[go: up one dir, main page]

JP4135064B2 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP4135064B2
JP4135064B2 JP2002164157A JP2002164157A JP4135064B2 JP 4135064 B2 JP4135064 B2 JP 4135064B2 JP 2002164157 A JP2002164157 A JP 2002164157A JP 2002164157 A JP2002164157 A JP 2002164157A JP 4135064 B2 JP4135064 B2 JP 4135064B2
Authority
JP
Japan
Prior art keywords
structural formula
group
resin composition
thermoplastic resin
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002164157A
Other languages
Japanese (ja)
Other versions
JP2004010702A (en
Inventor
広清 中瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2002164157A priority Critical patent/JP4135064B2/en
Publication of JP2004010702A publication Critical patent/JP2004010702A/en
Application granted granted Critical
Publication of JP4135064B2 publication Critical patent/JP4135064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性や耐熱性等に優れ、且つ優れたウエルド強度を有するサーモトロピック液晶樹脂組成物に関する。
【0002】
【従来の技術】
サーモトロピック液晶樹脂は、その優れた流動性、耐熱性、剛性、寸法精度等により、近年電気電子部品関係を中心に重要が拡大している。しかしながらサーモトロピック液晶樹脂は成形品のウエルド強度が低いと言う問題点を有していた。
【0003】
成形品のウエルド強度を高めるため、サーモトロピック液晶樹脂に種々の充填材を配合する方法や他の樹脂を溶融ブレンドする方法、添加剤を添加する方法が提案されているが、いずれの方法もサーモトロピック液晶樹脂の耐熱性が低下したり、成形性が低下したり、ウエルド強度が不十分であったり、機械的強度が低下したりし、実用上、サーモトロピック液晶樹脂の上記物性を保持しながらウエルド強度を向上させる方法はなかった。
【0004】
【発明が解決しようとする課題】
本発明は、サーモトロピック液晶樹脂の優れた流動性、耐熱性、剛性、寸法精度等の物性を保持したまま、ウエルド強度を改善し、広範囲の用途に使用できるサーモトロピック液晶樹脂組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討した結果、本発明に到達した。
即ち、本発明は、サーモトロピック液晶樹脂(A)と分子中に一般式(1)
【化6】

Figure 0004135064
(式中、Arは芳香族環又は複素環である。Yは、炭素原子数が1〜8のアルキレン基、酸素原子、硫黄原子、窒素原子またはこれらのヘテロ原子と炭素原子の結合した連結基である。また、nは繰り返し単位で、整数である。R、R、R及びR炭素原子数が1〜8のアルキル基であり、互いに同一のものである。)
及び/又は一般式(2)
【化7】
Figure 0004135064
(式中、Arは芳香族環又は複素環である。nは繰り返し単位で、整数である。R、R、R及びR炭素原子数が1〜8のアルキル基であり、互いに同一のものである。)
で示されるポリエステル構造単位を有する芳香族ポリエステル(B)とを含んでなる熱可塑性樹脂組成物を提供するものである。また上記熱可塑性樹脂組成物を成形してなる成形品を提供するものである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0007】
本発明に使用するサーモトロピック液晶樹脂(A)は、特に限定するものではないが、溶融時に異方性を形成しうる樹脂であり、例えば液晶ポリエステル、液晶ポリエステルアミド、液晶ポリエステルカーボネート、液晶ポリエステルエラストマーなどが挙げられ、中でも液晶ポリエステルが好ましく用いられる。
以下、液晶ポリエステル樹脂について説明する。
【0008】
液晶ポリエステル樹脂は、400℃以下の温度で異方性溶融相を形成する樹脂であり、具体的には、例えば▲1▼芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸とを反応させて得られるもの、▲2▼異種の芳香族ヒドロキシカルボン酸を反応させて得られるもの、▲3▼芳香族ジカルボン酸と核置換芳香族ジオールを反応させて得られるもの、▲4▼ポリエチレンテレフタレートなどのポリエステルに芳香族ヒドロキシカルボン酸を反応させて得られるもの等が挙げられる。また上記の芳香族ジカルボン酸、芳香族ジオール、及び芳香族ヒドロキシカルボン酸の代わりに、それらのエステル形成性誘導体を使用してもよい。
【0009】
本発明に使用する液晶ポリエステル樹脂の繰り返しポリエステル構造単位としては、下記の芳香族ジカルボン酸に由来する繰り返し構造単位、芳香族ジオールに由来する繰り返し構造単位、芳香族ヒドロキシカルボン酸に由来する繰り返し構造単位などを例示することができるが、これらに限定されるものではない。
【0010】
芳香族ジカルボン酸に由来する繰り返しポリエステル構造単位の例としては、以下のような構造が挙げられる。
【0011】
【化8】
Figure 0004135064
(式中、X1:ハロゲン原子、アルキル基又はアリール基を表す)
【0012】
【化9】
Figure 0004135064
また、芳香族ジオールに由来する繰り返しポリエステル構造単位の例としては、以下のような構造が挙げられる。
【0013】
【化10】
Figure 0004135064
(式中、X1:ハロゲン原子、アルキル基又はアリール基を表す)
【0014】
【化11】
Figure 0004135064
(式中、X2:ハロゲン原子又はアルキル基を表す)
【0015】
【化12】
Figure 0004135064
【0016】
更に、芳香族ヒドロキシカルボン酸に由来する繰り返し構造単位の例としては、以下のような構造が挙げられる。
【0017】
【化13】
Figure 0004135064
(式中、X2:ハロゲン原子又はアルキル基を表す)
【0018】
【化14】
Figure 0004135064
【0019】
本発明に使用するサーモトロピック液晶樹脂(A)は、耐熱性、機械的特性、加工性等のバランスから、下記構造式[1]で表される繰り返しポリエステル構造単位を含む液晶ポリエステル樹脂が好ましい。
【0020】
【化15】
Figure 0004135064
【0021】
上記の繰り返し構造単位[1]を含む液晶ポリエステル樹脂としては、例えば下記の繰り返し単位の組み合わせを含む液晶ポリエステル樹脂▲1▼〜▲7▼が挙げられる。なお本発明においては、これらの例に限定されるものではない。
【0022】
【化16】
Figure 0004135064
【0023】
【化17】
Figure 0004135064
【0024】
【化18】
Figure 0004135064
【0025】
【化19】
Figure 0004135064
【0026】
【化20】
Figure 0004135064
【0027】
【化21】
Figure 0004135064
【0028】
【化22】
Figure 0004135064
【0029】
本発明に使用する液晶ポリエステル樹脂▲1▼〜▲7▼の製造方法については、例えば、特公昭47−47870号公報、特公昭63−3888号公報、特公昭63−3891号公報、特公昭56−18016号公報、特公平2−51523号公報、特公平7−47625号公報などに記載されている。これらの中で好ましくは▲1▼〜▲3▼の組み合わせであり、より好ましくは▲1▼、▲2▼の組み合せである。
【0030】
上記液晶ポリエステル樹脂は、さらに下記の(グループa)及び/又は(グループb)の繰り返し単位を有するものが好ましい。
(グループa)は、下記構造式[2]及び/又は構造式[3]
【0031】
【化23】
Figure 0004135064
【0032】
からなる繰り返し単位であり、
(グループb)は下記構造式[4]、構造式[5]、構造式[6]及び構造式[7]
【0033】
【化24】
Figure 0004135064
からなる群から選ばれる1種以上の構造式からなる繰り返し単位である。
【0034】
上記(グループa)については、構造式[2]からなる繰り返し単位と構造式[3]からなる繰り返し単位とは、加工時の流動性の点で、モル比で構造式[3]/構造式[2]=0〜1.5の範囲であることが好ましい。
また上記(グループb)については、構造式[4]からなる繰り返し単位、構造式[5]からなる繰り返し単位、構造式[6]からなる繰り返し単位及び構造式[7]からなる繰り返し単位は、加工時の流動性の点で、モル比で〔構造式[4]+構造式[5]〕/〔構造式[6]+構造式[7]〕が1〜10の範囲であることが好ましい。
【0035】
また、前記(グループb)の合計モル数に対する前記(グループa)の合計モル数が実質的に1:1であり、構造式[5]/構造式[4]が0〜2モル比の範囲であり、構造式[7]/構造式[6]が0〜2モル比の範囲であることが好ましく、更に、上記構造式[1]/(グループa)がモル比で1〜6の範囲であることが好ましい。ここでいう「前記(グループb)の合計モル数に対する前記(グループa)の合計モル数が実質的に1:1」とは、例えば、NaOHに代表されるアルカリ等を用いてポリエステルを加水分解及び/又は加溶媒分解して、NMR(核磁気共鳴)法やGC(ガスクロマトグラフィー)法で構成成分の分析を行った場合に、分子量に依存した末端基量を誤差の範囲として、(グループb)の合計モル数に対する(グループa)の合計モル数が1:1であると結論づけられることをいう。
モル比が上記の範囲である場合に、特に、力学特性と流動性のバランスが良好となる。
【0036】
特に、本発明に使用するサーモトロピック液晶樹脂(A)としては、融点が300℃以上であることが好ましい。かかる融点が300℃以上の全芳香族ポリエステル樹脂を用いた場合には、力学特性や流動性に加え、耐熱性レベルが良好となる。
【0037】
次に、本発明に用いる芳香族ポリエステル(B)について説明する。
【0038】
本発明の芳香族ポリエステル(B)は、一般式(1)
【0039】
【化25】
Figure 0004135064
及び/又は一般式(2)
【0040】
【化26】
Figure 0004135064
で示されるポリエステル構造単位を有するポリエステルである。
【0041】
一般式(1)中、Arは芳香環又は複素環である。このArとしては、具体的には、例えばベンゼン環、ナフタレン環、9−オキソフルオレン環、アントラセン環、アントラキノン環、ビフェニレン基、テルフェニル基、クアテルフェニル基、アゾベンゼン基、フラン環、チオフェン環、4H−ピラン環、4−オキソ−4H−ピラン環、ジベンゾフラン環、ジベンゾチオフェン環、キサンテン環、ジベンゾジオキシン環、フェノキサチイン環、チアントレン環、ピロール環、インドール環、カルバゾール環、ピラゾール環、イミダゾール環、ピリジン環、キノリン環、ビピリジン環、ピリミジン環のごとき芳香環もしくは複素環構造のものが挙げられる。
【0042】
、R、R及びR機械的物性及び耐熱性向上の点で、すべて炭素原子数が1〜8のアルキル基であり、このうち炭素原子数が1であるメチル基であるのが特に好ましい。
【0043】
Yは、炭素原子数が1〜8のアルキレン基、酸素原子、硫黄原子、窒素原子およびこれらのヘテロ原子と炭素原子の結合した連結基であるが、成形品の機械的強度等の点で、炭素原子数が1〜8のアルキレン基であるのが好ましい。また、nは繰り返し単位で、整数であるが、20〜2000であるのが好ましい。
【0044】
また一般式(2)中のAr、nは一般式(1)のAr、nと同様である。R、R、R及びR機械的物性及び耐熱性向上の点で、すべて炭素原子数が1〜8のアルキル基であり、このうち炭素原子数が1であるメチル基であるのが最も好ましい。
【0045】
一般式(1)又は一般式(2)中のR、R、R及びRがすべて水素原子である場合は、サーモトロピック液晶樹脂(A)の加工温度として好ましく用いられる250℃〜400℃の範囲では、サーモトロピック液晶樹脂(A)との相溶性が不充分となり、サーモトロピック液晶樹脂(A)と液晶ポリエステル(B)とを含む樹脂組成物を成形せしめてもウエルド特性が改良されなくなる場合が多いので好ましくない。
【0046】
本発明に使用する芳香族ポリエステル(B)は、一般的には芳香族ジカルボン酸及び芳香族ジオールから得られ、分子中に一般式(1)及び一般式(2)のポリエステル構造単位を有するものである。本発明の芳香族ポリエステル(B)は上記構造を有するポリエステル構造単位を有していればよく、本発明の効果を損なわない限り、その他の構造単位を有していてもよい。
【0047】
本発明に使用する芳香族ポリエステル(B)としては、耐熱性の観点から、ガラス転移温度が200℃以上であることが好ましく、特に好ましくは230〜300℃であることである。また芳香族ポリエステル(B)としては、好ましくは重量平均分子量10,000〜1,000,000のものである。
【0048】
上記芳香族ポリエステル構造単位を構成する芳香族ジカルボン酸成分としては、例えば、フタル酸、テレフタル酸、ナフタレンジカルボン酸、9−オキソフルオレンジカルボン酸、アントラセンジカルボン酸、アントラキノンジカルボン酸、ビフェニレンジカルボン酸、テルフェニルジカルボン酸、クアテルフェニルジカルボン酸、アゾベンゼンジカルボン酸、フランジカルボン酸、チオフェンジカルボン酸、4H−ピランジカルボン酸、4−オキソ−4H−ピランジカルボン酸、ジベンゾフランジカルボン酸、ジベンゾチオフェンジカルボン酸、キサンテンジカルボン酸、ジベンゾジオキシンジカルボン酸、フェノキサチインジカルボン酸、チアントレンジカルボン酸、ピロールジカルボン酸、インドールジカルボン酸、カルバゾールジカルボン酸、ピラゾールジカルボン酸、イミダゾールジカルボン酸、ピリジンジカルボン酸、キノリンジカルボン酸、ビピリジンジカルボン酸、ピリミジンジカルボン酸のごときジカルボン酸類が含まれる。このカルボン酸類には、各々の酸エステル誘導体、酸無水物、及び酸ハライド等も含まれる。
【0049】
これらのカルボン酸成分のうち、イソフタル酸類、テレフタル酸及びこれらの誘導体等が好ましく、単独又は併用して用いられる。これらの配合比率としては、芳香族ジカルボン酸構造単位として、モル比で、イソフタル酸成分/テレフタル酸成分=5〜100/95〜0モル%であるのが好ましく、60〜100/40〜0モル%であるのがより好ましい。
【0050】
一方、本発明の芳香族ポリエステル構造単位を構成する芳香族ジオール成分としては、例えば3,3’,5,5’−テトラアルキル−(1,1’−ビフェニル)−4、4’−ジオール (アルキル基は炭素原子数が1〜8)、3,3’−ジアルキル−(1,1’−ビフェニル)−4、4’−ジオール(アルキル基は炭素原子数が1〜8)、2、2’−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2、2’−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、α、α’―ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−1,4−ジイソプロピルベンゼン、ビス(4−ヒドロキシ−3−メチルフェニル)メタン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エーテル、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)スルフィド、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)スルホン、4、4’−ジヒドロキシ−3,3’−ジメチルアゾベンゼン、4、4’−ジヒドロキシ−3,3’, 5,5’−テトラメチルベンゾフェノン等、2つ以上の芳香環を有し、かつ芳香環にアルキル基を1つ以上有したものが挙げられる。
【0051】
これらのうち3,3’,5,5’−テトラアルキル−(1,1’−ビフェニル)−4、4’−ジオール (アルキル基は炭素原子数が1〜8)が好ましく、3,3’,5,5’−テトラメチル−(1,1’−ビフェニル)−4、4’−ジオールが特に好ましい。
【0052】
本発明に用いる芳香族ポリエステル(B)としては、非晶性芳香族ポリエステルが好ましい。芳香族ポリエステル(B)が非晶性樹脂である場合に、特に、サーモトロピック液晶樹脂との相溶性が良好となり、本発明の樹脂組成物のウエルド特性が良好となる。
【0053】
本発明に使用する芳香族ポリエステル(B)は、従来公知の重合法で製造することができる。例えば(1)芳香族ジカルボン酸ジハライドと芳香族ジオールをお互いに相溶しない二種の溶媒に溶解した後、アルカリおよび触媒量の第4級アンモニウム塩などの存在下に2液を混合・撹拌して重縮合反応を行う界面重合法、(2)芳香族ジカルボン酸ジハライドと芳香族ジオールを第3級アミンなどの酸を受容するアルカリ性化合物の存在下、有機溶媒中で反応せしめる溶液重合法、(3)芳香族ジカルボン酸と芳香族ジエステルまたは、芳香族ジカルボン酸ジエステルと芳香族ジオールを原料として溶融状態でエステル交換反応する溶融重合法などが挙げられるが、上記の何れの方法で得られた芳香族ポリエステルでも使用できる。
【0054】
本発明の熱可塑性樹脂組成物は、上述したサーモトロピック液晶樹脂(A)と芳香族ポリエステル(B)とを従来公知の方法で混合することにより得られる。
【0055】
サーモトロピック液晶樹脂(A)と芳香族ポリエステル(B)との混合比はサーモトロピック液晶樹脂(A)と芳香族ポリエステル(B)との重量比が(A)/(B)=99.9〜50/0.1〜50である。成形物の機械的強度などの必要な他の物性とのバランスを考慮すると、より好ましくは(A)/(B)=95〜70/5〜30である。
【0056】
本発明の熱可塑性樹脂組成物は、さらに強化材及び/又は充填材を配合することが好ましい。この強化材及び/又は充填材は、サーモトロピック液晶樹脂(A)と芳香族ポリエステル(B)の合計100重量部に対して、通常0〜400重量部の範囲で配合する事によって強度、剛性、耐熱性、及び寸法安定性を更に向上させることができる。
【0057】
該強化材及び/又は充填材としては、例えばガラス繊維、炭素繊維、ガラスミルドファイバー、ボロン繊維、チタン酸カリウムや酸化亜鉛などのウィスカー類、アルミナ繊維、アスベスト、炭化ケイ素、アラミド繊維、セラミック繊維、金属繊維、石こう繊維、マイカ、タルク、ワラステナイト、セリサイト、カオリン、クレー、ベントナイト、アスベスト、アルミナシリケート、ゼオライト、パイロフィライトなどの珪酸塩や炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、アルミナ、酸化マグネシウム、シリカ、ジルコニア、チタニア、酸化鉄などの金属酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、リン酸カルシウムなどが挙げられる。
【0058】
これらは単独でも2種類以上併用してもよい。またこれらの強化材、充填剤はシラン系やチタン系等のカップリング剤で処理したものでもよい。
【0059】
強化材、充填材は、本発明の熱可塑性樹脂組成物を生成する段階で混練しても、該組成物を生成した後に混練してもよい。この混練は、一般的にこれらは複数のフィード口を持つ1軸または2軸押出し機によって行われる。その後、適当な金型を有する射出成形機等により任意の形状に成形され得る。
【0060】
また、本発明の熱可塑性樹脂組成物には、本発明の目的を逸脱しない範囲で少量の離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、難燃剤、難燃助剤、防錆剤等の従来公知の添加剤を含有せしめることができる。
【0061】
また本発明の熱可塑性樹脂の透明性と耐熱性を損なわない範囲で、耐候性、耐酸化劣化性、帯電防止性を改善するため、各種紫外線吸収剤、酸化防止剤および帯電防止剤を添加することができる。
【0062】
本発明の熱可塑性樹脂組成物は種々の公知の方法により調製することができる。公知の調製方法としては、例えば、原料をあらかじめタンブラーまたはヘンシェルミキサーのような混合機で混合した後、1軸又は2軸の押出機、バンバリーミキサー、ニーダー、ミキシングロールなど通常の溶融混練装置に供給し、該混合物の溶融する温度、およそ200℃から500℃にて溶融混練した後にペレットとする方法などが挙げられる。
【0063】
本発明の熱可塑性樹脂組成物は、サーモトロピック液晶樹脂本来の諸特性を大きく損なうことなく、より優れたウエルド特性を示す樹脂組成物であり、機械的強度、耐熱性、電気特性、耐溶剤性を活かせる用途として、電気、電子部品、機械部品用途に好適である。
またさらに本発明の熱可塑性樹脂組成物は薄肉部を有する、精細な成形品を成形する際に特に有用である。
【0064】
本発明の熱可塑性樹脂組成物は、公知の成形方法で成形することにより、本発明の成形品を得ることができる。公知の成形方法としては、射出成形、押出成形、射出圧縮成形、圧縮成形、吹込成形等挙げられ、これらのうち射出成形が好ましい。
【0065】
本発明の成形品は、機械的強度、耐熱性、電気特性、耐溶剤性等に優れるので、電気、電子部品、機械部品用途が挙げられる。具体的には、例えば、コネクター、コイルボビン、各種ソケット、コンデンサー、バリコン、光ピックアップ、各種端子盤、プラグ類、磁気ヘッドベース、自動車用パイプ類、エアーインテークノズル、インテークマニホールド、キャブレター、ランプソケット、ランプリフレクター、ランプハウジングなどである。
【0066】
【実施例】
以下に、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りがない限り「部」、「%」は「重量部」、「重量%」を表す。
【0067】
後記実施例及び比較例における測定方法は、以下のとおりである。
ウエルド特性:
後記実施例または比較例で得られた熱可塑性樹脂組成物を用いて、図1に示される形状の成形品を、ゲート数を1点(非ウエルド)、2点(ウエルド)と切り換え射出成形した(ゲートは図1の1)。図1に示される形状の成形品は50×50×厚さ1mmのシートで、内部に10mmφのコアピンを用いた非充填部分(図1の2)を設けて熱可塑性樹脂組成物をまわりこませることにより、2点ゲートで成形した場合にウエルドが発生し易いような形状である。次に、各々の成形品より試験片を10mm間隔で切り出し(図1中の破線3で切断)、曲げ強度を測定することにより、ウエルド強度保持率を評価した。ウエルド強度保持率は、(2点ゲートでの曲げ強度/1点ゲートでの曲げ強度×100[%])として算出した。テストピースはテストピース▲1▼(図1の4)、及び、テストピース▲2▼(図1の5)を使用した。後記の表中、W−1、W−2はそれぞれ前記ウエルド強度評価のテストピース▲1▼及び▲2▼のウエルド強度保持率を表す。
融点(以下Tmという):
後記参考例、実施例または比較例で得られたサーモトロピック液晶樹脂(以下LCPという)、熱可塑性樹脂組成物を試験片とし、示差走査熱量計(パーキンエルマー社製DSC7)を用いてJIS K 7121に従って測定した。
荷重たわみ温度(以下HDTという):
後記実施例または比較例で得られたLCPとガラス繊維とをLCP/ガラス繊維=70/30(重量比)でコンパウンドしたものを試験片とし、ASTM D648に従って測定した。
ガラス転移温度(以下Tgという):
後記実施例または比較例で得られた芳香族ポリエステルを成形したものを試験片とし、動的粘弾性の測定からTgを求めた。測定装置は、セイコーインスツルメンツ社製DMS6100を用い、周波数1Hz、昇温速度4℃/分、測定温度範囲20〜270℃にて測定し、得られたtanδのピーク温度をもって、Tgとした。
(参考例1)LCPの合成
ハイドロキノン55.1g(0.5モル)、4,4′−ジヒドロキシビフェニル93.1g(0.5モル)、テレフタル酸116.3g(0.7モル)、2,6−ナフタレンジカルボン酸64.9g(0.3モル)、4−ヒドロキシ安息香酸621.5g(4.5モル)、無水酢酸612.5g(6モル)を冷却器及び撹拌機を備えた反応容器中に仕込み窒素ガス雰囲気下で撹拌しながら昇温し、170℃で60分環流した。続いて副生物の酢酸を除去しながら4時間かけて反応容器を370℃に徐々に上昇させ、そして更に、その温度で反応系を25kPaに減圧した。更にその温度で副生成物の酢酸を除去しながら圧力を2時間にわたって約0.5〜1kPaまで減圧し重合を行った。
次いで、370℃で1時間重合を行った。この間に副生する酢酸を除去しながら、強力な撹拌下で重合させた。その後、系を徐々に冷却し、200℃で得られたLCPを系外へ取出した。このLCPを以下LCP−1という。融点を測定したところ350℃であった。また、荷重たわみ温度を測定したところ258℃であった。
(参考例2)LCPの合成
ハイドロキノン55.1g(0.5モル)、4,4′−ジヒドロキシビフェニル93.1g(0.5モル)、テレフタル酸116.3g(0.7モル)、2,6−ナフタレンジカルボン酸43.3g(0.2モル)、4,4′−ビフェニルジカルボン酸24.2g(0.1モル)、4−ヒドロキシ安息香酸621.5g(4.5モル)、無水酢酸612.5g(6モル)を使用する以外は上記LCP−1と同様に重合を行った。得られたLCPを以下LCP−2という。このLCP−2について、上記同様に測定した融点は365℃、荷重たわみ温度は270℃であった。
(参考例3)LCPの合成
ハイドロキノン110.1g(1モル)、テレフタル酸58.1g(0.35モル)、イソフタル酸58.1g(0.35モル)、2,6−ナフタレンジカルボン酸64.9g(0.3モル)、4−ヒドロキシ安息香酸621.5g(4.5モル)、無水酢酸612.5g(6モル)を使用する以外は上記LCP−1と同様に重合を行った。得られたLCPをLCP−3という。このLCP−3について、上記同様に測定した融点は328℃、荷重たわみ温度は238℃であった。
(参考例4)芳香族ポリエステル(以下PARという)の合成
撹拌翼、窒素導入口を備えた重合装置に3,3’,5,5’−テトラメチル−4,4’−ビフェノール2.41kg(9.8モル)を、水酸化ナトリウム1.0kgを含む30lの脱酸素水に溶解し水溶液を得た。別に、78gのメチルトリオクチルアンモニウムクロライド、イソフタル酸クロリド1.58kg(7.8モル)、テレフタル酸クロリド406g(2.0モル)を5lの脱酸素したトルエンに溶解させ有機溶液を得た。
水溶液を窒素気流下で撹拌しながら、有機溶液を加え、25℃で30分間撹拌を続けた。次いで、水溶液相を傾斜法にて取り除いた。生成物を含む有機溶液相を蒸留水で繰り返し洗浄した後に、アセトン浴に注ぎ沈殿を得た。得られた沈殿を繰り返しアセトンで洗浄してPARを得た。その後、真空乾燥機にて、室温から徐々に加温し最終的に240℃で15分、約400Paの減圧条件下で真空乾燥して3.5kgのPARを得た。このPARを以下PAR−1という。
このPAR−1を30℃のクロロホルム中にて固有粘度を測定したところ0.97dl/gであリ、重量平均分子量は70,000であった。該PAR−1をキャストフィルムにして測定したところ、Tgは270℃であった。
【0068】
実施例1〜6及び比較例1〜6
上記LCP−1、LCP−2、LCP−3、PAR−1及びPAR−2とアミノシランで表面処理を施している10μm径のガラス繊維(以下GFと略称)とを表−1に示すような配合比で、35mmφの2軸押出機にて300〜370℃で溶融混練し、ペレット化した。該ペレットを用い、インラインスクリュー式射出成形機によりシリンダー温度330〜370℃、金型温度130℃、射出圧力80〜100MPa、射出スピード中速にて、厚さ1.6mmの試験片を成形した。上記ペレットのTmを測定し、試験片のHDT及びウエルド強度保持率を測定した。結果を表−1及び表−2に示す。
【0069】
【表1】
表−1
Figure 0004135064
【0070】
【表2】
表−2
Figure 0004135064
*;PAR−2はU−100(ユニチカ株式会社製;4,4’−イソプロピリデンビスフェノールとイソフタル酸及びテレフタル酸からなるポリアリレート、HDTは175℃、Tgは220℃)である。
【発明の効果】
本発明の熱可塑性樹脂組成物は、流動性に優れ、その成形品は耐熱性、剛性、寸法精度、ウエルド強度等に優れるので、電気電子部品、自動車等の幅広い分野で用途に有用である。
【図面の簡単な説明】
【図1】本発明の成形品のウエルド強度を測定する際の成形品の平面図である。
【符号の説明】
1:ゲート(0.5×0.5mm)
2:10mmφコアピンを用いた非充填部分
3:切断ライン
4:テストピース▲1▼
5:テストピース▲2▼[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermotropic liquid crystal resin composition having excellent moldability, heat resistance, and the like, and having excellent weld strength.
[0002]
[Prior art]
Thermotropic liquid crystal resins have recently been gaining importance mainly in relation to electrical and electronic parts due to their excellent fluidity, heat resistance, rigidity, dimensional accuracy, and the like. However, the thermotropic liquid crystal resin has a problem that the weld strength of the molded product is low.
[0003]
In order to increase the weld strength of the molded product, a method of adding various fillers to the thermotropic liquid crystal resin, a method of melt blending other resins, and a method of adding additives have been proposed. While the heat resistance of the tropic liquid crystal resin is lowered, the moldability is lowered, the weld strength is insufficient, the mechanical strength is lowered, and the above properties of the thermotropic liquid crystal resin are maintained practically. There was no way to improve weld strength.
[0004]
[Problems to be solved by the invention]
The present invention provides a thermotropic liquid crystal resin composition that can improve the weld strength and can be used in a wide range of applications while maintaining the excellent fluidity, heat resistance, rigidity, dimensional accuracy and other physical properties of the thermotropic liquid crystal resin. For the purpose.
[0005]
[Means for Solving the Problems]
As a result of intensive studies aimed at solving the above problems, the present inventors have reached the present invention.
That is, the present invention relates to a thermotropic liquid crystal resin (A) and a molecule represented by the general formula (1)
[Chemical 6]
Figure 0004135064
(In the formula, Ar is an aromatic ring or a heterocyclic ring. Y is an alkylene group having 1 to 8 carbon atoms, an oxygen atom, a sulfur atom, a nitrogen atom, or a linking group in which these hetero atoms and carbon atoms are bonded. is. also, n represents a repeating unit, an integer .R 1, R 2, R 3 and R 4 is an alkyl group having 1 to 8 carbon atoms, are identical to each other.)
And / or general formula (2)
[Chemical 7]
Figure 0004135064
(In the formula, Ar .n an aromatic ring or a heterocyclic ring in the repeating unit, .R 1, R 2, R 3 and R 4 are integers, the number of carbon atoms be 8 alkyl group Are the same as each other.)
A thermoplastic resin composition comprising an aromatic polyester (B) having a polyester structural unit represented by Moreover, the molded article formed by shape | molding the said thermoplastic resin composition is provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0007]
The thermotropic liquid crystal resin (A) used in the present invention is not particularly limited, but is a resin that can form anisotropy when melted. Examples thereof include liquid crystal polyester, liquid crystal polyester amide, liquid crystal polyester carbonate, and liquid crystal polyester elastomer. Among them, liquid crystal polyester is preferably used.
Hereinafter, the liquid crystal polyester resin will be described.
[0008]
The liquid crystal polyester resin is a resin that forms an anisotropic molten phase at a temperature of 400 ° C. or less. Specifically, for example, (1) an aromatic dicarboxylic acid, an aromatic diol, and an aromatic hydroxycarboxylic acid are reacted. (2) obtained by reacting different kinds of aromatic hydroxycarboxylic acids, (3) obtained by reacting an aromatic dicarboxylic acid and a nucleus-substituted aromatic diol, (4) polyethylene terephthalate, etc. And those obtained by reacting an aromatic hydroxycarboxylic acid with this polyester. Further, instead of the above aromatic dicarboxylic acid, aromatic diol, and aromatic hydroxycarboxylic acid, their ester-forming derivatives may be used.
[0009]
As the repeating polyester structural unit of the liquid crystal polyester resin used in the present invention, the following repeating structural unit derived from the aromatic dicarboxylic acid, the repeating structural unit derived from the aromatic diol, the repeating structural unit derived from the aromatic hydroxycarboxylic acid However, the present invention is not limited to these examples.
[0010]
Examples of the repeating polyester structural unit derived from the aromatic dicarboxylic acid include the following structures.
[0011]
[Chemical 8]
Figure 0004135064
(Wherein X1 represents a halogen atom, an alkyl group or an aryl group)
[0012]
[Chemical 9]
Figure 0004135064
Moreover, the following structures are mentioned as an example of the repeating polyester structural unit derived from aromatic diol.
[0013]
[Chemical Formula 10]
Figure 0004135064
(Wherein X1 represents a halogen atom, an alkyl group or an aryl group)
[0014]
Embedded image
Figure 0004135064
(Wherein X2 represents a halogen atom or an alkyl group)
[0015]
Embedded image
Figure 0004135064
[0016]
Further, examples of the repeating structural unit derived from the aromatic hydroxycarboxylic acid include the following structures.
[0017]
Embedded image
Figure 0004135064
(Wherein X2 represents a halogen atom or an alkyl group)
[0018]
Embedded image
Figure 0004135064
[0019]
The thermotropic liquid crystal resin (A) used in the present invention is preferably a liquid crystal polyester resin containing a repeating polyester structural unit represented by the following structural formula [1] from the balance of heat resistance, mechanical properties, workability and the like.
[0020]
Embedded image
Figure 0004135064
[0021]
Examples of the liquid crystal polyester resin containing the above repeating structural unit [1] include liquid crystal polyester resins {circle around (1)} to {circle around (7)} containing combinations of the following repeating units. Note that the present invention is not limited to these examples.
[0022]
Embedded image
Figure 0004135064
[0023]
Embedded image
Figure 0004135064
[0024]
Embedded image
Figure 0004135064
[0025]
Embedded image
Figure 0004135064
[0026]
Embedded image
Figure 0004135064
[0027]
Embedded image
Figure 0004135064
[0028]
Embedded image
Figure 0004135064
[0029]
Examples of the method for producing the liquid crystal polyester resins (1) to (7) used in the present invention include, for example, Japanese Patent Publication No. 47-47870, Japanese Patent Publication No. 63-3888, Japanese Patent Publication No. 63-3891, and Japanese Patent Publication No. 56. -18016, JP-B-2-51523, JP-B-7-47625 and the like. Among these, a combination of (1) to (3) is preferable, and a combination of (1) and (2) is more preferable.
[0030]
The liquid crystal polyester resin preferably further has the following (group a) and / or (group b) repeating units.
(Group a) has the following structural formula [2] and / or structural formula [3].
[0031]
Embedded image
Figure 0004135064
[0032]
A repeating unit consisting of
(Group b) includes the following structural formula [4], structural formula [5], structural formula [6], and structural formula [7].
[0033]
Embedded image
Figure 0004135064
It is a repeating unit consisting of one or more structural formulas selected from the group consisting of:
[0034]
With respect to the above (Group a), the repeating unit consisting of the structural formula [2] and the repeating unit consisting of the structural formula [3] are structural formula [3] / structural formula in terms of molar ratio in terms of fluidity during processing. [2] = 0 to 1.5 is preferable.
For the above (Group b), the repeating unit consisting of the structural formula [4], the repeating unit consisting of the structural formula [5], the repeating unit consisting of the structural formula [6] and the repeating unit consisting of the structural formula [7] are: From the viewpoint of fluidity during processing, it is preferable that [structural formula [4] + structural formula [5]] / [structural formula [6] + structural formula [7]] is in the range of 1 to 10 in terms of molar ratio. .
[0035]
The total number of moles of the (group a) to the total number of moles of the (group b) is substantially 1: 1, and the structural formula [5] / structural formula [4] is in the range of 0 to 2 molar ratio. The structural formula [7] / structural formula [6] is preferably in the range of 0 to 2 molar ratio, and the structural formula [1] / (group a) is in the range of 1 to 6 in molar ratio. It is preferable that Here, “the total number of moles of the (group a) relative to the total number of moles of the (group b) is substantially 1: 1” means that the polyester is hydrolyzed using, for example, an alkali represented by NaOH. And / or solvolysis, and analysis of components by NMR (nuclear magnetic resonance) method or GC (gas chromatography) method, the end group amount depending on the molecular weight is considered as the error range (Group It means that it is concluded that the total number of moles of (Group a) is 1: 1 with respect to the total number of moles of b).
When the molar ratio is in the above range, the balance between mechanical properties and fluidity is particularly good.
[0036]
In particular, the thermotropic liquid crystal resin (A) used in the present invention preferably has a melting point of 300 ° C. or higher. When a wholly aromatic polyester resin having a melting point of 300 ° C. or higher is used, the heat resistance level is good in addition to the mechanical properties and fluidity.
[0037]
Next, the aromatic polyester (B) used in the present invention will be described.
[0038]
The aromatic polyester (B) of the present invention has the general formula (1)
[0039]
Embedded image
Figure 0004135064
And / or general formula (2)
[0040]
Embedded image
Figure 0004135064
It is polyester which has a polyester structural unit shown by these.
[0041]
In general formula (1), Ar is an aromatic ring or a heterocyclic ring. Specific examples of Ar include, for example, a benzene ring, naphthalene ring, 9-oxofluorene ring, anthracene ring, anthraquinone ring, biphenylene group, terphenyl group, quaterphenyl group, azobenzene group, furan ring, thiophene ring, 4H-pyran ring, 4-oxo-4H-pyran ring, dibenzofuran ring, dibenzothiophene ring, xanthene ring, dibenzodioxin ring, phenoxathiin ring, thianthrene ring, pyrrole ring, indole ring, carbazole ring, pyrazole ring, imidazole ring , A pyridine ring, a quinoline ring, a bipyridine ring, a pyrimidine ring, or an aromatic ring or a heterocyclic ring structure.
[0042]
R 1, R 2, R 3 and R 4 are, in terms of mechanical properties and heat resistance improver, all Ri alkyl group der of 1-8 carbon atoms, a methyl group Among the number of carbon atoms is 1 Is particularly preferred.
[0043]
Y is an alkylene group having 1 to 8 carbon atoms, an oxygen atom, a sulfur atom, a nitrogen atom, and a linking group in which these hetero atoms and carbon atoms are bonded, but in terms of mechanical strength of the molded article, It is preferably an alkylene group having 1 to 8 carbon atoms. N is a repeating unit and is an integer, preferably 20-2000.
[0044]
Ar and n in the general formula (2) are the same as Ar and n in the general formula (1). R 1, R 2, R 3 and R 4 are, in terms of mechanical properties and heat resistance improver, all Ri alkyl group der of 1-8 carbon atoms, a methyl group Among the number of carbon atoms is 1 Most preferably.
[0045]
When R 1 , R 2 , R 3 and R 4 in general formula (1) or general formula (2) are all hydrogen atoms, 250 ° C. to preferably used as the processing temperature of the thermotropic liquid crystal resin (A) In the range of 400 ° C, the compatibility with the thermotropic liquid crystal resin (A) becomes insufficient, and the weld characteristics are improved even if a resin composition containing the thermotropic liquid crystal resin (A) and the liquid crystal polyester (B) is molded. This is not preferable because it is often not performed.
[0046]
The aromatic polyester (B) used in the present invention is generally obtained from an aromatic dicarboxylic acid and an aromatic diol, and has a polyester structural unit of the general formula (1) and general formula (2) in the molecule. It is. The aromatic polyester (B) of this invention should just have the polyester structural unit which has the said structure, and may have another structural unit, unless the effect of this invention is impaired.
[0047]
As aromatic polyester (B) used for this invention, it is preferable that a glass transition temperature is 200 degreeC or more from a heat resistant viewpoint, Most preferably, it is 230-300 degreeC. The aromatic polyester (B) preferably has a weight average molecular weight of 10,000 to 1,000,000.
[0048]
Examples of the aromatic dicarboxylic acid component constituting the aromatic polyester structural unit include phthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 9-oxofluorenedicarboxylic acid, anthracene dicarboxylic acid, anthraquinone dicarboxylic acid, biphenylene dicarboxylic acid, and terphenyl. Dicarboxylic acid, quaterphenyl dicarboxylic acid, azobenzene dicarboxylic acid, furandicarboxylic acid, thiophene dicarboxylic acid, 4H-pyran dicarboxylic acid, 4-oxo-4H-pyran dicarboxylic acid, dibenzofurandicarboxylic acid, dibenzothiophene dicarboxylic acid, xanthene dicarboxylic acid, Dibenzodioxin dicarboxylic acid, phenoxathiin dicarboxylic acid, thianthylene dicarboxylic acid, pyrrole dicarboxylic acid, indole dicarboxylic acid, carbazole dica Bon acid, pyrazole dicarboxylic acids, imidazole dicarboxylic acid, pyridine-dicarboxylic acid, quinoline dicarboxylic acid, bipyridine dicarboxylic acids include dicarboxylic acids such as pyrimidine dicarboxylic acid. These carboxylic acids include each acid ester derivative, acid anhydride, acid halide and the like.
[0049]
Of these carboxylic acid components, isophthalic acids, terephthalic acid, and derivatives thereof are preferable, and are used alone or in combination. As these compounding ratios, as an aromatic dicarboxylic acid structural unit, the molar ratio is preferably isophthalic acid component / terephthalic acid component = 5-100 / 95-0 mol%, preferably 60-100 / 40-0 mol. % Is more preferred.
[0050]
On the other hand, as the aromatic diol component constituting the aromatic polyester structural unit of the present invention, for example, 3,3 ′, 5,5′-tetraalkyl- (1,1′-biphenyl) -4, 4′-diol ( The alkyl group has 1 to 8 carbon atoms), 3,3′-dialkyl- (1,1′-biphenyl) -4,4′-diol (the alkyl group has 1 to 8 carbon atoms), 2, 2 '-Bis (4-hydroxy-3-methylphenyl) propane, 2,2'-bis (4-hydroxy-3-ethylphenyl) propane, α, α'-bis (4-hydroxy-3,5-dimethylphenyl) ) -1,4-diisopropylbenzene, bis (4-hydroxy-3-methylphenyl) methane, bis (4-hydroxy-3,5-dimethylphenyl) ether, bis (4-hydroxy-3,5-dimethylphenyl) Sulfide, Bis (4-hydroxy-3,5-dimethylphenyl) sulfone, 4,4′-dihydroxy-3,3′-dimethylazobenzene, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbenzophenone And those having two or more aromatic rings and one or more alkyl groups in the aromatic ring.
[0051]
Of these, 3,3 ′, 5,5′-tetraalkyl- (1,1′-biphenyl) -4,4′-diol (the alkyl group has 1 to 8 carbon atoms) is preferred, and 3,3 ′ , 5,5′-tetramethyl- (1,1′-biphenyl) -4,4′-diol is particularly preferred.
[0052]
As the aromatic polyester (B) used in the present invention, an amorphous aromatic polyester is preferable. When the aromatic polyester (B) is an amorphous resin, the compatibility with the thermotropic liquid crystal resin is particularly good, and the weld characteristics of the resin composition of the present invention are good.
[0053]
The aromatic polyester (B) used in the present invention can be produced by a conventionally known polymerization method. For example, (1) after dissolving an aromatic dicarboxylic acid dihalide and an aromatic diol in two kinds of solvents that are not compatible with each other, the two liquids are mixed and stirred in the presence of an alkali and a catalytic amount of a quaternary ammonium salt. (2) solution polymerization in which an aromatic dicarboxylic acid dihalide and an aromatic diol are reacted in an organic solvent in the presence of an alkaline compound that accepts an acid such as a tertiary amine, ( 3) A melt polymerization method in which a transesterification reaction is performed in a molten state using an aromatic dicarboxylic acid and an aromatic diester, or an aromatic dicarboxylic acid diester and an aromatic diol as raw materials, and the fragrance obtained by any of the above methods. It is also possible to use a group polyester.
[0054]
The thermoplastic resin composition of the present invention can be obtained by mixing the above-described thermotropic liquid crystal resin (A) and aromatic polyester (B) by a conventionally known method.
[0055]
The mixing ratio of the thermotropic liquid crystal resin (A) to the aromatic polyester (B) is such that the weight ratio of the thermotropic liquid crystal resin (A) to the aromatic polyester (B) is (A) / (B) = 99.9. -50 / 0.1-50. In consideration of balance with other necessary physical properties such as mechanical strength of the molded product, (A) / (B) = 95 to 70/5 to 30 is more preferable.
[0056]
The thermoplastic resin composition of the present invention preferably further contains a reinforcing material and / or a filler. This reinforcing material and / or filler is usually added in a range of 0 to 400 parts by weight with respect to a total of 100 parts by weight of the thermotropic liquid crystal resin (A) and the aromatic polyester (B). Heat resistance and dimensional stability can be further improved.
[0057]
Examples of the reinforcing material and / or filler include glass fiber, carbon fiber, glass milled fiber, boron fiber, whiskers such as potassium titanate and zinc oxide, alumina fiber, asbestos, silicon carbide, aramid fiber, ceramic fiber, Metal fiber, gypsum fiber, mica, talc, wollastonite, sericite, kaolin, clay, bentonite, asbestos, alumina silicate, zeolite, pyrophyllite and other silicates, calcium carbonate, magnesium carbonate, dolomite and other carbonates, sulfuric acid Examples thereof include sulfates such as calcium and barium sulfate, metal oxides such as alumina, magnesium oxide, silica, zirconia, titania and iron oxide, glass beads, ceramic beads, boron nitride, silicon carbide, and calcium phosphate.
[0058]
These may be used alone or in combination of two or more. These reinforcing materials and fillers may be treated with a coupling agent such as silane or titanium.
[0059]
The reinforcing material and the filler may be kneaded at the stage of producing the thermoplastic resin composition of the present invention, or may be kneaded after producing the composition. This kneading is generally performed by a single or twin screw extruder having a plurality of feed ports. Thereafter, it can be molded into an arbitrary shape by an injection molding machine having an appropriate mold.
[0060]
Further, the thermoplastic resin composition of the present invention contains a small amount of a release agent, a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a flame retardant, a flame retardant aid without departing from the object of the present invention, Conventionally known additives such as rust preventives can be contained.
[0061]
In addition, various ultraviolet absorbers, antioxidants and antistatic agents are added in order to improve the weather resistance, oxidation deterioration resistance and antistatic properties within the range that does not impair the transparency and heat resistance of the thermoplastic resin of the present invention. be able to.
[0062]
The thermoplastic resin composition of the present invention can be prepared by various known methods. As a known preparation method, for example, the raw materials are mixed in advance with a mixer such as a tumbler or a Henschel mixer, and then supplied to a normal melt-kneading apparatus such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll. And a method of forming a pellet after melting and kneading at a temperature at which the mixture melts, approximately 200 ° C. to 500 ° C., and the like.
[0063]
The thermoplastic resin composition of the present invention is a resin composition that exhibits superior weld properties without significantly detracting from the properties inherent in the thermotropic liquid crystal resin, and has mechanical strength, heat resistance, electrical properties, and solvent resistance. It is suitable for electrical, electronic parts, and machine parts as applications that can make the best use of.
Furthermore, the thermoplastic resin composition of the present invention is particularly useful when molding a fine molded product having a thin portion.
[0064]
The molded product of the present invention can be obtained by molding the thermoplastic resin composition of the present invention by a known molding method. Known molding methods include injection molding, extrusion molding, injection compression molding, compression molding, blow molding, and the like. Of these, injection molding is preferred.
[0065]
Since the molded article of the present invention is excellent in mechanical strength, heat resistance, electrical properties, solvent resistance, etc., it can be used for electrical, electronic parts and mechanical parts. Specifically, for example, connectors, coil bobbins, various sockets, capacitors, variable capacitors, optical pickups, various terminal boards, plugs, magnetic head bases, automotive pipes, air intake nozzles, intake manifolds, carburetors, lamp sockets, lamps Reflectors, lamp housings, etc.
[0066]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Unless otherwise specified, “part” and “%” represent “part by weight” and “% by weight”.
[0067]
The measuring methods in Examples and Comparative Examples described later are as follows.
Weld characteristics:
Using the thermoplastic resin compositions obtained in Examples or Comparative Examples described later, the molded product having the shape shown in FIG. 1 was injection-molded by switching the number of gates to 1 point (non-weld) and 2 points (weld). (The gate is 1 in FIG. 1). The molded product having the shape shown in FIG. 1 is a sheet of 50 × 50 × 1 mm thickness, and an unfilled portion (2 in FIG. 1) using a core pin of 10 mmφ is provided inside to surround the thermoplastic resin composition. Thus, the shape is such that welds are likely to occur when molding is performed with a two-point gate. Next, a test piece was cut out from each molded article at intervals of 10 mm (cut by broken line 3 in FIG. 1), and the bending strength was measured to evaluate the weld strength retention rate. The weld strength retention was calculated as (bending strength at two-point gate / bending strength at one-point gate × 100 [%]). Test pieces (1) (4 in FIG. 1) and test pieces (2) (5 in FIG. 1) were used. In the tables described later, W-1 and W-2 represent weld strength retention rates of the test pieces {circle around (1)} and {circle around (2)}, respectively.
Melting point (hereinafter referred to as Tm):
JIS K 7121 using a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer Co., Ltd.) using the thermotropic liquid crystal resin (hereinafter referred to as LCP) and a thermoplastic resin composition obtained in Reference Examples, Examples or Comparative Examples described later as test pieces. Measured according to
Deflection temperature under load (hereinafter referred to as HDT):
A compound obtained by compounding LCP and glass fiber obtained in Examples or Comparative Examples described later at LCP / glass fiber = 70/30 (weight ratio) was used as a test piece, and measured according to ASTM D648.
Glass transition temperature (hereinafter referred to as Tg):
Tg was calculated | required from the measurement of dynamic viscoelasticity using what shape | molded the aromatic polyester obtained by the postscript Example or the comparative example as a test piece. The measuring apparatus used was a DMS6100 manufactured by Seiko Instruments Inc., measured at a frequency of 1 Hz, a temperature rising rate of 4 ° C./min, and a measurement temperature range of 20 to 270 ° C. The peak temperature of the obtained tan δ was defined as Tg.
Reference Example 1 Synthesis of LCP Hydroquinone 55.1 g (0.5 mol), 4,4'-dihydroxybiphenyl 93.1 g (0.5 mol), terephthalic acid 116.3 g (0.7 mol), 2, 64.9 g (0.3 mol) of 6-naphthalenedicarboxylic acid, 621.5 g (4.5 mol) of 4-hydroxybenzoic acid, 612.5 g (6 mol) of acetic anhydride and equipped with a condenser and a stirrer The mixture was charged with heating under stirring in a nitrogen gas atmosphere and refluxed at 170 ° C. for 60 minutes. Subsequently, while removing the by-product acetic acid, the reaction vessel was gradually raised to 370 ° C. over 4 hours, and the reaction system was depressurized to 25 kPa at that temperature. Further, the polymerization was carried out by reducing the pressure to about 0.5 to 1 kPa over 2 hours while removing the by-product acetic acid at that temperature.
Subsequently, polymerization was performed at 370 ° C. for 1 hour. Polymerization was performed under strong stirring while removing acetic acid by-produced during this period. Thereafter, the system was gradually cooled, and the LCP obtained at 200 ° C. was taken out of the system. This LCP is hereinafter referred to as LCP-1. It was 350 degreeC when melting | fusing point was measured. Moreover, it was 258 degreeC when the deflection temperature under load was measured.
Reference Example 2 Synthesis of LCP Hydroquinone 55.1 g (0.5 mol), 4,4'-dihydroxybiphenyl 93.1 g (0.5 mol), terephthalic acid 116.3 g (0.7 mol), 2, 6-naphthalenedicarboxylic acid 43.3 g (0.2 mol), 4,4'-biphenyldicarboxylic acid 24.2 g (0.1 mol), 4-hydroxybenzoic acid 621.5 g (4.5 mol), acetic anhydride Polymerization was carried out in the same manner as LCP-1 except that 612.5 g (6 mol) was used. The obtained LCP is hereinafter referred to as LCP-2. For this LCP-2, the melting point measured in the same manner as above was 365 ° C., and the deflection temperature under load was 270 ° C.
Reference Example 3 Synthesis of LCP Hydroquinone 110.1 g (1 mol), terephthalic acid 58.1 g (0.35 mol), isophthalic acid 58.1 g (0.35 mol), 2,6-naphthalenedicarboxylic acid 64. Polymerization was carried out in the same manner as LCP-1 except that 9 g (0.3 mol), 621.5 g (4.5 mol) of 4-hydroxybenzoic acid, and 612.5 g (6 mol) of acetic anhydride were used. The obtained LCP is referred to as LCP-3. Regarding this LCP-3, the melting point measured in the same manner as above was 328 ° C., and the deflection temperature under load was 238 ° C.
(Reference Example 4) Synthesis of aromatic polyester (hereinafter referred to as PAR) 2.41 kg of 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol in a polymerization apparatus equipped with a stirring blade and a nitrogen inlet ( 9.8 mol) was dissolved in 30 l of deoxygenated water containing 1.0 kg of sodium hydroxide to obtain an aqueous solution. Separately, 78 g of methyltrioctylammonium chloride, 1.58 kg (7.8 mol) of isophthalic acid chloride, and 406 g (2.0 mol) of terephthalic acid chloride were dissolved in 5 l of deoxygenated toluene to obtain an organic solution.
The organic solution was added while stirring the aqueous solution under a nitrogen stream, and stirring was continued at 25 ° C. for 30 minutes. Subsequently, the aqueous phase was removed by the gradient method. The organic solution phase containing the product was washed repeatedly with distilled water and then poured into an acetone bath to obtain a precipitate. The obtained precipitate was repeatedly washed with acetone to obtain PAR. Thereafter, the mixture was gradually warmed from room temperature in a vacuum dryer and finally dried under vacuum at 240 ° C. for 15 minutes under a reduced pressure of about 400 Pa to obtain 3.5 kg of PAR. This PAR is hereinafter referred to as PAR-1.
When the intrinsic viscosity of this PAR-1 was measured in chloroform at 30 ° C., it was 0.97 dl / g and the weight average molecular weight was 70,000. When the PAR-1 was measured using a cast film, the Tg was 270 ° C.
[0068]
Examples 1-6 and Comparative Examples 1-6
The above LCP-1, LCP-2, LCP-3, PAR-1 and PAR-2 and a glass fiber having a diameter of 10 μm (hereinafter abbreviated as GF) and surface-treated with aminosilane are blended as shown in Table 1. The mixture was melt kneaded at 300 to 370 ° C. in a 35 mmφ twin screw extruder and pelletized. Using the pellet, a test piece having a thickness of 1.6 mm was molded by an in-line screw injection molding machine at a cylinder temperature of 330 to 370 ° C., a mold temperature of 130 ° C., an injection pressure of 80 to 100 MPa, and an injection speed of medium speed. Tm of the pellet was measured, and HDT and weld strength retention of the test piece were measured. The results are shown in Table-1 and Table-2.
[0069]
[Table 1]
Table-1
Figure 0004135064
[0070]
[Table 2]
Table-2
Figure 0004135064
* PAR-2 is U-100 (manufactured by Unitika Ltd .; polyarylate comprising 4,4′-isopropylidenebisphenol, isophthalic acid and terephthalic acid, HDT is 175 ° C., Tg is 220 ° C.).
【The invention's effect】
The thermoplastic resin composition of the present invention is excellent in fluidity, and the molded product is excellent in heat resistance, rigidity, dimensional accuracy, weld strength, etc., and thus is useful for applications in a wide range of fields such as electric and electronic parts and automobiles.
[Brief description of the drawings]
FIG. 1 is a plan view of a molded product when measuring the weld strength of the molded product of the present invention.
[Explanation of symbols]
1: Gate (0.5 x 0.5 mm)
2: Unfilled portion using 10 mmφ core pin 3: Cutting line 4: Test piece (1)
5: Test piece (2)

Claims (11)

サーモトロピック液晶樹脂(A)と分子中に一般式(1)
Figure 0004135064
(式中、Arは芳香族環又は複素環である。Yは、炭素原子数が1〜8のアルキレン基、酸素原子、硫黄原子、窒素原子またはこれらのヘテロ原子と炭素原子の結合した連結基である。また、nは繰り返し単位で、整数である。R、R、R及びR炭素原子数が1〜8のアルキル基であり、互いに同一のものである。)
及び/又は一般式(2)
Figure 0004135064
(式中、Arは芳香族環又は複素環である。nは繰り返し単位で、整数である。R、R、R及びR炭素原子数が1〜8のアルキル基であり、互いに同一のものである。)
で示されるポリエステル構造単位を有する芳香族ポリエステル(B)とを、サーモトロピック液晶樹脂(A)と芳香族ポリエステル(B)との重量割合が、(A)/(B)=99.9〜50/0.1〜50となる割合で含んでなる熱可塑性樹脂組成物。
Thermotropic liquid crystal resin (A) and general formula (1) in the molecule
Figure 0004135064
(In the formula, Ar is an aromatic ring or a heterocyclic ring. Y is an alkylene group having 1 to 8 carbon atoms, an oxygen atom, a sulfur atom, a nitrogen atom, or a linking group in which these hetero atoms and carbon atoms are bonded. is. also, n represents a repeating unit, an integer .R 1, R 2, R 3 and R 4 is an alkyl group having 1 to 8 carbon atoms, are identical to each other.)
And / or general formula (2)
Figure 0004135064
(In the formula, Ar .n an aromatic ring or a heterocyclic ring in the repeating unit, .R 1, R 2, R 3 and R 4 are integers, the number of carbon atoms be 8 alkyl group Are the same as each other.)
The weight ratio of the thermotropic liquid crystal resin (A) and the aromatic polyester (B) to the aromatic polyester (B) having the polyester structural unit represented by (A) / (B) = 99.9-50 Thermoplastic resin composition comprising at a ratio of 0.1 / 50 .
、R、R及びRがメチル基である請求項記載の熱可塑性樹脂組成物。R 1, R 2, R 3 and claim 1 thermoplastic resin composition according R 4 is a methyl group. 一般式(1)及び/又は一般式(2)におけるポリエステル構造単位中のジカルボン酸単位が、イソフタル酸及び/又はテレフタル酸である請求項1〜のいずれか一項に記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to any one of claims 1 to 2 , wherein the dicarboxylic acid unit in the polyester structural unit in the general formula (1) and / or the general formula (2) is isophthalic acid and / or terephthalic acid. object. 芳香族ポリエステル(B)のガラス転移点が200℃以上である請求項1〜のいずれか一項に記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to any one of claims 1 to 3 , wherein the glass transition point of the aromatic polyester (B) is 200 ° C or higher. サーモトロピック液晶樹脂(A)の融点が300℃以上であるこる請求項1〜のいずれか一項に記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to any one of claims 1 to 4 , wherein a melting point of the thermotropic liquid crystal resin (A) is 300 ° C or higher. サーモトロピック液晶樹脂(A)が、構造式[1]
Figure 0004135064
で表される繰り返し構造単位を有する液晶ポリエステル樹脂である請求項1〜のいずれか一項に記載の熱可塑性樹脂組成物。
The thermotropic liquid crystal resin (A) has the structural formula [1]
Figure 0004135064
The thermoplastic resin composition according to any one of claims 1 to 5 which is a liquid crystal polyester resin having a represented by repeating structural units in.
サーモトロピック液晶樹脂(A)が、さらに(グループa)及び/又は(グループb)からなる繰り返し単位を有する液晶ポリエステル樹脂であり、(グループa)が構造式[2]及び/又は構造式[3]で表される繰り返し単位であり、
Figure 0004135064
(グループb)が構造式[4]、構造式[5]、構造式[6]及び構造式[7]からなる群から選ばれる1種以上の構造式で表される繰り返し単位である、
Figure 0004135064
請求項1〜のいずれかに記載の熱可塑性樹脂組成物。
The thermotropic liquid crystal resin (A) is a liquid crystal polyester resin further having a repeating unit composed of (Group a) and / or (Group b), and (Group a) is represented by Structural Formula [2] and / or Structural Formula [3 ] Is a repeating unit represented by
Figure 0004135064
(Group b) is a repeating unit represented by one or more structural formulas selected from the group consisting of Structural Formula [4], Structural Formula [5], Structural Formula [6] and Structural Formula [7].
Figure 0004135064
The thermoplastic resin composition in any one of Claims 1-6 .
前記構造式の繰り返し単位が、モル比で構造式[3]/構造式[2]=0〜1.5の範囲であり、〔構造式[4]+構造式[5]〕/〔構造式[6]+構造式[7]〕=1〜10の範囲である請求項に記載の熱可塑性樹脂組成物。The repeating unit of the structural formula is in the range of structural formula [3] / structural formula [2] = 0 to 1.5 in molar ratio, [structural formula [4] + structural formula [5]] / [structural formula The thermoplastic resin composition according to claim 7 , wherein [6] + structural formula [7]] = 1-10. 前記(グループb)の合計モル数に対する前記(グループa)の合計モル数が実質的に1:1であり、さらに前記構造式[1]/前記(グループa)=1〜6モル比の範囲であり、かつ構造式[5]/構造式[4]=0〜2モル比の範囲であり、構造式[7]/構造式[6]=0〜2モル比の範囲である請求項又はに記載の熱可塑性樹脂組成物。The total number of moles of the (group a) to the total number of moles of the (group b) is substantially 1: 1, and the range of the structural formula [1] / (the group a) = 1 to 6 mole ratio , and the and the range of the structural formula [5] / structural formula [4] = 0-2 molar ratio, the structural formula [7] / structural formula [6] = 7. ranges from 0 to 2 molar ratio or the thermoplastic resin composition according to 8. さらに強化材及び/又は充填材(C)を含んでなる請求項1〜のいずれか一項に記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to any one of claims 1 to 9 , further comprising a reinforcing material and / or a filler (C). 請求項1〜10のいずれか一項に記載の熱可塑性樹脂組成物を成形してなる成形品。The molded article formed by shape | molding the thermoplastic resin composition as described in any one of Claims 1-10 .
JP2002164157A 2002-06-05 2002-06-05 Thermoplastic resin composition Expired - Fee Related JP4135064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164157A JP4135064B2 (en) 2002-06-05 2002-06-05 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164157A JP4135064B2 (en) 2002-06-05 2002-06-05 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2004010702A JP2004010702A (en) 2004-01-15
JP4135064B2 true JP4135064B2 (en) 2008-08-20

Family

ID=30432383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164157A Expired - Fee Related JP4135064B2 (en) 2002-06-05 2002-06-05 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP4135064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230074570A (en) 2020-10-28 2023-05-30 에네오스 가부시키가이샤 Method for improving adhesive strength of resin molded products to adhesives and composites with improved adhesive strength

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175834B2 (en) * 2019-04-16 2022-11-21 上野製薬株式会社 liquid crystal polyester resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230074570A (en) 2020-10-28 2023-05-30 에네오스 가부시키가이샤 Method for improving adhesive strength of resin molded products to adhesives and composites with improved adhesive strength

Also Published As

Publication number Publication date
JP2004010702A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4702501B2 (en) Liquid crystal polymer and method for producing the same
KR101750565B1 (en) Liquid-crystalline polymer composition and molded article thereof
EP0394933B1 (en) Polyphenylene sulfide resin composition
JP7267257B2 (en) Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition and molded article
JP2505411B2 (en) Resin composition exhibiting anisotropy when melted
JP4129674B2 (en) Method for producing polyarylene sulfide copolymer
JP2009108190A (en) Wholly aromatic liquid crystal polyester
WO2005033177A1 (en) Liquid-crystal polyester resin
JPS62132933A (en) Novel full-aromatic liquid crystal polyesterimide and its production
US5543474A (en) Resin composition
JP3111662B2 (en) Liquid crystal polyester resin composition
JP4135064B2 (en) Thermoplastic resin composition
JPH05170907A (en) Production of carboxyl group-containing polyphenylene sulfide
JP4035861B2 (en) Aromatic polyester composition
EP4028450B1 (en) Polyamide-imide polymer and process for its manufacture
JP2004182754A (en) Polyarylene sulfide resin composition
JP3512040B2 (en) Resin composition
JP3419038B2 (en) Thermoplastic resin composition
JPH05171044A (en) Resin composition
JPH0539410A (en) Resin composition
JPH0694504B2 (en) Copolyester amide
JP2503534B2 (en) Resin composition for connectors
JPH0641430A (en) Polyphenylene sulfide resin composition
JP2755339B2 (en) Thermoplastic resin composition
JP4013119B2 (en) Resin composition and molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees