JP4131814B2 - Method and apparatus for chemical decontamination of activated parts - Google Patents
Method and apparatus for chemical decontamination of activated parts Download PDFInfo
- Publication number
- JP4131814B2 JP4131814B2 JP2002337339A JP2002337339A JP4131814B2 JP 4131814 B2 JP4131814 B2 JP 4131814B2 JP 2002337339 A JP2002337339 A JP 2002337339A JP 2002337339 A JP2002337339 A JP 2002337339A JP 4131814 B2 JP4131814 B2 JP 4131814B2
- Authority
- JP
- Japan
- Prior art keywords
- decontamination
- acid
- solution
- formic acid
- ozone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、原子力発電施設等の放射線取扱い施設に設置された配管、機器、構造部材等の構造部品の表面に付着した放射性物質を含む金属酸化物を化学的に溶解し、構造部品等の表面から除去する放射化部品の化学除染方法および装置に関する。
【0002】
【従来の技術】
放射線取扱い施設において、放射性物質を含む流体と接触する構造部品は、運転に伴ってその内面に放射線核種を含む酸化皮膜が付着または生成する。運転期間が長くなると、配管や機器の周囲は放射線量が高まり、定期点検作業時あるいは施設廃止措置時の解体作業において作業員の被ばく線量が増大する。作業員の被ばくを低減するため、化学的に酸化皮膜を溶解し除去する化学除染方法が実用化されている。
【0003】
現在までに化学除染方法は種々提案されており、酸化皮膜中のクロム系酸化物を酸化剤により酸化溶解する工程と、酸化皮膜中の主要成分である鉄系酸化物を還元剤により還元溶解する工程を組み合わせた方法などが知られている。
【0004】
下記特許文献1には、酸化剤として過マンガン酸水溶液を用い、還元剤としてジカルボン酸(シュウ酸)水溶液を用いる化学除染方法が記載されている。この除染方法は低濃度で酸化力の大きい過マンガン酸と、炭酸ガスと水に分解可能なシュウ酸を使用することにより、それまでの化学除染方法と比較して二次廃棄物発生量を低減することができる。この方法は原子力発電施設の除染工事において既に使用実績がある。
【0005】
下記特許文献2には、酸化剤としてオゾン水溶液を用い、還元剤としてシュウ酸水溶液を用いる化学除染方法が記載されている。オゾンは酸素に分解され、シュウ酸は炭酸ガスと水に分解されるため、さらなる二次廃棄物低減が可能な除染技術として注目されている。
【0006】
下記特許文献3には、有機酸(シュウ酸またはギ酸)水溶液中で特にステンレス鋼製の金属廃棄物を除染する方法が提案されている。この方法は、ステンレス鋼の酸化還元電位よりも負の電位を有する金属を接触させて、ステンレス鋼の母材を溶解し除染する。有機酸水溶液単独処理であるため、除染操作が簡単であり、しかも金属母材を溶解するため、金属廃棄物の放射能レベルを一般産業廃棄物レベルまで除染する方法として有効である。
【0007】
除染廃液の処理方法については、特許文献4にシュウ酸水溶液の処理方法が開示されている。シュウ酸水溶液中のFe3+はシュウ酸と錯体を形成して陰イオンとなっているため、下記(1)式に示すように紫外線(hν)を照射してFe2+に還元する。
[Fe(C2O4)3]3- + hν → Fe(C2O4)2 + 2CO2 …(1)
【0008】
これにより、シュウ酸水溶液中のFe2+はカチオン樹脂で分離できる。また、シュウ酸を分解する際には、下記(2)式、(3)式に示すように過酸化水素(H2O2)とFe2+との反応で生成するヒドロキシルラジカル(OH・)の酸化力でシュウ酸を炭酸ガスと水に分解する。
H2O2 + Fe2+ → Fe3+ + OH- + OH・ …(2)
H2C2O4 + 2OH・ → 2CO2 + 2H2O …(3)
【0009】
【特許文献1】
特公平3−10919号公報
【特許文献2】
特開2000−81498号公報
【特許文献3】
特開平9−113690号公報
【特許文献4】
特表平9−510784号公報
【0010】
【発明が解決しようとする課題】
前述の特許文献1から4に記載されている技術は、原子力発電所等の定期点検検査における作業員の被ばく低減に有効な除染技術であるが、還元剤としてシュウ酸を使用するとFe3+をFe2+に還元する紫外線装置が必要となる。除染対象系統が大きくなると除染液量が増加するため、それに伴って紫外線装置の規模も大きくなり、装置費用が増加する。また、シュウ酸の分解時間が長くなると、全体の除染工期が長くなるなどの問題がある。
【0011】
また、特許文献3に記載されている技術は、除染剤にギ酸を使用するが、ギ酸は電気化学的に金属母材を溶解するため、機器の健全性を維持するための除染には使用できない。また、単純にギ酸処理単独では機器表面に生成する酸化皮膜および鉄酸化物は溶解除去できないため、十分な除染性能が得られないという問題がある。
【0012】
そこで本発明は、3価の鉄イオンを2価の鉄イオンに還元する工程および装置が不要で、シュウ酸によるよりも分解速度が速く、しかもシュウ酸と同等の除染性能を有する放射化部品の化学除染方法および装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に係る発明は化学除染方法であり、表面に放射性の酸化皮膜を有する放射化部品の表面をギ酸とこのギ酸の濃度の1/10程度の濃度のシュウ酸が溶解した還元性の除染液に接触させる還元溶解工程と、前記放射化部品の表面を酸化剤が溶解した酸化性の除染液に接触させる酸化溶解工程とを備えている構成とする。
【0014】
請求項2に係る発明は、前記還元溶解工程と前記酸化溶解工程は交互に複数回実施される構成とする。
【0015】
請求項3に係る発明は、前記酸化性の除染液を構成する酸化剤はオゾン、過マンガン酸あるいは過マンガン酸塩のいずれかである構成とする。
【0016】
請求項4に係る発明は、前記還元性の除染液に残留したギ酸は過酸化水素によって、シュウ酸は前記酸化性の除染液に溶解されたオゾンによって炭酸ガスと水に分解する構成とする。
請求項5に係る発明は、前記還元性の除染液に残留する過酸化水素またはオゾンは、紫外線によって水または酸素に分解する構成とする。
【0017】
請求項6に係る発明は、前記還元性の除染液に前記放射化部品の腐食抑制剤として炭酸、炭酸塩または炭酸水素塩、硼酸または硼酸塩、硫酸または硫酸塩、燐酸または燐酸塩または燐酸水素塩のいずれかを添加する構成とする。
【0018】
請求項7に係る発明は化学除染装置であり、表面に放射性の酸化皮膜を有する放射化部品を収容し前記表面を除染液に接触させる除染槽と、この除染槽に接続され前記除染液を循環する循環系統とを備え、前記循環系統は、前記除染液にギ酸とこのギ酸の濃度の1/10程度の濃度のシュウ酸からなる還元剤および過酸化水素を注入する薬剤注入装置と、前記除染液中のFe 2+ イオンおよび Fe 3+ イオンをカチオン樹脂によって分離除去するイオン交換装置と、前記除染液中にオゾンを注入するオゾン発生器とを備えている構成とする。
【0019】
請求項8に係る発明も化学除染装置であり、表面に放射性の酸化皮膜を有する放射化部品を収容し前記表面を除染液に接触させる除染槽と、この除染槽に接続され前記除染液を循環する循環系統とを備え、前記循環系統は、前記除染液にギ酸とこのギ酸の濃度の1/10程度の濃度のシュウ酸からなる還元剤および過酸化水素および過マンガン酸あるいは過マンガン酸塩からなる酸化剤を注入する薬剤注入装置と、前記除染液中のFe 2+ イオンおよび Fe 3+ イオンをカチオン樹脂によって分離除去するイオン交換装置とを備えている構成とする。
請求項9に係る発明は、前記循環系統は、前記除染液中に残留する過酸化水素およびオゾンを紫外線によって分解する液相分解装置を備えている構成とする。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態の放射化部品の化学除染方法および装置を図面を参照して説明する。
本実施の形態の放射化部品の化学除染方法は図1に示すように、放射化部品を化学除染装置にセットする工程S1と、放射化部品の表面の酸化物をギ酸とシュウ酸の混合水溶液からなる除染液によって還元溶解する工程S2と、前記工程S2によって除染液中に溶解した鉄等の金属イオンをイオン交換樹脂によって除染液から分離除去する分離工程S3と、前記工程S2において消費されずに残ったギ酸とシュウ酸をオゾンや過酸化水素によって分解する還元剤分解工程S4と、前記工程S4において残留したオゾンや過酸化水素を除染液から分離除去する分離工程S5と、放射化部品の表面の酸化皮膜をオゾンを溶解した除染液によって酸化溶解する工程S6と、前記工程S6における酸化生成物を除染液から分離除去する分離工程S7と、除染廃液を排出する工程S8からなる。なお、酸化溶解工程S6および分離工程S7を還元溶解工程S2の前に行ってもよい。
【0021】
図2は、原子力発電所の定期検査により取り替え部品として発生した使用済み機器を除染する化学除染装置の一例である。すなわち、本実施の形態の放射化部品の化学除染装置は、除染液1aを貯留する除染槽1と、この除染槽1に接続され除染液1aを循環させる循環系統2を備え、循環系統2には循環ポンプ3と、ヒーター4と、薬剤注入装置5と、液相分解装置6と、カチオン樹脂塔7と、混床樹脂塔8と、ミキサー9およびオゾン発生器10が接続されている。混床樹脂塔8にはカチオン樹脂とアニオン樹脂が混合充填されている。また、除染槽1には気相分解塔11と排気ブロワー12が接続されている。
【0022】
除染対象物である放射化部品13は除染槽1内に設置されて除染液1aに浸漬される。あるいは、図示されていないが、除染液1aのシャワーを受ける。除染液1aは循環ポンプ3によって圧送され、循環系統2内を循環して除染槽1に戻される。
【0023】
放射化部品13の表面の酸化皮膜を還元溶解する場合には、薬剤注入装置5からギ酸とシュウ酸が混入した還元性の水溶液を循環系統2に供給する。還元性除染液に溶解した鉄イオンはカチオン樹脂塔7により分離除去される。
【0024】
還元除染終了後の還元性除染液は、オゾン発生器10からのオゾンガスをミキサー9を介して循環系統2内に注入するか、薬剤注入装置5から過酸化水素を供給して炭酸ガスと水に分解する。また、除染液1a中に溶解した金属イオンは、カチオン樹脂塔7で除去される。なお、除染液1aをカチオン樹脂塔7に通水する際に、オゾンまたは過酸化水素が残留している場合は、液相分解装置6から紫外線を照射して、オゾンは酸素に分解し、過酸化水素は酸素と水に分解する。
【0025】
放射化部品13の表面の酸化皮膜を酸化溶解する場合は、オゾン発生器10からのオゾンガスをミキサー9を介して循環系統2に注入し、オゾン水を除染液1aに供給する。除染槽1から排出されるオゾンガスは排気ブロワー12に吸引されて気相分解塔11で分解され、既設の排気系に排出される。除染終了後の装置内の除染液は、混床樹脂塔8に通水して浄化される。
【0026】
ステンレス鋼表面に生成する酸化皮膜は、ギ酸単独では酸化処理との併用により溶解・除去できるものの、鉄酸化物はこのギ酸単独ではほとんど溶解しない。この鉄酸化物を溶解するために、本実施の形態においてはギ酸濃度に対して1/10程度のシュウ酸を添加する。ギ酸は後述するように過酸化水素単独で短時間に分解でき、しかも低濃度のシュウ酸であれば、酸化処理に使用するオゾン、過マンガン酸および過マンガン酸カリウムで短時間に分解できるため、除染工期の大幅な短縮が可能である。
【0027】
放射化部品の表面を酸化処理する酸化剤はオゾン、過マンガン酸、過マンガン酸塩(過マンガン酸カリウム)が適用可能であり、ギ酸との組み合わせにより酸化皮膜の溶解・除去速度を向上させることができる。
【0028】
Fe2+イオンおよびFe3+イオンとギ酸との錯形成反応の平衡定数は小さいため、カチオン樹脂で両イオンとも吸着・分離することができる。従って、シュウ酸使用時のようにFe3+イオンをFe2+イオンに還元する装置が不要となる。
【0029】
ギ酸は過酸化水素単独で短時間に分解できるが、シュウ酸は過酸化水素のみでは分解し難い。ギ酸分解後に残留するシュウ酸は、酸化処理に使用するオゾン、過マンガン酸および過マンガン酸カリウムにより分解する。シュウ酸濃度はギ酸濃度の1/10程度であるため、短時間に分解可能である。
【0030】
分解処理後に残留する過酸化水素またはオゾンは、カチオン樹脂の劣化を促進する。これを防止するため、紫外線により過酸化水素は水に、オゾンは酸素に分解する。
【0031】
さらに、ギ酸濃度が検出下限値に近付くと除染液中のオゾン濃度が上昇する。オゾンの酸化力による機器の腐食が懸念されるため、分解助剤を添加して機器の母材腐食を抑制し、機器の材料健全性を維持する。
【0032】
次に、図2に示した化学除染装置を用いて本実施の形態の化学除染方法の酸化皮膜溶解性能を確認した試験データを説明する。沸騰水型原子力発電所の一次系統の水質条件を模擬し、酸化皮膜を付与したSUS304試験体において3,000時間の酸化皮膜溶解試験を実施した。
【0033】
試験結果を図3に示す。図中の縦軸は酸化皮膜の重量減少、横軸はギ酸濃度を示す。○印はオゾン水溶液で処理した後にギ酸水溶液で処理した結果を示し、△印は過マンガン酸水溶液で処理した後にギ酸水溶液で処理した結果を示す。また、本実施の形態との比較のため従来例としてオゾン水溶液で処理したあとにシュウ酸水溶液で処理した結果(▽印)と、ギ酸水溶液単独で処理した結果(□印)も示した。
【0034】
オゾン処理条件は濃度5ppm、温度80℃、2時間浸漬、過マンガン酸処理条件は濃度300ppm、温度95℃、2時間浸漬である。ギ酸処理条件は濃度100〜50000ppm、温度95℃、1時間浸漬、シュウ酸処理条件は濃度2000ppm、温度95℃、1時間浸漬である。
【0035】
本試験結果から分かるようにギ酸処理単独(濃度2000ppm)では酸化皮膜はほとんど溶解しない。一方、本実施の形態のオゾン処理とギ酸処理併用では、ギ酸濃度とともに酸化皮膜が溶解し、ギ酸濃度1000ppm以上ではほぼ一定の溶解量を示した。ギ酸濃度1000ppm以上で比較するとギ酸単独処理と比較して約5倍大きい結果が得られた。従来のオゾン処理とシュウ酸処理との併用と同等の結果である。
【0036】
また、本実施の形態の過マンガン酸処理とギ酸処理併用においても酸化皮膜溶解の効果があり、オゾン処理併用よりも溶解量は少ないがギ酸処理単独と比較して約3倍大きい結果が得られた。なお、過マンガン酸塩として過マンガン酸カリウムを選定し、300ppmの濃度で過マンガン酸カリウム処理(温度95℃、2時間浸漬)し、その後にギ酸処理(濃度2000ppm、温度95℃、1時間浸漬)を行っても同様の効果が得られた。
【0037】
次に本実施の形態の化学除染方法における鉄酸化物(Fe3O4)の溶解を確認した試験結果を図4に示す。ギ酸濃度2000ppm、温度95℃において、横軸がシュウ酸濃度、縦軸が溶解したFeの濃度を示す。本試験結果から分かるように、ギ酸単独では鉄酸化物は溶解しないものの、シュウ酸を添加することで鉄酸化物は溶解し、シュウ酸濃度にほぼ比例して鉄濃度が増加した。
【0038】
以上のように本実施の形態の化学除染方法では、酸化処理としてオゾン,過マンガン酸または過マンガン酸塩を用い、還元処理としてギ酸とシュウ酸の混合除染液を用いることにより、ステンレス鋼表面に生成した酸化皮膜と鉄酸化物を効率良く溶解することができる。
【0039】
放射性物質は放射化部品表面の酸化皮膜に取り込まれているため、この酸化皮膜を溶解・除去することで放射化部品表面から放射性物質を除染でき、作業員の被ばくが低減される。なお、ギ酸単独でも酸化処理と組み合わせてステンレス鋼表面の酸化皮膜は除去可能であるが、ギ酸単独では鉄酸化物をほとんど溶解しないため、ギ酸とシュウ酸の混合除染液と比較して除染性能は劣るものと考えられる。
【0040】
なお、図2の化学除染装置において酸化処理に過マンガン酸または過マンガン酸塩を使用する場合は、オゾン発生器10、ミキサー9および気相分解塔11は不要であり、薬剤注入装置5のみで放射化部品の化学除染を行うことができる。
【0041】
次に第3の試験結果を図5〜図7により説明する。図5は本実施の形態のギ酸(2000ppm)とシュウ酸(200ppm)の混合除染液中に溶解したFe2+イオンとFe3+イオンをカチオン樹脂により分離した結果を、図6は従来のギ酸(2000ppm)単独除染液からの分離試験結果を、図7は従来のシュウ酸(2000ppm)単独除染液からの分離試験結果を示す。
【0042】
試験結果を従来例から説明すると、図6のギ酸単独除染液中に溶解したFe2+およびFe3+イオンは、カチオン樹脂で分離することができた。図7のシュウ酸単独除染液ではFe2+イオンはカチオン樹脂で分離できたが、Fe3+イオンは分離できなかった。この原因は、前記(1)式に示したようにFe3+はシュウ酸と錯体を形成して陰イオンとして存在するためである。Fe3+イオンを分離するためには、前記(1)式に示したように紫外線(hν)を照射して2価のFe化合物に還元する、あるいは、シュウ酸錯体の状態でアニオン樹脂で分離する必要がある。
【0043】
一方、図5に示した本実施の形態のギ酸とシュウ酸の混合除染液では、ギ酸単独除染液と同様にFe2+イオンおよびFe3+イオンをカチオン樹脂で分離することができた。これは下記(4)式に示すように、シュウ酸と錯体を形成したFe3+イオンとギ酸のH+が置き換わったため、Fe3+イオンはカチオン樹脂で分離できたものと考えられる。
[Fe(C2O4)3]3- + 6HCOOH + Fe(COOH)3 + 3H2C2O4 …(4)
【0044】
以上のように還元剤としてギ酸とシュウ酸の混合水溶液を使用した場合は、シュウ酸水溶液と比較して紫外線装置およびFe3+イオンの還元工程が不要となるため、除染工事全体費用の低減が可能となる。
【0045】
次に第4の試験結果を図8により説明する。図8は、本実施の形態のギ酸とシュウ酸の混合水溶液(△印、▽印)と、従来のシュウ酸単独水溶液(□印)およびギ酸単独水溶液(○印)の分解試験結果を示す。試験条件は、濃度がギ酸単独およびシュウ酸単独水溶液とも2000ppm、混合水溶液はギ酸2000ppmとシュウ酸100ppm、温度が90℃で、それぞれの水溶液にFeイオンを20ppm溶解させた。
【0046】
分解方法は、混合水溶液が最初に過酸化水素(添加量:1.5倍当量)によりギ酸を分解し(△印)、次にオゾン(O3発生量/液量:75g/h/m3)でシュウ酸を分解した(▽印)。シュウ酸単独水溶液は、紫外線(出力/液量:3kw/m3)と過酸化水素(添加量:1.5倍当量)との併用で、ギ酸単独水溶液は過酸化水素(添加量:1.5倍当量)のみで分解した。
【0047】
試験結果を従来例から説明すると、シュウ酸単独水溶液は過酸化水素と紫外線の併用により10時間で有機炭素濃度10ppm以下に分解された。また、ギ酸は過酸化水素のみで2時間で有機炭素濃度10ppm以下に分解された。
【0048】
一方、本実施の形態の混合水溶液においては、ギ酸は過酸化水素単独で分解されるが、シュウ酸は過酸化水素単独では分解されない。そこでギ酸分解後に酸化処理に使用されるオゾンにより引き続きシュウ酸を分解し、合計4時間弱で有機炭素濃度10ppm以下に分解された。なお、シュウ酸は他の酸化性水溶液である過マンガン酸および過マンガン酸カリウムでも分解できる。
【0049】
ここで、ギ酸を酸化性水溶液で分解処理しない理由は、オゾン単独でも分解できるが、過酸化水素と紫外線によるシュウ酸の分解と同程度の時間を要するため、分解時間の短縮にはならないからである。なお、過マンガン酸および過マンガン酸カリウムでは分解反応が非常に遅く、上記以上の分解時間を要する。
【0050】
以上のように、ギ酸とシュウ酸の混合水溶液はギ酸単独より分解時間は遅いものの、除染剤として実績があるシュウ酸の半分程度の時間で分解できる。また、シュウ酸の分解には上記(2)式および(3)式に示したように、Fe2+イオンを生成するために紫外線装置が必要であるが、混合水溶液の分解は、紫外線装置およびFe3+イオンの還元工程が不要となるため、除染工事全体費用の低減が可能となる。
【0051】
なお、還元性除染剤に使用するギ酸とシュウ酸の濃度範囲は、除染性能および還元時間を考慮し、ギ酸は1000ppm〜5000ppm、シュウ酸は50ppm〜300ppmがよい。
【0052】
次に第5の試験結果として、ギ酸とシュウ酸の混合除染液の分解処理終了後に残留する過酸化水素およびオゾンの分解処理について説明する。除染液中に溶出する鉄イオンおよび放射性物質はイオン交換樹脂で分離されるが、除染液中に過酸化水素およびオゾンが残留していると、イオン交換樹脂の酸化劣化が促進されてしまう可能性がある。これを防止するため、除染液に紫外線(hν)を照射し、下記(5)式および(6)式に示す反応により過酸化水素とオゾンを水および酸素に分解する。
過酸化水素の分解: H2O2 + hν → O2 + 2H+ + 2e- …(5)
オゾンの分解 : O3 + hν → O + O2 …(6)
【0053】
上記反応を確認するため、除染液中(ギ酸濃度10ppm以下)に残留する過酸化水素とオゾンの紫外線による分解試験を実施した。過酸化水素の分解試験結果を図9に、オゾンの分解試験結果を図10に示す。紫外線の出力3kw/m3において、初期濃度20ppmの過酸化水素は1.5時間で1ppm以下に、初期濃度5.5ppmのオゾンは12分で0.1ppm以下に分解された。
【0054】
以上により、除染液中のギ酸の分解途中または分解終了後に残留する過酸化水素またはオゾンは紫外線により分解できるため、イオン交換樹脂の交換容量を低下させることなく溶出金属イオンを分離することができる。従って、二次廃棄物として発生する使用済みイオン交換樹脂の発生量を低減することができる。
【0055】
図2において、紫外線を照射する液相分解装置6はあくまでも除染液中に残留する過酸化水素またはオゾンを分解してイオン交換樹脂の健全性を確保するために使用するものである。残留過酸化水素およびオゾンがない場合、または残留していてもイオン交換樹脂による溶出金属イオンの分離処理をしない場合は液相分解装置6は不要である。
【0056】
なお、酸化剤であるオゾン水と接触するステンレス鋼の腐食を抑制するための腐食抑制剤として、炭酸、炭酸塩、炭酸水素塩、硼酸、硼酸塩、硫酸、硫酸塩、燐酸、燐酸塩、燐酸水素塩を添加することで効果があるとされているが、本実施の形態においても、シュウ酸分解時にはオゾンガスを供給するため、上述の腐食抑制剤はシュウ酸分解処理時のステンレス鋼母材の腐食抑制に効果的であることが確認された。
【0057】
本実施の形態の放射化部品の化学除染方法および装置によれば、以下に示す効果が得られる。すなわち、放射線取扱い施設の構造部品を除染対象物とし、個の除染対象物である放射化部品の表面に生成または付着した放射性物質を含む酸化皮膜を化学的に溶解して除染する方法において、モノカルボン酸であるギ酸とジカルボン酸であるシュウ酸が混合溶解した還元性の除染液と、酸化剤が溶解した酸化性の除染液を交互に接触させて除染することにより放射性物質を効率良く除去することができる。
【0058】
また、上記の還元性の混合除染液に溶出したFe3+イオンは、カチオン樹脂で分離できるため、Fe3+イオンをFe2+イオンに還元する還元装置および還元工程が不要となるため、除染装置全体費用を低減することができる。
【0059】
さらに、還元性の混合除染液中のギ酸は過酸化水素のみで分解でき、低濃度のシュウ酸は酸化性水溶液で短時間に分解できるため、分解触媒である2価のFe化合物を生成する還元装置および還元工程が不要となるため、除染装置全体費用を低減することができる。
【0060】
【発明の効果】
本発明によれば、3価の鉄イオンを2価の鉄イオンに還元する工程および装置が不要で、シュウ酸によるよりも分解速度が速く、しかもシュウ酸と同等の除染性能を有する放射化部品の化学除染方法および装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の放射化部品の化学除染方法を示す流れ図。
【図2】本発明の実施の形態の放射化部品の化学除染装置を示す系統図。
【図3】本発明の実施の形態の放射化部品の化学除染方法および装置の効果を説明する酸化皮膜の溶解曲線図。
【図4】本発明の実施の形態の放射化部品の化学除染方法および装置の効果を説明する酸化皮膜の溶解曲線図。
【図5】カチオン樹脂による還元性混合水溶液中鉄イオンの分離試験結果を示し、本発明の実施の形態の効果を説明する棒グラフ。
【図6】カチオン樹脂によるギ酸水溶液中鉄イオンの分離試験結果を示し、本発明の実施の形態の効果を説明する棒グラフ。
【図7】カチオン樹脂によるシュウ酸水溶液中鉄イオンの分離試験結果を示し、本発明の実施の形態の効果を説明する棒グラフ。
【図8】還元性混合水溶液の分解試験結果を示し、本発明の実施の形態の効果を説明する曲線図。
【図9】残留過酸化水素の分解試験結果を示し、本発明の実施の形態の効果を説明する曲線図。
【図10】残留オゾンの分解試験結果を示し、本発明の実施の形態の効果を説明する曲線図。
【符号の説明】
1…除染槽、1a…除染液、2…循環系統、3…循環ポンプ、4…ヒーター、5…薬剤注入装置、6…液相分解装置、7…カチオン樹脂塔、8…混床樹脂塔、9…ミキサー、10…オゾン発生器、11…気相分解塔、12…排気ブロワー、13…放射化部品。[0001]
BACKGROUND OF THE INVENTION
The present invention chemically dissolves metal oxides containing radioactive substances attached to the surface of structural parts such as pipes, equipment, and structural members installed in radiation handling facilities such as nuclear power generation facilities, and surfaces of structural parts and the like The present invention relates to a method and an apparatus for chemical decontamination of an activated part to be removed from an air.
[0002]
[Prior art]
In a radiation handling facility, a structural part that comes into contact with a fluid containing a radioactive substance has an oxide film containing a radionuclide attached or generated on the inner surface thereof during operation. When the operation period becomes longer, the radiation dose around pipes and equipment increases, and the radiation dose to workers increases during periodic inspection work or dismantling work during facility decommissioning. In order to reduce the exposure of workers, a chemical decontamination method that chemically dissolves and removes an oxide film has been put into practical use.
[0003]
Various chemical decontamination methods have been proposed so far, including the process of oxidizing and dissolving chromium-based oxides in oxide films with oxidizing agents, and reducing and dissolving iron-based oxides, the main component in oxide films, with reducing agents. A method that combines the steps to perform is known.
[0004]
[0005]
[0006]
[0007]
Regarding the treatment method of the decontamination waste liquid,
[Fe (C 2 O 4 ) 3 ] 3- + hν → Fe (C 2 O 4 ) 2 + 2CO 2 (1)
[0008]
Thereby, Fe 2+ in the oxalic acid aqueous solution can be separated by the cationic resin. In addition, when decomposing oxalic acid, the hydroxyl radical (OH.) Generated by the reaction of hydrogen peroxide (H 2 O 2 ) and Fe 2+ as shown in the following formulas (2) and (3) Decomposes oxalic acid into carbon dioxide and water with the oxidizing power of.
H 2 O 2 + Fe 2+ →
H 2 C 2 O 4 + 2OH · → 2CO 2 + 2H 2 O (3)
[0009]
[Patent Document 1]
Japanese Patent Publication No. 3-10919 [Patent Document 2]
JP 2000-81498 A [Patent Document 3]
Japanese Patent Laid-Open No. 9-11690 [Patent Document 4]
Japanese National Patent Publication No. 9-510784 [0010]
[Problems to be solved by the invention]
The techniques described in
[0011]
In addition, the technique described in
[0012]
Therefore, the present invention does not require a process and apparatus for reducing trivalent iron ions to divalent iron ions, has a higher decomposition rate than oxalic acid, and has a decontamination performance equivalent to that of oxalic acid. An object of the present invention is to provide a chemical decontamination method and apparatus.
[0013]
[Means for Solving the Problems]
The invention according to
[0014]
The invention according to
[0015]
The invention according to
[0016]
According to a fourth aspect of the present invention, the formic acid remaining in the reducing decontamination solution is decomposed into hydrogen peroxide and oxalic acid is decomposed into carbon dioxide and water by ozone dissolved in the oxidizing decontamination solution. To do.
The invention according to
[0017]
According to a sixth aspect of the present invention, the reducing decontamination solution includes carbonic acid, carbonate or hydrogen carbonate, boric acid or borate, sulfuric acid or sulfate, phosphoric acid or phosphate or phosphoric acid as a corrosion inhibitor for the activated component. One of the hydrogen salts is added.
[0018]
The invention according to
[0019]
The invention according to
The invention according to claim 9 is configured such that the circulation system includes a liquid phase decomposition apparatus for decomposing hydrogen peroxide and ozone remaining in the decontamination liquid with ultraviolet rays.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method and an apparatus for chemical decontamination of activation parts according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the chemical decontamination method of the activated component of the present embodiment includes a step S1 of setting the activated component in the chemical decontamination apparatus, and the oxide on the surface of the activated component of formic acid and oxalic acid. Step S2 for reducing and dissolving with a decontamination solution comprising a mixed aqueous solution, Separation step S3 for separating and removing metal ions such as iron dissolved in the decontamination solution by the step S2 from the decontamination solution with an ion exchange resin, and the step A reducing agent decomposition step S4 in which formic acid and oxalic acid remaining without being consumed in S2 are decomposed by ozone or hydrogen peroxide, and a separation step S5 in which ozone and hydrogen peroxide remaining in step S4 are separated and removed from the decontamination solution. And step S6 for oxidizing and dissolving the oxide film on the surface of the activated component with a decontamination solution in which ozone is dissolved; and a separation step S7 for separating and removing the oxidation product in the step S6 from the decontamination solution; Comprising the step S8 for discharging decontaminated effluent. The oxidation dissolution step S6 and the separation step S7 may be performed before the reduction dissolution step S2.
[0021]
FIG. 2 is an example of a chemical decontamination apparatus that decontaminates used equipment generated as a replacement part in a periodic inspection of a nuclear power plant. That is, the activation component chemical decontamination apparatus of the present embodiment includes a
[0022]
The activation part 13 which is a decontamination object is installed in the
[0023]
When the oxide film on the surface of the activated component 13 is reduced and dissolved, a reducing aqueous solution in which formic acid and oxalic acid are mixed is supplied from the
[0024]
The reductive decontamination liquid after the reductive decontamination is injected with the ozone gas from the
[0025]
When the oxide film on the surface of the activation component 13 is oxidized and dissolved, ozone gas from the
[0026]
Although the oxide film formed on the surface of stainless steel can be dissolved and removed by formic acid alone and in combination with the oxidation treatment, iron oxide hardly dissolves by this formic acid alone. In order to dissolve this iron oxide, about 1/10 of oxalic acid is added to the formic acid concentration in this embodiment. Formic acid can be decomposed in a short time with hydrogen peroxide alone as described later, and if it is a low concentration oxalic acid, it can be decomposed in a short time with ozone, permanganic acid and potassium permanganate used for the oxidation treatment, The decontamination period can be greatly shortened.
[0027]
Oxide, permanganic acid, and permanganate (potassium permanganate) can be used as the oxidizing agent to oxidize the surface of the activated parts, and the dissolution / removal rate of the oxide film can be improved by combining with formic acid. Can do.
[0028]
Since the equilibrium constant of the complex formation reaction of Fe 2+ ions and Fe 3+ ions with formic acid is small, both ions can be adsorbed and separated by the cationic resin. Therefore, an apparatus for reducing Fe 3+ ions to Fe 2+ ions as in the case of using oxalic acid becomes unnecessary.
[0029]
Formic acid can be decomposed in a short time with hydrogen peroxide alone, but oxalic acid is difficult to decompose with hydrogen peroxide alone. Oxalic acid remaining after formic acid decomposition is decomposed by ozone, permanganic acid and potassium permanganate used for the oxidation treatment. Since the oxalic acid concentration is about 1/10 of the formic acid concentration, it can be decomposed in a short time.
[0030]
Hydrogen peroxide or ozone remaining after the decomposition treatment promotes deterioration of the cationic resin. In order to prevent this, ultraviolet rays decompose hydrogen peroxide into water and ozone into oxygen.
[0031]
Furthermore, when the formic acid concentration approaches the detection lower limit value, the ozone concentration in the decontamination solution increases. Since there is concern about equipment corrosion due to the oxidizing power of ozone, a decomposition aid is added to suppress the base metal corrosion of the equipment and maintain the soundness of the equipment material.
[0032]
Next, test data for confirming the oxide film dissolution performance of the chemical decontamination method of the present embodiment using the chemical decontamination apparatus shown in FIG. 2 will be described. The water quality conditions of the primary system of the boiling water nuclear power plant were simulated, and a SUS304 specimen with an oxide film was subjected to an oxide film dissolution test for 3,000 hours.
[0033]
The test results are shown in FIG. In the figure, the vertical axis represents the weight reduction of the oxide film, and the horizontal axis represents the formic acid concentration. A mark indicates the result of treatment with an aqueous ozone solution followed by treatment with an aqueous formic acid solution, and a mark △ indicates the result of treatment with an aqueous permanganate solution followed by treatment with an aqueous formic acid solution. In addition, for comparison with the present embodiment, as a conventional example, the result of treatment with an aqueous oxalic acid solution after treatment with an aqueous ozone solution (▽ mark) and the result of treatment with an aqueous formic acid solution alone (□ mark) are also shown.
[0034]
The ozone treatment conditions are a concentration of 5 ppm and a temperature of 80 ° C. for 2 hours, and the permanganate treatment conditions are a concentration of 300 ppm and a temperature of 95 ° C. for 2 hours. Formic acid treatment conditions are a concentration of 100 to 50,000 ppm, immersion at a temperature of 95 ° C. for 1 hour, and oxalic acid treatment conditions are a concentration of 2000 ppm, a temperature of 95 ° C. for 1 hour.
[0035]
As can be seen from the results of this test, formic acid treatment alone (concentration 2000 ppm) hardly dissolves the oxide film. On the other hand, in the combination of ozone treatment and formic acid treatment of the present embodiment, the oxide film was dissolved together with the formic acid concentration, and an almost constant dissolution amount was exhibited at the formic acid concentration of 1000 ppm or more. When compared with a formic acid concentration of 1000 ppm or more, a result about 5 times larger than that obtained with formic acid alone was obtained. The result is equivalent to the combined use of conventional ozone treatment and oxalic acid treatment.
[0036]
In addition, the combined effect of the permanganic acid treatment and the formic acid treatment of the present embodiment also has an effect of dissolving the oxide film, and although the amount of dissolution is smaller than the combined use of the ozone treatment, a result about three times larger than the formic acid treatment alone is obtained. It was. In addition, potassium permanganate is selected as the permanganate, treated with potassium permanganate at a concentration of 300 ppm (temperature 95 ° C., 2 hours immersion), and then formic acid treated (concentration 2000 ppm, temperature 95 ° C., 1 hour immersion) ), The same effect was obtained.
[0037]
Next, FIG. 4 shows test results for confirming dissolution of iron oxide (Fe 3 O 4 ) in the chemical decontamination method of the present embodiment. At a formic acid concentration of 2000 ppm and a temperature of 95 ° C., the horizontal axis represents the oxalic acid concentration and the vertical axis represents the dissolved Fe concentration. As can be seen from the results of this test, iron oxide was not dissolved by formic acid alone, but iron oxide was dissolved by adding oxalic acid, and the iron concentration increased in proportion to the oxalic acid concentration.
[0038]
As described above, in the chemical decontamination method of the present embodiment, stainless steel is obtained by using ozone, permanganic acid or permanganate as the oxidation treatment, and using a mixed decontamination solution of formic acid and oxalic acid as the reduction treatment. The oxide film and iron oxide produced on the surface can be efficiently dissolved.
[0039]
Since the radioactive substance is taken into the oxide film on the surface of the activated part, the radioactive substance can be decontaminated from the surface of the activated part by dissolving and removing the oxide film, thereby reducing the exposure of workers. Although formic acid alone can be combined with oxidation treatment to remove the oxide film on the surface of stainless steel, formic acid alone hardly dissolves iron oxides, so decontamination compared with mixed decontamination solution of formic acid and oxalic acid. The performance is considered inferior.
[0040]
When permanganic acid or permanganate is used for the oxidation treatment in the chemical decontamination apparatus of FIG. 2, the
[0041]
Next, the third test result will be described with reference to FIGS. FIG. 5 shows the result of separation of Fe 2+ ions and Fe 3+ ions dissolved in the mixed decontamination solution of formic acid (2000 ppm) and oxalic acid (200 ppm) of the present embodiment by a cationic resin, and FIG. FIG. 7 shows the results of a separation test from a formic acid (2000 ppm) single decontamination solution, and FIG. 7 shows the results of a separation test from a conventional oxalic acid (2000 ppm) single decontamination solution.
[0042]
Explaining the test results from the conventional example, Fe 2+ and Fe 3+ ions dissolved in the formic acid single decontamination solution of FIG. 6 could be separated by a cationic resin. In the oxalic acid single decontamination solution of FIG. 7, Fe 2+ ions could be separated by the cationic resin, but Fe 3+ ions could not be separated. This is because Fe 3+ forms a complex with oxalic acid and exists as an anion as shown in the formula (1). In order to separate Fe 3+ ions, as shown in the above formula (1), it is reduced to a divalent Fe compound by irradiation with ultraviolet rays (hν), or separated with an anion resin in the state of an oxalic acid complex. There is a need to.
[0043]
On the other hand, in the mixed decontamination solution of formic acid and oxalic acid according to the present embodiment shown in FIG. 5, Fe 2+ ions and Fe 3+ ions could be separated by a cationic resin as in the case of formic acid single decontamination solution. . As shown in the following formula (4), Fe 3+ ions complexed with oxalic acid and H + of formic acid were replaced, and it is considered that Fe 3+ ions could be separated by a cationic resin.
[Fe (C 2 O 4 ) 3 ] 3- + 6HCOOH + Fe (COOH) 3 + 3H 2 C 2 O 4 (4)
[0044]
As described above, when a mixed aqueous solution of formic acid and oxalic acid is used as the reducing agent, the UV equipment and Fe 3+ ion reduction process are not required compared to the oxalic acid aqueous solution, reducing the overall cost of decontamination work. Is possible.
[0045]
Next, the fourth test result will be described with reference to FIG. FIG. 8 shows the decomposition test results of the mixed aqueous solution of formic acid and oxalic acid (Δ mark, ▽ mark), the conventional oxalic acid single aqueous solution (□ mark), and the formic acid single aqueous solution (◯ mark) of the present embodiment. The test conditions were 2000 ppm for both formic acid alone and oxalic acid alone aqueous solution, the mixed aqueous solution was 2000 ppm formic acid and 100 ppm oxalic acid, the temperature was 90 ° C., and 20 ppm Fe ion was dissolved in each aqueous solution.
[0046]
In the decomposition method, the mixed aqueous solution first decomposes formic acid with hydrogen peroxide (addition amount: 1.5 times equivalent) (△ mark), and then with ozone (O 3 generation amount / liquid amount: 75 g / h / m 3 ). Oxalic acid was decomposed (▽ mark). Oxalic acid single aqueous solution is a combination of ultraviolet light (output / liquid amount: 3 kw / m 3 ) and hydrogen peroxide (addition amount: 1.5 times equivalent), formic acid single aqueous solution is hydrogen peroxide (addition amount: 1.5 times equivalent) Just disassembled.
[0047]
Explaining the test results from the conventional example, the aqueous solution of oxalic acid alone was decomposed to an organic carbon concentration of 10 ppm or less in 10 hours by the combined use of hydrogen peroxide and ultraviolet rays. Formic acid was decomposed with hydrogen peroxide alone to an organic carbon concentration of 10 ppm or less in 2 hours.
[0048]
On the other hand, in the mixed aqueous solution of the present embodiment, formic acid is decomposed by hydrogen peroxide alone, but oxalic acid is not decomposed by hydrogen peroxide alone. Therefore, after decomposition of formic acid, oxalic acid was subsequently decomposed by ozone used for oxidation treatment, and the organic carbon concentration was decomposed to 10 ppm or less in a total of less than 4 hours. Oxalic acid can also be decomposed by other oxidizing aqueous solutions such as permanganic acid and potassium permanganate.
[0049]
Here, the reason why formic acid is not decomposed with an oxidizing aqueous solution is that it can be decomposed by ozone alone, but it takes about the same time as the decomposition of oxalic acid by hydrogen peroxide and ultraviolet rays, so it does not shorten the decomposition time. is there. In addition, decomposition reaction is very slow in permanganic acid and potassium permanganate, and the above decomposition time is required.
[0050]
As described above, the mixed aqueous solution of formic acid and oxalic acid can be decomposed in about half the time of oxalic acid, which has a proven track record as a decontaminant, although the decomposition time is slower than that of formic acid alone. In addition, as shown in the above formulas (2) and (3), the decomposition of oxalic acid requires an ultraviolet device in order to generate Fe 2+ ions. Since the Fe 3+ ion reduction process is not required, the overall cost of decontamination work can be reduced.
[0051]
The concentration range of formic acid and oxalic acid used for the reducing decontamination agent is preferably 1000 ppm to 5000 ppm for formic acid and 50 ppm to 300 ppm for oxalic acid in consideration of decontamination performance and reduction time.
[0052]
Next, as a fifth test result, the decomposition treatment of hydrogen peroxide and ozone remaining after the completion of the decomposition treatment of the mixed decontamination solution of formic acid and oxalic acid will be described. Iron ions and radioactive substances that elute in the decontamination solution are separated by the ion exchange resin. However, if hydrogen peroxide and ozone remain in the decontamination solution, the oxidative degradation of the ion exchange resin is promoted. there is a possibility. In order to prevent this, the decontamination solution is irradiated with ultraviolet rays (hν), and hydrogen peroxide and ozone are decomposed into water and oxygen by the reactions shown in the following formulas (5) and (6).
Decomposition of hydrogen peroxide: H 2 O 2 + hν → O 2 + 2H + + 2e − (5)
Decomposition of ozone: O 3 + hν → O + O 2 (6)
[0053]
In order to confirm the above reaction, a decomposition test was carried out by ultraviolet rays of hydrogen peroxide and ozone remaining in the decontamination solution (formic acid concentration of 10 ppm or less). The hydrogen peroxide decomposition test results are shown in FIG. 9, and the ozone decomposition test results are shown in FIG. At an ultraviolet output of 3 kw / m 3 , hydrogen peroxide with an initial concentration of 20 ppm was decomposed to 1 ppm or less in 1.5 hours, and ozone with an initial concentration of 5.5 ppm was decomposed to 0.1 ppm or less in 12 minutes.
[0054]
As described above, hydrogen peroxide or ozone remaining during or after decomposition of formic acid in the decontamination solution can be decomposed by ultraviolet rays, so that the eluted metal ions can be separated without reducing the exchange capacity of the ion exchange resin. . Therefore, the amount of used ion exchange resin generated as secondary waste can be reduced.
[0055]
In FIG. 2, a liquid
[0056]
In addition, as a corrosion inhibitor for suppressing the corrosion of stainless steel that comes into contact with ozone water, which is an oxidizing agent, carbonic acid, carbonate, hydrogen carbonate, boric acid, borate, sulfuric acid, sulfate, phosphoric acid, phosphate, phosphoric acid Although it is said that there is an effect by adding a hydrogen salt, also in this embodiment, since the ozone gas is supplied at the time of oxalic acid decomposition, the above-mentioned corrosion inhibitor is a stainless steel base material at the time of oxalic acid decomposition treatment. It was confirmed that it was effective in inhibiting corrosion.
[0057]
According to the chemical decontamination method and apparatus for activated parts of the present embodiment, the following effects can be obtained. That is, a method of decontaminating a structure part of a radiation handling facility as a decontamination object and chemically dissolving an oxide film containing a radioactive substance generated or attached to the surface of the activation part as an individual decontamination object In this process, the reducing decontamination solution in which the monocarboxylic acid formic acid and the dicarboxylic acid oxalic acid are mixed and dissolved and the oxidizing decontamination solution in which the oxidizing agent is dissolved are alternately brought into contact with each other and decontaminated. Substances can be removed efficiently.
[0058]
In addition, since Fe 3+ ions eluted in the reducing mixed decontamination solution can be separated by a cationic resin, a reduction device and a reduction process for reducing Fe 3+ ions to Fe 2+ ions are not necessary. The overall cost of the decontamination apparatus can be reduced.
[0059]
Furthermore, formic acid in the reductive mixed decontamination solution can be decomposed only with hydrogen peroxide, and low-concentration oxalic acid can be decomposed in an oxidizing aqueous solution in a short time, thus producing a divalent Fe compound as a decomposition catalyst. Since the reduction device and the reduction process are not required, the entire cost of the decontamination device can be reduced.
[0060]
【The invention's effect】
According to the present invention, there is no need for a process and apparatus for reducing trivalent iron ions to divalent iron ions, the decomposition rate is faster than with oxalic acid, and the decontamination performance is equivalent to that of oxalic acid. A method and apparatus for chemical decontamination of parts can be provided.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a chemical decontamination method for activated components according to an embodiment of the present invention.
FIG. 2 is a system diagram showing a chemical decontamination apparatus for activation parts according to an embodiment of the present invention.
FIG. 3 is a dissolution curve diagram of an oxide film for explaining the effect of the method and apparatus for chemical decontamination of activated parts according to the embodiment of the present invention.
FIG. 4 is a dissolution curve diagram of an oxide film for explaining the effects of the chemical decontamination method and apparatus for activated parts according to the embodiment of the present invention.
FIG. 5 is a bar graph showing the results of a separation test of iron ions in a reducing mixed aqueous solution with a cation resin and illustrating the effect of the embodiment of the present invention.
FIG. 6 is a bar graph showing the results of a separation test of iron ions in an aqueous formic acid solution using a cation resin and explaining the effect of the embodiment of the present invention.
FIG. 7 is a bar graph showing the results of a separation test of iron ions in an oxalic acid aqueous solution using a cationic resin and illustrating the effect of the embodiment of the present invention.
FIG. 8 is a curve diagram showing the results of a decomposition test of a reducing mixed aqueous solution and illustrating the effect of the embodiment of the present invention.
FIG. 9 is a curve diagram showing the results of a decomposition test of residual hydrogen peroxide and explaining the effect of the embodiment of the present invention.
FIG. 10 is a curve diagram showing the results of a residual ozone decomposition test and explaining the effect of the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (9)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337339A JP4131814B2 (en) | 2002-11-21 | 2002-11-21 | Method and apparatus for chemical decontamination of activated parts |
KR1020030082748A KR100724710B1 (en) | 2002-11-21 | 2003-11-20 | System and method for chemical decontamination of radioactive material |
DE60324883T DE60324883D1 (en) | 2002-11-21 | 2003-11-21 | System and method for chemical decontamination of radioactive material |
EP03026850A EP1422724B1 (en) | 2002-11-21 | 2003-11-21 | System and method for chemical decontamination of radioactive material |
TW092132780A TWI267874B (en) | 2002-11-21 | 2003-11-21 | System and method for chemical decontamination of radioactive material |
US10/717,628 US7087120B1 (en) | 2002-11-21 | 2003-11-21 | System and method for chemical decontamination of radioactive material |
CNB2003101196849A CN1267933C (en) | 2002-11-21 | 2003-11-21 | Chemical purifying system and method for radioactive matter |
US11/443,106 US7772451B2 (en) | 2002-11-21 | 2006-05-31 | System and method for chemical decontamination of radioactive material |
US11/444,424 US7622627B2 (en) | 2002-11-21 | 2006-06-01 | System and method for chemical decontamination of radioactive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337339A JP4131814B2 (en) | 2002-11-21 | 2002-11-21 | Method and apparatus for chemical decontamination of activated parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004170278A JP2004170278A (en) | 2004-06-17 |
JP4131814B2 true JP4131814B2 (en) | 2008-08-13 |
Family
ID=32700878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002337339A Expired - Fee Related JP4131814B2 (en) | 2002-11-21 | 2002-11-21 | Method and apparatus for chemical decontamination of activated parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4131814B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11232878B2 (en) | 2017-03-10 | 2022-01-25 | Kurita Water Industries Ltd. | Chemical decontamination method |
TWI799809B (en) * | 2020-03-17 | 2023-04-21 | 日商日立Ge核子能源股份有限公司 | Chemical decontamination method and chemical decontamination device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4309324B2 (en) * | 2004-09-30 | 2009-08-05 | 株式会社東芝 | Chemical decontamination method and chemical decontamination apparatus |
JP6005425B2 (en) * | 2012-07-13 | 2016-10-12 | 株式会社東芝 | Chemical decontamination method for radioactive contaminants |
JP6134617B2 (en) | 2013-09-06 | 2017-05-24 | 日立Geニュークリア・エナジー株式会社 | Chemical decontamination method for carbon steel components in nuclear power plant |
JP6591225B2 (en) * | 2015-08-03 | 2019-10-16 | 株式会社東芝 | Decontamination method |
KR101999846B1 (en) * | 2018-09-20 | 2019-07-12 | 한국수력원자력 주식회사 | Facilities and method for waste liquid treatment |
KR101999847B1 (en) * | 2018-09-20 | 2019-07-12 | 한국수력원자력 주식회사 | Facilities and method for system decontamination |
KR102006015B1 (en) * | 2018-09-20 | 2019-07-31 | 한국수력원자력 주식회사 | Method for system decontamination |
KR102004396B1 (en) * | 2018-09-20 | 2019-07-26 | 한국수력원자력 주식회사 | System decontamination facilities |
KR102003980B1 (en) * | 2018-09-20 | 2019-07-25 | 한국수력원자력 주식회사 | Facilities and method for system decontamination |
JP7324921B2 (en) * | 2018-09-28 | 2023-08-10 | 三菱重工業株式会社 | Surplus water treatment method and surplus water treatment system |
KR102035853B1 (en) * | 2019-07-11 | 2019-10-23 | 한국수력원자력 주식회사 | Method for system decontamination |
KR102417268B1 (en) * | 2021-03-18 | 2022-07-05 | 한국수력원자력 주식회사 | Facilities for waste liquid treatment |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57151899A (en) * | 1981-03-16 | 1982-09-20 | Hitachi Ltd | Method of processing liquid waste of atomic power plant |
DE3413868A1 (en) * | 1984-04-12 | 1985-10-17 | Kraftwerk Union AG, 4330 Mülheim | METHOD FOR CHEMICAL DECONTAMINATION OF METAL COMPONENTS OF CORE REACTOR PLANTS |
JPS61231496A (en) * | 1985-04-05 | 1986-10-15 | 日立プラント建設株式会社 | Decontamination method for radioactive metal waste |
JPS62260083A (en) * | 1986-05-06 | 1987-11-12 | Mitsubishi Heavy Ind Ltd | Method for chemically cleaning surface of stainless steel |
JP2545946B2 (en) * | 1988-08-29 | 1996-10-23 | 日揮株式会社 | Waste liquid treatment method and treatment device |
DE4410747A1 (en) * | 1994-03-28 | 1995-10-05 | Siemens Ag | Method and device for disposing of a solution containing an organic acid |
JP3481746B2 (en) * | 1995-10-19 | 2003-12-22 | 株式会社東芝 | Decontamination method of metal contaminated by radioactivity |
GB9610647D0 (en) * | 1996-05-21 | 1996-07-31 | British Nuclear Fuels Plc | Decontamination of metal |
JP3859902B2 (en) * | 1998-06-23 | 2006-12-20 | 株式会社東芝 | Chemical decontamination method and apparatus for structural parts of radiation handling facilities |
JP2000065989A (en) * | 1998-08-21 | 2000-03-03 | Toshiba Corp | Method for chemical decontamination of radioactive contaminant |
JP2000346988A (en) * | 1999-06-07 | 2000-12-15 | Toshiba Corp | Method of chemical decontamination of metal structural material for facility related to reprocessing |
JP3849925B2 (en) * | 2000-12-21 | 2006-11-22 | 株式会社東芝 | Chemical decontamination method |
-
2002
- 2002-11-21 JP JP2002337339A patent/JP4131814B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11232878B2 (en) | 2017-03-10 | 2022-01-25 | Kurita Water Industries Ltd. | Chemical decontamination method |
TWI799809B (en) * | 2020-03-17 | 2023-04-21 | 日商日立Ge核子能源股份有限公司 | Chemical decontamination method and chemical decontamination device |
Also Published As
Publication number | Publication date |
---|---|
JP2004170278A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7622627B2 (en) | System and method for chemical decontamination of radioactive material | |
US6635232B1 (en) | Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same | |
JP4131814B2 (en) | Method and apparatus for chemical decontamination of activated parts | |
JP3859902B2 (en) | Chemical decontamination method and apparatus for structural parts of radiation handling facilities | |
US20140205052A1 (en) | Chelate Free Chemical Decontamination Reagent for Removal of the Dense Radioactive Oxide Layer on the Metal Surface and Chemical Decontamination Method Using the Same | |
JP4567542B2 (en) | Method for suppressing radionuclide adhesion to nuclear plant components | |
JP2010266393A (en) | Chemical decontamination method | |
KR101860002B1 (en) | Method of sequential chemical decontamination for removing radioactive contanminats | |
JP4083607B2 (en) | Radioactive chemical decontamination method and apparatus | |
JP2000346988A (en) | Method of chemical decontamination of metal structural material for facility related to reprocessing | |
JP2009109427A (en) | Chemical decontamination method and its device | |
JP4861252B2 (en) | Chemical decontamination method before reactor demolition | |
US11232878B2 (en) | Chemical decontamination method | |
JP4309324B2 (en) | Chemical decontamination method and chemical decontamination apparatus | |
JP3866402B2 (en) | Chemical decontamination method | |
JP2007064634A (en) | Method and device for chemical decontamination | |
JP2013064696A (en) | Chemical decontamination method for radioactive contaminants | |
JP6005425B2 (en) | Chemical decontamination method for radioactive contaminants | |
JP2002365397A (en) | Decontamination method for radioactive members | |
JPH0763893A (en) | Chemical decontamination of radioactive crud | |
JP5096652B2 (en) | Treatment agent and treatment method for aluminum member surface | |
JP2013088213A (en) | Chemical decontamination method and apparatus therefor | |
JP2000065989A (en) | Method for chemical decontamination of radioactive contaminant | |
JP2003033653A (en) | Organic acid decomposition catalyst and chemical decontamination method | |
JP2001033586A (en) | Chemical decontamination method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050225 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060825 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080527 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080528 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |