JP4127589B2 - High frequency semiconductor device package and high frequency semiconductor device - Google Patents
High frequency semiconductor device package and high frequency semiconductor device Download PDFInfo
- Publication number
- JP4127589B2 JP4127589B2 JP24263399A JP24263399A JP4127589B2 JP 4127589 B2 JP4127589 B2 JP 4127589B2 JP 24263399 A JP24263399 A JP 24263399A JP 24263399 A JP24263399 A JP 24263399A JP 4127589 B2 JP4127589 B2 JP 4127589B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor element
- frequency semiconductor
- mounting
- frequency
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
Landscapes
- Wire Bonding (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はマイクロ波やミリ波を用いた通信機器あるいはセンサ等に使用される、高周波用半導体素子の実装方法を改善した高周波半導体装置に関する。
【0002】
【従来の技術】
従来、マイクロ波やミリ波を取り扱う高周波用半導体素子を主な回路要素とするモジュールにおいては、高周波用半導体素子が金属筐体などを主な構成要素とした半導体パッケージ内に収納され、この半導体パッケージに収納された高周波用半導体素子と、外部電気回路基板との接続のために高周波用半導体素子の周囲に配設された接続電極や線路導体とをワイヤボンディング等により接続することにより、高周波用半導体素子が半導体パッケージに実装され高周波半導体装置が構成されていた。
【0003】
しかしながら、このような実装方法によっては小型化・低コスト化・高性能化を図ることが困難であるために、近年、いわゆるフリップチップ接続による高周波用半導体素子の実装方法の開発が盛んに行なわれている。
【0004】
このフリップチップ実装法は、高周波用半導体素子とこれが接続される接続電極や線路導体との接続経路を短縮できるために、高周波信号の損失を小さくすることができ高性能化を図ることが可能となる。
【0005】
【発明が解決しようとする課題】
しかしながら、一般にフリップチップ実装法は接続用の端子電極が形成された半導体素子の片面のみを利用した実装になるため、半導体素子内での配線には高周波特性の良いマイクロストリップ線路を用いることが難しいという問題点がある。また、半導体素子が搭載部に密着していないため半導体素子から発する熱の放熱が困難であるといった問題点がある。
【0006】
このうち放熱の問題に関しては、例えば特開平10-256429 号公報に見られるように、半導体素子の裏面を放熱性の良いパッケージ本体に固定し、配線や端子電極が形成された表面を他の補助的な配線基板にフリップチップ実装する等の対策が行なわれている。このような構造の場合、補助的な配線基板を変形可能な樹脂から成るものにするか、パッケージ本体の半導体素子を収容する凹部の高さ(深さ)精度を数μm以下に抑えなければならないといった対応が必要となる。
【0007】
しかしながら、変形可能な樹脂は一般に高周波に対する電気的特性が悪く、マイクロ波やミリ波等において使用される高周波半導体装置用パッケージには使用が困難であるという問題点があった。従って、マイクロ波やミリ波において使用されるパッケージにおいては、補助配線基板を用いるためにはパッケージの寸法公差を厳しくしなければならず、フリップチップ実装を用いるために却って実装コストを増大させてしまうこととなるという問題点があった。
【0008】
近年、マイクロ波あるいはミリ波の周波数は、自動車用レーダや大容量無線通信システムなどへの応用が検討されている。これらの応用はその性格上、低価格の装置を大量に生産する必要がある。そのため、実装技術においても高性能でありながらも小型で低価格となる実装技術が求められている。
【0009】
そのような実装技術の1つの方向に、1つのパッケージ内に回路素子を構成する半導体素子をすべて搭載したマルチチップモジュールといわれる高周波半導体装置を構成することがある。これは、全般的な回路の小型化に寄与すると同時に、マイクロ波あるいはミリ波等の高周波においては伝送線路である線路導体での損失が無視できないことから、小型化を図ることにより同時に線路導体を短いものとして低損失化を図ることができ、上記の新しい応用に適した高周波半導体装置を得ることができるものである。
【0010】
一方、高周波用半導体素子は製造時の良品率が必ずしも高くないので、半導体素子実装後に不良を発見した時に半導体素子をチップごとに取り替えることのできる構造にしておくことが好ましい。そのような構造とするためには、実装のための補助的な配線基板として低コストのチップキャリアが必要となる。
【0011】
この補助的な配線基板としてのチップキャリア等への高周波用半導体素子の実装方式として、上述のようなワイヤボンディング方式とフリップチップ実装方式が使用されている。このうちワイヤボンディング方式は、半導体素子と基板とを接続するワイヤが特に高周波領域においては無視できないリアクタンス成分を持つために、同じ接続パッドを複数本のワイヤで接続したり、あるいはワイヤでなくリアクタンス成分の小さいリボンを用いるなどの対策が必要となる。また、半導体素子とチップキャリアとの接続は接続パッド毎の逐次接続となるため、プロセスの工数がかかり、低コスト化には向かない実装方式である。
【0012】
ところで、高周波用半導体素子は、その表面に形成される伝送線路としての線路導体の構造に対応して、マイクロストリップ線路型とコプレーナ線路型とに分類することができる。このうちマイクロストリップ線路型は半導体素子の裏面に接地面(接地電極)を持ち、表面側の信号線路には主としてマイクロストリップ線路が使われている。これに対し、コプレーナ線路型は裏面の接地電極が無く、表面の信号線路の両脇に接地導体を配置する構造となっている。
【0013】
コプレーナ線路型は接地導体が表面側にあるために、裏面側に接地面を設けるための裏面の加工やビアホールの加工などが不要である、あるいはフリップチップ実装する際に半導体素子と実装基板間の接地電極同士の接続が容易である、などの特長を持っているが、信号線路の隣には必ず接地導体が必要であることから信号線路を曲げたり分岐した際に損失が大きくなりやすいため、接地導体同士をリボンなどで接続するいわゆるエアブリッジが必要であるなど、小型化が困難な形態であり、マイクロストリップ線路型と比べてどちらが優位ともいえない状況にある。
【0014】
しかしながら、マイクロストリップ線路型の半導体素子を用いて容易にフリップチップ実装を行なうことができる構造の高周波半導体装置用パッケージができれば、マイクロストリップ線路型の弱点の一部をカバーしてその優れた高周波特性を活かすことが可能となる。
【0015】
マイクロストリップ線路型の高周波用半導体素子は一般に表面にも接地用のパッドが形成されており、基板の接地面と素子の接地面とを接続すること自体は比較的容易である。しかし、フリップチップ実装を行なおうとすると、半導体素子と実装基板との接続部分において、信号線路の周りに基板の接地面・基板の接地用パッド・素子の接地用パッド・素子の接地面等の接地面同士が重なり合う領域が、わずかではあるが形成されることは避けることができない。
【0016】
このような接地面が平行になる領域ができると、一般にその間隙を電磁波が伝播する平行平板モードが比較的低い周波数から安定となるために、不要な放射が形成されて伝送損失が大きくなってしまうという問題点がある。従って、マイクロストリップ線路型の高周波用半導体素子をフリップチップ実装しようとする場合は、半導体素子と基板との間に平行平板モードが形成されにくい構造にすることが重要である。
【0017】
以上のことより、自動車用レーダや大容量無線通信などのマイクロ波・ミリ波の新しい応用のための高周波半導体装置に対する実装技術としては、マイクロストリップ線路型の高周波用半導体素子をフリップチップ実装ができる補助的な配線基板であるチップキャリアを用い、これを簡単に実装できるマルチチップモジュール用の高周波半導体装置用パッケージを開発することが要望されている。
【0018】
本発明は上記事情に鑑みて案出されたものであり、その目的は、マイクロストリップ線路型の高周波用半導体素子を簡便にフリップチップ実装することが可能で、かつ高周波信号に対する挿入損失が低い高周波半導体装置を提供することにある。
【0019】
本発明の高周波半導体装置は、表面に信号電極と裏面に接地電極とを有する高周波用半導体素子と、前記高周波用半導体素子が収容される凹部を上面に有する配線基板と、前記凹部の開口周辺に設けられた第1線路導体と、前記凹部の底面に、前記接地電極が当接され、変形しつつ電気的に接続する複数の接地用突出端子と、を有するパッケージ本体と、前記高周波用半導体素子を搭載する搭載部を下面に有し、前記凹部の開口より大きい絶縁基板と、前記絶縁基板の下面に設けられ、前記搭載部側に一端を、その反対側に他端を有し、前記一端が前記信号電極に、前記他端が前記第1線路導体にそれぞれ電気的に接続される第2線路導体と、を有する実装基板と、を具備するものである。
【0020】
前記複数の接地用突出端子は、バンプ状であることが好ましい。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態の一例につき図面を参照しつつ詳細に説明する。
【0022】
図1は本発明の高周波半導体装置用パッケージおよびそれを用いた高周波半導体装置の実施の形態の一例を示す断面図であり、マルチチップモジュールを構成した例を示している。また、図2はその高周波用半導体素子の実装部分の構成を説明するための要部拡大断面図である。
【0023】
これらの図において、1は配線基板、8は配線基板1に実装された実装基板、12は実装基板8に搭載実装された高周波用半導体素子である。高周波用半導体素子12は、表面側に信号電極13を、裏面側に接地電極14を有している。
【0024】
配線基板1はパッケージ本体を構成し、絶縁基体2の上面に高周波用半導体素子12を収容するための凹部3を有しており、絶縁基体2上面でこの凹部3の開口周辺には、高周波用半導体素子12の信号電極13が電気的に接続される高周波伝送線路としての第1線路導体4が信号電極13に対応して複数形成されている。そして、4は第1線路導体であり、絶縁基体2内部の配線導体や貫通導体・表面の配線導体や接続パッド等に接続されている。
【0025】
また、5は凹部3の底面に形成された複数の接地用突出端子である。これら接地用突出端子5は、高周波用半導体素子12の裏面の接地電極14が当接され、変形しつつ接地電極14に電気的に接続されるものである。なお、接地用突出端子5は、絶縁基体2内部の接地導体7に接続されて接地されている。
【0026】
実装基板8は、凹部3の開口より大きい寸法の絶縁基板9の下面に高周波用半導体素子12の搭載部10を有しており、下面の搭載部10近傍から周辺部にかけて第2線路導体11が形成されている。第2線路導体11の搭載部10側の一端は高周波用半導体素子12の信号電極13に、他端は凹部3の開口周辺の第1線路導体4にそれぞれ電気的に接続される。
【0027】
15は蓋体であり、配線基板1の上面に実装基板8を収容するように設けられた第2の凹部の開口に封止材を介して接合され、内部に実装基板8および高周波用半導体素子12を気密に封止するためのものである。なお、この蓋体15は、封止樹脂等で実装基板8を被覆して封止する場合には特に必要とはされない。
【0028】
本発明の高周波半導体装置用パッケージおよび高周波半導体装置によれば、このように高周波用半導体素子12を実装基板8にフリップチップ実装して搭載し、この実装基板8でパッケージ本体である配線基板1の上面に形成された凹部3の開口を塞ぐようにして高周波用半導体素子12を凹部3に収容するとともに、半導体素子12表面の信号電極13を実装基板8の第2線路導体11を介してパッケージ本体の第1線路導体4に電気的に接続させ、一方、半導体素子12裏面の接地電極14を凹部3の底面に形成された複数の接地用突出端子5に当接させて、この接地用突出端子5を変形させて電気的に接続させるようにしたことから、高周波用半導体素子12を実装するチップキャリアとそのチップキャリアが実装されるパッケージ本体とで構成されるものとなり、チップキャリアにマイクロストリップ線路型の高周波用半導体素子12をフリップチップ実装する場合の接地面の接続方法として、半導体素子12とパッケージ本体の配線基板1とを短い配線長で電気的に接続できるとともにこれらの間に平行平板モードを形成する平行な接地面が形成されることを防ぐことができるため、マイクロストリップ線路型の高周波用半導体素子12を簡便にフリップチップ実装することが可能で、かつ高周波信号に対する挿入損失が低い優れた高周波特性を有するものとすることができる。
【0029】
また、半導体素子12の接地面への接続を信号電極13や信号配線が形成された素子表面側ではなく裏面の接地電極14を接地用突出端子5に当接させ、これを変形させて直接パッケージ本体の接地面に電気的に接続させることから、実装基板8を配線基板1の凹部3に実装した時点で、凹部3の底面に設けた接地用突出端子5により高周波用半導体素子12の裏面の接地電極14と十分な電気的な接触を取ることが可能となり、高周波用半導体素子12の十分な接地を取ることが可能となる。
【0030】
そして、パッケージ本体にこのような凹部3を複数形成して、高周波用半導体素子12が搭載実装された複数の実装基板8を各凹部3に実装することにより、容易にマルチチップモジュールを構成することができる。
【0031】
一方、本発明の高周波半導体装置によれば、以上のような特長を有する高周波半導体装置用パッケージを用いて構成されるものであることから、同様に、マイクロストリップ線路型の高周波用半導体素子12が簡便にフリップチップ実装されて高周波信号に対する挿入損失が低い優れた高周波特性を有しており、また高周波用半導体素子12をパッケージから容易に取り外せるために高周波用半導体素子12の交換が容易となり、種々のマルチチップモジュールを容易に構成することができる。
【0032】
本発明において配線基板1には高周波用の半導体素子収納用パッケージや多層回路基板等に用いられる種々の配線基板を用いることができ、凹部3の形状や大きさは収容する高周波用半導体素子12の大きさや仕様に応じて適宜設定すればよい。また、第1線路導体4は高周波伝送線路としてマイクロストリップ線路やコプレーナ線路を用いればよく、高周波半導体装置や高周波用半導体素子12の仕様に応じて適宜形成すればよい。
【0033】
凹部3の底面に形成される接地用突出端子5は、高周波用半導体素子12の仕様によっては単数でも接地を取ることは可能であるが、十分な接地を取るという観点からは、形成が可能な限り接地電極14に対して数多く形成することが望ましい。また例えば、高周波用半導体素子12と実装基板8との接続部の直下には接地電極14に接続された接地用突出端子15があるように配置することが望ましい。
【0034】
また、高周波用半導体素子12の接地電極14を当接させて容易に変形させつつ電気的に接続させるためには、接地用突出端子15には表面の酸化がなく、極力小さな電極端子であることが望ましい。このような接地用突出端子15は、例えば金ワイヤ等を用いワイヤボンダ等の装置を用いていわゆるバンプ形状に形成するとよい。
【0035】
図3(a)〜(c)に、本発明に好適な接地用突出端子5の例をそれぞれ側面図または断面図で示す。図3(a)に示す接地用突出端子5は図3に示したものと同じバンプ状のものであり、ワイヤボンディング装置を用いて金ワイヤを短く切断することにより形成することができる。図3(b)に示す接地用突出端子5’は、ワイヤボンディング装置を用いて金ワイヤの小さなループを形成してバンプ状としたものである。図3(c)に示す接地用突出端子5”は、金属粒子を半田付けすることにより作製したバンプを用いたものである。その他、接地用突出端子としては導電性を持ったいわゆるバンプであればどのような形状でも使用可能であるが、高周波用半導体素子12の接地電極14に当接させて十分な接地を取るという観点からは、抵抗の低い導体で構成され、接触面積の大きなバンプ形状であることが望ましい。
【0036】
なお、一般に高周波用半導体素子12は半導体材料にGaAsを用いて形成される場合が多いが、素子基板が薄く強度が弱いものが多い。そのため、高周波用半導体素子12を実装した実装基板8を配線基板1に実装して高周波用半導体素子12の接地電極14を接地用突出端子5に当接させたときに十分な接触を取り、かつ半導体素子12を機械的に破壊しないためには、接地用突出端子5は前述のように柔らかい材料でかつ変形しやすい構造を持つバンプであることが望ましい。
【0037】
また、接地用突出端子5と接地電極14との当接による接地をより完全にするために、これらの間を半田等を用いて金属接合を行なってもよい。
【0038】
実装基板8としては、例えばアルミナセラミックス基板の表面に薄膜形成法等により所定の配線導体パターンを形成したもの等を用いればよい。
【0039】
このような実装基板8の下面に形成される第2線路導体11には、第1線路導体4と同様に、高周波伝送線路としてマイクロストリップ線路やコプレーナ線路を用いればよく、高周波半導体装置や高周波用半導体素子12の仕様に応じて、信号電極13と第1線路導体4とを良好な高周波特性で電気的に接続するように適宜形成すればよい。
【0040】
図4に、実装基板8に形成した第2線路導体13の配線パターンの例を平面図で示す。実装基板9の絶縁基板9下面には四角の点線で囲んだ部分に搭載部10を有しており、この搭載部10に高周波用半導体素子12がフリップチップ実装される。
【0041】
チップキャリアの高周波信号伝送用の配線としての第2線路導体13は、この例では図中の右側に楕円で囲んで示したようにコプレーナ線路として形成されており、このコプレーナ線路は第2線路導体13とその両側の接地導体16とで構成されている。また、13’は電源や中間周波数等の信号線のための配線として用いる第2線路導体である。
【0042】
このような実装基板8に高周波用半導体素子12を搭載実装するには、例えば半導体素子12の信号電極13側にフリップチップ接続用の導体バンプを形成し、その導体バンプと実装基板8の第2線路導体13等のパターンの先端部とを超音波や半田等を利用して接合することにより、半導体素子12を実装基板8に実装する。
【0043】
通常は、高周波信号線路の接続を行なう場合には、接地用のパッドについても共に接続し実装を行なう。その場合、半導体素子が搭載される基板側の接地面の一部が半導体素子と対向する部分に形成されるために、両者の間で平行な接地面が形成され、基板あるいは半導体素子の製造上の制約により、この接地面の重なりは有限な値を持たざるを得ないものである。
【0044】
しかしながら、本発明によれば、半導体素子12は裏面の接地電極14を接地用突出端子5に接続させて直接接地することから、半導体素子12が搭載実装される実装基板8の配線面には接地用のパッドは不要となり、そのために接地面の重なりができることはなく、平行平板モードによる不要な放射は発生しない。
【0045】
なお、図4には本発明の構造上、最も簡単に実装を行なうことのできるコプレーナ線路を用いた基板を示したが、凹部3の1個ずつを個別に実装基板8により気密封止したい場合には、実装基板8の裏面にマイクロストリップ線路を設けこれを電磁結合等を用いて接続し高周波信号線路とすることも可能である。また、第2線路導体11としてマイクロストリップ線路を用いてもよいことはいうまでもない。
【0046】
【実施例】
次に、本発明の高周波半導体装置用パッケージおよび高周波半導体装置について具体例を説明する。
【0047】
配線基板1の絶縁基体2および実装基板8の絶縁基板9の材質としては92%純度の多層積層用アルミナセラミックスを用いた。アルミナセラミックスを所定の厚みの生シートに成形し、このシート上にタングステンペーストを用いて所定の導体パターンを印刷し、所定の形状に切断して、加湿フォーミングガス中にて1600℃1時間の焼成を行なった。その後、タングステンメタライズ導体の表面にニッケルめっきを1μm・金めっきを1.5 μm施し、配線基板1および実装基板8を得た。そして、配線基板1の凹部3の底面には、直径20μmの金線を用いて、高周波用半導体素子12の接地電極14に対応させて100 μm間隔の格子状配列にバンプを形成し、複数の接地用突出端子5とした。
【0048】
また、比較用として、配線基板の凹部内に接地用突出端子を形成せず、実装基板側に接地用の接続パッドを設け、半導体素子の表面側から接地を取る構造の実装基板も作製した。
【0049】
これらの実装基板に高周波用半導体素子の代わりにマイクロストリップ線路のみから構成されるダミーチップを搭載実装し、その後、配線基板の凹部内にこのダミーチップを収容するようにして実装基板を配線基板に実装した。そして、配線基板の凹部1個分につき、高周波信号の透過係数をネットワークアナライザで測定した。その結果得られた透過係数の周波数特性を図5に線図で示す。
【0050】
図5において横軸は周波数(単位:GHz)を、縦軸は透過係数(単位:dB)を表し、実線で示した特性曲線Aは本発明の実施例の、点線で示した特性曲線Bは比較例の透過係数の周波数特性を示す。
【0051】
この図から明らかなように、実装基板側に接地パッドを設けた比較例のものでは57GHz近傍および62GHz近傍に損失が大きくなる点が存在しているが、本発明の実施例のものではそのような損失の急激な増加はどの周波数においても認められず、60GHzまで挿入損失が2dB以下と良好な特性を示した。これにより、本発明によれば、マイクロストリップ線路型の高周波用半導体素子を簡便にフリップチップ実装することが可能で、かつ高周波信号に対する挿入損失が低い高周波半導体装置用パッケージおよび高周波半導体装置が得られることが確認できた。
【0052】
なお、以上はあくまで本発明の実施の形態の例示であって、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を加えることは何ら差し支えない。例えば、配線基板の絶縁基体および実装基板の絶縁基板の材質は多層用アルミナセラミックスに限定されるものではなく、その他のセラミックス材料あるいは樹脂材料であっても構わない。
【0053】
【発明の効果】
以上のように、本発明の高周波半導体装置用パッケージによれば、高周波用半導体素子を実装基板にフリップチップ実装して搭載し、この実装基板で配線基板の上面に形成された凹部の開口を塞ぐようにして高周波用半導体素子を凹部に収容するとともに、半導体素子表面の信号電極を実装基板の第2線路導体を介して配線基板の第1線路導体に電気的に接続させ、一方、半導体素子裏面の接地電極を凹部の底面に形成された複数の接地用突出端子に当接させて、この接地用突出端子を変形させて電気的に接続させるようにしたことから、マイクロストリップ線路型の高周波用半導体素子とパッケージ本体である配線基板とを短い配線長で電気的に接続できるとともに、これらの間に平行平板モードを形成する平行な接地面が形成されることを防ぐことができるため、高周波用半導体素子を簡便にフリップチップ実装でき、かつ高周波信号に対する挿入損失が低い優れた高周波特性を有するものとすることができる。
【0054】
また、半導体素子の接地面への接続を裏面の接地電極を接地用突出端子に当接させ、これを変形させて直接パッケージ本体の接地面に電気的に接続させることから、実装基板を配線基板の凹部に実装した時点で接地用突出端子により高周波用半導体素子の裏面の接地電極と十分な電気的な接触により十分な接地を取ることが可能となる。
【0055】
そして、パッケージ本体にこのような凹部を複数形成して、高周波用半導体素子が搭載実装された複数の実装基板を各凹部に実装することにより、容易にマルチチップモジュールを構成することができ、半導体素子毎の交換も容易に行なえるものとなる。
【0056】
一方、本発明の高周波半導体装置によれば、以上のような特長を有する高周波半導体装置用パッケージを用いて構成されるものであることから、同様に、マイクロストリップ線路型の高周波用半導体素子が簡便にフリップチップ実装されて高周波信号に対する挿入損失が低い優れた高周波特性を有しており、さらに、高周波用半導体素子の取り換えも容易となり、種々のマルチチップモジュールを容易に構成することができる。
【図面の簡単な説明】
【図1】本発明の高周波半導体装置用パッケージおよびそれを用いた高周波半導体装置の実施の形態の一例を示す断面図である。
【図2】図1の例における高周波用半導体素子の実装部分の構成を説明するための要部拡大断面図である。
【図3】(a)〜(c)は、本発明における接地用突出端子の例を示す側面図または断面図である。
【図4】本発明における実装基板の配線パターンの例を示す平面図である。
【図5】本発明の実施例および比較例における高周波信号の透過係数の周波数特性を示す線図である。
【符号の説明】
1・・・配線基板
2・・・絶縁基体
3・・・凹部
4・・・第1線路導体
5・・・接地用突出端子
8・・・実装基板
10・・・搭載部
11・・・第2線路導体
12・・・高周波用半導体素子
13・・・信号電極
14・・・接地電極[0001]
BACKGROUND OF THE INVENTION
The present invention is used in a communication device or sensor or the like using microwaves and millimeter waves, to a high-frequency semiconductor device having an improved method of mounting a high-frequency semiconductor element.
[0002]
[Prior art]
Conventionally, in a module whose main circuit element is a high-frequency semiconductor element that handles microwaves and millimeter waves, the high-frequency semiconductor element is housed in a semiconductor package whose main component is a metal housing. The high frequency semiconductor element is connected to a connection electrode or a line conductor disposed around the high frequency semiconductor element for connection to the external electric circuit board by wire bonding or the like, thereby connecting the high frequency semiconductor element to the external electric circuit board. An element is mounted on a semiconductor package to constitute a high-frequency semiconductor device.
[0003]
However, since it is difficult to achieve downsizing, cost reduction, and high performance by such a mounting method, in recent years, development of mounting methods of high-frequency semiconductor elements by so-called flip chip connection has been actively performed. ing.
[0004]
This flip-chip mounting method can shorten the connection path between the high-frequency semiconductor element and the connection electrode or line conductor to which the high-frequency semiconductor element is connected, thereby reducing the loss of the high-frequency signal and improving the performance. Become.
[0005]
[Problems to be solved by the invention]
However, in general, the flip-chip mounting method uses only one side of a semiconductor element on which connection terminal electrodes are formed, and therefore it is difficult to use a microstrip line having good high-frequency characteristics for wiring in the semiconductor element. There is a problem. Further, since the semiconductor element is not in close contact with the mounting portion, there is a problem that it is difficult to dissipate heat generated from the semiconductor element.
[0006]
Of these, regarding the problem of heat dissipation, as seen in, for example, Japanese Patent Laid-Open No. 10-256429, the back surface of the semiconductor element is fixed to a package body with good heat dissipation, and the surface on which the wiring and terminal electrodes are formed is provided as another auxiliary. Countermeasures such as flip chip mounting on a typical wiring board are being taken. In such a structure, the auxiliary wiring board must be made of a deformable resin, or the height (depth) accuracy of the recess for housing the semiconductor element of the package body must be suppressed to several μm or less. Such a response is required.
[0007]
However, deformable resins generally have poor electrical characteristics with respect to high frequencies, and there is a problem that they are difficult to use for high frequency semiconductor device packages used in microwaves and millimeter waves. Therefore, in the package used in the microwave and the millimeter wave, in order to use the auxiliary wiring substrate, the dimensional tolerance of the package has to be strict, and the mounting cost is increased because the flip chip mounting is used. There was a problem that it would be.
[0008]
In recent years, application of microwave or millimeter wave frequencies to automotive radars, large-capacity wireless communication systems, and the like has been studied. Due to their nature, these applications require the mass production of low cost devices. Therefore, there is a demand for a mounting technology that is small in size and low in price while having high performance in the mounting technology.
[0009]
In one direction of such mounting technology, a high-frequency semiconductor device called a multichip module in which all semiconductor elements constituting circuit elements are mounted in one package may be configured. This contributes to the overall miniaturization of the circuit, and at the same time, the loss in the line conductor, which is a transmission line, cannot be ignored at high frequencies such as microwaves or millimeter waves. It is possible to reduce the loss as a short one and obtain a high-frequency semiconductor device suitable for the new application.
[0010]
On the other hand, since a high-frequency semiconductor element does not necessarily have a high yield rate at the time of manufacture, it is preferable to have a structure in which a semiconductor element can be replaced for each chip when a defect is found after mounting the semiconductor element. In order to obtain such a structure, a low-cost chip carrier is required as an auxiliary wiring substrate for mounting.
[0011]
As a method for mounting a high-frequency semiconductor element on a chip carrier or the like as an auxiliary wiring substrate, the wire bonding method and the flip chip mounting method as described above are used. Of these, the wire bonding method has a reactance component that cannot be ignored especially in the high-frequency region because the wire connecting the semiconductor element and the substrate has a reactance component that is connected to the same connection pad with multiple wires, or is not a wire. It is necessary to take measures such as using a small ribbon. Further, since the connection between the semiconductor element and the chip carrier is a sequential connection for each connection pad, it takes a process man-hour and is not suitable for cost reduction.
[0012]
By the way, the high-frequency semiconductor element can be classified into a microstrip line type and a coplanar line type according to the structure of a line conductor as a transmission line formed on the surface thereof. Among these, the microstrip line type has a ground plane (ground electrode) on the back surface of the semiconductor element, and the microstrip line is mainly used for the signal line on the front side. On the other hand, the coplanar line type has no ground electrode on the back surface and has a structure in which ground conductors are arranged on both sides of the signal line on the front surface.
[0013]
The coplanar line type has a grounding conductor on the front side, so there is no need for backside processing or via hole processing to provide a grounding surface on the backside, or between the semiconductor element and the mounting board when flip-chip mounting. Although it has features such as easy connection between ground electrodes, a ground conductor is always required next to the signal line, so loss tends to increase when the signal line is bent or branched, It is a form that is difficult to miniaturize, such as a so-called air bridge that connects ground conductors with a ribbon or the like, and neither is superior to the microstrip line type.
[0014]
However, if a package for a high-frequency semiconductor device having a structure that can be easily flip-chip mounted using a microstrip line type semiconductor element, it is possible to cover some of the weak points of the microstrip line type and have excellent high frequency characteristics. Can be utilized.
[0015]
A microstrip line type high-frequency semiconductor element generally has a grounding pad formed on the surface, and it is relatively easy to connect the grounding surface of the substrate and the grounding surface of the element. However, when flip chip mounting is performed, at the connection portion between the semiconductor element and the mounting substrate, the grounding surface of the substrate, the grounding pad of the substrate, the grounding pad of the element, the grounding surface of the element, etc. around the signal line It is inevitable to form a small area where the ground planes overlap each other.
[0016]
When such a region where the ground planes are parallel is formed, the parallel plate mode in which electromagnetic waves propagate in the gap generally becomes stable from a relatively low frequency, so unnecessary radiation is formed and transmission loss increases. There is a problem that. Therefore, when a microstrip line type high frequency semiconductor device is to be flip-chip mounted, it is important to have a structure in which a parallel plate mode is not easily formed between the semiconductor device and the substrate.
[0017]
Based on the above, as a mounting technology for high-frequency semiconductor devices for new microwave / millimeter-wave applications such as automotive radar and high-capacity wireless communication, microstrip line type high-frequency semiconductor elements can be flip-chip mounted. It is desired to develop a package for a high-frequency semiconductor device for a multi-chip module that can use a chip carrier that is an auxiliary wiring substrate and that can be easily mounted.
[0018]
The present invention has been devised in view of the above circumstances, and its object is can be conveniently flip-chip mounting a semiconductor element for high frequency micro-strip line type, and the insertion loss for high frequency signal has a low and to provide a high-frequency semiconductor device.
[0019]
Frequency semiconductor equipment of the present invention, a high frequency semiconductor device having a ground electrode to the signal electrode and the back to the surface, and a wiring board which have a recess on the upper surface of the high frequency semiconductor element is accommodated, the opening of the recess A package main body having a first line conductor provided in the periphery, and a plurality of ground projecting terminals that are in contact with the ground electrode on the bottom surface of the recess and electrically connected while being deformed ; A mounting portion for mounting a semiconductor element is provided on the lower surface, an insulating substrate larger than the opening of the recess, and provided on the lower surface of the insulating substrate, having one end on the mounting portion side and the other end on the opposite side, the end the signal electrodes, in which the other end comprises a a mounting substrate having a second line conductor which is electrically connected to the first line conductor.
[0020]
The plurality of grounding protruding terminals are preferably bump-shaped.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an exemplary embodiment of the present invention will be described in detail with reference to the drawings.
[0022]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for a high-frequency semiconductor device and a high-frequency semiconductor device using the same according to the present invention, and shows an example in which a multichip module is configured. FIG. 2 is an enlarged cross-sectional view of a main part for explaining the configuration of the mounting portion of the high-frequency semiconductor element.
[0023]
In these drawings, 1 is a wiring board, 8 is a mounting board mounted on the
[0024]
The wiring substrate 1 constitutes a package body, and has a
[0025]
[0026]
The mounting
[0027]
[0028]
According to the high-frequency semiconductor device package and the high-frequency semiconductor device of the present invention, the high-
[0029]
In addition, the connection of the
[0030]
A plurality of
[0031]
On the other hand, according to the high-frequency semiconductor device of the present invention, since the high-frequency semiconductor device package having the above-described features is used, the microstrip line type high-
[0032]
In the present invention, the wiring board 1 can be a variety of wiring boards used for high-frequency semiconductor element storage packages, multilayer circuit boards, and the like, and the shape and size of the
[0033]
The
[0034]
Also, in order to make the
[0035]
FIGS. 3A to 3C show examples of grounding protruding
[0036]
In general, the high-
[0037]
Further, in order to make the grounding due to the contact between the
[0038]
As the mounting
[0039]
Like the
[0040]
FIG. 4 is a plan view showing an example of the wiring pattern of the
[0041]
In this example, the
[0042]
In order to mount and mount the high-
[0043]
Normally, when connecting high-frequency signal lines, the grounding pads are also connected together for mounting. In this case, since a part of the ground surface on the substrate side on which the semiconductor element is mounted is formed in a portion facing the semiconductor element, a parallel ground surface is formed between the two, Due to this limitation, the overlapping of the ground planes must have a finite value.
[0044]
However, according to the present invention, since the
[0045]
FIG. 4 shows a substrate using a coplanar line that can be mounted most easily due to the structure of the present invention. However, when each of the
[0046]
【Example】
Next, specific examples of the package for a high-frequency semiconductor device and the high-frequency semiconductor device of the present invention will be described.
[0047]
As materials for the insulating
[0048]
For comparison, a mounting substrate having a structure in which a grounding connection terminal is not formed in the recess of the wiring substrate but a grounding connection pad is provided on the mounting substrate side and grounding is performed from the surface side of the semiconductor element was also manufactured.
[0049]
A dummy chip composed only of a microstrip line is mounted and mounted on these mounting boards instead of the high-frequency semiconductor element, and then the mounting board is mounted on the wiring board so as to be accommodated in the recesses of the wiring board. Implemented. And the permeation | transmission coefficient of the high frequency signal was measured with the network analyzer about one recessed part of a wiring board. The frequency characteristics of the transmission coefficient obtained as a result are shown in FIG.
[0050]
In FIG. 5, the horizontal axis represents the frequency (unit: GHz), the vertical axis represents the transmission coefficient (unit: dB), and the characteristic curve A indicated by the solid line is the characteristic curve B indicated by the dotted line in the embodiment of the present invention. The frequency characteristic of the transmission coefficient of a comparative example is shown.
[0051]
As is clear from this figure, there is a point where the loss increases in the vicinity of 57 GHz and 62 GHz in the comparative example in which the ground pad is provided on the mounting substrate side, but in the example of the present invention, such a point is present. No significant increase in loss was observed at any frequency, and the insertion loss was 2 dB or less up to 60 GHz. As a result, according to the present invention, a microstrip line type high frequency semiconductor element can be simply flip-chip mounted, and a high frequency semiconductor device package and a high frequency semiconductor device with low insertion loss for high frequency signals can be obtained. I was able to confirm.
[0052]
Note that the above are merely examples of the embodiments of the present invention, and the present invention is not limited to these embodiments, and various modifications and improvements may be added without departing from the scope of the present invention. . For example, the material of the insulating substrate of the wiring board and the insulating board of the mounting board is not limited to the alumina ceramics for multilayers, and may be other ceramic materials or resin materials.
[0053]
【The invention's effect】
As described above, according to the package for a high-frequency semiconductor device of the present invention, the high-frequency semiconductor element is mounted on the mounting board by flip-chip mounting, and the opening of the concave portion formed on the upper surface of the wiring board is closed with this mounting board. Thus, the high-frequency semiconductor element is accommodated in the recess, and the signal electrode on the surface of the semiconductor element is electrically connected to the first line conductor of the wiring board via the second line conductor of the mounting board, while the back surface of the semiconductor element Since the ground electrode is made to contact a plurality of ground projecting terminals formed on the bottom surface of the recess and the ground projecting terminals are deformed and electrically connected, the microstrip line type high frequency A semiconductor element and a wiring board as a package body can be electrically connected with a short wiring length, and a parallel ground plane that forms a parallel plate mode is formed between them. It is possible to prevent a high frequency semiconductor device can easily flip-chip mounting, and the insertion loss for high frequency signals can be made to have a low excellent high frequency characteristics.
[0054]
In addition, since the grounding electrode on the back surface is brought into contact with the grounding projecting terminal and the semiconductor element is directly connected to the grounding surface of the package body by connecting the grounding electrode on the back surface to the grounding surface of the package body. At the time of mounting in the concave portion, sufficient grounding can be achieved by sufficient electrical contact with the ground electrode on the back surface of the high-frequency semiconductor element by the grounding protruding terminal.
[0055]
A multichip module can be easily configured by forming a plurality of such recesses in the package body and mounting a plurality of mounting boards on which the high-frequency semiconductor elements are mounted in each recess. Replacement of each element can be easily performed.
[0056]
On the other hand, according to the high frequency semiconductor device of the present invention, since it is configured using the package for a high frequency semiconductor device having the above-described features, the microstrip line type high frequency semiconductor element is similarly simple. In addition, it has an excellent high frequency characteristic that is flip-chip mounted and has a low insertion loss with respect to a high frequency signal. Further, it is easy to replace a high frequency semiconductor element, and various multichip modules can be easily configured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for a high-frequency semiconductor device and a high-frequency semiconductor device using the same according to the present invention.
2 is an essential part enlarged cross-sectional view for explaining a configuration of a mounting portion of a high-frequency semiconductor element in the example of FIG. 1;
FIGS. 3A to 3C are side views or cross-sectional views showing examples of grounding protruding terminals in the present invention. FIGS.
FIG. 4 is a plan view showing an example of a wiring pattern of a mounting board in the present invention.
FIG. 5 is a diagram showing frequency characteristics of a transmission coefficient of a high-frequency signal in an example of the present invention and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...
10 ... Mounting part
11 ... Second line conductor
12 ... High frequency semiconductor devices
13 ... Signal electrode
14 ... Grounding electrode
Claims (2)
前記高周波用半導体素子が収容される凹部を上面に有する配線基板と、前記凹部の開口周辺に設けられた第1線路導体と、前記凹部の底面に、前記接地電極が当接され、変形しつつ電気的に接続する複数の接地用突出端子と、を有するパッケージ本体と、
前記高周波用半導体素子を搭載する搭載部を下面に有し、前記凹部の開口より大きい絶縁基板と、前記絶縁基板の下面に設けられ、前記搭載部側に一端を、その反対側に他端を有し、前記一端が前記信号電極に、前記他端が前記第1線路導体にそれぞれ電気的に接続される第2線路導体と、を有する実装基板と、
を具備する高周波半導体装置。 A high-frequency semiconductor element having a signal electrode on the front surface and a ground electrode on the back surface;
Wherein a wiring board high frequency semiconductor element is closed on the top surface of the recess to be accommodated, and the first line conductor provided on an opening periphery of the recess, a bottom surface of the recess, wherein the ground electrode is in contact, deforms A plurality of ground protruding terminals that are electrically connected while being packaged, and
A mounting portion for mounting the high-frequency semiconductor element on a lower surface ; an insulating substrate larger than the opening of the recess; and a lower surface of the insulating substrate, with one end on the mounting portion side and the other end on the opposite side. has, in the end the signal electrode, and a mounting substrate having a second line conductors the other end is electrically connected to the first line conductor,
A high-frequency semiconductor device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24263399A JP4127589B2 (en) | 1999-08-30 | 1999-08-30 | High frequency semiconductor device package and high frequency semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24263399A JP4127589B2 (en) | 1999-08-30 | 1999-08-30 | High frequency semiconductor device package and high frequency semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001068595A JP2001068595A (en) | 2001-03-16 |
JP4127589B2 true JP4127589B2 (en) | 2008-07-30 |
Family
ID=17091967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24263399A Expired - Fee Related JP4127589B2 (en) | 1999-08-30 | 1999-08-30 | High frequency semiconductor device package and high frequency semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4127589B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4559029B2 (en) * | 2001-04-06 | 2010-10-06 | ジュホラ、タルジヤ | High frequency integrated circuit micro system assembly |
JP6745815B2 (en) * | 2015-12-02 | 2020-08-26 | マイクロモジュールテクノロジー株式会社 | Optical device and method of manufacturing optical device |
-
1999
- 1999-08-30 JP JP24263399A patent/JP4127589B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001068595A (en) | 2001-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1126623A (en) | Electronic device and manufacture thereof | |
CN103703610A (en) | Wireless module | |
US6483186B1 (en) | High power monolithic microwave integrated circuit package | |
US6531775B1 (en) | High-frequency module | |
CN114566479B (en) | Packaging module, preparation method thereof, base station and electronic equipment | |
US6998292B2 (en) | Apparatus and method for inter-chip or chip-to-substrate connection with a sub-carrier | |
JPH0680746B2 (en) | Chip carrier for microwave | |
JP3439969B2 (en) | High frequency input / output terminal and high frequency semiconductor element storage package | |
JP4127589B2 (en) | High frequency semiconductor device package and high frequency semiconductor device | |
JP4883010B2 (en) | Electronic component package | |
JP2003258142A (en) | Semiconductor device | |
JP4605887B2 (en) | Mounting circuit board and mounting structure of semiconductor device | |
JP2538072B2 (en) | Semiconductor device | |
US7105924B2 (en) | Integrated circuit housing | |
JP2004153179A (en) | Semiconductor device and electronic device | |
JP2000183488A (en) | Hybrid module | |
JP2004319650A (en) | I / O terminal and semiconductor element storage package and semiconductor device | |
JPH0936617A (en) | High frequency module | |
JP4206185B2 (en) | High frequency semiconductor device | |
JP3840160B2 (en) | High frequency device storage package | |
JP3640463B2 (en) | MMIC package | |
JP2002305262A (en) | Package for packaging semiconductor device | |
JP2002198712A (en) | Waveguide conversion board and high frequency module | |
JPH05166965A (en) | Package structure | |
JPH06112337A (en) | Package for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080509 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140523 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |