JP4137682B2 - 蛍光分光分析装置 - Google Patents
蛍光分光分析装置 Download PDFInfo
- Publication number
- JP4137682B2 JP4137682B2 JP2003096163A JP2003096163A JP4137682B2 JP 4137682 B2 JP4137682 B2 JP 4137682B2 JP 2003096163 A JP2003096163 A JP 2003096163A JP 2003096163 A JP2003096163 A JP 2003096163A JP 4137682 B2 JP4137682 B2 JP 4137682B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorescence
- sample
- determination
- image
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- UEPIYUCDDIRSGY-SREVYHEPSA-N CCC/C(/C)=N\C Chemical compound CCC/C(/C)=N\C UEPIYUCDDIRSGY-SREVYHEPSA-N 0.000 description 1
- MRILXPBRLYBPDT-UHFFFAOYSA-N OCCC1=CC=CC1 Chemical compound OCCC1=CC=CC1 MRILXPBRLYBPDT-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
【発明の属する技術分野】
本発明は、蛍光分光分析装置に関し、特に複数点の蛍光統計分布解析を行う蛍光分光分析装置に関する。
【0002】
【従来の技術】
DNA塩基配列の解析、SNPs(一塩基多型)解析、蛋白質相互作用の解析など、ゲノム関連解析に蛍光種の統計分布解析の技術を用いた方法が用いられている。統計分布解析には、蛍光相関分光分析法、蛍光強度分布解析法などが知られている。
【0003】
蛍光相関分光分析法は蛍光強度の揺らぎを解析し、分子毎の拡散時間や平均分子数を求める手法である(例えば、非特許文献1参照)。
【0004】
また、蛍光強度分布解析法は、蛍光揺らぎデータから観測領域内の分子毎の光子計数(明るさ)や平均分子数を求める手法である(例えば、非特許文献2、3参照)。
【0005】
その他、蛍光寿命解析法は、蛍光の減衰時間を解析することにより、分子毎の蛍光寿命や平均の分子数を求める手法である(例えば、非特許文献1参照)。
【0006】
従来、このような解析は、溶液中で行われていたが、バイオ技術の進展に伴って、細胞内において同様の解析を行うことが求められてきている。図6は、従来の蛍光分光分析装置の構成を示す図である。この装置は、顕微鏡にレーザを導入しそのレーザ光によって励起された溶液中の蛍光分子から発生する蛍光を測定し統計分布解析を行うものである。
【0007】
光学顕微鏡の上部に蛍光色素励起用のレーザ光源70を設けてレーザ光を入射する。レーザ光は対物レンズ71によって集光され試料容器72中に観測領域を作り出す。試料容器72中には、観察する蛍光標識された被観察分子(あるいは小胞などの被観察物質)の溶液が入れられている。観測領域中に存在する試料の蛍光標識から発生した蛍光は再び対物レンズ71を通過してビームスプリッタ73により検出器74へと導かれる。検出器74の前には集光レンズ75とピンホール76が設けられており、コンフォーカル検出を行う。
【0008】
この構成により非常に小さな観測領域のみからの蛍光を検出することができる。検出器74で得られた蛍光信号は解析装置77で解析され、例えば蛋白質の相互作用の測定など、所望の測定が行われる。
【0009】
細胞に対して統計分布解析を行うためには、この蛍光分光分析の手法を溶液の替わりに細胞に適用することが考えられる。即ち、この装置で試料容器72に替えてシャーレ等を用い、細胞を光学顕微鏡で観察して測定部位を特定する。そして、図示していないステージ移動機構によりシャーレを移動することで、特定した測定部位をレーザによる観測領域に移動させて観測する。
【0010】
従来技術をこのようにして適用すれば、統計分布解析の技術を細胞内の測定に応用することができる。しかしながら、従来技術を適用した場合は、測定点が1個所であるため十分な観測ができない。そこで、この問題を解決するため、複数のレーザビームを形成して複数点の蛍光統計分布解析を行う方法が提案されている(例えば、非特許文献4参照)。
【0011】
【非特許文献1】
Ch. Zander, J. Enderleing, R. A. keIler(eds.), Single molecule Detection in Solution, 69P.及び 59p.(WILEY-VCH Verlag Berlin, 2002)
【0012】
【非特許文献2】
Yan Chan et.al., The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy, Biophysical Journal Vol.177 July 1999 553-567.
【0013】
【非特許文献3】
Hong Qian and Elliot L. Elson, Distribution of molecular aggregation by analysis of fluctuation moments, Proc. Natl. Acad. Sci, USA, Vol.87, pp.5479-5483, July 1990.
【0014】
【非特許文献4】
Applied Optics, vol.41, No.16, pp3336-3342(2002).
【0015】
【発明が解決しようとする課題】
ところで、細胞を観察する場合は、従来の溶液中観察と異なり、観察可能な細胞を選別することが必要になる。即ち、蛍光染色の濃淡による蛍光信号の信頼性が有るか否かの判定、細胞の形状が正常か否かの判定、内部組織の形状・大きさが正常か否かの判定等が必要である。
【0016】
この細胞の良否判定作業は、上述の細胞の観測結果から、熟練者が経験と勘に基づいて決定していた。従って、一分子蛍光統計分布解析の手法がその細胞に対して適用可能か否かも、細胞の観測結果に基づいて判断することになる。
【0017】
また、使用者が特定の細胞(例えば、特定の形状を持つ細胞、或いは特定の異常を発現する細胞など)を観察しようとする場合、観察対象となる細胞を容易に特定できれば便利である。しかし、被観察細胞の特定には、熟練度による個人差が大きいため、長時間を要していた。
【0018】
このため、ルーチン作業として大量の細胞を観察・計測して、細胞の良否判定、あるいは細胞の特定を行う際には、その判定・特定作業が効率的に実施できることが求められている。具体的には、細胞内の蛋白質相互作用、輸送問題、遺伝子発現問題などを一分子蛍光統計分布解析によって解明するために、その観察に適した細胞を迅速かつ正確に判定し、あるいは特定することが求められている。
【0019】
本発明は、係る事情に鑑みてなされたものであって、観察に適した細胞を迅速かつ正確に判定し、あるいは特定することができる蛍光分析装置を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記課題を解消するための、本発明の第1の局面の蛍光分光分析装置は、試料を保持する容器と、試料に複数本の励起光を照射する励起光学系と、それぞれの励起光を照射された試料より発するそれぞれの蛍光を検出する複数の蛍光検出素子と、それぞれの検出素子に蛍光を導く検出光学系と、得られた複数の蛍光信号を解析する解析器と、該試料の像を撮影する撮影機と、該撮影機に像を導く観察光学系と、前記撮影機で撮影された前記試料の画像に基づいて、該試料の各観測領域が蛍光検出及び蛍光信号解析に適しているかどうかを判定し、或いは蛍光検出及び蛍光信号解析に適している該試料の観測領域を特定する判定・特定装置を備え、前記判定・特定装置は、前記試料の各観測領域の前記画像に基づいて少なくとも前記試料の細胞の蛍光染色の濃淡、細胞の形状・大きさ、細胞内組織の位置・形状を表す特徴量を抽出する画像特徴抽出部と、抽出された前記特徴量をそれぞれ複数の水準に基づいて規定される複数の態様のいずれかに分類する画像分類部と、前記特徴量の分類結果と前記解析器による解析結果の良否とを対応付けて解析の度に各観測領域の適・不適を学習し、この学習結果に基づいて今回の分類結果から前記観測領域の適・不適を判定する判定学習部とを有する。
【0021】
また本発明の他の局面の蛍光分析装置は、上記記載の蛍光分光分析装置であって、前記判定・特定装置は、前記特徴量から、前記判定或いは前記特定に適した少なくとも1つの新たな特徴量を抽出する特徴量選定手段と、前記新たな特徴量を前記判定或いは前記特定を行うための前記特徴量として前記判定或いは前記特定を実行させる制御手段とを備えた。
【0022】
また本発明の他の局面の蛍光分析装置は、上記記載の発明である蛍光分光分析装置であって、前記特徴量選定手段は、前記特徴量から、前記判定或いは前記特定に適した少なくとも1つの新たな特徴量を抽出する論理の信頼性を学習により向上させる特徴量学習手段を更に有する。
【0025】
また本発明の他の局面の蛍光分析装置は、上記記載の発明である蛍光分光分析装置であって、前記試料を保持する複数の容器を有し、前記容器の位置を順次観測位置に移動することにより、前記試料の蛍光検出及び蛍光信号解析を行う。
【0026】
また本発明の他の局面の蛍光分析装置は、上記記載の発明である蛍光分光分析装置であって、前記励起光学系と前記検出光学系の共通光路内に設けられ、前記試料中に集光される蛍光測定空間を前記容器内で移動させる光線偏向手段を備えた。
【0029】
【発明の実施の形態】
[蛍光分光分析装置構成]
図1は、本発明に係る蛍光分光分析装置の第1の実施の形態を示す構成図である。
【0030】
複数箇所の一分子蛍光分光測定による統計分布解析を行うため、本蛍光分光分析装置は複数のレーザ光源1を用いて構成されている。複数のレーザ光源1は光ファイバ2に接続され、その複数の光ファイバ2はその端面配列が結像レンズの結像面になるように設置される。すなわち、レンズの結像面にファイバ端が一次元或いは二次元に配置されそれが顕微鏡光学系によって試料内に縮小投影され複数の観測領域を作り出す。尚、この顕微鏡光学系が励起光学系に相当する。
【0031】
ファイバ端を発した複数本のレーザビームは、検出光学系への分岐を行うビームスプリッタ3、結像レンズ4、眼視観察用の分岐ビームスプリッタ5を透過し、対物レンズ6により試料容器7中の試料内に縮小投影される。この様子は、眼視光学系によって試料の透過画像と重ねて観察できる。観察者はこの透過画像を観察しながら試料中の任意の位置に、観測領域を移動することができる。この観察は、カメラ8を通して表示装置9で行っても良い。また、移動は電動ステージ10によって行うこともできる。
【0032】
このように本実施の形態の蛍光分光分析装置は、所謂倒立型顕微鏡を構成しており、観察用光源12とコンデンサ13で照明された試料容器7中の被観察細胞等の試料を対物レンズ6で拡大して観察できる。そして、通常の生物観察用顕微鏡に備わっている位相差検鏡、微分干渉検鏡(DIC)なども観察可能であり、眼視観察だけでなくカメラ8によって撮像し表示装置9上に表示も可能となっている。すなわち通常の顕微鏡の機能を備えている。
【0033】
更に、本実施の形態の蛍光分析装置は、被観察細胞が観察に適しているか否かを自動で判定する判定装置30を備えている。
【0034】
本発明の被観察細胞の適・不適判定あるいは特定は、解析装置からの蛍光分布解析結果の良・不良の情報に基づいてカメラが捕らえた被観察細胞の蛍光像あるいは可視光観察像(透過像、位相差象、微分位相像(DIC)など)の画像解析結果を適宜分類することにより行う。
【0035】
判定装置30はカメラ8が捕らえた被観察細胞の蛍光像或いは可視光観察像(透過像、位相差像、微分位相像(DIC)など)に基づいて、被観察細胞が観察に適しているか否かを自動で判定する。一方、解析装置10からは蛍光分布統計解析結果の良・不良の情報が判定装置30に入力される。判定装置30は、この解析結果と判定結果との対比を観察細胞毎に繰返して学習することで判定論理の最適化を図っている。この判定装置30については、後で詳しく説明する。
【0036】
次に、蛍光統計分布情報の取得について説明する。
【0037】
図2は、検出光学系を示す図である。検出光学系11は、ピンホール板14と対応した複数の検出器15で構成されており、共焦点(コンフォーカル)検出を行う。尚、本実施の形態では、複数の検出器15を用いて構成したが、この形態に限定されず複数の検出素子を有する一つの検出器によって構成しても良い。
【0038】
ピンホール板14の各ピンホールの位置は、観測領域に一致するように調整されている。即ち、ピンホールの位置は複数のファイバ端面で構成される複数光源と共役な位置にある。このようにして得られた複数の蛍光強度信号は解析装置16において、蛍光相関分光、蛍光強度分布解析などの統計分布解析処理が行われる。
【0039】
このようにして、観測領域内の蛋白質反応の様子、特定の蛋白質濃度の測定、特定分子の検出などに関する情報を得ることができる。
【0040】
図3は、試料容器中の細胞の観測領域の様子を示す図である。
試料容器7中の細胞22の中に4つの観測領域23a、23b、23c,23dがある。上述のように、顕微鏡光学系による観察を行いながら任意の位置に観察領域23a〜23dを移動することができる。複数の観測領域23a〜23dにより同時に各点の統計分布解析情報を得ることができるため、例えば、観察領域A23aと観測領域B23bを比較することによって生化学反応の進行方向や速度などを分析することが可能となる。
【0041】
一分子検出による統計分布解析を行うためには、観測領域当たり観測時間中に1個程度の分子が存在することが望ましい。また、統計分布データ解析には非常に多くの測定数が必要となるので、分子のブラウン運動によって移動する時間を短時間で観測できる条件が好ましい。
【0042】
例えば、蛍光強度分布解析では、一観測時間40μ秒程度が使用される。また、蛍光相関分光法でもほぼ同等の観測時間が用いられる。この時間内に1分子が存在する観測領域の大きさは約1μm立方程度である。従って、励起用のレーザビーム24の径は0.5〜1μmに集光する必要がある。通常励起に用いられる可視光の波長は0.5μm程度であり、集光用の対物レンズ6の開口数は1.0程度が必要となる。通常のシングルモードファイバは、開口数は約0.1であり、ガウシアンビーム形状を保って対物レンズ6に入射するには、系の倍率を5倍程度にする必要がある。また、開口数を一致させる場合は、系の光学系を10倍にする必要がある。
【0043】
[判定装置構成]
図4は、判定装置30の構成と関連した信号の流れを示すブロック図である。
【0044】
判定装置30は、画像特徴抽出部31、画像分類部32及び記録・学習部33で構成されている。画像特徴部31は、カメラ8から送られる細胞画像を処理して特徴となるパラメータを抽出する。画像分類部32は、このパラメータに基づいて細胞画像を分類する。判定・学習部33は、分類結果に基づいて細胞の適・不適を自動で判定するとともに、解析装置16からの良・不良結果情報等を取り入れて学習することにより判定論理を最適化する。
【0045】
[動作]
次に、判定装置30の動作について説明する。
【0046】
カメラ8からは、被観察細胞の画像が入力される。画像としては、可視光(非蛍光)による透過像、位相差像、微分位相像(DIC)、蛍光像などを用いることができる。
【0047】
画像特徴抽出部31は、入力された画像からその細胞の特徴量(パラメータ)を抽出する。抽出する特徴量としては、細胞内分子の染色の濃淡などの蛍光染色の濃淡情報、あるいは細胞の形状に関する情報がある。細胞の形状を特徴付ける量としては、細胞の大きさ・形状・色・色の濃度・輪郭の曲率、あるいは細胞内組織の配置・大きさ・形状・色・色の濃度・輪郭の曲率・数などがある。
【0048】
さらに、これらの項目を種々の関数によって変換した値を特徴量としても良い。例えば、これらの項目をフーリエ変換より周波数空間の特徴量としても良い。このような変換を施すと、細胞の向きあるいは位置に依存しない特徴量を抽出できるので便利である。
【0049】
画像分類部32は、抽出された複数の特徴量に基づいて細胞の画像を分類する。
【0050】
図5は、画像の分類を示す図である。図5では、「細胞の大きさ」と「細胞の形」の、二つのパラメータで画像を分類する。
【0051】
そして、判定・学習部33が、この分類結果に基づいて被観察細胞が、蛍光統計分布解析に適しているか不適であるかを判定する。本実施の形態では、判定・学習部33は、被観察細胞の「大きさが中」で「形状が△」の場合、また被観察細胞の「大きさが小」で「形状が□」の場合は、適していると判断する。そして、この判断結果を使用者に提示する。
【0052】
次に、判定・学習部33の学習動作について説明する。
【0053】
被観察細胞毎に画像特徴抽出部31、画像分類部32が上述の動作を行い、画細胞の大きさ、形状等を抽出し、画像を分類する。一方、この被観察細胞を統計蛍光分布解析で適切に解析できた(良)か、解析に失敗したか(不良)の解析結果が、解析装置16から判定・学習部33に入力される。
【0054】
そこで、判定・学習部33は、先の分類結果とその解析結果を対応づけ、例えば、その分類結果は「良」であると学習する。この分類と解析結果の対応とその学習とを繰り返して実行することで、判定・学習部33は、判定論理を最適化する。
【0055】
尚、解析結果は、解析装置16から自動で入力するものに限られず、例えば、使用者が手動で任意の時点で入力するものであっても良い。また、使用者は、分布解析結果の良否でなく、その細胞が遺伝子発現異常などの観察対象となり得る細胞かどうかを特定するための判断結果を入力するものであっても良い。この場合は、上述の判断論理とは別の細胞特定のための判断論理の学習がなされる。
【0056】
本実施の形態では、上述の学習を何度か繰り返すうちに、判定・学習部33は、「大きさが中」で「形状が△(三角)」、及び「大きさは小」で「形状は□(四角)」であれば蛍光統計分布解析に適している(或いは特定できる)細胞であると学習する。
【0057】
尚、本実施の形態の学習を実現する手法として、例えば、ニューラルネットワークを用いても良い。
【0058】
図5は、高々二つのパラメータについての適用例を示しているが、実際には、より多くのパラメータが用いられる。この際、どのようなパラメータが判定に適しているか、すなわち適・不適の細胞を有効に判定できるパラメータを選択することが重要である。このために例えば、多変量解析、因子分析の手法を用いても良く、有効なパラメータを学習によって選択しても良い。そして、これらの手法を判定・学習部33に組み込んで、適切なパラメータを自動で抽出し、その抽出されたパラメータに基づいて細胞の適・不適を判定しても良い。
【0059】
[効果]
本実施の形態の学習機能により判定論理を最適化することができる。そして最適化された判定論理により被観察細胞の適・不適の判定、或いは見たい細胞の特定を容易にかつ自動で行うことができる。
【0060】
そして本実施の形態では、上記目的の為に、試料に対する蛍光染色の濃淡を判定することにより解析に適した試料であるかを判定する、或いは、細胞内分子の染色の濃淡及び細胞内組織の配置・形状を判定することにより解析に適した試料(細胞)であるかを判定することが好ましい。比較対象としてサンプル画像を用いても良い。
【0061】
更に本実施の形態では、蛍光測定及び解析に適した細胞の形状・大きさ、細胞内組織の位置・形状、染色濃度などの特徴量と蛍光分光解析の結果を解析の度に学習することにより、使用する毎に判定・特定性能を向上できる。
【0062】
本実施の形態では、蛍光測定及び解析に適した細胞の形状・大きさ、細胞内組織の位置・形状、及び染色濃度などの特徴量と蛍光分光解析の結果を解析の度に学習することにより、判定の為に有効なパラメータを選定して信頼性を向上させる機能(学習機能)を有している。このため、従来の方法が頼っていた判定者の「勘」を学習機能により解析装置に導入し、判定者の個人差の除去、効率の向上に寄与する。
【0063】
次に、本発明に係る蛍光分光分析装置の第2の実施の形態について説明する。
[蛍光分光分析装置構成]
第2の実施の形態の構成は、図1に示す第1の実施の形態と同様であるため、同一の符号を付しその詳細の説明は省略する。
【0064】
[動作]
第2の実施の形態では、観察視野中に複数の細胞がある場合に、図1に示す電動ステージ10を自動的に移動させる。そして、各細胞毎に適・不適の判定、あるいは見たい細胞の特定を順次行う。
【0065】
また、試料を保持する複数の容器を有し、順次容器の位置を移動することにより、連続して蛍光検出及び解析を行うように構成しても良い。
【0066】
[効果]
第2の実施の形態によれば、必要な蛍光統計分布解析を自動的に行うことができるため作業効率を向上することができる。
【0067】
次に、本発明に係る蛍光分光分析装置の第3の実施の形態について説明する。
[蛍光分光分析装置構成]
第3の実施の形態の構成は、図1に示す第1の実施の形態と同様であるため、同一の符号を付しその詳細の説明は省略する。
【0068】
第3の実施の形態では、観察視野中に複数の細胞がある場合に、観察点の移動は図示しない光路中のレーザ光偏向手段によって行う。すなわち、励起光源と試料に至る光学系(励起光学系)と試料から蛍光検出器に至る光学系(検出光学系)の共通光路内に光線偏向手段を設けることより試料中に集光される蛍光測定空間を移動させることができる。
【0069】
[効果]
励起光源と試料に至る光学系(励起光学系)と試料から蛍光検出器に至る光学系(検出光学系)の共通光路内に設けられた光線偏向手段により試料中に集光される蛍光測定空間を移動する機能を有することにより、細胞の任意の位置に迅速に観察領域を移動できる。
【0070】
また、複数の励起光源と複数の蛍光検出器により複数の蛍光測定空間を有することにより、選択した被観察細胞内の複数の観測点を同時(時間差が問題とならず)に測定できるようになり、輸送問題、遺伝子発現分布の時間変化など種々の解析が可能となる。
【0071】
尚、上記実施形態には種々の段階の発明が含まれているため、開示される複数の構成要件における適宜な組み合わせにより種々の発明を抽出することができる。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
【0072】
【発明の効果】
以上説明したように、本発明の蛍光分光分析装置によれば、観察に適した細胞を迅速かつ正確に判定し、あるいは特定することができる。
【図面の簡単な説明】
【図1】 本発明に係る蛍光分光分析装置の第1の実施の形態を示す構成図。
【図2】 検出光学系を示す図。
【図3】 試料容器中の細胞の観測領域の様子を示す図。
【図4】 判定装置の構成と関連した信号の流れを示すブロック図。
【図5】 画像の分類を示す図。
【図6】 従来の蛍光分光分析装置の構成を示す図。
【符号の説明】
1…レーザ光源、2…ファイバ、3…ビームスプリッタ、4…結像レンズ、6…対物レンズ、9…表示装置、10…電動ステージ、11…検出光学系、15…検出器、16…解析装置、23…観測領域、30…判定装置、31…画像特徴抽出部、32…画像分類部、33…判定・学習部。
Claims (5)
- 試料を保持する容器と、
試料に複数本の励起光を照射する励起光学系と、
それぞれの励起光を照射された試料より発するそれぞれの蛍光を検出する複数の蛍光検出素子と、
それぞれの検出素子に蛍光を導く検出光学系と、
得られた複数の蛍光信号を解析する解析器と、
該試料の像を撮影する撮影機と、
該撮影機に像を導く観察光学系と、
前記撮影機で撮影された前記試料の画像に基づいて、該試料の各観測領域が蛍光検出及び蛍光信号解析に適しているかどうかを判定し、或いは蛍光検出及び蛍光信号解析に適している該試料の観測領域を特定する判定・特定装置を備え、
前記判定・特定装置は、
前記試料の各観測領域の前記画像に基づいて少なくとも前記試料の細胞の蛍光染色の濃淡、細胞の形状・大きさ、細胞内組織の位置・形状を表す特徴量を抽出する画像特徴抽出部と、
抽出された前記特徴量をそれぞれ複数の水準に基づいて規定される複数の態様のいずれかに分類する画像分類部と、
前記特徴量の分類結果と前記解析器による解析結果の良否とを対応付けて解析の度に各観測領域の適・不適を学習し、この学習結果に基づいて今回の分類結果から前記観測領域の適・不適を判定する判定学習部とを有することを特徴とする蛍光分光分析装置。 - 前記判定・特定装置は、前記特徴量から、前記判定或いは前記特定に適した少なくとも1つの新たな特徴量を抽出する特徴量選定手段と、前記新たな特徴量を前記判定或いは前記特定を行うための前記特徴量として前記判定或いは前記特定を実行させる制御手段とを備えたことを特徴とする請求項1記載の蛍光分光分析装置。
- 前記特徴量選定手段は、前記特徴量から、前記判定或いは前記特定に適した少なくとも1つの新たな特徴量を抽出する論理の信頼性を学習により向上させる特徴量学習手段を更に有することを特徴とする請求項2記載の蛍光分光分析装置。
- 前記試料を保持する複数の容器を有し、前記容器の位置を順次観測位置に移動することにより、前記試料の蛍光検出及び蛍光信号解析を行うことを特徴とする請求項1乃至3の内いずれか1に記載の蛍光分光分析装置。
- 前記励起光学系と前記検出光学系の共通光路内に設けられ、前記試料中に集光される蛍光測定空間を前記容器内で移動させる光線偏向手段を備えたことを特徴とする請求項1乃至4の内いずれか1に記載の蛍光分光分析装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003096163A JP4137682B2 (ja) | 2003-03-31 | 2003-03-31 | 蛍光分光分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003096163A JP4137682B2 (ja) | 2003-03-31 | 2003-03-31 | 蛍光分光分析装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004301729A JP2004301729A (ja) | 2004-10-28 |
JP4137682B2 true JP4137682B2 (ja) | 2008-08-20 |
Family
ID=33408315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003096163A Expired - Fee Related JP4137682B2 (ja) | 2003-03-31 | 2003-03-31 | 蛍光分光分析装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4137682B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102788775A (zh) * | 2012-07-31 | 2012-11-21 | 华中科技大学 | 一种便携式高通量荧光检测仪 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4852890B2 (ja) * | 2005-05-31 | 2012-01-11 | 株式会社ニコン | 細胞の自動良否判定システム |
US9047502B2 (en) | 2007-12-13 | 2015-06-02 | Nikon Corporation | Automatic system for judging quality of cell |
JP6091100B2 (ja) * | 2012-07-10 | 2017-03-08 | 日本分光株式会社 | 共焦点顕微装置 |
JP2020103433A (ja) * | 2018-12-26 | 2020-07-09 | 株式会社トプコン | 眼科情報処理装置、眼科撮影装置、眼科情報処理方法、及びプログラム |
CN114397283A (zh) * | 2022-01-19 | 2022-04-26 | 天津大学 | 二次谐波与荧光光谱原位联用的检测系统与方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3114277B2 (ja) * | 1991-10-08 | 2000-12-04 | 株式会社日立製作所 | 細胞自動分類論理の構築方法 |
JP3212647B2 (ja) * | 1991-10-24 | 2001-09-25 | シスメックス株式会社 | イメージングフローサイトメータ |
JP3224860B2 (ja) * | 1992-06-19 | 2001-11-05 | ポーラ化成工業株式会社 | 顕微鏡画像評価システム |
JPH0862123A (ja) * | 1994-08-23 | 1996-03-08 | Olympus Optical Co Ltd | 走査型光学測定装置 |
JP3766498B2 (ja) * | 1997-01-24 | 2006-04-12 | オリンパス株式会社 | 走査型細胞測定装置および細胞測定方法 |
JPH10232229A (ja) * | 1997-02-20 | 1998-09-02 | Olympus Optical Co Ltd | サイトメータ |
ATE268008T1 (de) * | 1997-02-27 | 2004-06-15 | Cellomics Inc | Ein system zur zellbasierten reihenuntersuchung |
JP3816632B2 (ja) * | 1997-05-14 | 2006-08-30 | オリンパス株式会社 | 走査型顕微鏡 |
-
2003
- 2003-03-31 JP JP2003096163A patent/JP4137682B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102788775A (zh) * | 2012-07-31 | 2012-11-21 | 华中科技大学 | 一种便携式高通量荧光检测仪 |
Also Published As
Publication number | Publication date |
---|---|
JP2004301729A (ja) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6895362B2 (ja) | 蛍光画像分析装置および分析方法 | |
US7420674B2 (en) | Method and arrangement for analyzing samples | |
US5117466A (en) | Integrated fluorescence analysis system | |
US5815262A (en) | Apparatus for parallelized two-photon fluorescence correlation spectroscopy (TPA-FCS), and the use thereof for screening active compounds | |
JP4441695B2 (ja) | 試料の検査方法 | |
US6980294B2 (en) | Biomolecule analyzer | |
US8958066B2 (en) | Optical analysis method using measurement of light of two or more wavelength bands | |
EP2615445A1 (en) | Method for measuring diffusion characteristic value of particle by detecting single light-emitting particle | |
WO2007037439A1 (ja) | 焦点位置決定方法、焦点位置決定装置、微弱光検出装置及び微弱光検出方法 | |
JP2002071567A (ja) | 高速高スループット分光計および方法 | |
JP2005502060A (ja) | 共鳴光散乱粒子標識から発生する信号を読み取るための装置 | |
JP2018512609A (ja) | 顕微鏡を基体上に自動的に合焦するための方法、システム、及び装置 | |
JP2010500574A (ja) | 生物学的サンプルにおける蛍光信号を検出する方法 | |
JP6629429B2 (ja) | 細胞分析システム | |
CN116324569A (zh) | 对生物样本进行光显微镜多尺度记录的方法和设备 | |
US7474403B2 (en) | Device and method for measuring the optical properties of an object | |
US8879792B2 (en) | Microscopy method for identifying biological target objects | |
JP7042045B2 (ja) | 試料分析装置 | |
JP4137682B2 (ja) | 蛍光分光分析装置 | |
US9103718B2 (en) | Optical analysis device and optical analysis method using a wavelength characteristic of light of a single light-emitting particle | |
JPH07209187A (ja) | レーザ走査式細胞分析装置 | |
JP2004191251A (ja) | 蛍光分光分析装置 | |
US20230221178A1 (en) | Apparatus and a method for fluorescence imaging | |
JP2021522474A (ja) | 少なくとも1つの細胞および/または少なくとも1つの粒子を含む液体を検査するための方法 | |
JP3686713B2 (ja) | 走査型細胞測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080527 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080604 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |