JP4142608B2 - Tree contact monitoring device for distribution lines - Google Patents
Tree contact monitoring device for distribution lines Download PDFInfo
- Publication number
- JP4142608B2 JP4142608B2 JP2004113029A JP2004113029A JP4142608B2 JP 4142608 B2 JP4142608 B2 JP 4142608B2 JP 2004113029 A JP2004113029 A JP 2004113029A JP 2004113029 A JP2004113029 A JP 2004113029A JP 4142608 B2 JP4142608 B2 JP 4142608B2
- Authority
- JP
- Japan
- Prior art keywords
- zero
- phase
- phase current
- current
- tree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measuring Phase Differences (AREA)
- Locating Faults (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
本発明は配電線の樹木接触監視装置に関するものである。 The present invention relates to a tree contact monitoring device for a distribution line.
配電線の地絡事故は、落雷、ケーブルの劣化、樹木の接触、鳥獣の接触などが原因となり引き起こされる。いずれかの原因により地絡事故が発生すれば、零相電圧Voと零相電流Ioが変化することが知られている。一般的にこれらの電圧、電流の変化、異常を計測し、地絡継電器や地絡方向継電器との組み合わせによる保護が行われる。 Distribution line ground faults are caused by lightning strikes, cable degradation, tree contact, bird contact. It is known that if a ground fault occurs due to any cause, the zero phase voltage Vo and the zero phase current Io change. Generally, these voltage and current changes and abnormalities are measured, and protection is provided by a combination with a ground fault relay or a ground fault direction relay.
特許文献1(特開平8−265959号公報)に記載されているように地絡が発生した場合に、地絡電流波形から地絡原因を推定することが知られている。さらに、特許文献2(特開2002−78188号公報)には、微地絡現象を観測して微地絡回線を特定することが提案されている。 As described in Patent Document 1 (Japanese Patent Application Laid-Open No. 8-265959), when a ground fault occurs, it is known to estimate the cause of the ground fault from the ground fault current waveform. Further, Patent Document 2 (Japanese Patent Laid-Open No. 2002-78188) proposes that a fine ground fault line is specified by observing a fine ground fault phenomenon.
通常、地絡現象は大きな落雷などを除くと突然発生するものではなく、それに先立ち僅かな漏洩電流が流れる微地絡現象が起きることが知られている。したがって、微地絡現象の段階で線路状態を監視し、落雷、線路と樹木の接触、配電線の絶縁劣化などを把握すれば、将来発生する大きな地絡現象を予想でき、早めに対策をとることが可能である。 Normally, it is known that a ground fault phenomenon does not occur suddenly except for a large lightning strike, but a micro ground fault phenomenon in which a slight leakage current flows before that occurs. Therefore, if the condition of the line is monitored at the stage of the micro ground fault phenomenon and the lightning strike, the contact between the line and the tree, the insulation deterioration of the distribution line, etc. can be grasped, a large ground fault phenomenon that will occur in the future can be predicted, and measures are taken early. It is possible.
しかし、従来の微地絡検出は、異常を示す信号がしきい値を超えるかどうかにより判断していたため、樹木の接触、配電線の絶縁劣化などを初期の段階で検出することが困難であった。特に、配電線の樹木接触に関する保守は、配電線と樹木が接触しているか疑わしいときは樹木を伐採するなどの措置をとったり、地絡が発生してから事後保全を実施するなどの対策をとるために、非常に費用のかかる効率の悪い保守であった。 However, since conventional micro ground fault detection is based on whether or not an abnormal signal exceeds a threshold value, it is difficult to detect contact of trees, insulation deterioration of distribution lines, etc. at an early stage. It was. In particular, maintenance related to tree contact of distribution lines takes measures such as cutting trees when it is doubtful that distribution lines and trees are in contact, or taking post-conservation measures after a ground fault occurs. This was a very expensive and inefficient maintenance.
地絡が発生する前の微地絡状態ではケーブルなどはパルス状の信号が発生するのに対して、樹木接触では地絡に至る前の段階では高抵抗接触となる。しかし、樹木接触による漏洩電流信号が微弱であることやパルス波形とならず電源と同じ商用周波(例えば50Hz)の正弦波波形である。このため、配電系統に存在する残留零相電流Ioや残留零相電圧Voから識別して樹木接触信号を検出、判定することが難しく、実現するには至っていない。樹木が配電線に接触している場所を計画的に伐採したりして多大な保守費用が発生している。効率の良い予測保全や保守点検を考えた場合には、微地絡の段階で正確に検出する必要がある。 In a fine grounding state before the occurrence of a ground fault, a pulse signal is generated in a cable or the like, whereas in a tree contact, a high resistance contact is made before reaching the ground fault. However, the leakage current signal due to tree contact is not weak and does not have a pulse waveform, but a sine wave waveform of the same commercial frequency as that of the power supply (for example, 50 Hz). For this reason, it is difficult to detect and determine a tree contact signal by discriminating from the residual zero-phase current Io and the residual zero-phase voltage Vo existing in the distribution system, and it has not been realized. A large amount of maintenance costs are incurred due to planned logging of places where trees are in contact with distribution lines. When efficient predictive maintenance and maintenance inspection are considered, it is necessary to detect accurately at the stage of micro ground fault.
本発明は配電線の初期異常監視、特に初期の落雷、樹木接触、絶縁劣化などの監視を対象としており、零相電圧Vo、零相電流Io、零相電圧と零相電流との位相差を設定された周期で取得し、時系列的なデータの変化量を監視するものである。 The present invention is intended for initial abnormality monitoring of distribution lines, particularly monitoring of initial lightning strike, tree contact, insulation deterioration, etc., and zero phase voltage Vo, zero phase current Io, phase difference between zero phase voltage and zero phase current. It is acquired at a set cycle, and the amount of change in time-series data is monitored.
樹木の接触による微地絡は漏洩性の現象のため、零相電圧Vo、零相電流Ioとも比較的小さな正弦波に近い波形が計測される。また、零相電流Ioの大きさ又は零相電圧Voに対する位相が数分〜数十分のオーダで変化する。このため零相電圧Vo、零相電流Ioの大きさの変化量の監視(時間変化分の監視)および零相電圧Voと零相電流Ioの位相差の変化量を監視することにより樹木接触の有無を検出することが可能となる。 Since the fine ground fault due to the contact of the tree is a leaky phenomenon, both the zero-phase voltage Vo and the zero-phase current Io are measured as waveforms that are relatively small. Further, the magnitude of the zero-phase current Io or the phase with respect to the zero-phase voltage Vo changes on the order of several minutes to several tens of minutes. Therefore, by monitoring the amount of change in the magnitude of the zero-phase voltage Vo and the zero-phase current Io (monitoring the time change) and monitoring the amount of change in the phase difference between the zero-phase voltage Vo and the zero-phase current Io, The presence or absence can be detected.
本発明による配電線の樹木接触監視装置において、従来では予兆が検出できずに地絡に至った樹木接触が予兆の段階で検出可能であり、効率の良い予測保全が可能となる。つまり、樹木の計画的な伐採などの費用のかかる保守は必要なく、樹木接触の状態を監視することにより異常の直前に対策するなどの効率よい保守が可能となる。 In the tree contact monitoring device for a distribution line according to the present invention, it is possible to detect a tree contact that has led to a ground fault without detecting a sign in the prior art, thereby enabling efficient predictive maintenance. In other words, costly maintenance such as planned tree cutting is unnecessary, and efficient maintenance such as taking measures immediately before an abnormality is possible by monitoring the state of tree contact.
以下本発明の実施の形態を図面によって説明する。図1は、配電線の樹木接触監視装置の構成を示すブロックダイアグラムである。変圧器1の出力は、主遮断器20,副遮断器21,22,23を通してそれぞれの配電系統へ送られる。各配電系統には、複数の系統負荷5がそれぞれ接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a distribution line tree contact monitoring device. The output of the
樹木接触は、高抵抗地絡による漏洩性電流となるため零相電圧Voおよび零相電流Ioの波形は正弦波に近い。その絶対値は、他の地絡事故現象に比べて非常に小さく、その進展度合いも比較的ゆっくりとした現象である。図1では、配電変電所と配電線の適切な箇所に配備した複数の子局112,114,116,118において零相電圧Vo、零相電流Io、零相電圧Voと零相電流Ioの位相差を測定する。子局112〜118内の測定部の詳細を図2に示す。
Since the tree contact becomes a leaky current due to a high-resistance ground fault, the waveforms of the zero-phase voltage Vo and the zero-phase current Io are close to a sine wave. Its absolute value is very small compared to other ground fault accidents, and its progress is relatively slow. In FIG. 1, the zero-phase voltage Vo, the zero-phase current Io, the zero-phase voltage Vo, and the zero-phase current Io at the plurality of
測定センサの例として零相電圧Voは、子局112〜118内に配備した分圧器PD(ポテンシャルデバイダー)を含む電圧測定センサ31〜36により計測して零相電圧Voを作成する。それぞれの電圧測定センサ31〜36は、接地抵抗R、グランド ポテンシャル トランスGPTを含んでいる。
As an example of the measurement sensor, the zero-phase voltage Vo is measured by
零相電流IoはZCT(Zero phase Current Transformer)などの零相電流測定センサ41,42,43,44,45,46により測定される。零相電圧Voおよび零相電流Ioは子局内部でA/D変換され、実効値演算を行うと同時に零相電圧Voと零相電流Ioの位相差も演算する。
The zero phase current Io is measured by a zero phase
計測された零相電圧Vo、零相電流Ioおよび零相電圧Voと零相電流Ioの位相差は、例えば光ネットワーク通信により監視所の中央監視システム12まで送信される。図1および図2は監視所までデータ通信を行い監視所で異常判定を行う構成となっているが、この検出子局112〜118内で判定を行う構成でもよい。
The measured zero-phase voltage Vo, zero-phase current Io, and the phase difference between the zero-phase voltage Vo and the zero-phase current Io are transmitted to the
図3には樹木接触時の一例として、零相電圧Vo、零相電流Io、零相電圧Voと零相電流Ioの位相差の時間変化の様子を示す。図3は樹木が接触してから30分程度の時間変化であり、それぞれが時間とともに時定数が10分程度で上昇していることがわかる。この変化は従来の地絡検出のしきい値、例えば零相電流の大きさ200mAよりも小さい値である。 FIG. 3 shows, as an example at the time of tree contact, the time change of the zero phase voltage Vo, the zero phase current Io, and the phase difference between the zero phase voltage Vo and the zero phase current Io. FIG. 3 shows a time change of about 30 minutes after the trees come into contact with each other, and it can be seen that the time constant increases with time in about 10 minutes. This change is a value smaller than a conventional ground fault detection threshold, for example, a zero-phase current magnitude of 200 mA.
つまり、異常がない場合でも三相の不平衡から生じる零相電流Ioが大きい系統では100mA程度存在しており、大きさだけ判定すると残留分の大きさに埋れるため、数十分オーダの大きさの変化量をとらえる必要がある。樹木接触などの異常がなければ、系統切換、負荷開閉などの現象が発生した場合でも瞬時の変化やステップ的な値の変動が認められるが、その後の変動はないことから変化分の増加、減少判定で除外できる。 In other words, even if there is no abnormality, there is about 100 mA in a system with a large zero-phase current Io resulting from three-phase imbalance, and if only the magnitude is judged, it will be buried in the size of the residual, so it will be several tens of orders It is necessary to capture the amount of change. If there is no abnormality such as tree contact, even if a phenomenon such as system switching, load switching, etc. occurs, instantaneous changes and step value fluctuations are observed, but since there are no subsequent fluctuations, the increase or decrease of the change is Can be excluded by judgment.
また、雷などの単発パルスや他機器が発生するランダムパルスなどは数分オーダの変化では測定されることがない。つまり、系統の残留している残留零相電圧Vo、残留零相電流Ioの変動が少ないことに着目し、零相電圧Vo、零相電流Io、零相電圧Voと零相電流Ioの位相差の変化分(変化量)を監視する。 Also, single pulses such as lightning and random pulses generated by other devices are not measured with a change in the order of several minutes. That is, paying attention to the fact that there are few fluctuations in the residual zero phase voltage Vo and residual zero phase current Io remaining in the system, the phase difference between the zero phase voltage Vo, the zero phase current Io, and the zero phase voltage Vo and the zero phase current Io. The amount of change (change amount) is monitored.
また、残留零相電流Ioと樹木接触による零相電流Ioの位相は必ずしも一致しているとは限らない。図4〜図6に示すのは残留零相電流Ioと樹木接触により発生した位相関係による実際に測定される合成零相電流Ioの波形である。図4では残留零相電流Ioと樹木接触零相電流Ioが同位相の場合であり、樹木接触零相電流Ioが大きくなると測定される合成零相電流Ioが大きくなる。図4のケースにおける測定される時系列なデータをプロットすると図3のように、零相電圧Vo、零相電流Io、零相電圧Voと零相電流Ioの位相差はそれぞれ単調増加しているため時間変化分を監視することにより樹木接触を検出できる。 Further, the phase of the residual zero-phase current Io and the zero-phase current Io due to the tree contact do not always match. 4 to 6 show waveforms of the synthesized zero-phase current Io actually measured by the phase relationship generated by the residual zero-phase current Io and the tree contact. In FIG. 4, the residual zero-phase current Io and the tree contact zero-phase current Io are in the same phase, and the measured zero-phase current Io increases as the tree contact zero-phase current Io increases. When the time-series data measured in the case of FIG. 4 is plotted, as shown in FIG. 3, the phase difference between the zero-phase voltage Vo, the zero-phase current Io, and the zero-phase voltage Vo and the zero-phase current Io monotonously increases. Therefore, the tree contact can be detected by monitoring the time change.
図5は逆位相の場合であり合成零相電流Ioは逆に小さくなる。図5のケースの時間変化の一例を示すと図7のようになる。図7からわかるように樹木接触による発生VoやIoが大きくなったとしても観測されるVoやIoは単調減少している。そのため測定データの時間変化は単調増加だけでなく単調減少もありえる。
さらに、図6は約100度ずれたケースであり、このときは樹木接触零相電流Ioが大きくなったとしても、測定される合成零相電流Ioの大きさは変化していない。図6の時間変化をプロットすると図8のようになり、このケースでは零相電圧Voや零相電流Ioの大きさだけを監視していても、残留零相電流Ioとの位相関係により大きさには現れない。零相電圧Voと零相電流Ioの大きさ以外にも、零相電圧Voと零相電流Ioの位相差を判定する必要があり、図2に示すように零相電圧Voと零相電流Ioの位相差も監視することが有効である。
FIG. 5 shows the case of the reverse phase, and the combined zero-phase current Io becomes smaller. An example of the time change in the case of FIG. 5 is shown in FIG. As can be seen from FIG. 7, even if the generated Vo and Io due to the tree contact increase, the observed Vo and Io monotonously decrease. Therefore, the time change of the measurement data may not only increase monotonously but also decrease monotonously.
Further, FIG. 6 shows a case where the angle is shifted by about 100 degrees. At this time, even if the tree contact zero-phase current Io increases, the magnitude of the measured composite zero-phase current Io does not change. 6 is plotted as shown in FIG. 8. In this case, even if only the magnitudes of the zero-phase voltage Vo and the zero-phase current Io are monitored, the magnitude varies depending on the phase relationship with the residual zero-phase current Io. Does not appear. Besides the magnitudes of the zero-phase voltage Vo and the zero-phase current Io, it is necessary to determine the phase difference between the zero-phase voltage Vo and the zero-phase current Io. As shown in FIG. 2, the zero-phase voltage Vo and the zero-phase current Io It is also effective to monitor the phase difference.
1…変圧器、20…主遮断器、21、22,23…副遮断器,31、32,33,34,35,36…電圧センサ、41,42,43,44,45,46…電流センサ、5…系統負荷、R…接地抵抗、GPT…グランド ポテンシャル トランス、112,114,116,118…子局、12…中央監視システム。
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004113029A JP4142608B2 (en) | 2004-04-07 | 2004-04-07 | Tree contact monitoring device for distribution lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004113029A JP4142608B2 (en) | 2004-04-07 | 2004-04-07 | Tree contact monitoring device for distribution lines |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005304114A JP2005304114A (en) | 2005-10-27 |
JP4142608B2 true JP4142608B2 (en) | 2008-09-03 |
Family
ID=35335003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004113029A Expired - Fee Related JP4142608B2 (en) | 2004-04-07 | 2004-04-07 | Tree contact monitoring device for distribution lines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4142608B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5030683B2 (en) * | 2007-06-25 | 2012-09-19 | 中国電力株式会社 | Ground fault accident prediction system and ground fault accident prediction method |
JP5444122B2 (en) * | 2010-03-16 | 2014-03-19 | 一般財団法人 関西電気保安協会 | Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method |
CN102128959B (en) * | 2010-12-22 | 2012-11-07 | 山东电力集团公司滨州供电公司 | Portable nuclear phase auxiliary vehicle for mid switch cabinet |
JP5401503B2 (en) * | 2011-05-26 | 2014-01-29 | 東京電力株式会社 | Power system fault waveform data search device and recording medium |
JP6662814B2 (en) * | 2017-07-03 | 2020-03-11 | 株式会社京三製作所 | Track circuit monitoring device |
JP6629795B2 (en) * | 2017-07-03 | 2020-01-15 | 株式会社京三製作所 | Track circuit monitoring device |
JP7158260B2 (en) * | 2018-11-27 | 2022-10-21 | 株式会社京三製作所 | Track circuit monitoring device |
JP7257352B2 (en) * | 2020-03-19 | 2023-04-13 | 株式会社日立製作所 | POWER SYSTEM MONITORING DEVICE, POWER SYSTEM MONITORING METHOD, AND POWER SYSTEM MONITORING PROGRAM |
JP7570215B2 (en) * | 2020-11-27 | 2024-10-21 | 三菱電機株式会社 | Accident sign detection system, accident sign detection method, and master station and slave station of accident sign detection system |
CN116087692B (en) * | 2023-04-12 | 2023-06-23 | 国网四川省电力公司电力科学研究院 | Distribution network tree line discharge fault identification method, system, terminal and medium |
CN116756660B (en) * | 2023-06-16 | 2024-02-06 | 国网四川省电力公司电力科学研究院 | Single-phase wire contact vegetation ignition prediction method, system and medium |
CN117233471B (en) * | 2023-11-09 | 2024-01-23 | 四川大学 | Medium-voltage distribution network branch line-collision fault detection method based on contact impedance gradual change characteristic |
-
2004
- 2004-04-07 JP JP2004113029A patent/JP4142608B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005304114A (en) | 2005-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2946139C (en) | Smart sensor network for power grid health monitoring | |
US10153635B2 (en) | System for detecting a falling electric power conductor and related methods | |
US7400150B2 (en) | Remote fault monitoring in power lines | |
CN106291201B (en) | Lightning monitoring and degradation state monitoring system and method for lightning protection box | |
US9182431B2 (en) | Method and apparatus for determining an insulation resistance in a grounded isole terre system | |
KR101255317B1 (en) | Arrester Soundness Decision and Line Monitoring System by Measuring Leakage current of Arrester | |
CN109917230B (en) | Grounding fault monitoring and protection integrated method for neutral point resistance-containing grounding power distribution network | |
KR20130060715A (en) | A detection device of insulation resistance for non-interruption of electric power and hot-line | |
JP4142608B2 (en) | Tree contact monitoring device for distribution lines | |
CN112202493A (en) | Fault detection method, device and system for communication line | |
RU2356151C1 (en) | METHOD FOR AUTOMATIC CONTROL OF 0,4 kV OVERHEAD LINE NEUTRAL WIRE | |
KR101916362B1 (en) | Intelligent power facility failure prediction system and method using three-phase leakage current measurement method by insulation deterioration | |
KR101868433B1 (en) | Photovoltaic power generation system with string block device for preventing solar module string accident | |
KR101535923B1 (en) | An electric distributing board with diagnosis function of electric power quality through monitoring carbonization of power cable and dischare of power apparatus connecting parts | |
KR20120086558A (en) | Solar power generation system with monitoring and neutral line replacement | |
JP4971285B2 (en) | Electric equipment accident sign detection device and electric equipment accident sign detection system | |
US7355412B1 (en) | Remote fault monitoring system | |
JP2003172758A (en) | A method for locating lightning strike detection sections using a transmission line fault section detection system. | |
KR101019462B1 (en) | Arc Defect Determination Method Using Impulse Detection | |
KR101743534B1 (en) | Apparatus and method for monitoring electric state of cable of reflectometry system | |
JP2003232827A (en) | Accident point orientation system | |
GB2507895A (en) | Locating Insulation Faults | |
JP7341070B2 (en) | Ground fault location system and method | |
WO2006078869A2 (en) | Remote fault monitoring in power lines | |
RU2807681C1 (en) | METHOD FOR DIAGNOSING CONDITION OF 0.4 kV SUPPLY LINE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061003 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080610 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080612 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4142608 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |