an inorganic photosensitive layer or an organic photosensitive layer is used, but it is preferable to form an organic photosensitive layer on the support of the present invention. As the photosensitive layer, a layer in which a charge generation layer containing a charge generation material and a charge transport layer are laminated in this order, a layer in which layers are reversed, or a so-called single layer type in which charge generation material particles are dispersed in a charge transport medium are used. However, a laminated photosensitive layer having a charge generation layer and a charge transport layer is preferred. When the photosensitive layer has a single layer structure, a known material in which a photosensitive material is dispersed in a binder material is used. Examples thereof include a dye-sensitized ZnO photosensitive layer, a CdS photosensitive layer, and a photosensitive layer in which a charge generation material is dispersed in a charge transport material.
[0020]
The charge generation layer includes a charge generation material and a binder resin. The charge generation material is not particularly limited as long as it is a material used for an electrophotographic photosensitive member. Specifically, selenium and its alloys, arsenic-selenium, cadmium sulfide, zinc oxide, and other inorganic photoconductors. Organic pigments such as phthalocyanine, azo, quinacridone, polycyclic quinone, perylene, indigo, and benzimidazole can be used. In particular, metals such as copper, indium chloride, potassium chloride, tin, oxytitanium, zinc, vanadium, or phthalocyanine pigments such as metal-free phthalocyanines or metal-free phthalocyanines, or monoazo, bisazo, Azo pigments such as trisazo and polyazos are preferred. Of these, phthalocyanine pigments are particularly preferred, and oxytitanium phthalocyanine having a specific crystal system is particularly preferred. This is because oxytitanium phthalocyanine is more susceptible to crystal conversion by heat than ordinary pigments.
[0021]
Examples of such oxytitanium phthalocyanine include those showing a maximum diffraction peak at a Bragg angle (2θ ± 0.2 °) of 27.3 ° in X-ray diffraction by CuKα rays, but are not limited thereto. is not. The crystal form of oxytitanium phthalocyanine is generally called Y type or D type. For example, FIG. 2 of Japanese Patent Application Laid-Open No. 62-67094 (referred to as type II in the same publication). Fig. 1 of JP-A-2-8256, Fig. 1 of JP-A-64-82045, Journal of Electrophotographic Society Vol. 92 (issued in 1990), No. 3, pages 250-258 (the same publication) Is referred to as Y-type). This crystalline oxytitanium phthalocyanine is characterized by having a maximum diffraction peak at 27.3 °, but normally has peaks at 7.4 °, 9.7 °, and 24.2 °.
[0022]
The intensity of the diffraction peak may vary depending on the crystallinity, the orientation of the sample, and the measurement method. However, in the measurement by the Bragg-Brentano concentration method usually used when performing X-ray diffraction of a powder crystal, Type oxytitanium phthalocyanine has a maximum diffraction peak at 27.3 °. In addition, when measured by a thin film optical system (generally called thin film method or parallel method), 27.3 ° may not be the maximum diffraction peak depending on the state of the sample. This is probably because it is oriented in the direction.
[0023]
The dispersion medium is not particularly limited as long as it is used in the production process of the electrophotographic photosensitive member, and various solvents may be used. For example, ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and 1,2-dimethoxyethane; ketones such as acetone, methyl ethyl ketone and cyclohexanone; esters such as methyl acetate and ethyl acetate; alcohols such as methanol, ethanol and propanol Aromatic hydrocarbons such as toluene and xylene can be used alone or in admixture of two or more. The amount of the dispersion medium to be used can be any amount as long as the dispersion can be sufficiently dispersed and an effective amount of the charge generation material is contained in the dispersion, and is usually 3 to 20 wt as the concentration of the charge generation material in the dispersion during dispersion. %, More preferably about 4 to 20 wt%.
[0024]
The binder resin is not particularly limited as long as it is used for an electrophotographic photoreceptor, and specifically, polyvinyl butyral, polyvinyl acetal, polyester, polycarbonate, polystyrene, polyarylate, polysulfone, polyimide, Vinyl polymers such as polymethyl methacrylate and polyvinyl chloride, and copolymers thereof, phenoxy, epoxy, silicone resins, etc., and partially crosslinked cured products thereof can be used singly or in combination. As a method for mixing the binder resin and the charge generation material, for example, a method of dispersing the charge generation material in a dispersion treatment step while the binder resin is powdered or adding a polymer solution thereof, and dispersing the dispersion liquid obtained in the dispersion treatment step as a binder. Any method such as a method of mixing in a polymer solution of a resin or a method of mixing a polymer solution in a dispersion may be used.
[0025]
Next, the dispersion obtained here may be diluted with various solvents in order to obtain liquid properties suitable for coating. As such a solvent, the solvent illustrated as the said dispersion medium can be used, for example. The ratio between the charge generation material and the binder resin is not particularly limited, but generally the charge generation material is used in the range of 5 to 500 parts by weight with respect to 100 parts by weight of the resin. Moreover, a charge transport material can be included as required. Examples of charge transport materials include electron-withdrawing materials such as organic polymer compounds such as polyvinyl carbazole, polyvinyl pyrene, and polyacenaphthylene, fluorenone derivatives, tetracyanoxydimethane, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, and diphenoquinone derivatives. , Carbazole, indole, imidazole, oxazole, pyrazole, oxadiazole, pyrazoline, thiadiazole, etc. Examples thereof include an electron donating substance such as a polymer in the chain. The ratio of the charge transport material to the binder resin is such that the charge transport material is 5 to 500 parts by weight with respect to 100 parts by weight of the binder resin.
[0026]
Using the dispersion thus prepared, a charge generation layer is formed on a support having at least an undercoat layer, and a charge transport layer is laminated thereon to form a photosensitive layer, or charge Either a transport layer is formed and a charge generation layer is formed thereon using the dispersion liquid to form a photosensitive layer, or a charge generation layer is formed using the dispersion liquid to form a photosensitive layer. A photosensitive layer can be formed. When the charge generating layer is laminated with the charge transport layer to form a photosensitive layer, the range of 0.1 to 10 μm is preferable, and the thickness of the charge transport layer is preferably 10 to 40 μm. When forming the photosensitive layer with a single layer structure, the thickness of the photosensitive layer is preferably in the range of 5 to 40 μm.
[0027]
The charge transport layer is mixed with a known polymer having excellent performance as a binder resin on the charge generation layer and dissolved in a suitable solvent together with the charge transport material, and if necessary, an electron withdrawing compound, or It can be produced by applying a coating liquid obtained by adding a plasticizer, a pigment and other additives.
[0028]
As the charge transport material in the charge transport layer, the charge transport materials described above can be used. Various known resins can be used as the binder resin used together with the charge transport material. Thermoplastic resins and curable resins such as polycarbonate resin, polyester resin, polyarylate resin, acrylic resin, methacrylate resin, styrene resin, and silicone resin can be used. In particular, polycarbonate resins, polyarylate resins, and polyester resins that cause less wear and scratches are preferable. The polycarbonate resin can use bisphenol A, bisphenol C, bisphenol P, bisphenol Z, or various known components as its bisphenol component. Moreover, the copolymer which consists of these components may be sufficient. The mixing ratio of the charge transport material and the binder resin is, for example, 10 to 200 parts by weight, preferably 30 to 150 parts by weight, based on 100 parts by weight of the binder resin. In the case of a multilayer photoreceptor, the charge transport layer is formed with the above components as the main component.
[0029]
Solvents used for the coating solution for the charge transport layer include ethers such as tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and anisole; ketones such as methyl ethyl ketone, 2,4-pentanedione and cyclohexanone; toluene, Aromatic hydrocarbons such as xylene; Esters such as ethyl acetate, methyl formate and dimethyl malonate; Ether esters such as 3-methoxybutyl acetate and propylene glycol methyl ether acetate; Chlorinated hydrocarbons such as dichloromethane and dichloroethane Can be mentioned. Of course, one or more of these may be selected and used. Preferably, it is selected from tetrahydrofuran, 1,4-dioxane, 2,4-pentanedione, anisole, toluene, dimethyl malonate, 3-methoxybutyl acetate, and propylene glycol methyl ether acetate.
[0030]
Further, the photosensitive layer of the electrophotographic photoreceptor of the present invention contains a well-known plasticizer, antioxidant, ultraviolet absorber and leveling agent in order to improve the film formability, flexibility, coatability and mechanical strength. It may be. Furthermore, an overcoat layer may be provided on the photosensitive layer in order to improve mechanical properties and gas resistant properties such as ozone and NOx. Furthermore, it goes without saying that an adhesive layer, an intermediate layer, a transparent insulating layer, and the like may be provided as necessary.
[0031]
In the present invention, the coating operation for forming each of the layers follows a conventionally known coating method. For example, a dip coating method, a spray coating method, a spinner coating method, a blade coating method, or the like can be employed.
[0032]
Examples of the image forming apparatus of the present invention include a monochrome printer, a copying machine, a color printer, a color copying machine, and a facsimile. In particular, the support and the electrophotographic photosensitive member of the present invention are suitable for a high-resolution image forming apparatus because they can provide a high-quality image without density unevenness. In particular, it can also be used in an image forming apparatus that obtains an image having a resolution of 600 dpi or more.
[0033]
In an image forming apparatus using a photoreceptor using the support of the present invention, the effect of the present invention can be obtained by using a light source such as a laser beam having a conventionally known wavelength range. Even in the image forming apparatus using a light source having a wavelength range of 380 nm to 600 nm, the effect of the present invention is considered to be achieved.
[0034]
The image forming apparatus includes a charging unit that uniformly charges the photoreceptor, an exposure unit that forms an electrostatic latent image by dissipating the charge of the exposed portion by exposing the photoreceptor to an image, and a charging unit. A developing unit that visualizes and develops the electrostatic latent image by attaching the toner that has been applied, a transfer unit that transfers the obtained visible image onto a transfer material such as transfer paper, and the like that can be visualized by heating, pressing, etc. A fixing unit for fixing the image on the transfer material and a cleaning unit for removing the toner remaining on the surface of the photoreceptor after the toner transfer to the transfer material are provided. In some cases, a charge eliminating unit is provided for removing charges remaining on the surface of the photoreceptor after cleaning. Furthermore, a transport unit for transporting the recording medium (paper) is provided.
[0035]
In the image forming apparatus of the present invention, as the charger, a non-contact charger such as a corona charger represented by a corotron or a scorotron; a contact charger such as a charging roller or a charging brush is used. The exposure is performed by using a light source such as a halogen lamp, a fluorescent lamp, a laser (semiconductor, He—Ne), an LED, or the like by an ordinary exposure method from the outside of the photoconductor, an exposure method from the inside of the photoconductor, or the like. Further, the development is performed by cascade development, contact development or non-contact development using a non-magnetic one-component toner, contact development or non-contact development using a magnetic one-component toner, two-component magnetic brush development, or a wet development method using a liquid toner. Done. Transfer is performed by electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer, pressure transfer method, and adhesive transfer method, and fixing is performed by heat roller fixing, flash fixing, oven fixing, pressure fixing, and the like. The cleaning is performed by brush cleaning, magnetic brush cleaning, electrostatic brush cleaning, magnetic roller cleaning, blade cleaning, or the like.
[0036]
As for the image forming apparatus, when full color printing is performed, a developer such as toner adhered on the electrophotographic photosensitive member is once transferred to one intermediate transfer belt, and toner of each color is formed in the form of an intermediate transfer belt. In addition, after forming a color visible image, a color image may be formed on a recording medium (paper) using a transfer unit.
[0037]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
[0038]
(Preparation of coating solution for charge generation layer)
[Dispersion Q1]
In X-ray diffraction spectrum, Bragg angle (2θ ± 0.2 °) 9.3 °, 10.6 °, 13.2 °, 15.1 °, 15.7 °, 16.1 °, 20.8 ° , 10 parts by weight of oxytitanium phthalocyanine having main diffraction peaks at 23.3 °, 26.3 ° and 27.1 ° are added to 150 parts by weight of 1,2-dimethoxyethane, and are pulverized and dispersed by a sand grind mill. Liquid Q1 was produced.
[0039]
[Dispersion Q2]
In the X-ray diffraction spectrum, except that oxytitanium phthalocyanine having main diffraction peaks at Bragg angles (2θ ± 0.2 °) of 9.7 °, 24.2 °, and 27.3 ° was used, the same as the dispersion Q1 Dispersion liquid Q2 was thus prepared.
[0040]
48 parts by weight of dispersion Q1 prepared in advance and 112 parts by weight of dispersion Q2 were mixed, and 160 parts by weight of the obtained pigment dispersion was added to polyvinyl butyral (manufactured by Electrochemical Industry Co., Ltd., trade name # 6000- In addition to 100 parts by weight of a 5% 1,2-dimethoxyethane solution of C), a coating solution for a charge generation layer which was a dispersion having a solid content concentration of 4.0% was finally prepared.
[0041]
(Preparation of coating solution for charge transport layer)
54 parts by weight of the following N, N-di-p-tolylaniline diphenylhydrazone and
Figure 0004142916
[0042]
6 parts by weight of the following N-methylcarbazole diphenylhydrazone,
[Chemical 2]
Figure 0004142916
[0043]
1 part by weight of the following cyano compound,
[Chemical 3]
Figure 0004142916
[0044]
16 parts of 3,5-di-t-butyl-4-hydroxytoluene (hereinafter abbreviated as BHT) and two repetitions produced by the production method described in the examples of JP-A-3-221196 100 parts of the following polycarbonate resin having a structural unit (monomer molar ratio 1: 1)
[Formula 4]
Figure 0004142916
[0046]
Was dissolved in a mixed solvent of toluene and tetrahydrofuran to prepare a charge transport layer coating solution.
[0047]
(Example 1) An extruded tube made of JIS6063 alloy was subjected to cold drawing and further cut to produce an outer diameter of 30.5 mm, an inner diameter of 28 mm, and a length of 342 mm. The drawn tube was subjected to inlay processing with a both-end processing machine. Next, this raw tube was set on a precision lathe and subjected to rough cutting with a cutting depth of 0.225 mm under the conditions of a rotational speed of 2000 rpm and a feed of 0.3 mm. The runout after rough cutting at this time was 0.015 mm. Finally, finish cutting with a cut amount of 0.025 mm was performed under the conditions of a rotational speed of 3000 rpm and a feed of 0.3 mm.
The deflection of the substrate thus fabricated was measured and found to be 0.007 mm. The deflection was measured with a laser LS5040 manufactured by Keyence Corporation.
[0048]
Reference Example An electrophotographic photosensitive member support was obtained in the same manner as in Example 1 except that the runout after rough cutting was 0.019 mm and the runout after finishing was 0.010 mm.
[0049]
Comparative Example 1 A support for an electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the runout after rough cutting was 0.025 mm and the runout after finishing was 0.018 mm.
[0050]
On the electrophotographic photoreceptor support produced in the above Examples and Comparative Examples, an anodized film (alumite) of 6 μm was formed by anodizing, and the charge generation layer and the charge transport layer were sequentially laminated. Thus, an electrophotographic photosensitive member was produced.
[0051]
As a result of full-color printing of the electrophotographic photosensitive member by the multiple development method, when the photosensitive member using the support produced in the example was mounted, a good image without image misalignment was obtained. When the photoconductor using the support produced in (1) was mounted, a slight shift occurred in the printing position of each color.
[0052]
【The invention's effect】
The support according to the present invention is a high-precision support with good dimensional accuracy and small runout by controlling the runout after rough cutting. Further, when a photoconductor is prepared using the support of the present invention and an image is formed, a very good image can be obtained.

Claims (3)

金属素管に少なくとも粗切削加工、次いで仕上げ切削加工を施し製造される電子写真感光体用支持体において、粗切削加工後の金属素管の振れが0.015mm以下であり、かつ仕上げ切削加工後の金属素管の振れが0.007mm以下である電子写真感光体用支持体。At least rough machining the metal tube, then the electrophotographic photoreceptor support to be produced subjecting the finish machining, Ri shake der less 0.015mm of metal tube after the rough machining and finish machining an electrophotographic photoreceptor support metal tube shake Ru der less 0.007mm after. 請求項1に記載の電子写真感光体用支持体に感光層を形成してなる電子写真感光体。An electrophotographic photosensitive member obtained by forming a photosensitive layer on the support for an electrophotographic photosensitive member according to claim 1 . 請求項に記載の電子写真感光体を用いた画像形成装置。An image forming apparatus using the electrophotographic photosensitive member according to claim 2 .
JP2002233103A 2002-08-09 2002-08-09 Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus Expired - Fee Related JP4142916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233103A JP4142916B2 (en) 2002-08-09 2002-08-09 Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233103A JP4142916B2 (en) 2002-08-09 2002-08-09 Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008058163A Division JP2008152295A (en) 2008-03-07 2008-03-07 Electrophotographic photosensitive member support, method for producing the same, electrophotographic photosensitive member and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2004070242A JP2004070242A (en) 2004-03-04
JP4142916B2 true JP4142916B2 (en) 2008-09-03

Family

ID=32018322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233103A Expired - Fee Related JP4142916B2 (en) 2002-08-09 2002-08-09 Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4142916B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262756B2 (en) * 2008-02-01 2013-08-14 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photoreceptor and image forming method
JP2008152295A (en) * 2008-03-07 2008-07-03 Mitsubishi Chemicals Corp Electrophotographic photosensitive member support, method for producing the same, electrophotographic photosensitive member and image forming apparatus

Also Published As

Publication number Publication date
JP2004070242A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
EP2443518B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4134200B2 (en) Electrophotographic photoreceptor and image forming apparatus
CN100462864C (en) Photoreceptor drum, method and apparatus for assembling the same, and image forming apparatus using the same
JP2009150958A (en) Method for producing support for electrophotographic photosensitive member
JP4142916B2 (en) Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus
JP2008152295A (en) Electrophotographic photosensitive member support, method for producing the same, electrophotographic photosensitive member and image forming apparatus
JP3894023B2 (en) Image forming method and image forming apparatus
JP4821795B2 (en) Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JP4375363B2 (en) Anti-vibration damper and method for producing substrate for electrophotographic photosensitive member
JP3891342B2 (en) Manufacturing method of substrate for electrophotographic photosensitive member
JP2003186211A (en) Method of manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JP3279167B2 (en) Electrophotographic photoreceptor
JP3932949B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP3894022B2 (en) Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus
JP2003075362A (en) Inspection method for electrophotographic photoreceptor
JP2003316032A (en) Electrophotographic photoreceptor substrate and method of manufacturing the same, electrophotographic photoreceptor, image forming apparatus
JP2004061923A (en) Support for electrophotographic photoreceptor
US20110311271A1 (en) Electrophotographic photoreceptor, electrophotographic cartridge, and image-forming apparatus
JP3840178B2 (en) Electrophotographic photosensitive member support manufacturing method, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2003307866A (en) Electrophotographic photoreceptor and image forming apparatus
JP2001228639A (en) Electrophotographic photoreceptor and method of manufacturing the same
JP2003107757A (en) Support for electrophotographic photoreceptor
JP2003015325A (en) Method for producing support for electrophotographic photosensitive member
JP2003270804A (en) Manufacturing method of electrophotographic photoreceptor
JPH11102081A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4142916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees