JP4120897B2 - Infrared transmitting glass ceramics - Google Patents
Infrared transmitting glass ceramics Download PDFInfo
- Publication number
- JP4120897B2 JP4120897B2 JP27959297A JP27959297A JP4120897B2 JP 4120897 B2 JP4120897 B2 JP 4120897B2 JP 27959297 A JP27959297 A JP 27959297A JP 27959297 A JP27959297 A JP 27959297A JP 4120897 B2 JP4120897 B2 JP 4120897B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- infrared transmitting
- transmitting glass
- becomes
- sno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002241 glass-ceramic Substances 0.000 title claims description 25
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 14
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910000500 β-quartz Inorganic materials 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 238000010411 cooking Methods 0.000 claims description 5
- 239000011521 glass Substances 0.000 description 20
- 238000002834 transmittance Methods 0.000 description 12
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229910008556 Li2O—Al2O3—SiO2 Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000006025 fining agent Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005339 levitation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 Sb 2 O 3 Inorganic materials 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052644 β-spodumene Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/10—Compositions for glass with special properties for infrared transmitting glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
Description
【0001】
【産業上の利用分野】
本発明は赤外線透過ガラスセラミックスに関し、特にスムーストップ型の調理器用トッププレートとして用いられる赤外線透過ガラスセラミックスに関するものである。
【0002】
【従来の技術】
調理器のトッププレートには、赤外線透過率が高いこと、美観を損ねないように内部の発熱手段が透視し難いこと、機械的強度や化学的耐久性が高いこと、耐熱衝撃性が高いこと等が要求され、従来より濃褐色で赤外線透過率の高い低膨張のLi2 O−Al2 O3 −SiO2 系ガラスセラミックスが使用されている。この種の材料として、例えば特公昭60−54896号にV2 O5 を添加したLi2 O−Al2 O3 −SiO2 系の赤外線透過ガラスセラミックスが開示されている。
【0003】
ところでこの種のガラスセラミックスは、1400℃を超える高温溶融を必要とする。このためガラス中に添加される清澄剤には、高温での溶融時に清澄ガスを多量に発生することができるAs2 O3 が使用されている。
【0004】
【発明が解決しようとする課題】
バッチ溶融において、原料中のAs2 O3 は400〜500℃でAs2 O5 に酸化された後、1200〜1800℃で再びAs2 O3 に還元され、酸素ガスを放出する。この酸素ガスがガラス中の泡に拡散することにより、泡の拡大、浮上促進が起こり、泡が除去される。As2 O3 は、この作用により、ガラスの清澄剤として広く使用されており、特に高温溶融が必要なLi2 O−Al2 O3 −SiO2 系ガラスセラミックスの清澄剤として非常に有効である。ところがAs2 O3 は毒性が強く、ガラスの製造工程や廃ガラスの処理時等で環境を汚染する可能性がある。
【0005】
本発明の目的は、環境を汚染するおそれがなく、調理器のトッププレートとして好適な赤外線透過ガラスセラミックスを提供することである。
【0006】
【課題を解決するための手段】
As2 O3 以外の清澄剤としては、SnO2 、Sb2 O3 、CeO2 、各種の塩化物、及び各種の硫化物があるが、中でもSnO2 や塩化物は1400℃を超える温度域で清澄効果を発揮するため、高温溶融を要するガラスの清澄剤に適している。しかしSnO2 を添加すると、その強い還元作用のため、バナジウムの発色が強められ、ガラスセラミックスの色調が濃くなりすぎる。また調理器のトッププレートとして使用する場合、赤外域の透過率が減少し、加熱効率が低下する。
【0007】
本発明者等は種々の実験を行った結果、バナジウムの発色はSnO2 の他にもTiO2 の影響を受けるため、SnO2 により増強されたバナジウムの発色はTiO2 の減量により補正し得ること、TiO2 の減量による結晶性の低下はZrO2 の添加で補正し得ることを見いだし、本発明として提案するものである。
【0008】
即ち、本発明の赤外線透過ガラスセラミックスは、重量百分率でSiO2 60〜72%、Al2O3 14〜28%、Li2O 2.5〜5.5%、MgO 0.1〜3%、ZnO 0.1〜3%、CaO 0〜3%、BaO 0〜5%、Na2O 0.1〜1%、K2O 0〜1%、TiO2 0.5〜3%、ZrO2 0.5〜5%、P2O5 0〜3%、V2O5 0.03〜0.1%、SnO2 0.1〜2%、Cl 0〜1%の組成を有し、主結晶としてβ−石英固溶体を析出してなることを特徴とする。
【0009】
【作用】
本発明の赤外線透過ガラスセラミックスは、清澄剤としてSnO2 を0.1〜2%(好ましくは0.3〜1.8%)、Clを0〜1%(好ましくは0.01〜1%)含有する。SnO2 は1400℃以上の高温度域で、Snイオンの価数変化による化学反応(SnO2 [4価]→SnO[2価])によって清澄ガスである多量の酸素ガスを放出する。一方、Clは塩化物としてガラス原料に添加され、ガラス融液中Clイオンの形で存在する。このClイオンは、酸素ガスと同様、ガラスの温度が高くなるとともに泡に拡散し、泡の拡大、浮上促進を起こす。本発明においては、SnO2 を単独で用いてもよいが、より高い清澄性を得るためにClを共存させることが望ましい。
【0010】
本発明のガラスセラミックスは、β−石英固溶体を主結晶とするLi2 O−Al2 O3 −SiO2 系ガラスセラミックスである。Li2 O−Al2 O3 −SiO2 系ガラスセラミックスは、β−石英固溶体やβ−スポジュメンを析出し、高い機械的強度や化学的耐久性を示すものであるが、β−スポジュメンの析出量が多くなるとガラスセラミックスが白濁して外観上問題があるだけでなく、熱膨張係数が高くなり、また赤外線透過率が低下して好ましくない。このため本発明ではβ−石英固溶体を主結晶とすることを特徴とする。
【0011】
以下、組成範囲を上記のように限定した理由を述べる。
【0012】
SiO2 が60%より少ないと熱膨張係数が大きくなりすぎる。一方、72%より多いとガラス溶融が困難になる。SiO2 の好適な範囲は61〜70%である。
【0013】
Al2 O3 が14%より少ないと化学的耐久性が低下し、またガラスが失透し易くなる。一方、28%より多いとガラスの粘度が大きくなりすぎてガラス溶融が困難になる。Al2 O3 の好適な範囲は16〜25%である。
【0014】
Li2 Oが2.5%より少ないと結晶物が白濁し易くなり、また熱膨張係数が大きくなりすぎる。一方、5.5%より多い場合も白濁し易くなり、またガラスが失透し易くなる。Li2 Oの好適な範囲は3〜5%である。
【0015】
MgO及びZnOがそれぞれ0.1%より少ないと結晶性が低くなり、結晶化が困難になる。一方、それぞれ3%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。MgO及びZnOの好適な範囲は何れも0.2〜2.5%である。
【0016】
CaOが3%及びBaOが5%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。CaO及びBaOの好適な範囲は、0〜2%及び0〜4%である。
【0017】
Na2 Oが0.1%より少ないと結晶性が低くなり、1%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。Na2 Oの好適な範囲は0.1〜0.8%である。
【0018】
K2 Oが1%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。K2 Oの好適な範囲は0〜0.8%である。
【0019】
TiO2が0.5%より少ないと結晶性が低く小さくなり、3%を超えるとガラスが失透し易くなり、またV2O5の発色が強くなりすぎて色調が濃くなり、赤外線の透過率が低下する。TiO2の好適な範囲は1〜3%である。
【0020】
ZrO2 が0.5%より少ないとTiO2 の減量による結晶性の低下を補うことができなくなり、5%より多いとガラスが失透し易くなる。ZrO2 の好適な範囲は0.5〜4.5%である。
【0021】
P2 O5 が3%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。P2 O5 の好適な範囲は0〜2.5%である。
【0022】
V2O5が0.03%より少ないと色調が薄くなり、可視光での透過率が高くなりすぎる。一方、0.1%より多いと色調が濃くなりすぎ、赤外線透過率が低くなりすぎる。
【0023】
SnO2 が0.1%より少ないと清澄効果がなく、2%より多いと色調が濃くなりすぎる。またガラス溶融が困難になったり、失透し易くなる。SnO2 の好適な範囲は0.3〜1.8%である。
【0024】
Clが1%より多いと化学的耐久性が低下する。Clの好適な範囲は0.01〜1%である。
【0025】
上記組成を有するガラスセラミックスは、板厚3mmで、波長500nmにおいて5%以下の可視光の透過率、波長1500nmにおいて70%以上の赤外線透過率を有する。また本発明のガラスセラミックスは、30〜750℃の範囲において−5〜30×10-7/℃の平均線熱膨張係数を示す。
【0026】
本発明の赤外線透過ガラスセラミックスは、以下のようにして製造することができる。
【0027】
まず重量百分率でSiO2 60〜72%、Al2O3 14〜28%、Li2O 2.5〜5.5%、MgO 0.1〜3%、ZnO 0.1〜3%、CaO 0〜3%、BaO 0〜5%、Na2O 0.1〜1%、K2O 0〜1%、TiO2 0.5〜3%、ZrO2 0.5〜5%、P2O5 0〜3%、V2O5 0.03〜0.1%の組成となるようにガラス原料を調合する。このとき清澄剤としてSnO2を0.1〜2%及び塩化物をCl換算で0〜5%添加する。
【0028】
次に調合したガラス原料を1550〜1700℃で4〜20時間溶融した後、成形する。
【0029】
続いてガラス成形体を700〜800℃で2〜4時間保持して核形成を行い、さらに800〜900℃で1〜3時間熱処理して結晶化させることにより、上記組成を有する赤外線透過ガラスセラミックスを得ることができる。
【0030】
なお得られたガラスセラミックスは、切断、研磨等の後加工を施したり、表面に絵付け等を施して、トッププレート等の用途に供される。
【0031】
【実施例】
以下、実施例に基づいて本発明の赤外線透過ガラスセラミックスを説明する。
【0032】
表1〜3は本発明の実施例(試料No.1、4及び8)及び参考例(試料No.2、3、5〜7、9〜12)を示している。
【0033】
【表1】
【0034】
【表2】
【0035】
【表3】
【0036】
各試料は次のようにして調製した。
【0037】
まず表の組成を有するガラスとなるように原料を調合し、均一に混合した後、白金坩堝を用いて電気炉で1550〜1650℃で8〜20時間溶融した。次いで溶融したガラスをカーボン定盤上に流しだし、ステンレスローラーを用いて5mmの厚さに成形し、さらに徐冷炉を用いて室温まで冷却した。このガラス成形体を電気炉に入れ、300℃/hの速度で室温から780℃まで昇温し、2時間保持して核形成を行った。続いて80℃/hの速度で850℃まで昇温し、1時間保持して結晶化を行った後、炉冷した。
【0038】
このようにして得られた実施例の各試料は、濃褐色から黒色で白濁のない外観を呈し、光沢のある平滑な表面を有していた。X線回折装置による測定の結果、何れの試料も主結晶としてβ−石英固溶体を析出していることが分かった。また25×30mmの大きさの光学研磨を施した3mm厚の試料片を作成し、分光光度計を用いて500nm及び1500nmの波長における透過率を測定した。その結果、何れの試料も500nmの波長において3.1%以下、1500nmの波長において85.0%以上の高い赤外線透過率が得られた。さらに試料を50mm×5mmφの無垢棒に加工し、30〜750℃の温度域での平均線熱膨張係数を測定したところ、1〜12×10-7/℃であった。
【0039】
次に清澄性の評価を行った。評価は、1550〜1650℃で4〜8時間溶融し、ロール成型して試料を作製した後、試料中の単位重量当たりの泡数を計数することによって行った。その結果、実施例であるNo.1、4及び8の各試料は、清澄剤としてAs2O3を用いた参考例とほぼ同等の清澄性を示した。
【0040】
【発明の効果】
以上説明したように、本発明の赤外線透過ガラスセラミックスは、清澄剤としてAs2 O3 を用いる必要がないために、環境を汚染するおそれがない。また赤外線透過率が高く、可視光の透過率が低い。しかも機械的強度、化学的耐久性、耐熱衝撃性等の特性に優れるため、特にスムーストップ型の調理器のトッププレートとして好適である。[0001]
[Industrial application fields]
The present invention relates to an infrared transmitting glass ceramic, and more particularly to an infrared transmitting glass ceramic used as a top plate for a smooth stop type cooking device.
[0002]
[Prior art]
The top plate of the cooker has a high infrared transmittance, the internal heating means are difficult to see through so as not to impair the beauty, the mechanical strength and chemical durability are high, the thermal shock resistance is high, etc. Low-expansion Li 2 O—Al 2 O 3 —SiO 2 glass ceramics having a dark brown color and high infrared transmittance are conventionally used. As this type of material, for example, Japanese Patent Publication No. 60-54896 discloses Li 2 O—Al 2 O 3 —SiO 2 based infrared transmitting glass ceramics to which V 2 O 5 is added.
[0003]
By the way, this type of glass ceramics requires high temperature melting exceeding 1400 ° C. For this reason, As 2 O 3 which can generate a large amount of clarification gas at the time of melting at high temperature is used as the clarifier added to the glass.
[0004]
[Problems to be solved by the invention]
In batch melting, As 2 O 3 in the raw material is oxidized to As 2 O 5 at 400 to 500 ° C. and then reduced again to As 2 O 3 at 1200 to 1800 ° C. to release oxygen gas. When this oxygen gas diffuses into the bubbles in the glass, expansion of the bubbles and promotion of levitation occur, and the bubbles are removed. As 2 O 3 is widely used as a glass refining agent due to this action, and is particularly effective as a refining agent for Li 2 O—Al 2 O 3 —SiO 2 glass ceramics that require high temperature melting. . However, As 2 O 3 is highly toxic and may contaminate the environment during the glass manufacturing process or waste glass processing.
[0005]
An object of the present invention is to provide an infrared transmitting glass ceramic that is suitable as a top plate of a cooking device without causing a possibility of polluting the environment.
[0006]
[Means for Solving the Problems]
As clarifiers other than As 2 O 3, there are SnO 2 , Sb 2 O 3 , CeO 2 , various chlorides, and various sulfides, among which SnO 2 and chlorides are in a temperature range exceeding 1400 ° C. In order to exert a fining effect, it is suitable as a glass fining agent that requires high-temperature melting. However, when SnO 2 is added, due to its strong reducing action, the color development of vanadium is strengthened, and the color tone of the glass ceramic becomes too dark. Moreover, when using as a top plate of a cooking appliance, the transmittance | permeability of an infrared region reduces and heating efficiency falls.
[0007]
As a result of various experiments conducted by the present inventors, since the color development of vanadium is affected by TiO 2 in addition to SnO 2 , the color development of vanadium enhanced by SnO 2 can be corrected by reducing the amount of TiO 2. The present inventors have found that the decrease in crystallinity due to the decrease in the amount of TiO 2 can be corrected by the addition of ZrO 2 and is proposed as the present invention.
[0008]
That is, the infrared transmitting glass ceramics of the present invention, SiO 2 60 to 72% by weight percentage, Al 2 O 3 14~28%, Li 2 O 2.5~5.5%, 0.1~3% MgO, ZnO 0.1-3%, CaO 0-3%, BaO 0-5%, Na 2 O 0.1-1%, K 2 O 0-1%, TiO 2 0.5-3%, ZrO 2 0 .5~5%, P 2 O 5 0~3 %, V 2 O 5 0.03~0. It has a composition of 1 %, SnO 2 0.1-2%, Cl 0-1%, and is characterized by depositing β-quartz solid solution as the main crystal.
[0009]
[Action]
In the infrared transmitting glass ceramics of the present invention, SnO 2 is 0.1 to 2 % (preferably 0.3 to 1.8%) and Cl is 0 to 1% (preferably 0.01 to 1%) as a fining agent. contains. SnO 2 releases a large amount of oxygen gas, which is a clarified gas, in a high temperature range of 1400 ° C. or higher by a chemical reaction (SnO 2 [tetravalent] → SnO [divalent]) due to a valence change of Sn ions. On the other hand, Cl is added to the glass raw material as a chloride and exists in the form of Cl ions in the glass melt. Like the oxygen gas, this Cl ion diffuses into the bubbles as the temperature of the glass increases, and causes the bubbles to expand and promote levitation. In the present invention, SnO 2 may be used alone, but it is desirable to coexist with Cl in order to obtain higher clarity.
[0010]
The glass ceramic of the present invention is a Li 2 O—Al 2 O 3 —SiO 2 glass ceramic having a β-quartz solid solution as a main crystal. Li 2 O—Al 2 O 3 —SiO 2 glass ceramic precipitates β-quartz solid solution and β-spodumene and exhibits high mechanical strength and chemical durability. If the amount is increased, the glass ceramics become cloudy and not only has a problem in appearance, but also has a high thermal expansion coefficient and a low infrared transmittance, which is not preferable. Therefore, the present invention is characterized in that the β-quartz solid solution is the main crystal.
[0011]
Hereinafter, the reason why the composition range is limited as described above will be described.
[0012]
When SiO 2 is less than 60%, the thermal expansion coefficient becomes too large. On the other hand, if it exceeds 72%, glass melting becomes difficult. A preferred range of SiO 2 is 61 to 70%.
[0013]
When Al 2 O 3 is less than 14%, the chemical durability is lowered and the glass is easily devitrified. On the other hand, if it exceeds 28%, the viscosity of the glass becomes too high and glass melting becomes difficult. A preferred range for Al 2 O 3 is 16-25%.
[0014]
If the Li 2 O content is less than 2.5%, the crystalline material tends to become cloudy and the thermal expansion coefficient becomes too large. On the other hand, when it is more than 5.5%, it tends to become cloudy and the glass tends to devitrify. The preferred range for Li 2 O is 3-5%.
[0015]
When MgO and ZnO are each less than 0.1%, the crystallinity is lowered and crystallization becomes difficult. On the other hand, if the content is more than 3%, the crystalline material becomes cloudy and the thermal expansion coefficient becomes too large. A preferable range of MgO and ZnO is 0.2 to 2.5%.
[0016]
If the CaO content is more than 3% and the BaO content is more than 5%, the crystal becomes cloudy and the thermal expansion coefficient becomes too large. The preferred ranges for CaO and BaO are 0-2% and 0-4%.
[0017]
When Na 2 O is less than 0.1%, the crystallinity is low, and when it is more than 1%, the crystal is clouded and the thermal expansion coefficient is too large. A preferred range for Na 2 O is 0.1-0.8%.
[0018]
If K 2 O is more than 1%, the crystal becomes cloudy and the coefficient of thermal expansion becomes too large. A preferable range of K 2 O is 0 to 0.8%.
[0019]
When TiO 2 is less than 0.5%, the crystallinity is low and small. When it exceeds 3 %, the glass tends to be devitrified, and the color of V 2 O 5 becomes too strong and the color tone becomes dark, and infrared rays are transmitted. The rate drops. The preferred range for TiO 2 is 1-3%.
[0020]
If the ZrO 2 content is less than 0.5%, the decrease in crystallinity due to the decrease in TiO 2 cannot be compensated, and if it exceeds 5%, the glass tends to devitrify. A preferred range for ZrO 2 is 0.5-4.5%.
[0021]
If the P 2 O 5 content is more than 3%, the crystal becomes cloudy and the thermal expansion coefficient becomes too large. A preferred range for P 2 O 5 is 0-2.5%.
[0022]
When V 2 O 5 is less than 0.03%, the color tone becomes light and the transmittance with visible light becomes too high. On the other hand, 0. If it exceeds 1 %, the color tone becomes too dark and the infrared transmittance becomes too low .
[0023]
When SnO 2 is less than 0.1%, there is no clarification effect, and when it is more than 2%, the color tone becomes too dark. Moreover, it becomes difficult to melt the glass, and it tends to be devitrified. The preferred range for SnO 2 is 0.3-1.8%.
[0024]
If the Cl content exceeds 1%, the chemical durability is lowered. A preferred range for Cl is 0.01 to 1%.
[0025]
The glass ceramic having the above composition has a plate thickness of 3 mm, a visible light transmittance of 5% or less at a wavelength of 500 nm, and an infrared transmittance of 70% or more at a wavelength of 1500 nm. Moreover, the glass ceramic of this invention shows the average coefficient of linear thermal expansion of -5-30 * 10 < -7 > / (degreeC) in the range of 30-750 degreeC.
[0026]
The infrared transmitting glass ceramics of the present invention can be manufactured as follows.
[0027]
First SiO 2 60 to 72% by weight percentage, Al 2 O 3 14~28%, Li 2 O 2.5~5.5%, 0.1~3% MgO, 0.1~3% ZnO, CaO 0 ~3%, BaO 0~5%, Na 2 O 0.1~1%, K 2 O 0~1%, TiO 2 0.5~3%, ZrO 2 0.5~5%, P 2 O 5 0~3%, V 2 O 5 0.03~0 . A glass raw material is prepared so as to have a composition of 1 %. At this time, 0.1 to 2 % of SnO 2 and 0 to 5% of chloride in terms of Cl are added as fining agents.
[0028]
Next, the prepared glass material is melted at 1550 to 1700 ° C. for 4 to 20 hours and then molded.
[0029]
Subsequently, the glass molded body is held at 700 to 800 ° C. for 2 to 4 hours for nucleation, and further heat treated at 800 to 900 ° C. for 1 to 3 hours to crystallize, so that the infrared transmitting glass ceramic having the above composition is obtained. Can be obtained.
[0030]
The obtained glass ceramic is subjected to post-processing such as cutting and polishing, or is subjected to painting or the like on the surface for use in a top plate or the like.
[0031]
【Example】
Hereinafter, the infrared transmitting glass ceramics of the present invention will be described based on examples.
[0032]
Tables 1 to 3 show examples of the present invention (sample Nos . 1 , 4, and 8 ) and reference examples (samples No. 2 , 3, 5 to 7, and 9 to 12).
[0033]
[Table 1]
[0034]
[Table 2]
[0035]
[Table 3]
[0036]
Each sample was prepared as follows.
[0037]
First, the raw materials were prepared so as to be a glass having the composition shown in the table, mixed uniformly, and then melted at 1550 to 1650 ° C. for 8 to 20 hours in an electric furnace using a platinum crucible. Next, the molten glass was poured onto a carbon surface plate, formed into a thickness of 5 mm using a stainless roller, and further cooled to room temperature using a slow cooling furnace. The glass molded body was placed in an electric furnace, heated from room temperature to 780 ° C. at a rate of 300 ° C./h, and held for 2 hours for nucleation. Subsequently, the temperature was raised to 850 ° C. at a rate of 80 ° C./h, maintained for 1 hour for crystallization, and then cooled in the furnace.
[0038]
Each sample of the example thus obtained had a dark brown to black appearance with no cloudiness and had a glossy and smooth surface. As a result of measurement by an X-ray diffractometer, it was found that all samples had β-quartz solid solution precipitated as the main crystal. Moreover, a 3 mm-thick sample piece subjected to optical polishing having a size of 25 × 30 mm was prepared, and transmittances at wavelengths of 500 nm and 1500 nm were measured using a spectrophotometer. As a result, all the samples were 3.1% or less at a wavelength of 500 nm and 85 . 0% or more high have infrared transmittance were obtained. Furthermore, when the sample was processed into a solid bar of 50 mm × 5 mmφ and the average linear thermal expansion coefficient in the temperature range of 30 to 750 ° C. was measured, it was 1 to 12 × 10 −7 / ° C.
[0039]
Next, the clarity was evaluated. The evaluation was performed by melting at 1550 to 1650 ° C. for 4 to 8 hours, roll forming to prepare a sample, and then counting the number of bubbles per unit weight in the sample. As a result, No. which is an example. Each of the samples 1, 4 and 8 showed the clarification almost equivalent to the reference example using As 2 O 3 as a clarifier.
[0040]
【The invention's effect】
As described above, the infrared transmitting glass ceramic of the present invention does not need to use As 2 O 3 as a refining agent, and therefore does not have a possibility of polluting the environment. Further, the infrared transmittance is high and the visible light transmittance is low. Moreover, since it is excellent in properties such as mechanical strength, chemical durability, and thermal shock resistance, it is particularly suitable as a top plate of a smooth stop type cooking device.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27959297A JP4120897B2 (en) | 1997-09-25 | 1997-09-25 | Infrared transmitting glass ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27959297A JP4120897B2 (en) | 1997-09-25 | 1997-09-25 | Infrared transmitting glass ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11100229A JPH11100229A (en) | 1999-04-13 |
JP4120897B2 true JP4120897B2 (en) | 2008-07-16 |
Family
ID=17613143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27959297A Expired - Fee Related JP4120897B2 (en) | 1997-09-25 | 1997-09-25 | Infrared transmitting glass ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4120897B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011089327A1 (en) * | 2010-01-21 | 2011-07-28 | Eurokera S.N.C. | Display unit including a plate made of glass-ceramic |
WO2018211216A1 (en) | 2017-05-18 | 2018-11-22 | Eurokera S.N.C. | Method for manufacturing a lithium aluminosilicate glass product for glass-ceramic products |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001342036A (en) * | 2000-03-31 | 2001-12-11 | Ngk Insulators Ltd | Glass material, crystallized glass product and method of manufacturing crystallized glass material |
WO2002016279A1 (en) * | 2000-08-24 | 2002-02-28 | Schott Glas | Transparent glass ceramics that can be darkened by adding vanadium oxide |
FR2863607B1 (en) | 2003-12-11 | 2006-09-29 | Snc Eurokera | VITROCERAMICS WITH MODIFIED SURFACE AND THEIR PREPARATION |
FR2864071A1 (en) * | 2003-12-17 | 2005-06-24 | Snc Eurokera | Improved vitroceramic from a glass precursor with transparent, translucent or opaque aspects for cooking plates and other fire resistant applications |
FR2887870B1 (en) | 2005-06-30 | 2007-10-05 | Snc Eurokera Soc En Nom Collec | PREPARATION OF BETA-QUARTZ AND / OR BETA-SPODUMENE VITROCERAMICS, ARTICLES IN SUCH VITROCERAMICS; VITROCERAMICS, ARCTICLES IN SAID VITROCERAMIC AND PRECURSOR GLASSES |
JP4976058B2 (en) * | 2006-06-06 | 2012-07-18 | 株式会社オハラ | Crystallized glass and method for producing crystallized glass |
US7456121B2 (en) | 2006-06-23 | 2008-11-25 | Eurokera | Glass-ceramic materials, precursor glass thereof and process-for making the same |
JP5878280B2 (en) * | 2006-10-27 | 2016-03-08 | ユーロケラ・エス・エヌ・セー | Method for refining lithium aluminosilicate glass and glass-ceramic obtained |
JP2008239472A (en) * | 2007-02-28 | 2008-10-09 | Nippon Electric Glass Co Ltd | Colored plate glass building material and fixed structure thereof |
JP5053948B2 (en) * | 2007-12-21 | 2012-10-24 | 株式会社オハラ | Crystallized glass |
DE202008017803U1 (en) | 2008-10-07 | 2010-08-12 | Schott Ag | Transparent, colored cooking surface with improved color display capability |
WO2010090208A1 (en) * | 2009-02-05 | 2010-08-12 | 日本電気硝子株式会社 | Crystallized glass and top plate for cooking device comprising same |
DE102009011850B3 (en) * | 2009-03-05 | 2010-11-25 | Schott Ag | Process for the environmentally friendly melting and refining of a glass melt for a starting glass of a lithium-aluminum-silicate (LAS) glass ceramic and their use |
DE202009018536U1 (en) | 2009-03-13 | 2012-03-21 | Schott Ag | Transparent, colored cooking surface |
DE102009013127C5 (en) * | 2009-03-13 | 2024-12-19 | Schott Ag | Transparent, coloured cooking surface and method for displaying an operating state of such a surface |
FR2946039A1 (en) | 2009-05-29 | 2010-12-03 | Eurokera | VITRO CERAMIC PLATE |
DE102010002188B4 (en) * | 2010-02-22 | 2018-11-08 | Schott Ag | Transparent LAS glass ceramic produced with alternative environmentally friendly refining agents |
EP2364957A1 (en) | 2010-02-26 | 2011-09-14 | Corning Incorporated | Glass ceramics with bulk scattering properties and methods of making them |
WO2011152337A1 (en) | 2010-05-31 | 2011-12-08 | 日本電気硝子株式会社 | Li2o-al2o3-sio2 based crystallised glass and production method for same |
DE102010032112A1 (en) | 2010-07-23 | 2012-01-26 | Schott Ag | Glass ceramic as cooking surface for induction heating with improved color display capability and heat shielding, method for making such a cooking surface and their use |
DE102010032113B9 (en) * | 2010-07-23 | 2017-06-22 | Schott Ag | Transparent or transparent colored lithium aluminum silicate glass-ceramic with adjustable thermal expansion and its use |
US8722554B2 (en) | 2010-08-03 | 2014-05-13 | Eurokera | Aluminosilicate glasses with improved fining behaviour |
FR2963617B1 (en) | 2010-08-03 | 2015-06-05 | Eurokera | GLASSES OF LITHIUM ALUMINOSILICATE (PRECURSORS OF VITROCERAMIC); BETA-QUARTZ AND / OR BETA-SPODUMENE VITROCERAMICS; ARTICLES THEREOF VITROCERAMIC; METHODS OF OBTAINING |
FR2975391A1 (en) | 2011-05-16 | 2012-11-23 | Eurokera | QUARTZ-BETA VITROCERAMICS WITH CONTROLLED TRANSMISSION CURVE; ARTICLES IN VITROCERAMIC LENSES, PRECURSORIC GLASSES. |
DE102011050867A1 (en) | 2011-06-06 | 2012-12-06 | Schott Ag | High-strength colored. smooth glass ceramic as a cooking surface on both sides |
JP5377607B2 (en) * | 2011-09-26 | 2013-12-25 | ショット アクチエンゲゼルシャフト | Transparent glass ceramic that can be darkened by using vanadium oxide |
JP5728413B2 (en) * | 2012-03-02 | 2015-06-03 | 日立アプライアンス株式会社 | Induction heating cooker |
DE102012105576B4 (en) | 2012-06-26 | 2016-12-15 | Schott Ag | Glass ceramic and process for its production and glass ceramic hob |
FR3025793B1 (en) * | 2014-09-12 | 2016-12-02 | Eurokera | VITRO CERAMIC PLATE |
US10473829B2 (en) | 2016-01-18 | 2019-11-12 | Corning Incorporated | Enclosures having an improved tactile surface |
DE102018110908A1 (en) | 2017-12-22 | 2018-06-21 | Schott Ag | Transparent, colored lithium aluminum silicate glass ceramic and method for producing and using the glass ceramic |
DE202018102514U1 (en) | 2017-12-22 | 2018-05-22 | Schott Ag | Glass-ceramic with reduced lithium content |
DE102018110897A1 (en) | 2017-12-22 | 2018-06-21 | Schott Ag | Furnishings and equipment for kitchens or laboratories with display devices |
DE102018110910A1 (en) | 2017-12-22 | 2018-06-21 | Schott Ag | Furnishings and fittings for kitchens or laboratories with lighting elements |
DE102018110909A1 (en) | 2017-12-22 | 2018-06-21 | Schott Ag | Cover plate with neutral color coating |
WO2021251246A1 (en) | 2020-06-10 | 2021-12-16 | Agc株式会社 | Glass |
-
1997
- 1997-09-25 JP JP27959297A patent/JP4120897B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011089327A1 (en) * | 2010-01-21 | 2011-07-28 | Eurokera S.N.C. | Display unit including a plate made of glass-ceramic |
US10415788B2 (en) | 2010-01-21 | 2019-09-17 | Eurokera S.N.C. | Display assembly comprising a glass-ceramic plate |
WO2018211216A1 (en) | 2017-05-18 | 2018-11-22 | Eurokera S.N.C. | Method for manufacturing a lithium aluminosilicate glass product for glass-ceramic products |
US11548809B2 (en) | 2017-05-18 | 2023-01-10 | Eurokera S.N.C. | Method of manufacturing a lithium aluminosilicate glass product for a glass-ceramic product |
Also Published As
Publication number | Publication date |
---|---|
JPH11100229A (en) | 1999-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4120897B2 (en) | Infrared transmitting glass ceramics | |
JP4000500B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass and crystalline glass | |
JP3997593B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass | |
JPH11100230A (en) | Infrared ray transmitting glass ceramics | |
JP3767260B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass and crystalline glass | |
JP6152537B2 (en) | Transparent, colorless, low titania beta, quartz, glass and ceramic materials | |
CN1278973C (en) | Transparent glass ceramics that can be darkened by adding vanadium oxide | |
JP6134990B2 (en) | Glass, glass-ceramic, article and manufacturing method | |
JP5484074B2 (en) | Bismuth-containing glass, glass / ceramic, article, and production method | |
JP4669149B2 (en) | Flat float glass | |
CN101437769B (en) | Beta-spodumene glass-ceramic materials and process for making the same | |
JPH11228181A (en) | Li2-al2o3-sio2 based glass ceramics | |
WO2013179894A1 (en) | Li2o-al2o3-sio2-based crystallized glass and method for producing same | |
JP2006199538A (en) | Li2O-Al2O3-SiO2 CRYSTALLINE GLASS AND CRYSTALLIZED GLASS AND MANUFACTURING METHOD OF Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS | |
JPH11100231A (en) | Infrared transmissive glass ceramics | |
JP2002154840A (en) | Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS | |
JPS63162545A (en) | Translucent crystalline glass | |
JP2005053711A (en) | Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same | |
JP2013087022A (en) | Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS | |
JP7121348B2 (en) | LAS-based crystallizable glass, LAS-based crystallized glass, and method for producing the same | |
JPH09188538A (en) | Crystallized glass of lithium oxide-aluminum oxide-silicon oxide | |
JP5733621B2 (en) | Method for producing Li2O-Al2O3-SiO2 crystallized glass | |
JPH0380128A (en) | Crystallized glass for building material | |
Nakane et al. | Li 2 O-Al 2 O 3-SiO 2 based crystallized glass and production method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060519 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071113 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080111 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080417 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140509 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |