JP4131306B2 - Electron emission material - Google Patents
Electron emission material Download PDFInfo
- Publication number
- JP4131306B2 JP4131306B2 JP35113598A JP35113598A JP4131306B2 JP 4131306 B2 JP4131306 B2 JP 4131306B2 JP 35113598 A JP35113598 A JP 35113598A JP 35113598 A JP35113598 A JP 35113598A JP 4131306 B2 JP4131306 B2 JP 4131306B2
- Authority
- JP
- Japan
- Prior art keywords
- electron emission
- carbon fiber
- emission material
- tip
- vapor grown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 21
- 239000002134 carbon nanofiber Substances 0.000 claims description 23
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 4
- 230000008034 disappearance Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 12
- 239000000835 fiber Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Cold Cathode And The Manufacture (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Inorganic Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、陰極電子源である電界放出型の電子放出素材を提供するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
冷陰極電子源である電界放出型の電子放出素材としては、先端が細く尖った導電性物質が求められている。
例えば先端が尖った円錐状のSpindt型の冷陰極が知られている。それは、穴の開いたゲートとSiO2 の絶縁層に、ゲートを通して冷陰極の材料であるMoを成膜すると、SiO2 層に開けた穴に,Moが堆積し円錐の構造物が形成される。
こうして得られたSpindt型の冷陰極は、製造工程が複雑なこと、また冷陰極の耐久性が劣り寿命が短い欠点がある。
また、1991年に飯島等により発見されたカーボンナノチューブは、先端が尖鋭であり、化学的に安定で機械的にも強靱であり、電界放出型の電子源として有利な性質を持っており、電界放出型の電子源として使用することが検討されている。
例えば、斉藤らはNature 389 554(’97)に示されるように電界電子放出顕微鏡等を用いて、単層カーボンナノチューブや多層カーボンナノチューブからの電界電子放出特性を検討している。
しかし、カーボンナノチューブ類は、耐久性はあるが、その工業的な製造方法は確立されておらず、品質の安定したものが安価に供給されていない。
【0003】
【課題を解決するための手段】
本発明者らは、カーボンナノチューブの代わりに工業的な製造方法が確立されている気相法炭素繊維に着目し、該炭素繊維を電界放出型の電子放出素材として用いることを検討し、該炭素繊維の熱処理条件、粉砕や酸化処理等による破断を検討することにより、より多く安定して電子が放出されることを見いだし、本発明を完成させた。
すなわち、
1)直径が0.01〜5μmの気相法炭素繊維であって、該炭素繊維を不活性雰囲気下で800℃〜3300℃の温度で熱処理を行い、更に粉砕処理することにより先端を破断させたことを特徴とする電子放出素材であり、
2)直径が0.01〜5μmの気相法炭素繊維であって、該炭素繊維を不活性雰囲気下で800℃〜3300℃の温度で熱処理を行い、更に酸化処理を行うことにより先端を破断させたことを特徴とする電子放出素材であり、
3)直径が0.01〜5μmの気相法炭素繊維であって、該炭素繊維を不活性雰囲気下で800℃〜3300℃の温度で熱処理を行い、更に粉砕処理し、更に酸化処理を行うことにより先端を破断させたことを特徴とする電子放出素材である。
【0004】
【発明の実施の形態】
以下、本発明の気相法炭素繊維をもとにした電子放出材について更に詳しく説明する。
本発明の縮号環状の炭素面が繊維軸を中心に年輪状に積層した直径が0.01〜5μmの気相法炭素繊維は、特公平4−24320に開示されているように、メタロセンを気相にて導入し、熱分解させ基盤上に析出させるものや、特許2778434号に開示されているような遷移金属又はその化合物を含む有機化合物の微小液滴を加熱炉壁面に吹き付け、炉壁面に生成させるような製造法で代表される物質であって、該炭素繊維を不活性雰囲気下で800℃以上、3300℃以下の温度で熱処理を行った気相法炭素繊維である。不活性雰囲気下での熱処理温度は、800℃以上が好ましく、熱処理温度を2000℃以上、より好ましくは2600℃以上として黒鉛構造に近づけたものも電子放出素材として使用することができる。
熱処理温度の上限は、黒鉛化温度3000℃程度までが望ましいが、炉構造から上限は3300℃に限界がある。
不活性雰囲気は、アルゴン雰囲気が望ましい。
更に、上記製造方法で得られた気相法炭素繊維は、分岐状で網膜状に発達しているものが多く、また繊維同士が互着しており、そのままでは電子放出特性が劣る。
そこで、それらを粉砕処理することにより、繊維同士をほぐしたり、一部繊維を切断することにより、より良い電子放出特性が得られる。その際の粉砕方法は、スクリーンミル、ハンマーミル、ボールミル等が挙げられ、粉砕方式にはとらわれない。
また、その粉砕の程度は、気相法炭素繊維は生成熱処理後の段階では、上記のように互着していて嵩密度が大きい。上記粉砕処理により、該炭素繊維がほぐれ始め、嵩比重は急激に0.01g/cm3 以下まで小さくなる。更に粉砕を続けると分断、細分された繊維が今度は徐々に凝集し嵩密度が0.15g/cm3 程度まで上がってくる。
電子放出材として適しているのは、生成熱処理後粉砕処理を行い繊維を完全に分断させた後、嵩密度を0.01g/cm3 以上、好ましくは0.03g/cm3 以上に調整したものである。
更に、熱処理された気相法炭素繊維あるいはその粉砕処理品は、一方は粉砕処理により切断されているが、もう一方は丸みを帯びている。電子放出素材としては、両端とも切断されていた方が電子放出特性が良いと考えられ、そこでもう一方の端も破断させる方法を検討した結果、酸化処理を行うことにより、繊維のもう一方の端も破断され、それにより電子放出特性が向上することを確認した。その酸化処理方法は、消失率で20wt%以上が必要である。
酸化処理を行う際の気相法炭素繊維は、熱処理後粉砕処理を行っていないもの、または熱処理後粉砕処理を行ったもののいずれでも良い。
【0005】
【実施例】
以下、実施例により本発明を更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
(比較例1)
特許2778434号に記された方法にて、フェロセンを含有するベンゼンを水素ガスにて1200℃の縦型加熱炉炉壁に噴霧し炉壁に成長させた気相法炭素繊維を5分間隔で掻き落とし、得られた気相法炭素繊維を2800℃でアルゴン雰囲気下で黒鉛化を行った。この気相法炭素繊維をピンミルで途中まで解砕した。その際の嵩密度は、0.06g/cm3 であった。
得られた気相法炭素繊維を、Nature 389 554(97’)で示された電界電子放出顕微鏡により、電子放出特性を測定した。
その電界電子放出顕微鏡を図−1に示す。測定方法は、直径0.2mmのタングステン製ヘアピンの先端に気相法炭素繊維を導電性ペーストで接着し、その先端と蛍光スクリーンとの間を60mmに調節する。ヘアピンと蛍光スクリーンとの間にティップ電圧をかけ、その際に放出され、蛍光スクリーンに開けた直径1mmのプローブ孔を通過した電子をプローブ電流として検出し、電子放出特性を評価した。その際、この測定系内を5×10-6Paに保った。
その結果を表−1に示す。
(実施例1)
比較例1で得られた熱処理後ピンミルで解砕した気相法炭素繊維を更に、ハンマーミルで嵩比重が0.01g/cm3 以下まで粉砕を行い、更に粉砕を続けた結果、その嵩密度は、0.03g/cm3 となった。
得られた気相法炭素繊維を、比較例1と同様に電子放出特性を測定した。その結果を表−1に示す。
(実施例2)
比較例1で得られた熱処理後ピンミルで解砕した気相法炭素繊維を、坩堝に詰め750℃に加熱したマッフル炉に入れ3時間加熱した。その際の酸化消失率は40wt%であった。
この繊維も比較例1と同様に電子放出特性を測定した。その結果を表ー1に示す。
(実施例3)
実施例1で得られた気相法炭素繊維を坩堝に詰め、750℃に加熱したマッフル炉に入れ3時間加熱した。その際の酸化消失率は40wt%であった。
この繊維も実施例1と同様に電子放出特性を測定した。その結果を表−1に示す。
【0006】
【表1】
【0007】
【発明の効果】
本発明によれば、カーボンナノチューブの代わりに気相法炭素繊維を使用することにより、工業的に安価な材料を電子放出材として製造及び利用できる。
【図面の簡単な説明】
【図1】本発明中で電子放出特性を測定した装置の概略を示す図である。
【符号の説明】
1 気相法炭素繊維
2 プローブ孔
3 蛍光スクリーン
4 ファラデーカップ
5 CCDカメラ
6 ジンバル
7 電圧端子
8 排気系[0001]
BACKGROUND OF THE INVENTION
The present invention provides a field emission type electron emission material which is a cathode electron source.
[0002]
[Prior art and problems to be solved by the invention]
As a field emission type electron emission material which is a cold cathode electron source, a conductive material having a thin and sharp tip is required.
For example, a conical Spindt-type cold cathode with a sharp tip is known. It insulating layer of gate and SiO 2 with a hole and forming the Mo which is the material of the cold cathode through the gate, the holes drilled in the SiO 2 layer, the structure of Mo is deposited cone is formed .
The Spindt-type cold cathode thus obtained has a drawback that the manufacturing process is complicated, and the durability of the cold cathode is inferior and the life is short.
The carbon nanotube discovered by Iijima et al. In 1991 has a sharp tip, is chemically stable and mechanically strong, and has an advantageous property as a field emission electron source. Use as an emission type electron source is under study.
For example, Saito et al. Are examining field electron emission characteristics from single-walled carbon nanotubes and multi-walled carbon nanotubes using a field electron emission microscope as shown in Nature 389 554 ('97).
However, carbon nanotubes have durability, but their industrial production methods have not been established, and those with stable quality have not been supplied at low cost.
[0003]
[Means for Solving the Problems]
The inventors of the present invention have focused on vapor-grown carbon fibers for which an industrial production method has been established instead of carbon nanotubes, and have studied the use of carbon fibers as field emission type electron emission materials. By studying the heat treatment conditions of the fiber, breaking due to pulverization, oxidation treatment, etc., it was found that more electrons were stably emitted, and the present invention was completed.
That is,
1) A vapor grown carbon fiber having a diameter of 0.01 to 5 μm, the carbon fiber is heat-treated at a temperature of 800 ° C. to 3300 ° C. in an inert atmosphere, and further pulverized to break the tip. An electron emission material characterized by
2) Vapor grown carbon fiber having a diameter of 0.01 to 5 μm, the carbon fiber is heat-treated at a temperature of 800 ° C. to 3300 ° C. in an inert atmosphere, and further oxidized to break the tip. It is an electron emission material characterized by
3) Vapor grown carbon fiber having a diameter of 0.01 to 5 μm, which is heat treated at a temperature of 800 ° C. to 3300 ° C. in an inert atmosphere, further pulverized, and further oxidized. Thus, the electron emission material is characterized in that the tip is broken.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electron emission material based on the vapor grown carbon fiber of the present invention will be described in more detail.
The vapor grown carbon fiber having a diameter of 0.01 to 5 μm, in which the condensed ring-shaped carbon surface of the present invention is laminated in the shape of an annual ring around the fiber axis, is disclosed in Japanese Patent Publication No. 4-24320. Introduced in the gas phase, pyrolyzed and deposited on the substrate, or fine droplets of an organic compound containing a transition metal or its compound as disclosed in Japanese Patent No. 2778434 is sprayed on the heating furnace wall surface, It is a substance represented by a production method such as that produced in the above, and is a vapor grown carbon fiber obtained by heat-treating the carbon fiber at a temperature of 800 ° C. or higher and 3300 ° C. or lower in an inert atmosphere. The heat treatment temperature in an inert atmosphere is preferably 800 ° C. or higher, and a heat treatment temperature of 2000 ° C. or higher, more preferably 2600 ° C. or higher, close to the graphite structure can be used as the electron emission material.
The upper limit of the heat treatment temperature is preferably up to about 3000 ° C., but the upper limit is 3300 ° C. due to the furnace structure.
The inert atmosphere is preferably an argon atmosphere.
Furthermore, many vapor grown carbon fibers obtained by the above production method are branched and retinal, and the fibers are attached to each other, and as such, the electron emission characteristics are inferior.
Thus, by pulverizing them, fibers can be loosened or a part of the fibers can be cut to obtain better electron emission characteristics. The pulverization method in that case includes a screen mill, a hammer mill, a ball mill, and the like, and is not limited to the pulverization method.
Further, the degree of pulverization is that the vapor grown carbon fibers are attached together as described above and have a high bulk density at the stage after the heat treatment. By the above pulverization treatment, the carbon fibers begin to loosen, and the bulk specific gravity rapidly decreases to 0.01 g / cm 3 or less. If the pulverization is further continued, the divided and subdivided fibers are gradually aggregated and the bulk density is increased to about 0.15 g / cm 3 .
What is suitable as an electron emission material is a product in which the bulk density is adjusted to 0.01 g / cm 3 or more, preferably 0.03 g / cm 3 or more after pulverization after generation heat treatment to completely cut the fiber. It is.
Further, one of the heat-treated vapor grown carbon fiber or a pulverized product thereof is cut by pulverization, but the other is rounded. As an electron emission material, it is considered that the electron emission characteristic is better when both ends are cut, and as a result of studying a method of breaking the other end, the other end of the fiber is obtained by oxidation treatment. It was also confirmed that the electron emission characteristics were improved. The oxidation treatment method requires 20 wt% or more in terms of disappearance rate.
The vapor grown carbon fiber used in the oxidation treatment may be either one not subjected to pulverization after heat treatment or one subjected to pulverization after heat treatment.
[0005]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.
(Comparative Example 1)
According to the method described in Japanese Patent No. 2778434, benzene containing ferrocene is sprayed with hydrogen gas on the vertical heating furnace wall at 1200 ° C., and vapor grown carbon fiber grown on the furnace wall is scraped at intervals of 5 minutes. The vapor grown carbon fiber was graphitized at 2800 ° C. under an argon atmosphere. This vapor grown carbon fiber was crushed halfway with a pin mill. The bulk density at that time was 0.06 g / cm 3 .
The obtained vapor grown carbon fiber was measured for electron emission characteristics by a field electron emission microscope shown by Nature 389 554 (97 ′).
The field electron emission microscope is shown in FIG. In the measurement method, vapor grown carbon fiber is bonded to the tip of a tungsten hairpin having a diameter of 0.2 mm with a conductive paste, and the distance between the tip and the fluorescent screen is adjusted to 60 mm. A tip voltage was applied between the hairpin and the fluorescent screen. Electrons emitted at that time and passed through a probe hole having a diameter of 1 mm opened in the fluorescent screen were detected as a probe current, and the electron emission characteristics were evaluated. At that time, the inside of the measurement system was kept at 5 × 10 −6 Pa.
The results are shown in Table-1.
(Example 1)
The vapor grown carbon fiber crushed with a pin mill after heat treatment obtained in Comparative Example 1 was further pulverized with a hammer mill to a bulk specific gravity of 0.01 g / cm 3 or less, and the pulverization was continued. Was 0.03 g / cm 3 .
The obtained vapor grown carbon fiber was measured for electron emission characteristics in the same manner as in Comparative Example 1. The results are shown in Table-1.
(Example 2)
The vapor grown carbon fiber crushed by a pin mill after heat treatment obtained in Comparative Example 1 was placed in a muffle furnace packed in a crucible and heated to 750 ° C. and heated for 3 hours. The oxidation loss rate at that time was 40 wt%.
The electron emission characteristics of this fiber were measured in the same manner as in Comparative Example 1. The results are shown in Table-1.
(Example 3)
The vapor grown carbon fiber obtained in Example 1 was packed in a crucible, placed in a muffle furnace heated to 750 ° C., and heated for 3 hours. The oxidation loss rate at that time was 40 wt%.
The electron emission characteristics of this fiber were measured in the same manner as in Example 1. The results are shown in Table-1.
[0006]
[Table 1]
[0007]
【The invention's effect】
According to the present invention, by using vapor grown carbon fiber instead of carbon nanotube, an industrially inexpensive material can be produced and used as an electron emission material.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an apparatus for measuring electron emission characteristics in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas phase
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35113598A JP4131306B2 (en) | 1998-12-10 | 1998-12-10 | Electron emission material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35113598A JP4131306B2 (en) | 1998-12-10 | 1998-12-10 | Electron emission material |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000173449A JP2000173449A (en) | 2000-06-23 |
JP2000173449A5 JP2000173449A5 (en) | 2005-08-11 |
JP4131306B2 true JP4131306B2 (en) | 2008-08-13 |
Family
ID=18415293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35113598A Expired - Fee Related JP4131306B2 (en) | 1998-12-10 | 1998-12-10 | Electron emission material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4131306B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3981568B2 (en) * | 2001-03-21 | 2007-09-26 | 守信 遠藤 | Carbon fiber for field electron emitter and method for producing field electron emitter |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524162A (en) * | 1975-06-27 | 1977-01-13 | Hitachi Ltd | Electric field radiation cathode and its manufacturing method |
JPS52115159A (en) * | 1976-03-24 | 1977-09-27 | Hitachi Ltd | Production method of field radiating cathode |
DE2810736A1 (en) * | 1978-03-13 | 1979-09-27 | Max Planck Gesellschaft | FIELD EMISSION CATHODE AND MANUFACTURING METHOD AND USE FOR IT |
JP2778434B2 (en) * | 1993-11-30 | 1998-07-23 | 昭和電工株式会社 | Method for producing vapor grown carbon fiber |
DE69610902T2 (en) * | 1995-02-15 | 2001-04-19 | Lightlab Ab, Stockholm | FIELD EMISSION CATHODE AND MANUFACTURING METHOD THEREOF |
JPH11273551A (en) * | 1998-03-23 | 1999-10-08 | Nec Corp | Electron emitting element employing boron nitride and its manufacture |
JP3790045B2 (en) * | 1998-05-13 | 2006-06-28 | 株式会社ノリタケカンパニーリミテド | Fluorescent display device and manufacturing method thereof |
JP3890791B2 (en) * | 1998-11-20 | 2007-03-07 | 昭和電工株式会社 | Sharp carbonaceous fiber at both ends and method for producing the same |
-
1998
- 1998-12-10 JP JP35113598A patent/JP4131306B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000173449A (en) | 2000-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100615103B1 (en) | Nanotubes, field emission cathodes and cathode ray tubes with nanotubes and methods for forming them | |
Saito et al. | Field emission from carbon nanotubes and its application to electron sources | |
Cheng et al. | Electron field emission from carbon nanotubes | |
EP1245704B1 (en) | Uses of carbon fibers | |
KR100604459B1 (en) | Double-walled carbon nanotubes and their preparation and application | |
Mathur et al. | Co-synthesis, purification and characterization of single-and multi-walled carbon nanotubes using the electric arc method | |
Thong et al. | Field-emission induced growth of nanowires | |
Lee et al. | Growth and field emission of carbon nanotubes on sodalime glass at 550 C using thermal chemical vapor deposition | |
Saito | Carbon nanotube field emitter | |
JP2007123280A (en) | CARBON NANOTUBE HAVING ZnO PROTRUSION | |
Doytcheva et al. | In situ transmission electron microscopy investigation of the structural changes in carbonnanotubes during electron emission at high currents | |
Chen et al. | Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walledcarbon nanotube arrays with high adherence strength | |
Yumura et al. | Synthesis and purification of multi-walled carbon nanotubes for field emitter applications | |
Jou et al. | Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane | |
JP4131306B2 (en) | Electron emission material | |
JP3890791B2 (en) | Sharp carbonaceous fiber at both ends and method for producing the same | |
JP4357066B2 (en) | Field electron emission device and manufacturing method thereof | |
US6221489B1 (en) | Carbonaceous fiber acute-angled at both ends and production process therefor | |
JP4539817B2 (en) | Method for producing carbon nanostructure | |
JP4693463B2 (en) | Catalyst for producing double-walled carbon nanotubes and method for producing double-walled carbon nanotubes using the same | |
WO2022233093A1 (en) | Microfocus field emission electron source based on carbon nanotube, and preparation method therefor | |
Liu et al. | Improvement of field emission performances by DMSO and PEDOT: PSS treated freestanding CNT clusters | |
Park et al. | Growth and high current field emission of carbon nanofiber films with electroplated Ni catalyst | |
JP4815783B2 (en) | Carbon nanotube, method for producing carbon nanotube, and electron emission material | |
Nguyen et al. | Purification process for vertically aligned carbon nanofibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070524 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070524 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080514 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |