JP4127585B2 - 内燃機関の排出ガス浄化装置 - Google Patents
内燃機関の排出ガス浄化装置 Download PDFInfo
- Publication number
- JP4127585B2 JP4127585B2 JP14957799A JP14957799A JP4127585B2 JP 4127585 B2 JP4127585 B2 JP 4127585B2 JP 14957799 A JP14957799 A JP 14957799A JP 14957799 A JP14957799 A JP 14957799A JP 4127585 B2 JP4127585 B2 JP 4127585B2
- Authority
- JP
- Japan
- Prior art keywords
- nox
- nox storage
- amount
- exhaust gas
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の属する技術分野】
この発明は、内燃機関の排出ガス中のNOx(窒素酸化物)を吸蔵還元する触媒を用いた内燃機関の排出ガス浄化装置に関するものである。
【0002】
【従来の技術】
従来の三元触媒を備えたガソリン機関では、排出ガス中のHC、CO、NOxを酸化還元反応によって浄化するために、燃料供給量は理論空燃比付近に制御されていた。しかし、燃料消費削減、二酸化炭素排出量削減などの社会的要求にこたえるためには、希薄燃焼によって内燃機関の燃費を大幅に改善する筒内燃料直接噴射方式の開発が必要になってくる。
【0003】
この希薄燃焼エンジンでは、HC、COなどの未燃成分排出量は少ないものの、従来の三元触媒では酸素過剰なため還元浄化できないNOxが多く排出される。
【0004】
希薄燃焼エンジンでは、このNOxの浄化が大きな問題であり、NOx浄化のための後処理装置としてNOx吸蔵タイプ、選択還元タイプなどのNOx浄化触媒が搭載されている。
【0005】
NOx吸蔵タイプの触媒は、空燃比がリーン時に排出ガス中に含まれるNOxを触媒に貯蔵し、空燃比がリッチになった場合に触媒に貯蔵されたNOxが放出され、排出ガス中に含まれるCO、HC等の還元剤によって浄化するものである。
【0006】
すなわち、希薄燃焼エンジンでは、吸蔵タイプのNOx吸蔵触媒を排気管途中に設置し、空燃比のリッチ・リーンを繰り返すことにより、NOxを浄化することができる。従来、上記吸蔵型NOx吸蔵触媒を用いたNOxを浄化する技術として、たとえば特許公報第2600492号にその一例が開示されている。
【0007】
【発明が解決しようとする課題】
このように、希薄燃焼エンジンにおいても排出ガス中のNOx成分を浄化することは可能であるが、空燃比リッチ・リーンタイミングを設定する場合には、NOx吸蔵触媒のNOx吸蔵特性に応じた制御を行なわなければならない。たとえば、内燃機関から排出されるNOxの積算量が触媒のNOx吸蔵量を超過すれば、NOxは吸蔵されずに放出される。また、リッチ状態で吸蔵されたNOxを還元する場合にも、リッチ時間を長くとりすぎてNOxを還元するために使われる以上の還元剤を投入すれば、過剰な還元剤(HC,CO)は大気中に放出されることになる。
【0008】
NOx吸蔵触媒のNOx貯蔵量は直接的に測定することはできないので、NOx吸蔵触媒制御には、予め基礎実験によって測定された、NOx貯蔵量を使用する。リッチ・リーン制御上NOx貯蔵量を小さく設定すると、頻繁に空燃比をリッチに切換え吸蔵NOxを還元するために平均空燃比はリッチ側にシフトする。そのため、希薄燃焼の特徴である低燃費性能が損なわれ、かつCO、HC排出が増加する。また、逆に大きく設定し、リーン時間を長くするとNOx貯蔵容量の減少がおこると触媒に吸蔵されないNOxが排出されるという問題点がある。
【0009】
リーンNOx吸蔵触媒のNOx貯蔵量は、硫黄被毒などを原因とする経時劣化等によって変化するものであり、経時劣化前の触媒性能に対応して設定したリッチ・リーン周期では常に吸蔵・還元を高い効率でNOx吸蔵触媒を制御できないという問題点があった。また、硫黄被毒などによる、NOx吸蔵触媒のNOx貯蔵容量の変化に基づいた触媒劣化判定と硫黄被毒からの再生も行われていない。
【0010】
この発明は、前述した問題点を解決するためになされたもので、リーンNOx吸蔵触媒下流に設置したガス濃度センサ出力からNOx貯蔵量を推定し、その値に基づいて空燃比のリッチ時間を制御することによりNOx貯蔵量に応じた還元剤を過不足なく供給することができ、また、このNOx貯蔵量に応じてリーン時のNOx供給量を制御することにより、過剰NOxの触媒下流への排出も防止することができる内燃機関の排出ガス浄化装置を得ることを目的とする。
【0011】
また、この発明は、リーンNOx吸蔵触媒の最大NOx貯蔵量の変化を測定して、触媒の硫黄被毒などによる劣化を判定することができるので、NOx吸蔵触媒の再生制御を実施するタイミングを正確に設定でき、さらに、触媒再生のための膨張・排気行程燃料噴射による排出ガス昇温時には、三元触媒下流のガス温度を測定しているので、硫黄被毒再生に必要な温度に制御することができる内燃機関の排出ガス浄化装置を得ることを目的とする。
【0012】
【課題を解決するための手段】
この発明の請求項1に係る内燃機関の排出ガス浄化装置は、内燃機関の排気管通路内に設けられ、流入する排出ガスの空燃比がリーンであるときはNOxを吸収し、流入するときの排出ガス中の酸素濃度を低下させるとNOxを排出すると同時に還元浄化するNOx吸蔵触媒と、前記NOx吸蔵触媒上流の排気管に設けられ、排出ガスの空燃比に応じた信号を出力する第1のガス濃度検出手段と、前記NOx吸蔵触媒下流の排気管に設けられ、排出ガス中の酸素濃度に応じた信号を出力する第2のガス濃度検出手段と、前記NOx吸蔵触媒上流の三元触媒の出口の排出ガス温度を検出する排出ガス温度センサと、クランクシャフトの回転速度を検出するエンジン回転数センサと、前記内燃機関に吸入される空気量を検出する吸入空気量センサと、前記排出ガス温度センサによって検出された排出ガス温度が所定温度範囲であれば、空燃比をリーンに切換え、前記エンジン回転数センサによって検出された回転速度、前記吸入空気量センサによって検出された吸入空気量、及び前記排出ガス温度センサによって検出された排出ガス温度に基づいて前記NOx吸蔵触媒のNOx貯蔵容量を推定し、運転状態に基づいて推定された排出NOx濃度、及び前記吸入空気量センサによって検出された吸入空気量から単位時間当たりの排出NOx量をもとめ、単位時間当たりの排出NOx量を積分し前記NOx吸蔵触媒のNOx貯蔵量を推定し、前記NOx貯蔵容量と前記NOx貯蔵量を比較し、前記NOx貯蔵容量が飽和したと判断され場合には、前記NOx吸蔵触媒に貯蔵されたNOxを還元するために空燃比をリッチに切換え、前記第2のガス濃度検出手段の応答遅れ時間との比例関係に基づいて算出したNOx貯蔵量と、理論空燃比からの偏差を示す空燃比のリッチ度合いからNOx還元に必要なリッチ継続時間を計算し、空燃比をリッチ化してからの経過時間を計算し、この経過時間が前記リッチ継続時間を越えたときときには、空燃比を再びリーンに変更するエンジン制御コントローラとを備えたものである。
【0018】
この発明の請求項2に係る内燃機関の排出ガス浄化装置は、前記エンジン制御コントローラが、前回の劣化判定時からの経過時間と劣化判定インターバルを比較し、前記経過時間が前記劣化判定インターバルより長ければ、前記NOx吸蔵触媒の劣化判定を実施し、内燃機関の運転状態に基づいてリーン状態かどうかを判定し、リーン状態であれば、内燃機関の運転状態に基づいて内燃機関から排出されるNOx排出量を推定し、リーン状態でない場合には、NOx排出量積算値を0にし、前記NOx排出量を積分して更新したNOx排出量積算値と、NOx貯蔵量設定値に係数をかけた値とを比較し、前記NOx排出量積算値が前記NOx貯蔵量設定値に係数をかけた値よりも少なければ、リーン状態を継続し、前記NOx排出量積算値が前記NOx貯蔵量設定値に係数をかけた値よりも大きくなれば、リッチ状態に切換え、前記第2のガス濃度検出手段の応答遅れ時間、前記第1のガス濃度検出手段によって検出された空燃比、前記エンジン回転数センサによって検出された回転速度、及び前記吸入空気量センサによって検出された吸入空気量に基づいて吸蔵されていたNOx貯蔵量を計算し、この計算した前記NOx貯蔵量と劣化判定基準値を比較し、前記NOx貯蔵量が前記劣化判定基準値より低下していれば、前記NOx吸蔵触媒の再生処理を行い、前記経過時間をリセットするものである。
【0019】
この発明の請求項3に係る内燃機関の排出ガス浄化装置は、前記NOx吸蔵触媒の再生処理が、膨張行程噴射タイミングと噴射量は予め一定値に設定するとともに、内燃機関の運転状態に基づいて前記NOx吸蔵触媒の再生のための膨張行程噴射継続時間を設定し、膨張行程噴射時間をリセットして、膨張行程噴射を開始し、前記排出ガス温度センサによって検出された排出ガス温度と膨張行程噴射の昇温目標値を比較し、前記排出ガス温度が前記昇温目標値よりも高ければ、前記膨張行程噴射を停止し、前記排出ガス温度が前記昇温目標値よりも高くない場合に、前記膨張行程噴射時間と前記膨張行程噴射継続時間を比較し、前記膨張行程噴射時間が完了すれば前記膨張行程噴射を停止し、完了していなければ前記膨張行程噴射を継続するものである。
【0020】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1に係る内燃機関の排出ガス浄化装置について図面を参照しながら説明する。図1は、この発明の実施の形態1に係る内燃機関の排出ガス浄化装置のシステム構成を示す図である。
【0021】
図1において、1は多気筒内燃機関の燃料制御装置の一気筒を抜き出して示している内燃機関、2は内燃機関1に吸入される空気量を計測する吸入空気量センサ、3は内燃機関1に吸入される空気量を制御するスロットルバルブである。
【0022】
また、同図において、吸入空気量センサ2によって流量計測された吸入空気は、内燃機関1の燃焼室4に導入され、燃料噴射インジェクタ5から供給された燃料と混合気を形成する。そして、点火プラグ11によって点火され混合気は燃焼する。燃焼によって生じた混合気の膨張圧力は、ピストン14、コネクティングロッド15を介してクランクシャフト12に伝達し、回転力に変換される。なお、13はクランクシャフト12の回転速度を検出するためのエンジン回転数センサである。
【0023】
さらに、同図において、16は内燃機関1の排気菅であり、排気管16内には排出ガス浄化のために三元触媒6と、NOx吸蔵触媒7がもうけられている。また、三元触媒6の上流には、排出ガス濃度を検出し、内燃機関1の燃料制御に必要な排出ガス中の空燃比を検出するためのリニア空燃比センサ8と、さらに三元触媒6の下流には排出ガス温度センサ9が設置されている。NOx吸蔵触媒7の下流には、λO2センサ10が設けられ、NOx吸蔵量推定に必要な信号を出力する。なお、17はエンジン制御コントローラであり、各センサから取り込んだ信号に基づき筒内噴射インジェクタ5と点火プラグ11を駆動する
【0024】
つぎに、この実施の形態1に係る内燃機関の排出ガス浄化装置の動作について図面を参照しながら説明する。図2は、この発明の実施の形態1に係る内燃機関の排出ガス浄化装置の動作を示すタイミングチャートである。また、図3は、この発明の実施の形態1に係る内燃機関の排出ガス浄化装置の動作を示すフローチャートである。
【0025】
図2は、NOx吸蔵触媒7を用いて内燃機関1から排出されるNOxを浄化するための燃料制御方法(a)と、NOx貯蔵量の挙動(b)、そしてNOx吸蔵触媒7の上下流濃度変化(c)を示したものである。
【0026】
同図(a)において、21は燃料噴射量指示信号の補正係数Kafであり、内燃機関の吸入空気量から算出した基本燃料噴射量に補正係数Kafを乗じ内燃機関の空燃比を変更することによりNOx吸蔵触媒へのNOx吸蔵と還元を制御する。
【0027】
また、同図(b)において、22はNOx吸蔵触媒のNOx貯蔵容量を、そして23はNOx貯蔵量を示す。
【0028】
これらの時間挙動から、内燃機関の空燃比制御とNOx貯蔵挙動を説明する。図2(a)に示す26は、燃料補正係数Kafの切り替わり点であり、空燃比がリッチからリーンに変化するところである。この時点でNOx貯蔵量23は0とすると、空燃比リーン期間に排出されるNOxはNOx貯蔵量23に示すように触媒に貯蔵される。そして、NOx貯蔵量23がNOx貯蔵容量22と等しい、またはその差がある範囲に入ったと判断した時点27で補正係数Kaf21を切り替え空燃比をリッチに切り変える。
【0029】
空燃比リッチの状態では、NOx貯蔵量23は、NOxの離脱還元によって減少している。さらに離脱還元がすすみ、NOx貯蔵量23が0になったと判断した時点で再び空燃比をリーンに切り換えてNOxを貯蔵する。
【0030】
この、空燃比リッチ・リーン制御を行なっているときのNOx吸蔵触媒前後のNOx濃度挙動を図2(c)の符号24及び25に示す。ここで、24はNOx吸蔵触媒上流であり、25は下流NOx濃度挙動である。
【0031】
図2(c)に示すように、触媒下流NOx濃度25は切り替わり点26では、排出NOxが触媒に貯蔵されるため非常に低くなっているが、NOx吸蔵量23の増加に伴い貯蔵されないNOxが触媒下流に排出され徐々に濃度が高くなってきている。切り替え点27でリッチスパイクを投入した場合、投入直後はいったんNOx濃度は上昇するが触媒の還元反応によって濃度は低下している。NOx浄化効率を向上するためには触媒下流NOx濃度25をできるだけ低く抑えることが必要である。
【0032】
図2(c)に示した触媒下流NOx濃度25をできるだけ低く抑えるためには、NOx吸蔵触媒7のNOx貯蔵容量と内燃機関から排出されるNOx排出量をできるだけ正確に予測し、空燃比のリッチ・リーン制御を正確に行なわなければならない。その空燃比リッチ・リーン制御のフローチャートを図3に示す。
【0033】
この空燃比リッチ・リーン制御は図示しない燃料制御メイン処理ルーチンで内燃機関の運転状態から省燃費運転可能であると判定され、空燃比をリーン化する条件が成立した後に実行される。
【0034】
空燃比リッチ・リーン制御ルーチンでは、まずステップ301でリーンNOx吸蔵触媒が活性化しているかどうかを判定する。リーンNOx吸蔵触媒上流の三元触媒6の出口の排出ガス温度センサ9によって検出される排出ガス温度が所定温度範囲であれば、NOx吸蔵と還元反応が活性化していると判断する。本実施の形態では300℃から600℃の間がNOx吸蔵触媒の動作点とする。
【0035】
NOx吸蔵触媒温度が動作可能温度範囲に入っていればステップ302において空燃比をリーンに切換える。
【0036】
次に、ステップ303では内燃機関の運転状態を入力する。特に、排出ガス流量とほぼ同流量である吸入空気量Qairと、NOx吸蔵触媒温度に相当する三元触媒下流ガス温度Tgasは、リーンNOx吸蔵触媒のNOx貯蔵量のパラメータであり、この運転状態に基づいてステップ304で触媒のNOx貯蔵容量を推定する。推定の方法はマップ検索でも、関数式を用いた方法でも可能である。
【0037】
ステップ305ではステップ303で入力した運転状態に基づいて内燃機関から排出されるNOx濃度を推定する。このステップ305では、内燃機関の負荷と回転数の運転状態マップから検索を行なう。
【0038】
次に、ステップ307では、ステップ305で求めた排出NOx濃度と吸入空気量から単位時間当たりの排出NOx量をもとめ、単位時間当たりの排出量を積分しNOx吸蔵触媒のNOx貯蔵量とする。
【0039】
次に、ステップ308では、排出NOxを積分したNOx貯蔵量とリーンNOx吸蔵触媒のNOx貯蔵容量を比較し、貯蔵容量が飽和したと判断されると次のステップ309でリッチスパイクを投入する。貯蔵容量が飽和していないとさらに、飽和するまでリーン状態を繰り返す。
【0040】
ステップ309では、リーンNOx吸蔵触媒に貯蔵されたNOxを還元するために空燃比をリッチ化する。
【0041】
そして、ステップ310では、NOx吸蔵触媒下流のλO2センサ応答遅れであるΔTを計測する。図4を用いて、燃料制御信号、各センサ応答挙動とΔTの関係を詳細に後述する。
【0042】
このΔTに基づいてステップ311では、NOx貯蔵量を算出する。
【0043】
そして、NOx還元に必要なリッチ継続時間は、ステップ311で算出したNOx貯蔵量とリッチ空燃比のリッチ度合いからステップ312で計算する。ここで、空燃比のリッチ度合いとは理論空燃比からの偏差を示している。
【0044】
次に、ステップ313では、空燃比をリッチ化してからの経過時間を計算し、ステップ314ではステップ312で設定したリッチ時間を経過したかどうかを判定する。ここで、設定時間リッチを継続し貯蔵されたNOxがすべて還元されたと判定すると、次のステップ315で空燃比を再びリーンに変更し、再度NOxの吸蔵を行なう。
【0045】
ここで、図3のステップ310で示したΔTと各センサ挙動から応答遅れ検出の動作を図4を用いて詳しく説明する。
【0046】
図4は、内燃機関の空燃比をリーンとリッチに変化させNOxの吸蔵還元を繰り返している場合の空燃比制御信号(a)と、リーンNOx吸蔵触媒上下流に設置したガス濃度センサの挙動(b)、(c)を示したものである。
【0047】
図4(a)に示す41は、燃料噴射量補正信号であり、TLで示すリーン期間とTRICHで示すリッチ期間を制御する。
【0048】
同図(b)に示す42は、三元触媒6の上流に設置されたリニア空燃比センサ8の出力信号である。燃料噴射量補正信号41に対応して、空燃比が変化していることがわかる。ただし、内燃機関の燃焼遅れとリニア空燃比センサ8の応答遅れのためにdT1で示す無駄時間が発生している。
【0049】
次に、同図(c)に示す43は、NOx吸蔵触媒7の下流に設けられたλO2センサ10の出力信号である。このλO2センサ10の出力信号43は、リニア空燃比センサ8の出力信号42と比べて、排気管内での排気ガス輸送遅れと、NOx吸蔵触媒7のNOx吸蔵能力に応じた排出ガス雰囲気の変化遅れを含んだ時間dT2だけ遅延している。
【0050】
NOx吸蔵能力に応じた排出ガス雰囲気の変化遅れは、以下の化学反応式(1)から説明できる。
【0051】
Ba(NO3)2→BaO+2NO+3O2/2 式(1)
【0052】
すなわち、空燃比がリッチ雰囲気に変化しNOx吸蔵触媒7吸蔵されていたNOxが離脱還元される際には還元量に応じたO2が排出される。このO2が排出ガス雰囲気のリッチへの変化を遅延させ、λO2センサ10の信号反転を遅延させると考えられる。さらに、この遅れはNOx貯蔵量に比例するものであり、この遅れ時間ΔTを測定することにより、NOx吸蔵触媒7のNOx貯蔵量を推定することができる。
【0053】
図5は、応答遅れ時間ΔTとNOx貯蔵量の関係を示す。この図5からわかるように、ΔTとNOx貯蔵量は比例関係にあり、ΔTからNOx貯蔵量の推定が可能であることを示している。
【0054】
図5において、51はΔT特性を示すものである。52は触媒上下流センサの応答遅れとNOx貯蔵量の関係を示す。両信号の相違は、空燃比補正係数41から触媒上流信号までの無駄時間dT1が含まれることである。
【0055】
ここで推定されるNOx貯蔵量は、還元反応時の還元剤投入量と等しいと考えると、次の式(2)であらわすことができる。
【0056】
NOx貯蔵量=f(ΔT,(A/Fsto−A/Frich),Qair,Tcat)式(2)
【0057】
ここで、ΔTはセンサ応答遅れ、(A/Fsto−A/Frich)はリッチ時における空燃比の理論空燃比からの偏差である。また、Qairは排出ガス流量にほぼ相当する吸入空気量、Tcatは触媒温度である。図3のステップ312で示した吸蔵NOxすべてを還元するリッチ時間設定は、ΔTに補正係数を掛ける必要がある。
【0058】
実施の形態2.
この実施の形態2に係る内燃機関の排出ガス浄化装置では、NOx吸蔵量をλO2センサ10の出力信号42との応答遅れdT2から推定する。
【0059】
実施の形態3.
この発明の実施の形態3に係る内燃機関の排出ガス浄化装置について図面を参照しながら説明する。
【0060】
図6は、この発明の実施の形態3に係る内燃機関の排出ガス浄化装置の劣化状態判定のための最大NOx貯蔵量の測定方法を示す概念図である。
【0061】
図6において、61は空燃比リーン継続時間を変化させた場合のλO2センサの応答遅れΔTを示している。図6に示すように、リーン時間を長くするほどNOx貯蔵量が増加し、それに伴いΔTも大きくなっている。しかし、リーン時間をNOx吸蔵触媒の貯蔵量が飽和するリーン時間であるTLmax以上に設定してもΔTは増加しない。この時のΔTは最大NOx貯蔵量を示すものであり、ΔTdeとする。
【0062】
NOx吸蔵触媒7のNOx貯蔵容量は触媒の劣化とともに小さくなる。したがって、高いNOx浄化性能を得るためには、NOx貯蔵量の変化に応じて空燃比リッチ・リーン制御サイクル周期を短く修正する必要がある。
【0063】
ΔTdeの経時変化と劣化判定基準の関係を図7に示す。図7において、横軸は内燃機関の運転状態での経過時間を示す。また、縦軸に示すΔTdeは経過時間の増加に伴い減少し劣化が進んでいることを示している。ここで、NOx吸蔵触媒7の吸蔵量劣化反転基準をたとえばDelmtに設定し、ΔTdeがこれより小さくなったら触媒の劣化と判定する。
【0064】
図8は、ΔTdeを用いたリーンNOx吸蔵触媒の経時劣化判定フローチャートを示す。
【0065】
まず、ステップ801では、前回の劣化判定時からの経過時間Tjを読み込む。この経過時間Tjは、図示しない燃料制御メインプログラムで積算計算されている。
【0066】
次に、ステップ802では、この経過時間Tjと劣化判定インターバルTintを比較する。ここで経過時間TjがインターバルTintより長ければ劣化判定を実施し、短ければ劣化判定は行なわない。本実施例では劣化判定の実施基準を運転時間としているが、走行距離を基準としてもよい。
【0067】
次に、ステップ803では、内燃機関の回転数、負荷状態などの運転状態を入力する。
【0068】
次に、ステップ804では、内燃機関の運転領域を判定しNOxの吸蔵が可能なリーン状態かどうかを判定する。リーン状態であれば、次のステップ805で内燃機関の回転数および負荷状態にもとづいて内燃機関から排出されるNOx排出量ENOxを推定する。
【0069】
一方、ステップ804でリーン領域でないと判定された場合には、運転状態がリッチまたはストイキになりNOxの離脱還元が起り吸蔵量が減少する。劣化判定ルーチンでは連続したリーン状態で充分なNOx貯蔵を行なわせるという目的を達成するために、ステップ806で貯蔵NOx積算値SNOxを0にする。
【0070】
そして、ステップ807では、内燃機関のNOx排出量ENOxを積分して積算値SNOxを更新する。
【0071】
次に、ステップ808では、NOx排出量積算値SNOxがNOx貯蔵量設定値INOxに係数をかけたものと比較する。ここで、係数は1.5に設定しているが充分にNOxが吸蔵されるように1.0以上に設定する。もし、排出量積算値SNOxが貯蔵量設定値INOxに係数をかけた値よりも少なければまだNOx吸蔵可能であると判断してリーン状態を継続する。
【0072】
一方、排出量積算値SNOxが貯蔵量設定値INOxに係数をかけた値よりも大きくなれば充分触媒にNOxが吸蔵されたと判断してステップ809でリッチスパイクを投入する。
【0073】
その時の、触媒上下流センサの応答遅れからΔTをステップ810において計測する。
【0074】
次に、ステップ811で、リッチでのエンジン回転数、吸入空気量、そして空燃比を入力する。
【0075】
次に、ステップ812では、これら運転状態とΔTから吸蔵されていたNOx貯蔵量RSNOxを計算する。
【0076】
次に、ステップ813では、実測した貯蔵量RSNOxと劣化判定基準値LSNOxを比較し、基準値LSNOxより吸蔵量が低下していれば次のステップ814でNOx吸蔵触媒再生処理を行なう。一方、貯蔵量RSNOxが劣化基準値LSNOxよりも大きければ劣化していないと判断して、ステップ815で劣化判定時からの経過時間カウンタTjをリセットして判定ルーチンを終了する。
【0077】
実施の形態4.
上記の実施の形態3で説明した図8の制御フローにて、リーンNOx吸蔵触媒の劣化が判断された場合には触媒の再生を行ない触媒のNOx貯蔵能力を回復させる必要がある。リーンNOx吸蔵触媒の硫黄被毒を再生するためには、空燃比リッチ状態で触媒を硫黄被毒再生可能温度以上まで昇温する方法が有効である。この実施の形態4では、再生のための昇温手段として、内燃機関の膨張行程燃料噴射を実行する。
【0078】
図9は、この発明の実施の形態4に係る内燃機関の排出ガス浄化装置の劣化再生のためのガス温度上昇を示す概念図である。図9において、横軸は膨張行程における燃料噴射量であり、縦軸は内燃機関の直下の排気管に設けられた三元触媒下流のガス温度である。
【0079】
膨張行程に噴射された燃料の一部は燃焼し、排出ガス温度を上昇する。そして、燃料中の未燃成分は三元触媒上で酸化反応し、その反応熱によってさらに排出ガスを昇温する。したがって、昇温度合いは噴射燃料が多いほど、さらに排出ガス中に含まれる酸素が多い程、すなわち空燃比がリーンであるほど大きくなる。
【0080】
図10は、膨張行程燃料噴射量を一定量として噴射の継続時間を変更した場合の三元触媒下流温度の昇温傾向を示したものである。この図からも空燃比リーン化と噴射継続時間に比例して三元触媒下流温度が高くなっていることがわかる。
【0081】
膨張行程噴射において、噴射量を変更する場合には噴射タイミングも変え、内燃機関の動力特性に変化を与えないように制御しなければならない。そのため、図10に示すように、燃料噴射量と噴射タイミングを一定値に固定し噴射時間を可変化する方が効果的な制御を実現することができる。
【0082】
図11に、硫黄被毒再生ルーチンを示す。まず、ステップ901では、エンジン回転数Ne,機関出力Pe、設定平均空燃比A/Fを入力する。
【0083】
次に、ステップ902では、内燃機関の運転状態に基いてリーンNOx吸蔵触媒再生のための膨張行程噴射継続時間Tsetを設定する。このとき膨張行程噴射タイミングと噴射量は予め一定値に設定されている。
【0084】
次に、ステップ903では、膨張行程噴射時間のカウンタTcntをリセットし、ステップ904で膨張行程噴射を開始する。
【0085】
次に、ステップ905では、三元触媒下流に設置した熱電対から排出ガス温度Texを入力する。
【0086】
そして、ステップ906では、排出ガス温度Texと膨張行程噴射の昇温目標値であるTtrgを比較し、排出ガス温度が昇温目標値よりも高ければステップ908で膨張行程噴射を停止する。この実施の形態4では、昇温目標値Ttrgを700℃に設定している。
【0087】
次に、ステップ907では、カウンタTcntと昇温目標値Tsetを比較し、膨張行程噴射時間が完了すればステップ908で噴射を停止し、完了していなければステップ909でカウンタをインクリメントし膨張行程噴射を継続する。
【0088】
【発明の効果】
この発明の請求項1に係る内燃機関の排出ガス浄化装置は、以上説明したとおり、内燃機関の排気管通路内に設けられ、流入する排出ガスの空燃比がリーンであるときはNOxを吸収し、流入するときの排出ガス中の酸素濃度を低下させるとNOxを排出すると同時に還元浄化するNOx吸蔵触媒と、前記NOx吸蔵触媒上流の排気管に設けられ、排出ガスの空燃比に応じた信号を出力する第1のガス濃度検出手段と、前記NOx吸蔵触媒下流の排気管に設けられ、排出ガス中の酸素濃度に応じた信号を出力する第2のガス濃度検出手段と、前記NOx吸蔵触媒上流の三元触媒の出口の排出ガス温度を検出する排出ガス温度センサと、クランクシャフトの回転速度を検出するエンジン回転数センサと、前記内燃機関に吸入される空気量を検出する吸入空気量センサと、前記排出ガス温度センサによって検出された排出ガス温度が所定温度範囲であれば、空燃比をリーンに切換え、前記エンジン回転数センサによって検出された回転速度、前記吸入空気量センサによって検出された吸入空気量、及び前記排出ガス温度センサによって検出された排出ガス温度に基づいて前記NOx吸蔵触媒のNOx貯蔵容量を推定し、運転状態に基づいて推定された排出NOx濃度、及び前記吸入空気量センサによって検出された吸入空気量から単位時間当たりの排出NOx量をもとめ、単位時間当たりの排出NOx量を積分し前記NOx吸蔵触媒のNOx貯蔵量を推定し、前記NOx貯蔵容量と前記NOx貯蔵量を比較し、前記NOx貯蔵容量が飽和したと判断され場合には、前記NOx吸蔵触媒に貯蔵されたNOxを還元するために空燃比をリッチに切換え、前記第2のガス濃度検出手段の応答遅れ時間との比例関係に基づいて算出したNOx貯蔵量と、理論空燃比からの偏差を示す空燃比のリッチ度合いからNOx還元に必要なリッチ継続時間を計算し、空燃比をリッチ化してからの経過時間を計算し、この経過時間が前記リッチ継続時間を越えたときときには、空燃比を再びリーンに変更するエンジン制御コントローラとを備えたので、還元剤を過不足なく供給することができるという効果を奏する。
【0094】
この発明の請求項2に係る内燃機関の排出ガス浄化装置は、以上説明したとおり、前記エンジン制御コントローラが、前回の劣化判定時からの経過時間と劣化判定インターバルを比較し、前記経過時間が前記劣化判定インターバルより長ければ、前記NOx吸蔵触媒の劣化判定を実施し、内燃機関の運転状態に基づいてリーン状態かどうかを判定し、リーン状態であれば、内燃機関の運転状態に基づいて内燃機関から排出されるNOx排出量を推定し、リーン状態でない場合には、NOx排出量積算値を0にし、前記NOx排出量を積分して更新したNOx排出量積算値と、NOx貯蔵量設定値に係数をかけた値とを比較し、前記NOx排出量積算値が前記NOx貯蔵量設定値に係数をかけた値よりも少なければ、リーン状態を継続し、前記NOx排出量積算値が前記NOx貯蔵量設定値に係数をかけた値よりも大きくなれば、リッチ状態に切換え、前記第2のガス濃度検出手段の応答遅れ時間、前記第1のガス濃度検出手段によって検出された空燃比、前記エンジン回転数センサによって検出された回転速度、及び前記吸入空気量センサによって検出された吸入空気量に基づいて吸蔵されていたNOx貯蔵量を計算し、この計算した前記NOx貯蔵量と劣化判定基準値を比較し、前記NOx貯蔵量が前記劣化判定基準値より低下していれば、前記NOx吸蔵触媒の再生処理を行い、前記経過時間をリセットするので、NOx吸蔵触媒の再生制御を実施するタイミングを正確に設定できるという効果を奏する。
【0095】
この発明の請求項3に係る内燃機関の排出ガス浄化装置は、以上説明したとおり、前記NOx吸蔵触媒の再生処理が、膨張行程噴射タイミングと噴射量は予め一定値に設定するとともに、内燃機関の運転状態に基づいて前記NOx吸蔵触媒の再生のための膨張行程噴射継続時間を設定し、膨張行程噴射時間をリセットして、膨張行程噴射を開始し、前記排出ガス温度センサによって検出された排出ガス温度と膨張行程噴射の昇温目標値を比較し、前記排出ガス温度が前記昇温目標値よりも高ければ、前記膨張行程噴射を停止し、前記排出ガス温度が前記昇温目標値よりも高くない場合に、前記膨張行程噴射時間と前記膨張行程噴射継続時間を比較し、前記膨張行程噴射時間が完了すれば前記膨張行程噴射を停止し、完了していなければ前記膨張行程噴射を継続するので、硫黄被毒再生時の異常加熱による三元触媒およびリーンNOx吸蔵触媒の再生不可能な熱劣化を防止することができるという効果を奏する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る内燃機関の排出ガス浄化装置の構成を示す図である。
【図2】 この発明の実施の形態1に係る内燃機関の排出ガス浄化装置の燃料噴射信号、NOx貯蔵量、及び触媒上下流NOx濃度挙動を示すタイミングチャートである。
【図3】 この発明の実施の形態1に係る内燃機関の排出ガス浄化装置のNOx吸蔵触媒制御用空燃比制御の動作をフローチャートである。
【図4】 この発明の実施の形態1に係る内燃機関の排出ガス浄化装置の燃料噴射信号、及びNOx吸蔵触媒上下流センサ出力挙動を示すタイミングチャートである。
【図5】 この発明の実施の形態1に係る内燃機関の排出ガス浄化装置のλO2センサ応答遅れΔTとNOx貯蔵量の関係を示す図である。
【図6】 この発明の実施の形態3に係る内燃機関の排出ガス浄化装置の劣化状態判定のためのΔTとリーン時間の関係を示す図である。
【図7】 この発明の実施の形態3に係る内燃機関の排出ガス浄化装置の劣化状態判定のΔTdeの経時変化を示す図である。
【図8】 この発明の実施の形態3に係る内燃機関の排出ガス浄化装置の劣化状態判定の動作を示すフローチャートである。
【図9】 この発明の実施の形態4に係る内燃機関の排出ガス浄化装置の硫黄被毒再生のための膨張行程噴射燃料量と触媒温度の関係を示す図である。
【図10】 この発明の実施の形態4に係る内燃機関の排出ガス浄化装置の硫黄被毒再生のための膨張行程噴射時間と触媒温度の関係を示す図である。
【図11】 この発明の実施の形態4に係る内燃機関の排出ガス浄化装置の硫黄被毒再生のための膨張行程噴射制御のい動作を示すフローチャートである。
【符号の説明】
1 内燃機関、2 吸入空気量センサ、3 スロットルバルブ、4 燃焼室、5 燃料噴射インジェクタ、6 三元触媒、7 NOx吸蔵触媒、8 リニア空燃比センサ、9 排出ガス温度センサ、10 λO2センサ、11 点火プラグ、12 クランクシャフト、13 エンジン回転数センサ、14 ピストン、15 コネクティングロッド、16 排気菅、17 エンジン制御コントローラ。
Claims (3)
- 内燃機関の排気管通路内に設けられ、流入する排出ガスの空燃比がリーンであるときはNOxを吸収し、流入するときの排出ガス中の酸素濃度を低下させるとNOxを排出すると同時に還元浄化するNOx吸蔵触媒と、
前記NOx吸蔵触媒上流の排気管に設けられ、排出ガスの空燃比に応じた信号を出力する第1のガス濃度検出手段と、
前記NOx吸蔵触媒下流の排気管に設けられ、排出ガス中の酸素濃度に応じた信号を出力する第2のガス濃度検出手段と、
前記NOx吸蔵触媒上流の三元触媒の出口の排出ガス温度を検出する排出ガス温度センサと、
クランクシャフトの回転速度を検出するエンジン回転数センサと、
前記内燃機関に吸入される空気量を検出する吸入空気量センサと、
前記排出ガス温度センサによって検出された排出ガス温度が所定温度範囲であれば、空燃比をリーンに切換え、
前記エンジン回転数センサによって検出された回転速度、前記吸入空気量センサによって検出された吸入空気量、及び前記排出ガス温度センサによって検出された排出ガス温度に基づいて前記NOx吸蔵触媒のNOx貯蔵容量を推定し、
運転状態に基づいて推定された排出NOx濃度、及び前記吸入空気量センサによって検出された吸入空気量から単位時間当たりの排出NOx量をもとめ、単位時間当たりの排出NOx量を積分し前記NOx吸蔵触媒のNOx貯蔵量を推定し、
前記NOx貯蔵容量と前記NOx貯蔵量を比較し、前記NOx貯蔵容量が飽和したと判断され場合には、前記NOx吸蔵触媒に貯蔵されたNOxを還元するために空燃比をリッチに切換え、
前記第2のガス濃度検出手段の応答遅れ時間との比例関係に基づいて算出したNOx貯蔵量と、理論空燃比からの偏差を示す空燃比のリッチ度合いからNOx還元に必要なリッチ継続時間を計算し、
空燃比をリッチ化してからの経過時間を計算し、この経過時間が前記リッチ継続時間を越えたときときには、空燃比を再びリーンに変更するエンジン制御コントローラと
を備えたことを特徴とする内燃機関の排出ガス浄化装置。 - 前記エンジン制御コントローラは、
前回の劣化判定時からの経過時間と劣化判定インターバルを比較し、前記経過時間が前記劣化判定インターバルより長ければ、前記NOx吸蔵触媒の劣化判定を実施し、
内燃機関の運転状態に基づいてリーン状態かどうかを判定し、リーン状態であれば、内燃機関の運転状態に基づいて内燃機関から排出されるNOx排出量を推定し、リーン状態でない場合には、NOx排出量積算値を0にし、
前記NOx排出量を積分して更新したNOx排出量積算値と、NOx貯蔵量設定値に係数をかけた値とを比較し、前記NOx排出量積算値が前記NOx貯蔵量設定値に係数をかけた値よりも少なければ、リーン状態を継続し、前記NOx排出量積算値が前記NOx貯蔵量設定値に係数をかけた値よりも大きくなれば、リッチ状態に切換え、
前記第2のガス濃度検出手段の応答遅れ時間、前記第1のガス濃度検出手段によって検出された空燃比、前記エンジン回転数センサによって検出された回転速度、及び前記吸入空気量センサによって検出された吸入空気量に基づいて吸蔵されていたNOx貯蔵量を計算し、
この計算した前記NOx貯蔵量と劣化判定基準値を比較し、前記NOx貯蔵量が前記劣化判定基準値より低下していれば、前記NOx吸蔵触媒の再生処理を行い、前記経過時間をリセットする
ことを特徴とする請求項1記載の内燃機関の排出ガス浄化装置。 - 前記NOx吸蔵触媒の再生処理は、
膨張行程噴射タイミングと噴射量は予め一定値に設定するとともに、内燃機関の運転状態に基づいて前記NOx吸蔵触媒の再生のための膨張行程噴射継続時間を設定し、
膨張行程噴射時間をリセットして、膨張行程噴射を開始し、
前記排出ガス温度センサによって検出された排出ガス温度と膨張行程噴射の昇温目標値を比較し、前記排出ガス温度が前記昇温目標値よりも高ければ、前記膨張行程噴射を停止し、
前記排出ガス温度が前記昇温目標値よりも高くない場合に、前記膨張行程噴射時間と前記膨張行程噴射継続時間を比較し、前記膨張行程噴射時間が完了すれば前記膨張行程噴射を停止し、完了していなければ前記膨張行程噴射を継続する
ことを特徴とする請求項2記載の内燃機関の排出ガス浄化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14957799A JP4127585B2 (ja) | 1999-05-28 | 1999-05-28 | 内燃機関の排出ガス浄化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14957799A JP4127585B2 (ja) | 1999-05-28 | 1999-05-28 | 内燃機関の排出ガス浄化装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000337130A JP2000337130A (ja) | 2000-12-05 |
JP4127585B2 true JP4127585B2 (ja) | 2008-07-30 |
Family
ID=15478248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14957799A Expired - Fee Related JP4127585B2 (ja) | 1999-05-28 | 1999-05-28 | 内燃機関の排出ガス浄化装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4127585B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002256872A (ja) | 2001-02-27 | 2002-09-11 | Fuji Heavy Ind Ltd | エンジンの燃焼制御装置 |
JP4158627B2 (ja) * | 2003-07-03 | 2008-10-01 | 日産自動車株式会社 | 内燃機関の排気浄化装置 |
JP4213548B2 (ja) | 2003-09-11 | 2009-01-21 | 株式会社日立製作所 | エンジンの制御装置 |
US7399729B2 (en) | 2003-12-22 | 2008-07-15 | General Electric Company | Catalyst system for the reduction of NOx |
JP4325606B2 (ja) | 2005-10-05 | 2009-09-02 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
EP2360361B1 (en) * | 2008-11-26 | 2016-11-30 | Honda Motor Co., Ltd. | Exhaust purification apparatus for internal combustion engine |
KR101558675B1 (ko) | 2013-11-22 | 2015-10-07 | 현대자동차주식회사 | Lnt촉매의 재생시스템 및 방법 |
-
1999
- 1999-05-28 JP JP14957799A patent/JP4127585B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000337130A (ja) | 2000-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4158268B2 (ja) | エンジンの排気浄化装置 | |
JP4308396B2 (ja) | 内燃機関の燃料供給制御装置 | |
JP3570297B2 (ja) | エンジン排気浄化装置 | |
US6484493B2 (en) | Exhaust emission control device for internal combustion engine | |
WO1998012423A1 (fr) | Dispositif de commande de moteur | |
EP1650419B1 (en) | Air/Fuel ratio control method | |
JP4127585B2 (ja) | 内燃機関の排出ガス浄化装置 | |
JP2004044457A (ja) | 内燃機関の排気浄化装置 | |
JP5229400B2 (ja) | 内燃機関の制御装置 | |
JP6248978B2 (ja) | 内燃機関の制御装置 | |
JPH11148338A (ja) | 内燃機関の排気系の窒素酸化物用トラップの再生方法 | |
KR102518593B1 (ko) | SDPF의 NOx 정화 효율 보정 방법 | |
JP4492776B2 (ja) | 内燃機関の排気浄化装置 | |
JP2009299597A (ja) | 車載内燃機関の排気浄化装置 | |
JP4177007B2 (ja) | 内燃機関の排気ガス浄化装置および浄化法 | |
JP6995154B2 (ja) | 内燃機関の排ガス浄化装置 | |
JP3509482B2 (ja) | 内燃機関の排気浄化装置 | |
JP3842092B2 (ja) | 内燃機関の排気浄化装置および浄化法 | |
KR101836287B1 (ko) | 촉매 히팅 제어 장치 및 방법 | |
JP2003097255A (ja) | エンジンの排気浄化装置及び排気浄化方法 | |
JP2004232576A (ja) | 内燃機関の排気浄化装置 | |
JP2019132165A (ja) | エンジンの排気浄化制御装置 | |
KR101551015B1 (ko) | 흡장형 NOx 촉매의 제어방법 | |
JP2004285841A (ja) | 内燃機関の排気浄化装置 | |
JP3661461B2 (ja) | 内燃機関の排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080509 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140523 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |