[go: up one dir, main page]

JP4133465B2 - Hydroform processing method - Google Patents

Hydroform processing method Download PDF

Info

Publication number
JP4133465B2
JP4133465B2 JP2003063197A JP2003063197A JP4133465B2 JP 4133465 B2 JP4133465 B2 JP 4133465B2 JP 2003063197 A JP2003063197 A JP 2003063197A JP 2003063197 A JP2003063197 A JP 2003063197A JP 4133465 B2 JP4133465 B2 JP 4133465B2
Authority
JP
Japan
Prior art keywords
tube
hydroforming
diameter
metal tube
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003063197A
Other languages
Japanese (ja)
Other versions
JP2004268096A (en
Inventor
正昭 水村
幸久 栗山
敬之助 井口
逸朗 弘重
浩一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003063197A priority Critical patent/JP4133465B2/en
Publication of JP2004268096A publication Critical patent/JP2004268096A/en
Application granted granted Critical
Publication of JP4133465B2 publication Critical patent/JP4133465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用の排気系部品やサスペンション系部品等の製造に用いられるもので、金属管を分割した金型に入れ、当該金型を型締めした後、金属管内に内圧と管軸方向の押し力を負荷することにより所定形状に成形するハイドロフォーム加工方法に関する。
【0002】
【従来の技術】
近年ハイドロフォーム技術は、部品数削減によるコスト削減や軽量化等の手段の一つとして自動車分野で注目を浴びており、欧米では数年前から既に実車に採用され、国内でも1999年から実車への適用も開始した。それ以降、ハイドロフォーム加工の適用部品は年々増加し、その市場規模は大幅に拡大してきた。
【0003】
【発明が解決しようとする課題】
ハイドロフォーム加工とプレス加工を比較した際、技術的にハイドロフォーム加工の方が優れる点の一つに、大変形が可能であるということが挙げられる。図1にハイドロフォーム加工(●印)とプレス加工(□印)において発生する歪状態図を示す。一般にプレス加工では、等2軸引張状態から平面歪状態を経て単軸引張状態までの領域で変形が行われる。等2軸引張状態とは、X方向の引張歪がX方向と直角方向の引張歪と等しく働く状態をいい、平面歪状態とは、X方向の歪が0で、X方向と直角方向の引張歪のみ働く状態をいい、単軸引張状態とは、X方向の引張応力が0で、X方向と直角方向の引張応力のみ働く状態をいう。従って、プレス加工では材料の成形限界から見ると変形能が少ない領域での変形となり、特に平面歪状態で歪が進行すると破断しやすい。それに対し、ハイドロフォーム加工では内圧を負荷すると同時に軸押しを負荷するため、材料に剪断変形を与えることが可能になり、歪の状態も単軸引張から純粋剪断状態の領域で変形が進行する。純粋剪断状態とは、X方向の圧縮歪がX方向と直角方向の引張歪と等しく働く状態をいう。従って、材料の成形限界から見ると、変形能が非常に広い領域での加工となるため、その結果、大変形が可能になる。すなわち言い換えると、ハイドロフォーム加工で大変形の加工を実現するためには、いかに純粋剪断側に歪の状態をもっていくかにかかっていると言っても過言ではない。
【0004】
純粋剪断側で変形させるには、単純に軸押しを積極的に負荷させることが効果的であることは言うまでもない。しかし単純に軸押しを増加させると当然座屈という問題が発生する。この座屈を防止するには内圧を高めることが効果的であるが、内圧を高めると言うことは、歪状態が剪断側から平面歪側に移動することを意味するため、破断しやすくなる。従って、図2のように金型がない自由バルジにおいては、座屈を起こさないためには単軸引張状態よりも平面歪側でしか成形できない(非特許文献1より抜粋)。
【0005】
それでは前述の図1のようなT−成形(ハイドロフォーム加工)で剪断変形が実現できていた理由は、金型の拘束による効果のためである。周囲に金型が存在するため、自由バルジの場合よりも座屈を抑制することが可能になる。また金型があるため自由バルジの場合よりも内圧を高圧にすることが可能になり、それによって更に金型との密着が高まり、座屈抑制に効果がある。このようにT−成形においては、金型の存在ゆえに座屈を抑えながら剪断変形を実現することができるため、大変形が可能になる。
【0006】
またT−成形以外にも、剪断変形させやすい形状として図3のような例がある。しかし、これらの例に共通していることは、何れもある1つの面上で拡管或いは枝管張出しをしているという点である。例えば、長方形拡管の例では、素管をYZ平面上でY方向にのみ拡管しており、Z方向には拡管していない。
【0007】
上記に対し、図4の例では、拡管する方向が1つの面上だけに制限されていない。例えば正方形拡管や半球拡管の例では素管をYZ平面上で、Y方向に拡管するだけでなくZ方向にも拡管している。このような例では、素管の一部が金型に接触するまでは、自由バルジと同じ状態になるため、座屈を起こさずに剪断変形を実現することができなくなり、その結果、拡管率は大きくできなかった。
【0008】
本発明は、上述のように、面内で拡管する方向が一方向に制限されない形状の部品をハイドロフォームによって加工することを可能にしたハイドロフォーム加工方法を提供することを目的とする。
【0009】
【非特許文献1】
塑性と加工、森ら:vol.29 no.325(1988) p.131
【0010】
【課題を解決するための手段】
係る課題を解決するため、本発明の要旨とするところは下記の通りである。
(1)金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、第1ハイドロフォーム工程で、前記金属管断面の一方向に前記金属管を拡管させながら、前記一方向における拡管率より小さくなるように、前記一方向と直角方向に前記金属管の径を板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、第2ハイドロフォーム工程で、前記金属管断面において前記一方向と直角方向に前記金属管を拡管させながら、前記第2ハイドロフォーム工程での前記直角方向における拡管率より小さくなるように、前記一方向に前記金属管の径を板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とするハイドロフォーム加工方法。
但し、拡管率=成形後の管の径(幅)/成形前の管の径(幅)とする。
(2)第1ハイドロフォーム工程で、金属管を金属管断面の一方向に拡管させながら、前記一方向における拡管率より小さくなるように、前記一方向と直角方向に前記金属管の径を板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、第2ハイドロフォーム工程で、最終製品形状の金型に装着し、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら、前記第2ハイドロフォーム工程での前記直角方向における拡管率より小さくなるように、前記一方向に前記金属管の径を板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とする(1)記載のハイドロフォーム加工方法。
(3)金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、第1ハイドロフォーム工程で、前記金属管断面の一方向に前記金属管を拡管させながら、前記一方向における拡管率より小さくなるように、前記一方向と直角方向に前記金属管の径を板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、第2ハイドロフォーム工程で、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら、前記第2ハイドロフォーム工程での前記直角方向における拡管率より小さくなるように、前記一方向に前記金属管の径を板厚の2倍〜前記変形後の幅の1.4倍に成形させ中間製品とし、第3ハイドロフォーム工程で、その中間製品を最終製品形状の金型に装着し、ハイドロフォーム加工することを特徴とするハイドロフォーム加工方法。
但し、拡管率=成形後の管の径(幅)/成形前の管の径(幅)とする。
【0011】
【発明の実施の形態】
図5の例では、まず、金属管1を下金型2に装着し、上金型3を閉める。この時、金型2、3の空洞部の形状は、金属管1の径に対して、水平方向に拡管されると共に、水平方向における拡管率より小さくなるように、金属管の径が垂直方向にも素管径の1倍より大きく最大で元の素管径(幅)の1.4倍まで拡管されるような形状にしておく。元の素管径(幅)の1.4倍までであれば、ある程度材料に剪断変形を負荷することが可能である。次に、セットされた管1の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ4、5で管軸方向に押し込み、中間製品6の形状まで仕上げる。ここまでを、第1ハイドロフォーム工程とする。
【0012】
次に、中間製品6を第1ハイドロフォーム金型2、3から取り出し、最終製品形状に対応する別の下金型7に装着し、別の上金型8を閉める。この時、金型7、8の空洞部の形状は、中間製品6の形状に対して、垂直方向に拡管されると共に、水平方向にも、第2ハイドロフォーム工程での垂直方向における拡管率より小さくなるように、金属管の径が最大で第1ハイドロフォーム成形後の管の径(幅)の1〜1.4倍まで拡管されるような形状にしておく。垂直方向の空洞部の形状(高さ)を第1ハイドロフォーム成形後の管の径(幅)の1.4倍を超えると、材料に剪断変形を負荷することが難しくなるからである。次に、セットされた中間製品6の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ9、10で管軸方向に押し込み、最終製品11の形状まで仕上げる。この結果、最終的には、管1に対して水平方向および垂直方向とも拡管された最終製品11が完成される。
【0013】
上記の例では、第1ハイドロフォーム工程で主に水平方向に拡管し、第2ハイドロフォーム工程で主に垂直方向に拡管したが、当然その逆でも構わなく、すなわち、第1ハイドロフォーム工程で主に垂直方向、第2ハイドロフォーム工程で主に水平方向に拡管しても、本発明の効果を同様に得ることができる。
また、第1ハイドロフォーム工程で成形した中間製品を第2ハイドロフォーム工程にセットする際に、同じ向きに入れる必要はなく、例えば90°傾けた方向で中間製品をセットしても良い。この場合、第2ハイドロフォーム工程の金型空洞部の方向は、第1ハイドロフォーム工程の金型空洞部の方向と同じになる。
【0014】
また、型締め時に型締め方向に断面を扁平にしてから、拡管しても同様の効果が得られる。図6の例では、まず、金属管1を下金型2に装着し、上金型3を閉める。この時、金型2、3の空洞部の形状は、金属管1の径に対して、水平方向に拡管されると共に、金属管の径が垂直方向にも板厚の2倍以上から元の素管径(幅)より小さくなるような形状にしておく。板厚の2倍以上から元の素管径(幅)より小さくすれば剪断変形を付与することができるが、金型との密着が高まるため、高潤滑性の潤滑剤を塗布する等、金属管1と上下金型2、3との間の潤滑をよくしておくことが好ましい。次に、セットされた管1の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ4、5で管軸方向に押し込み、中間製品6の形状まで仕上げる。ここまでを、第1ハイドロフォーム工程とする。
【0015】
次に、中間製品6を第1ハイドロフォーム金型2、3から取り出し、最終製品形状に対応する別の下金型7に装着し、別の上金型8を閉める。図6の例では、第1ハイドロフォーム工程で成形した中間製品を第2ハイドロフォーム工程にセットする際に、90°傾けた方向で中間製品をセットした。
すなわち、この場合は、金型7、8の空洞部の形状は、中間製品6の形状に対して、水平方向に拡管されると共に、拡管する方向に垂直な方向(図6の場合、垂直方向)の変形が、第2ハイドロフォーム工程での水平方向における拡管率より小さくなるように、金属管の径が板厚の2倍から第1ハイドロフォーム工程における変形後の幅(図6の場合、高さ)の1.4倍までとなるような形状とした(図6参照)。型締めが板厚の2倍より小さいと剪断変形を付与することが困難になるからである。また、変形後の幅の1.4倍を超えると、材料に剪断変形を負荷することが難しくなるからである。
【0016】
次に、セットされた中間製品6の内部に内圧を負荷すると同時に左右の端部を軸押しパンチ9、10で管軸方向に押し込み、最終製品11の形状まで仕上げる。この結果、最終的には、管1に対して水平方向および垂直方向とも拡管された最終製品11が完成させる。
【0017】
上記の例では、第1ハイドロフォーム工程で成形した中間製品を第2ハイドロフォーム工程にセットする際に90°傾けたが、傾けずに中間製品をセットしても良い。この場合、第2ハイドロフォーム工程の金型空洞部の方向は、第1ハイドロフォーム工程の金型空洞部の方向と直角になる。この際、第1ハイドロフォーム工程で水平方向に拡管し、第2ハイドロフォーム工程で垂直方向に拡管しても良いし、当然その逆でも構わない。すなわち、第1ハイドロフォーム工程で主に垂直方向、第2ハイドロフォーム工程で水平方向に拡管しても、本発明の効果を同様に得ることができる。
【0018】
図5及び図6に説明した発明を総合すると、拡管する方向に垂直な方向の変形は、拡管する方向における拡管率より小さくなるように、金属管の径が板厚の2倍までの縮小から当該工程の元の径(幅)の1.4倍まで(第1ハイドロフォーム工程では素管径の1倍を除く)の拡大であれば、当該発明の効果が同様に得られる。
【0019】
また、成形中のバーストや座屈を防ぎ、拡管率を上げる方法に図7のようなカウンターパンチや管軸方向に可動する可動金型等がある(SchulerのMetal Forming Handbookより抜粋)が、それらの方法を各ハイドロフォーム工程に使用すると、各工程における拡管率を更に上げることが可能になり、最終的な拡管率も更に向上できる。
【0020】
更に図8の例は、第1ハイドロフォーム工程でカウンターパンチ12、13を、第2ハイドロフォーム工程で可動金型14、15、16、17を使用した例である。
【0021】
また、第1ハイドロフォーム工程と第2ハイドロフォーム工程を同一金型20、21内で加工した例が図9である。一対の金型20、21は金属管1が拡管可能な空洞部を水平方向に有し、空洞部に対応する拡管方向と直角方向(上下方向)に、成形初期の金属管外面から最終形状の金属管外面まで位置制御自在な可動金型24、25を有する。このようにすると、金型機構は複雑になるが、金型数が削減できてコスト的には有利である。
また、一体型金型においても図7の例のようなカウンターパンチや可動金型を併用すると、より大きな拡管率まで成形可能になり有利な成形となる。
【0022】
また、図8、図9の例は、第1ハイドロフォーム工程においても第2ハイドロフォーム工程においても、拡管する方向に垂直な方向には全く変形しない例である。但し、当該工程の元の径(幅)の1.4倍以下までの変形であれば、ほとんど同様の効果が得られるのは言うまでもない(図5参照)。
【0023】
上述のいずれの例も、水平方向に拡管している際には垂直方向の拡管を制限しており、また垂直方向に拡管している際には水平方向の拡管を制限しているため、どうしても最終製品形状は単純な形状になってしまう場合が多い。そこで自動車部品のように複雑な形状に仕上げるには更にもう一工程加えると有効である。すなわち、上述の第1・第2ハイドロフォーム工程(或いは一体型金型による加工工程)によって最終製品相当の拡管率まで管を拡管し、中間製品26とした後で、最終部品形状の金型に装着し、形状のみ整えるようなハイドロフォーム加工を行う(図10参照)。当該方法により複雑形状でかつ拡管率の大きな部品のハイドロフォーム加工も可能になる。中間製品26の成形は第1、第2ハイドロフォーム工程を同一の金型で実施しても良い。
金属管として、鋼管、ステンレス管、アルミニウム管、チタン管等を使用できる。
【0024】
【実施例】
下記に本発明の実施例を示す。
素管は、外径63.5mm、板厚2.3mm、長さ500mm、材質JIS規格STKM11A(機械構造用炭素鋼鋼管)を用いた。図5に示すように、加工する製品形状としては、正方形に拡管する形状で、正方形の1辺の長さを150mm、コーナーRは8mm、拡管部の管軸方向長さを100mmとした。
【0025】
まず、第1ハイドロフォーム工程において、水平方向に拡管すると共に垂直方向にも拡管し中間製品を得た。その際、軸押し量は、左右とも50mmで内圧は最大30MPaで成形した。この第1ハイドロフォーム工程により、金属管の径は素管径に対して水平方向に約1.9倍、垂直方向に約1.1倍に拡管された。
次に、上記で成形された中間製品を最終製品形状となる第2ハイドロフォーム金型に装着し、垂直方向に拡管した。その際、軸押し量は、左右とも40mmで内圧は最大30MPaで成形した。この第2ハイドロフォーム工程により、金属管の径は第1ハイドロフォーム成形後の管の径(幅)に対して水平方向に約1.2倍、垂直方向に約2.1倍に拡管された。
【0026】
また、比較のため、本発明のような方法でない従来方法でも成形を行った。すなわち、第1ハイドロフォーム工程を省略し、素管を、第2ハイドロフォーム工程の金型に直接挿入して成形した。その結果、軸押しと内圧をどんなに調整しても、拡管箇所の金型まで接触することもなく、バーストあるいは座屈が生じて成形ができなかった。
【0027】
【発明の効果】
本発明により、従来バーストや座屈がネックとなり加工できなかった大拡管率のハイドロフォーム加工が可能になり、その結果ハイドロフォーム適用部品の範囲が拡大する。それにより、冒頭に述べたような自動車部品のコスト削減や軽量化の効果に寄与できる。
【図面の簡単な説明】
【図1】プレス加工とハイドロフォーム加工における歪状態の説明図。
【図2】自由バルジ加工における成形限界の説明図。
【図3】剪断変形に適した場合のハイドロフォーム形状例の説明図。
【図4】剪断変形が困難な場合のハイドロフォーム形状例の説明図。
【図5】拡管する方向に垂直な方向の変形が、元の径(幅)の1倍から1.4倍の場合の本発明の説明図。
【図6】拡管する方向に垂直な方向の変形が、板厚の2倍から元の径(幅)の1倍の場合の本発明の説明図。
【図7】カウンターパンチと可動金型の説明図。
【図8】ハイドロフォーム加工方法にカウンターパンチや可動金型を併用した場合の説明図。
【図9】一体型金型を用いたハイドロフォーム加工方法例の説明図。
【図10】本発明の第3ハイドロフォーム工程を追加したハイドロフォーム加工方法例の説明図。
【符号の説明】
1……金属管
2……第1ハイドロフォーム工程下金型
3……第1ハイドロフォーム工程上金型
4……第1ハイドロフォーム工程左軸押しパンチ
5……第1ハイドロフォーム工程右軸押しパンチ
6……第1ハイドロフォーム工程後の中間製品
7……第2ハイドロフォーム工程下金型
8……第2ハイドロフォーム工程上金型
9……第2ハイドロフォーム工程左軸押しパンチ
10……第2ハイドロフォーム工程右軸押しパンチ
11……最終製品
12……第1ハイドロフォーム工程前側カウンターパンチ
13……第1ハイドロフォーム工程後側カウンターパンチ
14……第2ハイドロフォーム工程左下側可動金型
15……第2ハイドロフォーム工程右下側可動金型
16……第2ハイドロフォーム工程左上側可動金型
17……第2ハイドロフォーム工程右上側可動金型
18……第2ハイドロフォーム工程左側金型軸押し工具
19……第2ハイドロフォーム工程右側金型軸押し工具
20……第1第2工程一体型下金型
21……第1第2工程一体型上金型
22……第1第2工程一体型左軸押しパンチ
23……第1第2工程一体型右軸押しパンチ
24……第1第2工程一体型前側カウンターパンチ(可動金型)
25……第1第2工程一体型前側カウンターパンチ(可動金型)
26……第2ハイドロフォーム工程後の中間製品
27……第3ハイドロフォーム工程下金型
28……第3ハイドロフォーム工程上金型
29……第3ハイドロフォーム工程左軸押しパンチ
30……第3ハイドロフォーム工程右軸押しパンチ
[0001]
BACKGROUND OF THE INVENTION
The present invention is used in the manufacture of exhaust system parts and suspension system parts for automobiles. The metal pipe is placed in a divided mold, and after the mold is clamped, the internal pressure and the axial direction of the pipe are in the metal pipe. The present invention relates to a hydroform processing method for forming a predetermined shape by applying a pressing force.
[0002]
[Prior art]
In recent years, hydroform technology has been attracting attention in the automobile field as one of the means for reducing costs and reducing weight by reducing the number of parts. In Europe and the United States, it has already been used in actual vehicles for several years, and in Japan it has been changed from 1999 to actual vehicles. Started to apply. Since then, the number of applicable parts for hydroforming has increased year by year, and the market size has greatly expanded.
[0003]
[Problems to be solved by the invention]
When hydroforming and pressing are compared, one of the technical advantages of hydroforming is that large deformation is possible. Fig. 1 shows a diagram of the state of strain that occurs during hydroforming (marked with ●) and pressing (marked with □). In general, in press working, deformation is performed in a region from an equibiaxial tension state to a plane strain state to a uniaxial tension state. The equibiaxial tension state is a state in which the tensile strain in the X direction works equal to the tensile strain in the direction perpendicular to the X direction, and the plane strain state is a strain in the X direction that is zero and the tensile force in the direction perpendicular to the X direction. A state in which only strain is applied is referred to, and the uniaxial tensile state is a state in which the tensile stress in the X direction is 0 and only the tensile stress in the direction perpendicular to the X direction works. Therefore, in the press working, deformation occurs in a region where the deformability is small from the viewpoint of the molding limit of the material, and particularly, when the strain progresses in a plane strain state, it tends to break. On the other hand, in the hydroforming process, the inner pressure is applied and the axial push is applied at the same time, so that the material can be subjected to shear deformation, and the deformation progresses in the region of uniaxial tension to pure shear. The pure shear state means a state in which the compressive strain in the X direction works equally as the tensile strain in the direction perpendicular to the X direction. Accordingly, when viewed from the molding limit of the material, the deformation is performed in a very wide region, and as a result, large deformation is possible. In other words, it is no exaggeration to say that it depends on how to bring the strain state to the pure shear side in order to realize large deformation by hydroforming.
[0004]
Needless to say, in order to deform on the pure shear side, it is effective to simply apply a positive axial push. However, if the axial push is simply increased, the problem of buckling naturally occurs. Increasing the internal pressure is effective in preventing this buckling. However, increasing the internal pressure means that the strain state moves from the shearing side to the plane strain side, so that it tends to break. Therefore, a free bulge without a mold as shown in FIG. 2 can be molded only on the plane strain side of the uniaxial tension state in order to prevent buckling (extracted from Non-Patent Document 1).
[0005]
The reason why the shear deformation can be realized by the T-molding (hydroforming process) as shown in FIG. 1 is because of the effect of restraint of the mold. Since there is a mold around, buckling can be suppressed more than in the case of a free bulge. Further, since there is a mold, it becomes possible to make the internal pressure higher than in the case of a free bulge, thereby further increasing the close contact with the mold and effectively suppressing buckling. As described above, in the T-molding, the shear deformation can be realized while suppressing buckling due to the presence of the mold, so that a large deformation is possible.
[0006]
In addition to T-molding, there is an example as shown in FIG. However, what is common to these examples is that both pipes are expanded or branch pipes are extended on one surface. For example, in the example of the rectangular tube expansion, the tube is expanded only in the Y direction on the YZ plane, and is not expanded in the Z direction.
[0007]
On the other hand, in the example of FIG. 4, the direction of tube expansion is not limited to one surface. For example, in the case of square tube expansion or hemispherical tube expansion, the elementary tube is expanded not only in the Y direction but also in the Z direction on the YZ plane. In such an example, until a part of the raw tube comes into contact with the mold, it becomes the same state as the free bulge, so that shear deformation cannot be realized without causing buckling. Could not be bigger.
[0008]
As described above, an object of the present invention is to provide a hydroform processing method that enables a part having a shape in which the direction of pipe expansion in a plane is not limited to one direction to be processed by hydroform.
[0009]
[Non-Patent Document 1]
Plasticity and processing, Mori et al .: vol.29 no.325 (1988) p.131
[0010]
[Means for Solving the Problems]
In order to solve the problem, the gist of the present invention is as follows.
(1) In a hydroforming method in which an internal pressure and a pushing force in the axial direction of the tube are loaded on the metal tube after the metal tube is mounted on a divided mold and clamped, in the first hydroforming step, the metal tube while tube expanding said metal pipe in one direction of the cross section, to be smaller than the expansion ratio in the one direction, the double-base pipe diameter of the plate thickness of the diameter of the metal tube in the one direction perpendicular to the direction 1. After the deformation to 4 times (excluding 1 times the diameter of the raw tube), in the second hydroforming step, the metal tube is expanded in a direction perpendicular to the one direction in the cross section of the metal tube. The diameter of the metal tube is formed to be twice the plate thickness to 1.4 times the width after the deformation in the one direction so as to be smaller than the tube expansion rate in the perpendicular direction in the foam process. Hydroform processing method.
However, the expansion ratio = the diameter (width) of the tube after forming / the diameter (width) of the tube before forming.
(2) In the first hydroforming step, while expanding the metal tube in one direction of the metal tube, the diameter of the metal tube is set in a direction perpendicular to the one direction so as to be smaller than the tube expansion rate in the one direction. After deforming from twice the thickness to 1.4 times the tube diameter (excluding 1 times the tube diameter), in the second hydroforming step, the metal tube is mounted on the final product shape mold. While expanding the metal tube in a direction perpendicular to the one direction in the cross section, the diameter of the metal tube in the one direction is set to a thickness of 2 so as to be smaller than the tube expansion rate in the perpendicular direction in the second hydroforming step. (1) The hydroforming method according to (1), wherein the forming is performed at a magnification of 1.4 times the width after deformation.
(3) In a hydroforming method in which an internal pressure and a pushing force in the axial direction of the tube are applied to the metal tube after the metal tube is mounted on a divided mold and clamped, the metal tube is a first hydroforming step. While expanding the metal tube in one direction of the cross section, the diameter of the metal tube in the direction perpendicular to the one direction is set to be twice the plate thickness to 1. After deforming to 4 times (excluding 1 times the raw tube diameter), in the second hydroforming step, expanding the metal tube in the direction perpendicular to the one direction in the cross section of the metal tube, the second hydroform The diameter of the metal tube in one direction is formed to be twice the plate thickness to 1.4 times the width after the deformation so as to be smaller than the tube expansion rate in the right-angle direction in the process. Hydroform process, intermediate production It was attached to a mold of the final product shape, hydroforming method characterized by hydroforming.
However, the expansion ratio = the diameter (width) of the tube after forming / the diameter (width) of the tube before forming.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the example of FIG. 5, first, the metal tube 1 is mounted on the lower mold 2 and the upper mold 3 is closed. At this time, the shape of the cavity of the molds 2 and 3 is expanded in the horizontal direction with respect to the diameter of the metal tube 1 and the diameter of the metal tube is set in the vertical direction so that the expansion rate in the horizontal direction is smaller. In addition, the shape is set so that the pipe is expanded to a maximum of 1.4 times the original pipe diameter (width), which is greater than one time the diameter of the pipe. The material can be subjected to shear deformation to some extent as long as it is up to 1.4 times the original tube diameter (width). Next, an internal pressure is applied to the inside of the set pipe 1 and at the same time the left and right ends are pushed in the pipe axis direction by the axial push punches 4 and 5 to finish the shape of the intermediate product 6. This is the first hydroforming step.
[0012]
Next, the intermediate product 6 is taken out from the first hydroform molds 2 and 3 and mounted on another lower mold 7 corresponding to the final product shape, and another upper mold 8 is closed. At this time, the shape of the cavity of the molds 7 and 8 is expanded in the vertical direction with respect to the shape of the intermediate product 6, and also in the horizontal direction from the expansion rate in the vertical direction in the second hydroforming step. In order to reduce the diameter , the metal pipe has a maximum diameter of 1 to 1.4 times the diameter (width) of the pipe after the first hydroform molding. This is because if the shape (height) of the hollow portion in the vertical direction exceeds 1.4 times the diameter (width) of the tube after the first hydroform molding, it is difficult to apply shear deformation to the material. Next, an internal pressure is applied to the inside of the set intermediate product 6 and at the same time, the left and right ends are pushed in the direction of the tube axis by the axial push punches 9 and 10 to finish the shape of the final product 11. As a result, the final product 11 expanded in both the horizontal direction and the vertical direction with respect to the tube 1 is finally completed.
[0013]
In the above example, the pipe was expanded mainly in the horizontal direction in the first hydroforming process, and expanded mainly in the vertical direction in the second hydroforming process. Even if the pipe is expanded in the vertical direction and mainly in the horizontal direction in the second hydroforming step, the effect of the present invention can be obtained similarly.
Moreover, when setting the intermediate product shape | molded by the 1st hydroforming process to the 2nd hydroforming process, it is not necessary to put in the same direction, for example, you may set an intermediate product in the direction inclined 90 degrees. In this case, the direction of the mold cavity in the second hydroforming process is the same as the direction of the mold cavity in the first hydroforming process.
[0014]
Further, the same effect can be obtained even if the tube is expanded after the cross section is flattened in the clamping direction at the time of clamping. In the example of FIG. 6, first, the metal tube 1 is mounted on the lower mold 2 and the upper mold 3 is closed. At this time, the shapes of the cavities of the molds 2 and 3 are expanded in the horizontal direction with respect to the diameter of the metal tube 1 and the diameter of the metal tube in the vertical direction is more than twice the plate thickness. The shape is made smaller than the raw tube diameter (width). Shear deformation can be imparted by reducing the plate thickness (width) from 2 times or more of the plate thickness to less than the original tube diameter (width). However, since adhesion to the mold is increased, a highly lubricated lubricant is applied, etc. It is preferable that the lubrication between the pipe 1 and the upper and lower molds 2 and 3 is improved. Next, an internal pressure is applied to the inside of the set pipe 1 and at the same time the left and right ends are pushed in the pipe axis direction by the axial push punches 4 and 5 to finish the shape of the intermediate product 6. This is the first hydroforming step.
[0015]
Next, the intermediate product 6 is taken out from the first hydroform molds 2 and 3 and mounted on another lower mold 7 corresponding to the final product shape, and another upper mold 8 is closed. In the example of FIG. 6, when setting the intermediate product formed in the first hydroforming step in the second hydroforming step, the intermediate product was set in a direction inclined by 90 °.
That is, in this case, the shape of the cavity of the molds 7 and 8 is expanded in the horizontal direction with respect to the shape of the intermediate product 6 and is perpendicular to the direction of expansion (in the case of FIG. 6, the vertical direction). ) Is smaller than the horizontal tube expansion rate in the second hydroforming step, so that the diameter of the metal tube is twice the plate thickness to the width after deformation in the first hydroforming step (in the case of FIG. 6, The height was made up to 1.4 times (see FIG. 6). This is because if the mold clamping is smaller than twice the plate thickness, it is difficult to impart shear deformation. Moreover, it is because it will become difficult to load a material with shear deformation if it exceeds 1.4 times the width after deformation.
[0016]
Next, an internal pressure is applied to the inside of the set intermediate product 6 and at the same time, the left and right ends are pushed in the direction of the tube axis by the axial push punches 9 and 10 to finish the shape of the final product 11. As a result, the final product 11 expanded in both the horizontal and vertical directions with respect to the tube 1 is finally completed.
[0017]
In the above example, the intermediate product formed in the first hydroforming process is tilted by 90 ° when set in the second hydroforming process. However, the intermediate product may be set without tilting. In this case, the direction of the mold cavity in the second hydroforming process is perpendicular to the direction of the mold cavity in the first hydroforming process. At this time, the tube may be expanded in the horizontal direction in the first hydroforming step, and may be expanded in the vertical direction in the second hydroforming step, or vice versa. That is, the effects of the present invention can be obtained in the same manner even when the pipe is expanded mainly in the vertical direction in the first hydroforming step and in the horizontal direction in the second hydroforming step.
[0018]
To sum up the invention described in FIGS. 5 and 6, is deformed in the direction perpendicular to the direction in which tube expansion, so that less than the expansion ratio in the direction tube expansion, the reduction in the diameter of the metal tube up to twice the sheet thickness The effect of the present invention can be obtained in the same manner as long as the expansion is up to 1.4 times the original diameter (width) of the process (except for the diameter of the raw pipe in the first hydroforming process).
[0019]
In addition, there are counter punches as shown in Fig. 7 and movable molds that can move in the direction of the tube axis, etc. (extracted from Schuler's Metal Forming Handbook). When this method is used for each hydroforming step, the tube expansion rate in each step can be further increased, and the final tube expansion rate can be further improved.
[0020]
Further, the example of FIG. 8 is an example in which the counter punches 12 and 13 are used in the first hydroforming process and the movable dies 14, 15, 16 and 17 are used in the second hydroforming process.
[0021]
Moreover, the example which processed the 1st hydroforming process and the 2nd hydroforming process in the same metal mold | die 20 and 21 is FIG. The pair of molds 20 and 21 has a hollow portion in the horizontal direction in which the metal tube 1 can be expanded, and has a final shape from the outer surface of the metal tube at the initial stage of forming in the direction perpendicular to the tube expansion direction corresponding to the cavity portion (vertical direction). It has movable molds 24 and 25 whose positions can be controlled up to the outer surface of the metal tube. In this way, the mold mechanism is complicated, but the number of molds can be reduced, which is advantageous in terms of cost.
Also, in the case of an integral mold, when a counter punch or a movable mold as in the example of FIG. 7 is used in combination, it is possible to mold to a larger tube expansion rate, which is advantageous.
[0022]
Moreover, the example of FIG. 8, FIG. 9 is an example which does not deform | transform at all in the direction perpendicular | vertical to the direction of pipe expansion also in a 1st hydroforming process and a 2nd hydroforming process. However, it goes without saying that almost the same effect can be obtained if the deformation is up to 1.4 times the original diameter (width) of the process (see FIG. 5).
[0023]
In any of the above examples, when expanding in the horizontal direction, the expansion in the vertical direction is limited, and when expanding in the vertical direction, the expansion in the horizontal direction is limited. The final product shape often becomes a simple shape. Therefore, it is effective to add one more step to finish a complicated shape like an automobile part. That is, the pipe is expanded to the expansion ratio corresponding to the final product by the first and second hydroforming processes (or the processing process using the integrated mold), and the intermediate product 26 is obtained. A hydroforming process is performed so that only the shape is mounted (see FIG. 10). By this method, it is possible to hydroform a part having a complicated shape and a large pipe expansion rate. In forming the intermediate product 26, the first and second hydroforming steps may be performed using the same mold.
As the metal pipe, a steel pipe, a stainless steel pipe, an aluminum pipe, a titanium pipe, or the like can be used.
[0024]
【Example】
Examples of the present invention are shown below.
The raw pipe used was an outer diameter of 63.5 mm, a plate thickness of 2.3 mm, a length of 500 mm, and a material JIS standard STKM11A (carbon steel pipe for machine structure). As shown in FIG. 5, the product shape to be processed was a shape that expanded into a square, the length of one side of the square was 150 mm, the corner R was 8 mm, and the length in the tube axis direction of the expanded portion was 100 mm.
[0025]
First, in the first hydroforming step, the tube was expanded in the horizontal direction and expanded in the vertical direction to obtain an intermediate product. At that time, the shaft pressing amount was 50 mm for both left and right, and the internal pressure was 30 MPa at maximum. By this first hydroforming step, the diameter of the metal tube was expanded to about 1.9 times in the horizontal direction and about 1.1 times in the vertical direction with respect to the diameter of the raw tube.
Next, the intermediate product molded as described above was attached to a second hydrofoam mold having a final product shape and expanded in the vertical direction. At that time, the axial pressing amount was 40 mm on both the left and right sides, and the internal pressure was 30 MPa at maximum. By this second hydroforming step, the diameter of the metal tube was expanded about 1.2 times in the horizontal direction and about 2.1 times in the vertical direction with respect to the diameter (width) of the tube after the first hydroforming. .
[0026]
For comparison, molding was also performed by a conventional method that is not the method of the present invention. That is, the first hydroforming step was omitted, and the raw tube was directly inserted into the mold of the second hydroforming step and molded. As a result, no matter how the axial push and the internal pressure were adjusted, the mold at the expanded portion was not contacted, and burst or buckling occurred and molding could not be performed.
[0027]
【The invention's effect】
According to the present invention, it becomes possible to perform hydroforming with a large expansion ratio, which could not be processed due to a conventional burst or buckling, and as a result, the range of hydroform application parts is expanded. Thereby, it can contribute to the cost reduction and weight reduction effect of the automobile parts as described at the beginning.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a strain state in press working and hydroforming.
FIG. 2 is an explanatory diagram of a forming limit in free bulge processing.
FIG. 3 is an explanatory diagram of a hydroform shape example suitable for shear deformation.
FIG. 4 is an explanatory diagram of a hydroform shape example when shear deformation is difficult.
FIG. 5 is an explanatory diagram of the present invention when the deformation in the direction perpendicular to the direction of tube expansion is 1 to 1.4 times the original diameter (width).
FIG. 6 is an explanatory diagram of the present invention when the deformation in the direction perpendicular to the direction in which the pipe is expanded is from twice the plate thickness to one times the original diameter (width).
FIG. 7 is an explanatory view of a counter punch and a movable mold.
FIG. 8 is an explanatory diagram when a counter punch or a movable die is used in combination with the hydroform processing method.
FIG. 9 is an explanatory diagram of an example of a hydroforming processing method using an integral mold.
FIG. 10 is an explanatory diagram of an example of a hydroforming processing method to which a third hydroforming step of the present invention is added.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal pipe 2 ... 1st hydroforming process lower metal mold 3 ... 1st hydroforming process upper metal mold 4 ... 1st hydroforming process left axis pushing punch 5 ... 1st hydroforming process right axis pushing Punch 6 …… Intermediate product 7 after the first hydroforming process ............ Second hydroforming process lower mold 8 …… Second hydroforming process upper mold 9 …… Second hydroforming process left axis push punch 10 …… 2nd hydroforming process right axis push punch 11 ... final product 12 ... 1st hydroforming process front counter punch 13 ... 1st hydroforming process rear counter punch 14 ... 2nd hydroforming process lower left side movable mold 15 …… Second hydroform process lower right movable mold 16 …… Second hydroform process upper left movable mold 17 …… Second hydroform process Upper movable mold 18 ... second hydroforming process left mold shaft pressing tool 19 ... second hydroforming process right mold axial pressing tool 20 ... first second process integrated mold lower mold 21 ... first Second process integrated upper die 22 ... 1st 2nd process integrated left shaft push punch 23 ... 1st 2nd process integrated right shaft push punch 24 ... 1st 2nd process integrated front counter punch ( (Movable mold)
25 …… First counter and second process integrated front counter punch (movable mold)
26 …… Intermediate product 27 after the second hydroforming step 27 ...... Third hydroforming step lower die 28 …… Third hydroforming step upper die 29 …… Third hydroforming step left axis push punch 30 …… No. 3 Hydroforming process right axis push punch

Claims (3)

金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、第1ハイドロフォーム工程で、前記金属管断面の一方向に前記金属管を拡管させながら、前記一方向における拡管率より小さくなるように、前記一方向と直角方向に前記金属管の径を板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、第2ハイドロフォーム工程で、前記金属管断面において前記一方向と直角方向に前記金属管を拡管させながら、前記第2ハイドロフォーム工程での前記直角方向における拡管率より小さくなるように、前記一方向に前記金属管の径を板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とするハイドロフォーム加工方法。
但し、拡管率=成形後の管の径(幅)/成形前の管の径(幅)とする。
In a hydroforming method in which an internal pressure and a pushing force in the axial direction of the tube are loaded on the metal tube after the metal tube is mounted on a divided mold and clamped, one cross section of the metal tube is formed in a first hydroforming step. While expanding the metal tube in the direction, the diameter of the metal tube in the direction perpendicular to the one direction is reduced from twice the plate thickness to 1.4 times the raw tube diameter so as to be smaller than the tube expansion rate in the one direction ( In the second hydroforming step, the metal tube is expanded in a direction perpendicular to the one direction in the cross section of the metal tube in the second hydroforming step. The diameter of the metal tube is formed in the one direction to be twice the plate thickness to 1.4 times the width after the deformation so as to be smaller than the tube expansion rate in the perpendicular direction. Method.
However, the expansion ratio = the diameter (width) of the tube after forming / the diameter (width) of the tube before forming.
第1ハイドロフォーム工程で、金属管を金属管断面の一方向に拡管させながら、前記一方向における拡管率より小さくなるように、前記一方向と直角方向に前記金属管の径を板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、第2ハイドロフォーム工程で、最終製品形状の金型に装着し、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら、前記第2ハイドロフォーム工程での前記直角方向における拡管率より小さくなるように、前記一方向に前記金属管の径を板厚の2倍〜前記変形後の幅の1.4倍に成形することを特徴とする請求項1記載のハイドロフォーム加工方法。In the first hydroforming step, while expanding the metal tube in one direction of the cross section of the metal tube, the diameter of the metal tube in the direction perpendicular to the one direction is set to a thickness of 2 so as to be smaller than the tube expansion rate in the one direction. After deformation to 1.4 times the tube diameter (excluding 1 times the tube diameter), in the second hydroforming step, it is attached to the final product shape mold, While expanding the metal tube in a direction perpendicular to one direction, the diameter of the metal tube in the one direction is set to be twice the plate thickness to be smaller than the tube expansion rate in the perpendicular direction in the second hydroforming step. The hydroforming method according to claim 1, wherein the hydroforming method is formed to be 1.4 times the width after deformation. 金属管を分割した金型に装着し、型締めした後で、前記金属管に内圧と管軸方向押し込み力を負荷するハイドロフォーム加工方法において、第1ハイドロフォーム工程で、前記金属管断面の一方向に前記金属管を拡管させながら、前記一方向における拡管率より小さくなるように、前記一方向と直角方向に前記金属管の径を板厚の2倍〜素管径の1.4倍(素管径の1倍を除く)に変形させた後で、第2ハイドロフォーム工程で、前記金属管断面において前記一方向と直角方向に金属管を拡管させながら、前記第2ハイドロフォーム工程での前記直角方向における拡管率より小さくなるように、前記一方向に前記金属管の径を板厚の2倍〜前記変形後の幅の1.4倍に成形させ中間製品とし、第3ハイドロフォーム工程で、その中間製品を最終製品形状の金型に装着し、ハイドロフォーム加工することを特徴とするハイドロフォーム加工方法。
但し、拡管率=成形後の管の径(幅)/成形前の管の径(幅)とする。
In a hydroforming method in which an internal pressure and a pushing force in the axial direction of the tube are loaded on the metal tube after the metal tube is mounted on a divided mold and clamped, one cross section of the metal tube is formed in a first hydroforming step. while tube expanding said metal pipe in a direction, to be smaller than the expansion ratio in the one direction, 1.4 times the double-raw tube diameters of the diameter thickness of the metal tube in the one direction perpendicular to the direction ( In the second hydroforming step, the metal tube is expanded in a direction perpendicular to the one direction in the cross section of the metal tube in the second hydroforming step. A third hydroforming step in which the diameter of the metal tube is formed in the one direction so as to be smaller than twice the plate thickness to 1.4 times the deformed width in one direction so as to be smaller than the tube expansion rate in the perpendicular direction; The intermediate product Hydroforming method characterized by mounting the mold product shape, for hydroforming.
However, the expansion ratio = the diameter (width) of the tube after forming / the diameter (width) of the tube before forming.
JP2003063197A 2003-03-10 2003-03-10 Hydroform processing method Expired - Fee Related JP4133465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063197A JP4133465B2 (en) 2003-03-10 2003-03-10 Hydroform processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063197A JP4133465B2 (en) 2003-03-10 2003-03-10 Hydroform processing method

Publications (2)

Publication Number Publication Date
JP2004268096A JP2004268096A (en) 2004-09-30
JP4133465B2 true JP4133465B2 (en) 2008-08-13

Family

ID=33124837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063197A Expired - Fee Related JP4133465B2 (en) 2003-03-10 2003-03-10 Hydroform processing method

Country Status (1)

Country Link
JP (1) JP4133465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537907A (en) * 2016-06-28 2018-01-05 无锡卡豹动力科技有限公司 A kind of forming method of automotive transmission pilot sleeve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1907147A4 (en) * 2005-07-26 2009-04-29 Aquaform Inc Apparatus and method for forming shaped parts
CN110560544B (en) * 2019-10-17 2021-02-09 哈尔滨工业大学(威海) A process method for axial compression forging of hollow structural parts with large cross-section difference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537907A (en) * 2016-06-28 2018-01-05 无锡卡豹动力科技有限公司 A kind of forming method of automotive transmission pilot sleeve

Also Published As

Publication number Publication date
JP2004268096A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
CN101657278B (en) Method of hydroforming work
JP2001162330A (en) Manufacturing method of metal sheet member having large area
JPH09327723A (en) Thickening of metal tube
JP4009129B2 (en) Hydroform processing method
JP4133465B2 (en) Hydroform processing method
JPH08168814A (en) Production of hollow member for automobile stracture made of aluminum alloy
JP3205105B2 (en) Manufacturing method of deformed curved pipe
JP3972006B2 (en) Hydroform processing method and hydroform processing mold
JPH10175028A (en) High formability forming method of metal pipe by hydroforming method
KR101473948B1 (en) Method for manufacturing flange structure
JP2011131219A (en) Method for forming pipe member
JP3794680B2 (en) Hydroforming method
JP3968047B2 (en) Mold for hydroforming and hydroforming method
JP2003211236A (en) Hydroform processing method
JP3572826B2 (en) Manufacturing method of bracket with bracket
JP2003154407A (en) Aluminum extruded material for hydroforming and method of manufacturing the same
JP3450076B2 (en) Method for manufacturing tubular member for vehicle body structure
JP2001009528A (en) Hydroforming method and mold for hydroforming
JP4035073B2 (en) Mold for hydroforming and hydroforming method
JPH07214147A (en) Production of special shaped tube
JP2007185697A (en) Metal tube processing method and processing apparatus
JP2005288532A (en) Hydroform processing method
JP2007130664A (en) Mold for hydroforming and processing method
JP4377529B2 (en) Hydroform processing method of extruded aluminum
JPH11179436A (en) 3D bending method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4133465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees