[go: up one dir, main page]

JP4129237B2 - Glass for solidifying radioactive waste - Google Patents

Glass for solidifying radioactive waste Download PDF

Info

Publication number
JP4129237B2
JP4129237B2 JP2004014796A JP2004014796A JP4129237B2 JP 4129237 B2 JP4129237 B2 JP 4129237B2 JP 2004014796 A JP2004014796 A JP 2004014796A JP 2004014796 A JP2004014796 A JP 2004014796A JP 4129237 B2 JP4129237 B2 JP 4129237B2
Authority
JP
Japan
Prior art keywords
glass
waste
mass
molar ratio
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004014796A
Other languages
Japanese (ja)
Other versions
JP2005207885A (en
Inventor
利典 大倉
Original Assignee
利典 大倉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利典 大倉 filed Critical 利典 大倉
Priority to JP2004014796A priority Critical patent/JP4129237B2/en
Publication of JP2005207885A publication Critical patent/JP2005207885A/en
Application granted granted Critical
Publication of JP4129237B2 publication Critical patent/JP4129237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、リン酸マグネシウム系ガラスからなる放射性廃棄物の固化処理用ガラスに関する。また、本発明は、上記ガラスを用いる放射性廃棄物含有ガラス固化体、および放射性廃棄物の固化処理方法に関する。   The present invention relates to a glass for solidification treatment of radioactive waste made of magnesium phosphate glass. In addition, the present invention relates to a radioactive waste-containing vitrified body using the above glass and a method for solidifying radioactive waste.

原子力発電には、使用済み燃料を処理しエネルギーを再利用する(再処理)という大きな利点がある一方で、その工程に関与する種々の放射性廃棄物が不可避的に発生するという問題点もある。
こうした放射性廃棄物の中でも、再処理時に取り出される高レベル放射性廃棄物に関しては、放射能レベルが高くかつ半減期の長い放射性物質を多く含んで発熱を伴うため、セメント、ガラス等を用いて安全な固体に処理する方法の研究開発が進められており、現在は、減容化が可能で化学的に最も安定性の高いガラス固化体にした後に、地下300m以深の安定した地層中に隔離する「地層処分」を行うことになる。
Nuclear power generation has the great advantage of processing spent fuel and reusing energy (reprocessing), but also has the problem that various radioactive wastes involved in the process are inevitably generated.
Among these radioactive wastes, high-level radioactive waste that is taken out during reprocessing contains a lot of radioactive materials with high radioactivity levels and long half-lives, and generates heat, so it is safe to use cement, glass, etc. Research and development of a method for processing into solids is underway, and now it is possible to reduce the volume and make it the most chemically stable vitrified body, and then isolate it in a stable formation at a depth of 300 m or below. "Geological disposal" will be performed.

ガラスが用いられるのは、廃棄物にはイオン半径の異なる種々の放射性物質が含まれるためこれらを封じ込めるには原子配列が不規則な網目構造を有するガラスが好都合であり、また、ガラスは容積の小さな固化体にできて取り扱いが容易であり、さらにガラスは、本来、水に対して溶出しがたい安定な物質だからである。
ガラス化できる無機物には、ホウ素・ケイ素・リン・ゲルマニウム等の酸化物、塩化物、硫黄化物などがある。中でもSiO2は最もガラスを生成し易い酸化物の1つであるが、SiO2の溶融には1800℃以上の高温を必要とし、しかも粘性が高く成形加工が難しいという問題点があるため、現在は、SiO2にホウ素を加えることによって溶融温度を下げたホウケイ酸塩ガラス(成分比B23/SiO2が約0.3)が、放射性廃棄物の固化処理用ガラスとして広く用いられている(例えば特許文献1、特許文献2、特許文献3参照)。
かかるホウケイ酸塩ガラスは、溶融温度が低い、化学薬品に対する耐食性が優れる、熱や放射線に対する抵抗が高い、廃棄物含有量が比較的高い、特にガラス構造になじみ難いと言われているモリブデンの固溶に対する許容性が比較的高い等の長所がある。
Glass is used because waste contains various radioactive materials with different ionic radii, and glass having a network structure with irregular atomic arrangement is advantageous for containing them. This is because it can be made into a small solidified body and is easy to handle, and glass is inherently a stable substance that hardly elutes into water.
Examples of inorganic substances that can be vitrified include oxides such as boron, silicon, phosphorus, and germanium, chlorides, and sulfurates. Among them, SiO 2 is one of the oxides that most easily generate glass, but melting of SiO 2 requires a high temperature of 1800 ° C. or more, and has a problem that it is difficult to form because of its high viscosity. is borosilicate glass having a reduced melting temperature by adding boron to SiO 2 (component ratio B 2 O 3 / SiO 2 of about 0.3) is widely used as a solidification glass radioactive waste (See, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
Such borosilicate glass has a low melting temperature, excellent corrosion resistance to chemicals, high resistance to heat and radiation, a relatively high waste content, and is particularly difficult to adapt to a glass structure. There are advantages such as relatively high tolerance for melting.

しかしながら、ホウケイ酸塩ガラスには、多量の廃棄物の固化が困難、水に対する浸出率が十分でないこと、廃棄物中にリン酸成分が多い場合における問題点が指摘されている。
例えば、ホウケイ酸塩ガラスによるガラス固化処理においてはガラス原料75%、廃棄物25%が一般的であり廃棄物に対してガラスが多量に使用されている。これは廃棄物成分を多量に含有させるとMoを主成分とする析出物が生成する相分離現象が起こり、固化ガラスの封じ込め機能が著しく低下すること、廃棄物中の核分裂生成物の崩壊熱による発熱が常時あるため、ガラス固化体中の廃棄物含有率を高くすると固化体中心部の温度が上昇し固化ガラスの性質を変えてしまうからである。
また、廃棄物中のリン酸(P25)濃度が増加するとガラスが分相して安定性が低下するため、P25濃度を1〜3質量%となるように廃棄物の含有量を制限する必要がある。
さらに、ナトリウムの溶出量が多くなるいわゆる「ナトリウム効果」と言った問題点が残されている。
However, it has been pointed out that borosilicate glass is difficult to solidify a large amount of waste, has a poor leaching rate with respect to water, and has problems in cases where there are many phosphoric acid components in the waste.
For example, in the vitrification treatment with borosilicate glass, 75% of glass raw material and 25% of waste are generally used, and a large amount of glass is used for waste. This is because when a large amount of waste components are contained, a phase separation phenomenon in which precipitates containing Mo as a main component occurs, the containment function of the solidified glass is remarkably lowered, and the decay heat of fission products in the wastes. This is because, since there is always heat generation, increasing the waste content in the vitrified body raises the temperature of the central portion of the solidified body and changes the properties of the solidified glass.
In addition, if the phosphoric acid (P 2 O 5 ) concentration in the waste is increased, the glass is phase-divided and the stability is lowered. Therefore, the waste content is adjusted so that the P 2 O 5 concentration is 1 to 3% by mass. It is necessary to limit the amount.
Furthermore, there remains a problem of so-called “sodium effect” in which the amount of sodium elution increases.

一方、リン酸塩ガラスは、ホウケイ酸塩ガラスと同様に融点が低く成形加工し易い、より多くの種類の元素を取り込めるといった長所があるため、現在、鉄系、鉛系のリン酸塩
ガラスの放射性廃棄物固化処理への適用が検討されている。しかし、鉄系、鉛系リン酸塩ガラスでは腐食され易い、ナトリウム溶出量が高いという問題点が未だ解決されていない。
従って、多くの元素を含み危険性の大きい高レベル放射性廃棄物を多量に且つ安定的に固化可能なガラスの提供が要望されているのが現状である。
特開昭57−197500号公報 特開平8−233993号公報 特開平9−72998号公報
On the other hand, phosphate glass, like borosilicate glass, has the advantages of having a low melting point and being easy to mold and incorporating more types of elements. Application to solidification treatment of radioactive waste is being studied. However, the iron-based and lead-based phosphate glasses that are easily corroded and have a high sodium elution amount have not yet been solved.
Therefore, at present, there is a demand for providing a glass that can stably solidify a large amount of high-level radioactive waste containing many elements and having high risk.
JP 57-197500 A JP-A-8-233993 Japanese Patent Laid-Open No. 9-72998

本発明の課題は、従来技術における上記のような問題点を解決し、(a)廃棄物の含有率を高め多量の廃棄物を固化できる、(b)水に対する浸出率が小さい、(c)廃棄物中のリン酸成分が多くても安定性が良い、(d)ナトリウム溶出量が少ない等、の特徴を併せ持つ放射性廃棄物の固化処理用ガラス、および放射性廃棄物の固化処理方法を提供することにある。   The problem of the present invention is to solve the above-mentioned problems in the prior art, (a) the waste content can be increased and a large amount of waste can be solidified, (b) the leaching rate with respect to water is small, (c) Provided is a solidified glass for radioactive waste solidification treatment and a solidification treatment method for radioactive waste, which have characteristics such as good stability even if there are many phosphoric acid components in the waste, and (d) a small amount of sodium elution. There is.

本発明者らは、現在の固化処理に汎用されているホウケイ酸塩ガラスとは全く組成が異なったリン酸塩ガラスにおいても、溶融温度が低い、ガラス化範囲が極めて広い、鎖状・短鎖状構造・オルト塩において多量の網目修飾イオンの導入が可能、また網目修飾イオンが増加するにつれて一般的に化学的耐久性が向上する、といった特徴を有していることに着目して鋭意研究を行った結果、多くのリン酸塩の中でもマグネシウムとの塩であって特定のマグネシウム含有量のリン酸塩ガラスが、上記の従来技術における問題点を解決可能なことを見出し、本発明を完成するに至った。   The present inventors also have a low melting temperature, a very wide range of vitrification, a chain / short chain, even in a phosphate glass having a completely different composition from the borosilicate glass widely used in the current solidification treatment. Intensive research focusing on the fact that a large amount of network-modifying ions can be introduced into the structure and ortho-salt, and that chemical durability generally improves as the number of network-modifying ions increases. As a result, it was found that a phosphate glass having a specific magnesium content, which is a salt with magnesium among many phosphates, can solve the above-mentioned problems in the prior art, thereby completing the present invention. It came to.

すなわち、本発明は、MgOとP25とが、モル比(MgO/P25)0.25〜2.35で含有されるリン酸マグネシウム系ガラスからなることを特徴とする放射性廃棄物の固化処理用ガラスである。 That is, the present invention is a radioactive waste characterized in that MgO and P 2 O 5 are made of magnesium phosphate glass containing a molar ratio (MgO / P 2 O 5 ) of 0.25 to 2.35. This is a glass for solidification treatment of objects.

また、本発明は、放射性廃棄物がガラスに封じ込められた放射性廃棄物ガラス固化体において、上記固化処理用ガラスが使用され且つ放射性廃棄物の含有率が5〜60質量%であることを特徴とする放射性廃棄物含有ガラス固化体である。   Further, the present invention is characterized in that in the radioactive waste vitrified body in which the radioactive waste is encapsulated in glass, the glass for solidification treatment is used, and the content of the radioactive waste is 5 to 60% by mass. It is a vitrified material containing radioactive waste.

さらに、本発明は、放射性廃棄物を溶融ガラスと混合してガラスに封じ込めるガラス固化処理において、混合物中の放射性廃棄物含有率が5〜60質量%となるように放射性廃棄物と上記固化処理用ガラスとを混合した後、当該混合物を加熱溶融し、次いで冷却固化することを特徴とする放射性廃棄物の固化処理方法である。   Furthermore, in the vitrification treatment in which the radioactive waste is mixed with molten glass and contained in the glass, the present invention is for the radioactive waste and the solidification treatment so that the radioactive waste content in the mixture is 5 to 60% by mass. After mixing with glass, the mixture is heated and melted, and then cooled and solidified, thereby solidifying the radioactive waste.

本発明の放射性廃棄物の固化処理用ガラスおよび固化処理方法によれば、多量の廃棄物を取り込めることができ、しかも、化学的安定性、耐久性に優れ、水に対する浸出率が小さく、廃棄物中のリン酸成分含有量の制限を受けることがなく、さらにナトリウム溶出量が極めて低い。   According to the glass for solidification processing of radioactive waste and the solidification processing method of the present invention, a large amount of waste can be taken in, and it is excellent in chemical stability and durability, and the leaching rate with respect to water is small. There is no limitation on the content of the phosphoric acid component, and the sodium elution amount is extremely low.

以下、本発明について詳細に説明する。
(1)リン酸マグネシウム系ガラス
本発明のリン酸マグネシウム系ガラス(MgO−P25系ガラス)は、リン酸と酸化マグネシウムとをモル比(MgO/P25、すなわちMgOのモル数をP25のモル数で除
した値)で0.25〜2.35、好ましくは0.65〜1.5、特に好ましくは0.8〜1.25含有するものである。当該モル比が0.25未満であると吸湿性が大きくなりガラスの安定性が低下し、一方、2.35を超過するとガラス化せずに失透するので好ましくない。
Hereinafter, the present invention will be described in detail.
(1) Magnesium phosphate glass The magnesium phosphate glass (MgO-P 2 O 5 glass) of the present invention has a molar ratio of phosphoric acid and magnesium oxide (MgO / P 2 O 5 , that is, the number of moles of MgO). ) Divided by the number of moles of P 2 O 5 ) of 0.25 to 2.35, preferably 0.65 to 1.5, and particularly preferably 0.8 to 1.25. When the molar ratio is less than 0.25, the hygroscopicity is increased and the stability of the glass is lowered. On the other hand, when it exceeds 2.35, the glass is not vitrified and devitrified, which is not preferable.

本発明のリン酸マグネシウム系ガラスの原材料に関しては、リン(P)源として正リン酸(H3PO4)、五酸化二リン(P25)、リン酸二水素アンモニウム(NH42PO4)、リン酸水素二アンモニウム((NH4)2HPO4)などのリン化合物を例示でき、一方、マグネシウム(Mg)源として酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、塩化マグネシウム(MgCl2)などのマグネシウム化合物を例示できる。これらの原材料の中でも、取り扱いが容易で製造中に有毒ガスが発生しない安全性の観点から、正リン酸と酸化マグネシウムまたは炭酸マグネシウムとの組み合わせが好ましく、特に正リン酸と酸化マグネシウムとの組み合わせが好ましい。なお、かかる原材料であるリン化合物とマグネシウム化合物とを反応させて得られるガラスはいずれもMgO・P25からなるリン酸マグネシウム系ガラスである。 Regarding the raw material of the magnesium phosphate glass of the present invention, orthophosphoric acid (H 3 PO 4 ), diphosphorus pentoxide (P 2 O 5 ), ammonium dihydrogen phosphate (NH 4 H 2 ) as a phosphorus (P) source. Examples thereof include phosphorus compounds such as PO 4 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), while magnesium (Mg) sources include magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), magnesium chloride ( Examples include magnesium compounds such as MgCl 2 ). Among these raw materials, a combination of orthophosphoric acid and magnesium oxide or magnesium carbonate is preferable from the viewpoint of safety in which handling is easy and no toxic gas is generated during production, and a combination of orthophosphoric acid and magnesium oxide is particularly preferable. preferable. Incidentally, magnesium phosphate glasses none glass obtained by reacting a phosphorus compound and the magnesium compound is such raw material consists of MgO · P 2 O 5.

本発明の固化処理用ガラスは以下のようにして製造することができる。
すなわち、製造後のガラスに含まれるリン酸(P25)と酸化マグネシウム(MgO)とが上記のモル比となるように原材料のリン化合物およびマグネシウム化合物それぞれをホッパースケール等の秤量機で秤量してミキサー等で混合し、次いでタンク炉、るつぼ炉、電気炉等の溶融炉に入れて900〜1600℃、好適には熱対流による撹拌効果と成分の揮発量減少の観点から1300℃程度の温度条件下で30分間〜48時間、好適には撹拌効果と成分の揮発量減少の観点から3時間程度、加熱溶融した後、急冷しガラス化させて作製することができる。
The glass for solidification processing of this invention can be manufactured as follows.
That is, the raw material phosphorus compound and magnesium compound are weighed by a weighing machine such as a hopper scale so that the phosphoric acid (P 2 O 5 ) and magnesium oxide (MgO) contained in the glass after production are in the above molar ratio. And then mixed in a melting furnace such as a tank furnace, a crucible furnace, an electric furnace, etc., at 900 to 1600 ° C., preferably about 1300 ° C. from the viewpoint of stirring effect by heat convection and reduction of volatilization amount of components. It can be produced by heating and melting for 30 minutes to 48 hours under temperature conditions, preferably about 3 hours from the viewpoint of stirring effect and reduction of volatilization amount of components, and then rapidly cooled and vitrified.

後述する放射性廃棄物の固化処理においては、廃棄物と均一に混ざるようにするため作製したガラスを塊状化または粉末化して使用する。
さらに、化学的耐久性や強度などの機械的性質を向上させる目的で、上記以外の成分として窒素を含有させることができる。また、放射線に対する抵抗の向上などを目的として、酸化鉄や酸化鉛を添加することもできる。
In the solidification processing of the radioactive waste described later, the produced glass is used after being agglomerated or powdered so as to be uniformly mixed with the waste.
Furthermore, for the purpose of improving mechanical properties such as chemical durability and strength, nitrogen can be contained as a component other than the above. Further, iron oxide or lead oxide can be added for the purpose of improving resistance to radiation.

(2)放射性廃棄物
本発明におけるガラス固化の対象は、放射性廃棄物、中でも高レベル放射性廃棄物であり、これは原子力発電所で使用した使用済燃料の再処理工程における溶媒抽出分離の際に排出された廃液、或いはその廃液を乾燥させて得られる固化体である。
すなわち、使用済燃料が再処理工程で硝酸に溶解された後、有機溶媒のトリブチルリン酸(TBP)によってウランとプルトニウムが抽出される工程から排出されるもので、核分裂生成物の大部分と、ネプツニウム(Np)、アメリシウム(Am)、キュリウム(Cm)等アクチノイド元素を含み、高いレベルの放射能を有し大きな崩壊熱を発生するものである。
(2) Radioactive waste The object of vitrification in the present invention is radioactive waste, especially high-level radioactive waste, which is used during solvent extraction and separation in the reprocessing process of spent fuel used in nuclear power plants. The discharged waste liquid or a solidified body obtained by drying the waste liquid.
That is, after spent fuel is dissolved in nitric acid in the reprocessing process, it is discharged from the process of extracting uranium and plutonium by organic solvent tributyl phosphate (TBP), and most of fission products, It contains actinide elements such as neptunium (Np), americium (Am), and curium (Cm), has a high level of radioactivity, and generates large decay heat.

日本においては、かかる液体状の高レベル放射性廃棄物をガラス材料とともに溶融してステンレス製容器(キャニスタ)に入れて冷やして固め、30〜50年間、冷却のため貯蔵され、最終的に地層処分に付される。
ガラス固化体中では高レベル放射性廃棄物を構成する放射性物質は、ガラスの不規則な網目構造中に均質かつ安定的に取り込まれ、ガラス成分と放射性物質とが一体化するのでガラス固化体が壊れても放射性物質の流失は防止される。
なお、後述のとおり、本願明細書の実施例においては、安全かつ簡便にガラスの評価を行うため、実際の高レベル放射性廃棄物の代わりに、実物と同様に多種類の元素(Na, Sr, La, Mo, Mn, Fe, Te)を含み非放射性の模擬廃棄物をガラス固化の対象とした。
In Japan, this liquid high-level radioactive waste is melted together with glass material, put into a stainless steel container (canister), cooled and hardened, stored for cooling for 30-50 years, and finally for geological disposal. Attached.
In the vitrified material, the radioactive material constituting the high-level radioactive waste is homogeneously and stably incorporated into the irregular network structure of the glass, and the vitrified material is broken because the glass component and the radioactive material are integrated. However, the loss of radioactive material is prevented.
As will be described later, in the examples of the present specification, in order to safely and easily evaluate glass, instead of actual high-level radioactive waste, various kinds of elements (Na, Sr, Non-radioactive simulated waste containing La, Mo, Mn, Fe, Te) was subjected to vitrification.

(3)固化処理方法
上述したリン酸マグネシウム系ガラスを、ミキサー(粉砕機)等で粉砕して塊状化または粉末化する。次いで、このガラス粉砕物と塊状もしくは粉末状の固体状廃棄物または液体状廃棄物とを混合する。
混合物中の放射性廃棄物の含有率が5〜60質量%、好ましくは15〜50質量%、特に好ましくは25〜45質量%となるように放射性廃棄物とリン酸マグネシウム系ガラス粉末とアルミナ、白金、ステンレス、あるいはグラスライニングなどでできた撹拌容器に入れ、ミキサーを用いて、廃棄物がガラス粉末中に均一に分散するまで混合する。廃棄物の含有率が5質量%未満だと固化ガラスの安定性(化学的耐久性)が低下するという問題が生じ、一方、60質量%を超過すると、分相が起こる、ガラス化せずに失透してしまう、化学的耐久性が低下するといった問題が生じる。
(3) Solidification method The above-mentioned magnesium phosphate glass is pulverized with a mixer (pulverizer) or the like to be agglomerated or powdered. Next, the crushed glass and the solid or liquid waste in the form of a lump or powder are mixed.
Radioactive waste, magnesium phosphate glass powder, alumina, and platinum so that the content of radioactive waste in the mixture is 5 to 60% by mass, preferably 15 to 50% by mass, and particularly preferably 25 to 45% by mass. , Put into a stirring vessel made of stainless steel or glass lining and mix with a mixer until the waste is evenly dispersed in the glass powder. If the content of waste is less than 5% by mass, there is a problem that the stability (chemical durability) of the solidified glass is lowered. On the other hand, if it exceeds 60% by mass, phase separation occurs, without vitrification. Problems arise such as devitrification and reduced chemical durability.

次いでガラス・廃棄物混合物を900〜1600℃、好適には1300℃程度で、30分間〜48時間溶融し、それから−50〜100℃、好適には室温付近までに急冷してガラス固化させて放射性廃棄物含有ガラス固化体が得られる。   Next, the glass / waste mixture is melted at 900 to 1600 ° C., preferably about 1300 ° C., for 30 minutes to 48 hours, and then rapidly cooled to −50 to 100 ° C., preferably close to room temperature to solidify the glass and radioactive. A waste-containing vitrified body is obtained.

次に、実施例を示して本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
<A> 模擬高レベル放射性廃棄物の調製
本発明の固化処理用ガラスおよび固化処理方法を評価するための模擬高レベル放射性廃棄物を、M. Ishida, T. Yanagi and R. Terai, Journal of Nuclear Science and Technology, 24[5] (May 1987) 404-408を参考にして調製した。具体的には、表1記載の廃棄物元素を含む各原料を所定量混合して調製した。
EXAMPLES Next, although an Example is shown and this invention is demonstrated further more concretely, this invention is not limited to these Examples.
<A> Preparation of Simulated High-Level Radioactive Waste Simulated high-level radioactive waste for evaluating the glass for solidification treatment and the solidification treatment method of the present invention was obtained from M. Ishida, T. Yanagi and R. Terai, Journal of Nuclear. Prepared by referring to Science and Technology, 24 [5] (May 1987) 404-408. Specifically, a predetermined amount of each raw material containing the waste elements shown in Table 1 was mixed and prepared.

Figure 0004129237
Figure 0004129237

<B> リン酸マグネシウム系ガラスの作製
(1)MgO:P25=45:55(モル比0.82)のガラスの作製
酸化マグネシウムとリン酸とをモル比で、MgO:P25=45:55になるように秤量し、ビーカー中で酸化マグネシウムを水に懸濁させてからリン酸と混合した。生成物はマントルヒーターを用いて水分をある程度除去してから白金るつぼに入れ、電気炉中600℃で3時間加熱してさらに水分を除去させた。得られたバッチをさらに1250℃で、1 時間溶融後、ステンレス板上に流し出して急冷(室温の空気中で自然放冷)し、リン酸マグネシウム系ガラスを作製した。このガラスを「45M55P」と略記する。
<B> Production of Magnesium Phosphate Glass (1) Production of Glass with MgO: P 2 O 5 = 45: 55 (Molar Ratio 0.82) Magnesium Oxide and Phosphoric Acid at a Molar Ratio, MgO: P 2 O 5 = 45: 55. Weighed magnesium oxide in water in a beaker and mixed with phosphoric acid. The product was water removed to some extent using a mantle heater and then placed in a platinum crucible and heated in an electric furnace at 600 ° C. for 3 hours to further remove the water. The obtained batch was further melted at 1250 ° C. for 1 hour, then poured onto a stainless steel plate and rapidly cooled (natural cooling in air at room temperature) to prepare a magnesium phosphate glass. This glass is abbreviated as “45M55P”.

(2)MgO:P25=55:45(モル比1.22)のガラスの調製
リン酸と酸化マグネシウムをモル比で、MgO:P25=55:45になるように秤量し混合した以外は、上記45M55Pと同様にしてリン酸マグネシウム系ガラスを得た。このガラスを「55M45P」と略記する。
(2) Preparation of glass with MgO: P 2 O 5 = 55: 45 (molar ratio 1.22) Weigh phosphoric acid and magnesium oxide in a molar ratio of MgO: P 2 O 5 = 55: 45. Except for mixing, a magnesium phosphate glass was obtained in the same manner as 45M55P. This glass is abbreviated as “55M45P”.

<C> 擬似放射性廃棄物含有ガラス固化体の作製
作製した45M55Pガラスをステンレス乳鉢を用いて大きさが約10meshの粉末状にした。次いで、表1に記載の模擬廃棄物を含有率が25質量%となるように混合した後、アルミナるつぼに入れ1250℃で2時間溶融後、急冷(室温の空気中で自然放冷)して廃棄物含有ガラス固化体(「45M55P25W」と略記する)を作製した。
また、45M55Pガラスを用い模擬廃棄物含有率が45質量%になるように混合した後、同様の条件で廃棄物含有ガラス固化体(「45M55P45W」と略記する)を得た。
さらに、55M45Pガラスを用いて同様の条件で、模擬廃棄物含有率がそれぞれ25質量%、45重量%の廃棄物含有ガラス固化体(それぞれ「55M45P25W」、「55M45P45W」と略記する)を得た。
<C> Production of pseudo radioactive waste-containing glass-solidified body The produced 45M55P glass was made into a powder form having a size of about 10 mesh using a stainless mortar. Next, the simulated waste listed in Table 1 was mixed so that the content was 25% by mass, then placed in an alumina crucible and melted at 1250 ° C. for 2 hours, and then rapidly cooled (natural cooling in air at room temperature). A waste-containing vitrified body (abbreviated as “45M55P25W”) was produced.
Moreover, after mixing so that a simulated waste content rate might be 45 mass% using 45M55P glass, the waste containing glass solidified body (it abbreviates as "45M55P45W") was obtained on the same conditions.
Further, 55M45P glass was used under the same conditions to obtain waste-containing glass solids having a simulated waste content of 25% by mass and 45% by weight, respectively (abbreviated as “55M45P25W” and “55M45P45W”, respectively).

<D> リン酸マグネシウム系ガラスおよび擬似放射性廃棄物ガラス固化体の物性評価
前記<C>で得られた模擬廃棄物含有ガラス固化体および廃棄物を含有しない基材ガラスの合計6つの試料について、密度の測定、X線回折法(XRD)による定性分析、示差熱分析(DTA)を行った。
(1)密度の測定
試料の密度は室温でアルキメデス法を用いて測定した。
浸液としてケロシンを用い、まずピクノメーター法で下記式(I)からケロシンの密度(d0)を求めた(補正後のピクノメーター容積は24.999cm3)。
次いで、アルキメデス法により下記式(II)から試料の密度(d)を求めた。
<D> Physical Property Evaluation of Magnesium Phosphate Glass and Pseudo-Radioactive Waste Glass Solidified Body A total of 6 samples of the simulated waste-containing glass solidified body obtained in <C> and the base glass not containing waste, Density measurement, qualitative analysis by X-ray diffraction (XRD), and differential thermal analysis (DTA) were performed.
(1) Measurement of density The density of the sample was measured at room temperature using the Archimedes method.
Using kerosene as the immersion liquid, first, the density (d 0 ) of kerosene was obtained from the following formula (I) by the pycnometer method (the corrected pycnometer volume was 24.999 cm 3 ).
Next, the density (d) of the sample was determined from the following formula (II) by the Archimedes method.

0=(W1−W0)/24.999 式(I)
〔式中、W0はケロシンの重量、W1はピクノメーターの重量を表す〕
d =[W/(W−W’)] × d0 式(II)
〔式中、Wは空気中の試料の重量、W’は液体中の試料の重量を表す〕
測定した結果を表2に示す。
d 0 = (W 1 −W 0 ) /24.999 Formula (I)
[Wherein W 0 represents the weight of kerosene and W 1 represents the weight of the pycnometer]
d = [W / (W−W ′)] × d 0 formula (II)
[Wherein, W represents the weight of the sample in the air, and W ′ represents the weight of the sample in the liquid]
Table 2 shows the measurement results.

Figure 0004129237
Figure 0004129237

MgO−P25系ガラスはメタ組成(MgO:P25=50:50(モル比 1))の密度が極小値(約2.20(g/cm3))を取ることが知られている(リン酸異常現象)。モル比0.82のガラスでは、廃棄物含有量が増加してもガラス固化体の密度がほぼ一定であるのに対して、モル比1.22のガラスでは、廃棄物含有量が増加するとガラス固化体の密度は上昇し、55M45P45Wの試料では、2.88(g/cm3)となった。これは、モル比1.22のガラスの方が、モル比0.82のガラスよりも、廃棄物中の各元素をガラスの網目構造中に安定的に封じ込めていることを示す。 It is known that MgO—P 2 O 5 glass has a minimum density (about 2.20 (g / cm 3 )) of meta composition (MgO: P 2 O 5 = 50: 50 (molar ratio 1)). (Phosphate abnormal phenomenon). In the glass with a molar ratio of 0.82, the density of the vitrified body is almost constant even when the waste content increases, whereas in the glass with a molar ratio of 1.22, when the waste content increases, the glass The density of the solidified body was increased to 2.88 (g / cm 3 ) in the 55M45P45W sample. This indicates that the glass having a molar ratio of 1.22 contains the elements in the waste more stably in the glass network than the glass having a molar ratio of 0.82.

(2)X線回折法(XRD)による分析
ガラス固化体の粉末X線回折は、作製した試料と、それらを500℃で2時間加熱処理した試料についてそれぞれ行い、結晶質か非晶質かを判断した。表3に回折結果を示す。非晶質特有のハローパターンが見られたものに〇印を、結晶化ピークが見られたものには×印を付した。
一般に、ガラスは結晶化すると水溶解性が高まり、水に対する浸出率が増加する結果、廃棄物の封じ込め機能を低下させるので好ましくないが、モル比0.82のガラスでは廃棄物含有率が25質量%でも非晶性を保っており、モル比1.22のガラスでは廃棄物含有率が45%でも非晶性である。
(2) Analysis by X-ray diffractometry (XRD) Powder X-ray diffraction of the vitrified body is performed on each of the prepared sample and the sample heat-treated at 500 ° C. for 2 hours to determine whether it is crystalline or amorphous. It was judged. Table 3 shows the diffraction results. A mark with an halo pattern peculiar to an amorphous was marked with a circle and a mark with a crystallization peak was marked with a cross.
In general, when glass is crystallized, the solubility in water increases and the leaching rate with respect to water increases. As a result, the waste containment function is lowered, which is not preferable. However, the glass having a molar ratio of 0.82 has a waste content of 25 mass. %, The glass is amorphous, and the glass having a molar ratio of 1.22 is amorphous even when the waste content is 45%.

Figure 0004129237
Figure 0004129237

なお、上記XRD測定は、測定機器として理学電機(株)製「RINT2000」を使用し、下記の測定条件で行った。   The XRD measurement was performed under the following measurement conditions using “RINT2000” manufactured by Rigaku Corporation as a measuring instrument.

Figure 0004129237
Figure 0004129237

(3)示差熱分析(DTA)
ガラス固化体の熱的性質を調べるためDTA 測定を行った。測定機器は、理学電機(株)製「Rigaku Thermoflex TAS-200 TG8101D」を使用し、以下の条件で行った。
(3) Differential thermal analysis (DTA)
DTA measurement was performed to investigate the thermal properties of the vitrified body. As a measuring instrument, “Rigaku Thermoflex TAS-200 TG8101D” manufactured by Rigaku Corporation was used, and the measurement was performed under the following conditions.

Figure 0004129237
Figure 0004129237

DTA測定結果は、図1のとおりである。図1において、(a)は試料45M55P0Wを、(b)は45M55P25Wを、(c)は45M55P45Wを、(d)は55M45P0W を、(e)は55M45P25Wを、 (f)は55M45P45Wをそれぞれ示す。図中、「Exo.」は発熱、「Endo.」は吸熱を表す。   The DTA measurement result is as shown in FIG. 1, (a) shows a sample 45M55P0W, (b) shows 45M55P25W, (c) shows 45M55P45W, (d) shows 55M45P0W, (e) shows 55M45P25W, and (f) shows 55M45P45W. In the figure, “Exo.” Represents heat generation and “Endo.” Represents heat absorption.

表6は、各試料の結晶化開始温度(Tx)、ガラス転移点(Tg)およびガラスの安定性の指標となるそれらの温度差(Tx−Tg)である。一般に、ガラス転移点が高いほどガラスは熱的に安定であり、温度差(Tx−Tg)が大きいほどガラスの安定性が高い。
本発明のリン酸マグネシウム系ガラスの場合は表6から明らかなように、モル比0.82のガラスでは、廃棄物含有量の増加につれて(Tx−Tg)の値は次第に小さくなり、固化ガラスの安定性は低下していく。モル比1.22のガラスでは、廃棄物を含有しない基材ガラスの55M45P0W(Tx−Tg=128℃)に比べて、廃棄物を25質量%含有した55M45P25W(Tx−Tg=57℃)の安定性は低下するものの、さらに廃棄物含有量を増加させて45質量%とした55M45P45W(Tx−Tg=80℃)の安定性は上昇した。これは、モル比1.22のガラスの方が、モル比0.82のガラスよりも、廃棄物中の各元素をガラスの網目構造中に安定的に封じ込めていることを示す。
Table 6 shows a crystallization start temperature (Tx), a glass transition point (Tg), and a temperature difference (Tx−Tg) serving as an index of glass stability of each sample. In general, the higher the glass transition point, the more thermally stable the glass, and the larger the temperature difference (Tx−Tg), the higher the stability of the glass.
As is apparent from Table 6 in the case of the magnesium phosphate glass of the present invention, in the glass having a molar ratio of 0.82, the value of (Tx−Tg) gradually decreases as the waste content increases. Stability declines. The glass with a molar ratio of 1.22 has a stability of 55M45P25W (Tx-Tg = 57 ° C.) containing 25% by mass of waste compared to 55M45P0W (Tx-Tg = 128 ° C.) of the base glass not containing waste. Although the properties decreased, the stability of 55M45P45W (Tx-Tg = 80 ° C.), which was further increased by increasing the waste content to 45% by mass, increased. This indicates that the glass having a molar ratio of 1.22 contains the elements in the waste more stably in the glass network than the glass having a molar ratio of 0.82.

Figure 0004129237
Figure 0004129237

比較例として、同様の条件で測定した、リン酸鉄系ガラス(組成は、P25:60.06質量%、Fe23:25.74質量%、CeO2:9.70質量%、Li2O:4.50質量%)を用いた廃棄物含有ガラス固化体のDTA測定結果を表7に示す。
かかるリン酸鉄(P25−Fe23−CeO2−Li2O)系ガラスは、原料となる(NH4)2HPO3、Fe23、CeO2、Li2CO3を磁性乳鉢で1時間混合し、混合した粉末をアルミナるつぼに移し、電気炉中、1250℃で2時間溶融し、溶解後ステンレス板に流し出し冷却して作製した。
また、廃棄物含有ガラス固化体は、作製したガラスをステンレス乳鉢で粉末状にし、所定量の前記表1記載の模擬廃棄物とアルミナ乳鉢で混合し、電気炉中、1250℃で2時間溶融し、溶解後ステンレス板に流し出し冷却して作製した。
As a comparative example, iron phosphate glass measured under the same conditions (compositions were P 2 O 5 : 60.06 mass%, Fe 2 O 3 : 25.74 mass%, CeO 2 : 9.70 mass%) Table 7 shows the DTA measurement results of the waste-containing vitrified product using Li 2 O: 4.50% by mass).
Such iron phosphate (P 2 O 5 -Fe 2 O 3 -CeO 2 -Li 2 O) based glass, a raw material of (NH 4) 2 HPO 3, Fe 2 O 3, CeO 2, Li 2 CO 3 The mixture was mixed in a magnetic mortar for 1 hour, the mixed powder was transferred to an alumina crucible, melted at 1250 ° C. for 2 hours in an electric furnace, melted, poured into a stainless steel plate, and cooled.
In addition, the waste-containing vitrified body is made by powdering the produced glass with a stainless mortar, mixing a predetermined amount of the simulated waste shown in Table 1 with an alumina mortar, and melting in an electric furnace at 1250 ° C. for 2 hours. After melting, it was poured into a stainless steel plate and cooled.

Figure 0004129237
Figure 0004129237

比較例のリン酸鉄系ガラスでは、廃棄物含有率が0%から45%に上昇した場合にTx−Tg温度差が167℃から59℃に急激に小さくなるのに対して、本発明のリン酸マグネシウム系ガラスの場合は温度差は104℃から62℃に、又は128℃から80℃に低下するがそれほど激しいものではなく、また温度差自体も大きいので、より安定的であると言える。   In the iron phosphate glass of the comparative example, the Tx-Tg temperature difference rapidly decreases from 167 ° C. to 59 ° C. when the waste content increases from 0% to 45%, whereas the phosphorus of the present invention In the case of magnesium acid-based glass, the temperature difference decreases from 104 ° C. to 62 ° C. or from 128 ° C. to 80 ° C., but is not so severe, and the temperature difference itself is large, so it can be said that it is more stable.

<E> 化学的耐久性
廃棄物含有ガラス固化体の水への溶出をICP発光分光分析で測定した。
比表面積をそろえるためにステンレス乳鉢を用いて10〜20meshの大きさになるように粉砕したガラス固化体試料を約1g秤量し、ステンレス製のスクリュー缶に入れ、純水50ml に浸し、当該スクリュー缶を乾燥器中90℃で20日間保持した後、ろ過した試料を乾燥させ、再び秤量した。
また、ガラス固化体からの溶出分を含む濾液は、ICP発光分光分析装置(セイコー電子工業(株)製「誘導結合プラズマ発光分光分析装置 SPS 7000」)を用いて定性・定量分析を行った。結果を表8に示す。
なお、ガラスが水に触れている部分の表面積Sは下式によって求めた。
S=W・S0/ρ
〔式中、Wは水に浸したガラス固化体の量、S0は比表面積、ρはガラスの密度を表す〕
<E> Chemical durability The elution of the waste-containing vitrified product into water was measured by ICP emission spectroscopic analysis.
About 1 g of a glass solid sample ground to a size of 10 to 20 mesh using a stainless mortar to adjust the specific surface area is weighed, put into a stainless steel screw can, immersed in 50 ml of pure water, and the screw can Was kept in a dryer at 90 ° C. for 20 days, and then the filtered sample was dried and weighed again.
Further, the filtrate containing the eluate from the vitrified body was subjected to qualitative and quantitative analysis using an ICP emission spectroscopic analyzer (“Inductively Coupled Plasma Emission Spectrometer SPS 7000” manufactured by Seiko Denshi Kogyo Co., Ltd.). The results are shown in Table 8.
The surface area S of the portion where the glass is in contact with water was determined by the following formula.
S = W · S 0 / ρ
[W is the amount of vitrified glass immersed in water, S 0 is the specific surface area, and ρ is the density of the glass]

Figure 0004129237
Figure 0004129237

表8から明らかなように、廃棄物の含有量が増加するにつれて浸出率は低下する傾向が見られ、モル比1.22のガラスで模擬廃棄物を45質量%含有させたガラス固化体(55M45P45W)の浸出率が最も低かった。模擬廃棄物を含有していないガラス試料(45M55P0W、55M45P0W)の浸出率はいずれも高く、ガラス試料自体の水に対する化学的耐久性は高くないことがわかる。
次に、ろ液をICP発光分光分析装置で定性・定量分析した結果を表9に示す。
As is clear from Table 8, the leaching rate tended to decrease as the waste content increased, and the glass solid (55M45P45W) containing 45% by mass of simulated waste in a 1.22 molar ratio glass. The leaching rate was the lowest. It can be seen that the leaching rates of the glass samples (45M55P0W, 55M45P0W) containing no simulated waste are high, and the chemical durability of the glass sample itself to water is not high.
Next, Table 9 shows the results of qualitative and quantitative analysis of the filtrate using an ICP emission spectroscopic analyzer.

Figure 0004129237
Figure 0004129237

表9から明らかなように、どのガラス固化体もガラスの主成分であるMgおよびPの浸出率が高かった。また模擬廃棄物のみに注目してみると、NaとMoの浸出率が高かった。
上記各試料の中で最も優れたガラス固化体は、水に対する浸出率が低くガラスの安定性が比較的高いモル比1.22のガラスで模擬廃棄物を45質量%含有させた55M45P45Wであった。これはリン酸マグネシウムガラスの構造に深い関係があると考えられる。
As apparent from Table 9, every glass solidified body had a high leaching rate of Mg and P, which are the main components of glass. When attention was paid only to simulated waste, the leaching rate of Na and Mo was high.
The most excellent vitrified body among the above samples was 55M45P45W containing 45% by mass of simulated waste with a glass having a molar ratio of 1.22 having a low leaching rate with respect to water and a relatively high stability of the glass. . This is considered to be closely related to the structure of the magnesium phosphate glass.

モル比0.82、すなわちMgO:P25=45:55のガラス構造は、テトラメタリン酸イオンを含む構造である。一方、モル比1.22、すなわちMgO:P25=55:45で模擬廃棄物を45質量%含有させたもののガラス構造は、ピロリン酸イオンを含んでいると考えられる。そのため二次元的な環状構造を含むモル比0.82で模擬廃棄物を45質量%含有させたもののガラスよりも、一次元的な鎖状構造が多いモル比1.22で模擬廃棄物を45質量%含有させたガラスの方が様々なイオンを多く導入することが可能である。
また、リン酸塩ガラスの化学的耐久性は網目修飾イオンが増加するにつれて向上するという特性があるため、モル比1.22のガラスの中でも模擬廃棄物の含有量が多い45質量%の55M45P45Wの化学的耐久性が高くなったと考えられる。
The glass structure having a molar ratio of 0.82, that is, MgO: P 2 O 5 = 45: 55 is a structure containing tetrametaphosphate ions. On the other hand, it is considered that the glass structure containing 45% by mass of the simulated waste at a molar ratio of 1.22, that is, MgO: P 2 O 5 = 55: 45 contains pyrophosphate ions. Therefore, although 45% by mass of simulated waste is contained at a molar ratio of 0.82 including a two-dimensional cyclic structure, 45% of the simulated waste is present at a molar ratio of 1.22, which has more one-dimensional chain structure than glass. It is possible to introduce a larger amount of various ions in the glass containing mass%.
In addition, since the chemical durability of phosphate glass is improved as the amount of network-modifying ions increases, among the glass with a molar ratio of 1.22, the content of simulated waste is 45% by mass of 55M45P45W. It is thought that chemical durability became high.

次に走査型電子顕微鏡(SEM;(株)日立製作所製「S-2380N」)による観察結果を示す。図2はSEM写真であり、図中、(a)は試料45M55P25Wを、(b)は45M55P45Wを、(c)は55M45P25Wを、 (d)は55M45P45Wをそれぞれ示す。XRDの測定結果と同様に、(a)と(d)ではガラス状態が観察され、(b)と(c)では結晶の生成が観察された。また、(a)と(d)を対比すると浸出率が最も低かった(d)は単一相であるのに対して、(a)では分相が認められた。
SEM写真からもガラス固化体の中でもモル比1.22で模擬廃棄物を45質量%含有させた55M45P45Wが最も優れていることが明らかである。
Next, an observation result by a scanning electron microscope (SEM; “S-2380N” manufactured by Hitachi, Ltd.) is shown. FIG. 2 is an SEM photograph, in which (a) shows a sample 45M55P25W, (b) shows 45M55P45W, (c) shows 55M45P25W, and (d) shows 55M45P45W. Similar to the XRD measurement results, the glass state was observed in (a) and (d), and the formation of crystals was observed in (b) and (c). Further, when (a) and (d) were compared, the leaching rate was the lowest (d) was a single phase, whereas in (a) a phase separation was observed.
It is clear from the SEM photograph that 55M45P45W containing 45% by mass of simulated waste at a molar ratio of 1.22 is the best among the vitrified bodies.

実際に核燃料サイクル機構で採用されているホウケイ酸塩ガラスはガラス転移点が500℃前後、水に対する浸出率が2.5×10-5(g/cm2・day)であるので、本発明に係るモル比1.22で模擬廃棄物を45質量%含有させたガラス固化体(55M45P45W)が優れた特性を有していることがわかる。 The borosilicate glass actually used in the nuclear fuel cycle mechanism has a glass transition point of around 500 ° C. and a leaching rate with respect to water of 2.5 × 10 −5 (g / cm 2 · day). It can be seen that the vitrified body (55M45P45W) containing 45% by mass of simulated waste at such a molar ratio of 1.22 has excellent characteristics.

比較例として、リン酸鉛系ガラス(組成は、P25:58.5質量%、PbO:27.3質量%、CeO2:9.7質量%、Li2O:4.5質量%)の廃棄物固化能力を示す。
評価対象のリン酸鉛系ガラスは、11.70gの(NH3)2HPO4、2.73gのPbO、0.97gのCeO2、0.45gのLi2CO3を混合し、950℃で1.5時間溶融した後、室温の空気中で自然放冷して作製した。
次いで、作製したリン酸鉛系ガラスの粉末と前記表1に記載の模擬放射性廃棄物とを廃棄物含有率が25%となるように混合し1150℃で2時間溶融し、廃棄物含有ガラス固化体を得た。また、同様にして廃棄物含有率がそれぞれ30%、35%、45%の廃棄物含有ガラス固化体を作製した。
As a comparative example, lead phosphate glass (composition is P 2 O 5 : 58.5 mass%, PbO: 27.3 mass%, CeO 2 : 9.7 mass%, Li 2 O: 4.5 mass%) ) Waste solidification capacity.
The lead phosphate glass to be evaluated was mixed with 11.70 g of (NH 3 ) 2 HPO 4 , 2.73 g of PbO, 0.97 g of CeO 2 , 0.45 g of Li 2 CO 3 at 950 ° C. After melting for 1.5 hours, it was produced by naturally cooling in air at room temperature.
Next, the prepared lead phosphate glass powder and the simulated radioactive waste listed in Table 1 were mixed so that the waste content was 25% and melted at 1150 ° C. for 2 hours to solidify the waste-containing glass. Got the body. Similarly, waste-containing vitrified bodies having waste contents of 30%, 35%, and 45% were prepared.

作製したガラス固化体の相分離の有無を、実体顕微鏡(カートン光学(株)製「実体顕微鏡 SPH-40L」)で観察した。また、結晶相の有無をX線回折で測定した。X線回折の測定については、作製したガラス固化体をステンレス乳鉢で粉砕しさらにメノウ乳鉢で細かく粉砕した試料を試料ホルダーに入れ、理学電機(株)製「ミニフレックス普及型X線回折装置」を用いて粉末X線回折測定を行った。結果を表8に示す。   The presence or absence of phase separation of the prepared vitrified body was observed with a stereomicroscope ("Stereoscope SPH-40L" manufactured by Carton Optical Co., Ltd.). Further, the presence or absence of a crystal phase was measured by X-ray diffraction. For the measurement of X-ray diffraction, the prepared vitrified material was pulverized with a stainless mortar and then finely pulverized with an agate mortar. The powder was subjected to powder X-ray diffraction measurement. The results are shown in Table 8.

Figure 0004129237
Figure 0004129237

表10のとおり、リン酸鉛(P25−Pb−CeO2−Lii2O)系ガラスでは、廃棄物含有率が25%を超えると相分離し、結晶相が生成するので廃棄物含有率の限界値は25%である。 As shown in Table 10, in lead phosphate (P 2 O 5 —Pb—CeO 2 —Lii 2 O) glass, phase separation occurs when the waste content exceeds 25%, and a crystal phase is generated. The rate limit is 25%.

ガラス固化体試料の示差熱分析(DTA)測定値を記したグラフであり、横軸は温度を縦軸は熱量を表す。It is the graph which described the differential thermal analysis (DTA) measurement value of the vitrified body sample, a horizontal axis represents temperature and a vertical axis | shaft represents calorie | heat amount. ガラス固化体試料の走査型電子顕微鏡写真である。It is a scanning electron micrograph of a vitrified body sample.

Claims (1)

MgOとP25とが、モル比(MgO/P25)0.25〜2.35で含有されるリン酸マグネシウム系ガラスからなることを特徴とする放射性廃棄物の固化処理用ガラス。 Glass for radioactive waste solidification treatment, characterized in that MgO and P 2 O 5 are made of magnesium phosphate glass containing a molar ratio (MgO / P 2 O 5 ) of 0.25 to 2.35. .
JP2004014796A 2004-01-22 2004-01-22 Glass for solidifying radioactive waste Expired - Fee Related JP4129237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014796A JP4129237B2 (en) 2004-01-22 2004-01-22 Glass for solidifying radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014796A JP4129237B2 (en) 2004-01-22 2004-01-22 Glass for solidifying radioactive waste

Publications (2)

Publication Number Publication Date
JP2005207885A JP2005207885A (en) 2005-08-04
JP4129237B2 true JP4129237B2 (en) 2008-08-06

Family

ID=34900479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014796A Expired - Fee Related JP4129237B2 (en) 2004-01-22 2004-01-22 Glass for solidifying radioactive waste

Country Status (1)

Country Link
JP (1) JP4129237B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787997B2 (en) * 2009-03-23 2011-10-05 独立行政法人日本原子力研究開発機構 Solidification method for radioactive liquid waste containing sodium dihydrogen phosphate
JP4787998B2 (en) * 2009-03-23 2011-10-05 独立行政法人日本原子力研究開発機構 Solidification method for radioactive waste
JP2011128083A (en) * 2009-12-18 2011-06-30 Central Res Inst Of Electric Power Ind Method for preparing sample for observing insoluble substance of platinum group element inside solidified glass body
JP6077366B2 (en) * 2013-04-02 2017-02-08 アルプス電気株式会社 Waste disposal method
US11120922B2 (en) 2016-06-23 2021-09-14 Nippon Chemical Industrial Co., Ltd. Method for producing solidified radioactive waste
CN109994240B (en) * 2017-12-31 2022-10-28 中国人民解放军63653部队 Method for reducing solidifying and melting temperature of radionuclide-polluted sandy soil glass
CN115057618B (en) * 2022-03-04 2024-01-02 中国科学院上海光学精密机械研究所 Borosilicate solidified glass, preparation method and application thereof

Also Published As

Publication number Publication date
JP2005207885A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
Chong et al. Glass-bonded iodosodalite waste form for immobilization of 129I
Chouard et al. Effect of MoO 3, Nd 2 O 3, and RuO 2 on the crystallization of soda–lime aluminoborosilicate glasses
Caurant et al. Glasses and glass-ceramics for nuclear waste immobilization
US9305672B2 (en) Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes
Wang et al. Effect of neodymium on the glass formation, dissolution rate and crystallization kinetic of borophosphate glasses containing iron
JP4129237B2 (en) Glass for solidifying radioactive waste
Scales et al. Sodium zirconium phosphate‐based glass‐ceramics as potential wasteforms for the immobilization of nuclear wastes
JP3232993B2 (en) Radioactive waste treatment method
Metcalfe et al. Candidate wasteforms for the immobilization of chloride-containing radioactive waste
Tong et al. Structure and stability analysis of basaltic glasses for immobilizing simulated actinides nd, ce and La
Wang et al. Effects of MoO3 and Nd2O3 on the structural features, thermal stability and properties of iron-boron-phosphate based glasses and composites
Liu et al. Structure and corrosion mechanism of iron phosphate glass with strontium from electrochemical reprocessing
Dong et al. Dechlorination and vitrification of electrochemical processing salt waste
Danilov et al. Hydrolytic durability of uranium-containing sodium aluminum (iron) phosphate glasses
JP2001027694A (en) Solidified body of radioactive condensed waste substance and manufacture of the same
Ojovan et al. Glass crystalline materials as advanced nuclear wasteforms. Sustainability 2021, 13, 4117
JPH08233993A (en) Glass solidification method for high level radioactive waste liquid
Olkhovyk et al. Corrosion resistance of Chernobyl NPP lava fuel-containing masses
Rankin et al. Microstructures and leachability of vitrified radioactive wastes
Wronkiewicz et al. Apatite-and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes
KR102255388B1 (en) Solidifying method of hydroxides of radionuclides
Riley et al. Alternative electrochemical salt waste forms, summary of FY2010 results
US20230139928A1 (en) Method for dehalogenation and vitrification of radioactive metal halide wastes
Radford Assessing the volatility of caesium during the vitrification of intermediate level waste
CN109721242B (en) Low-melting-point glass for curing volatile nuclide Tc/Re and preparation and use methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees