[go: up one dir, main page]

JP4108441B2 - Total aerosol analyzer - Google Patents

Total aerosol analyzer Download PDF

Info

Publication number
JP4108441B2
JP4108441B2 JP2002310958A JP2002310958A JP4108441B2 JP 4108441 B2 JP4108441 B2 JP 4108441B2 JP 2002310958 A JP2002310958 A JP 2002310958A JP 2002310958 A JP2002310958 A JP 2002310958A JP 4108441 B2 JP4108441 B2 JP 4108441B2
Authority
JP
Japan
Prior art keywords
electron beam
aerosol
ray
source
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002310958A
Other languages
Japanese (ja)
Other versions
JP2004144647A (en
Inventor
博 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Environmental Studies
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
National Institute for Environmental Studies
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Environmental Studies, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical National Institute for Environmental Studies
Priority to JP2002310958A priority Critical patent/JP4108441B2/en
Publication of JP2004144647A publication Critical patent/JP2004144647A/en
Application granted granted Critical
Publication of JP4108441B2 publication Critical patent/JP4108441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は大気浮遊微粒子(エアロゾル)の濃度・成分を測定するトータルエアロゾル分析装置に関する。
【0002】
【従来の技術】
大気中の浮遊微粒子には、環境汚染物質あるいは花粉など人体に影響を及ぼすものが含まれており、大気中の微粒子を分析することは、近年特に重要になってきている。空中浮遊微粒子は数十ミクロンから1ミクロンの100分の1の大きさまでの粒子で、多種多様な物質を含んでいると考えられている。なかでも10ミクロンから10分の1ミクロン程度の大きさの空中浮遊微粒子が鼻や喉や呼吸器内に沈着することが知られている。
【0003】
これまでの疫学調査から2.5ミクロン以下の空中浮遊微粒子(PM2.5)が大きな健康影響を人にもたらすことが指摘されている。最近の米国からの報告では、2.5ミクロンの粒径の微粒子は肺に沈着するが、1ミクロン粒径の微粒子は肺の細胞に取り込まれ人体への影響が甚大であることも知られてきた。
【0004】
この呼吸器に入る空中浮遊微粒子のうち、金属微粒子や粒子の周りに有害な化学物質が付着している場合は、呼吸器疾患を主体とした健康影響が考えられる。例えば、ディーゼル排気は大量の粒子状物質を含み、肺がんやアレルギー性鼻炎、気管支ぜん息を引き起こす原因になることが明らかとなってきた。
【0005】
更に、ディーゼル排気の吸入は実験動物の精子数の減少を引き起こすことや心臓の心内膜に炎症を起こすことが認められた。このことから、空中浮遊微粒子が健康への悪影響をもたらすことが推測される。
【0006】
従って、2.5ミクロン以下の空中浮遊微粒子の濃度ならびに成分を分析することは大気観測でも重要な課題となっている。かかる分析装置として、大気雰囲気中に浮遊する微粒子を引き込み帯電させたものを、電気移動度に応じて粒径毎に分級し、粒径毎の成分及び量を高周波誘導結合プラズマ質量分析計とファラデーカップ電流計を計測するものが存在する(例えば、特許文献1参照。)。
【0007】
現在よく利用される装置として、慣性インパクター等により粒径を分級して得られた粒子にβ線を照射して、浮遊微粒子濃度に依存したβ線の吸収量を測定するβ線吸収方式が浮遊微粒子計測に用いられており、そのような製品も製造販売されている(例えば、紀本電子工業(株)のβ線式浮遊粉塵計SPM−612(10ミクロン以下の粒子用)、同SPM−612D(2.5ミクロン以下の粒子用)。
【0008】
【特許文献1】
特開平10−288601号公報
【0009】
【発明が解決しようとする課題】
従来の浮遊微粒子計測では、放射線源から放射されるβ線を照射源に用いている。大気汚染防止法による従来の測定対象は10ミクロン以下の粒子であったために、放射性物質に関する現在の法規制のもとで、開放系で使用できる線源でも質量測定可能な量の粒子が捕集できた。しかし、2.5ミクロン以下の粒子を対象とすると、捕集量が少ないためにそれを分析するに必要な線源強度が十分ではなく、精度に問題があることが知られている。
【0010】
そこで強いβ線源を使おうとすると、少なくとも日本では法律の規制に抵触してしまい実用的装置を作れないという問題が生じる。更には、重量のみの測定であり、浮遊微粒了の成分を分析することはできない問題点があった。
【0011】
そこで本発明は、上記に鑑み提案されたもので、放射性物質(例えば、プロメチウム147)の代わりに強度と照射エネルギーが制御可能な電子線源を用いて、捕集量の少ない、粒径の細かい微粒子計測を可能にし、並びにX線源を用いて成分分析も可能にするトータルエアロゾル分析装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、この発明の請求項1に係るトータルエアロゾル分析装置は、巻取式エアロゾル捕集フィルタの上流から下流に沿ってエアロゾル吸引管、電子線源、X線源が順次に配置された構成であって、該巻取式エアロゾル捕集フィルタには該エアロゾル吸引管により捕集されたエアロゾル試料を形成してなり、
該電子線源は強度とエネルギーが制御可能で、かつ50keV以下のエネルギーであり、該電子線源には該巻取式エアロゾル捕集フィルタの反対側に電子線検出器を対向配置して質量測定装置を構成し、該質量測定装置は該電子線源の直下に移動した該エアロゾル試料の重量x(μg/cm を、入射電子線の強度I と、エアロゾル試料を透過した出射電子線の強度Iを、巻取式エアロゾル捕集フィルタ1の反対側に対向して配置されている該電子線検出器で測定して、式I=I ×exp(−μx)により求めるものであり、該X線源には該巻取式エアロゾル捕集フィルタと同じ側にエアロゾル試料を見込むようにX線検出器を配置して成分分析装置を構成し、該X線検出器は重量分析が終わって該X線源の下に移動されたエアロゾル試料に該X線源によって発生した励起X線を照射したとき発生した特性X線を蛍光X線元素分析法を利用してエアロゾル試料の成分分析を行うトータルエアロゾル分析装置を構成した。
【0013】
これにより、エアロゾル分析装置を放射線源から放射されるβ線の照射源(放射性同位元素)を用いないで構成できるため、放射線同位元素の利用に関する制限がないので利用範囲が拡大でき、分析装置の小型化と省エネルギー化を図ることができる。
【0014】
この発明の請求項2に係るトータルエアロゾル分析装置は、上記請求項1に記載のトータルエアロゾル分析装置において、前記電子線源は、電界放出方式によって電子を放出させるためのダイヤモンド電子エミッタと、電子線透過型のダイヤモンド薄膜から構成され、前記X線源は、電界放出方式によって電子を放出させるダイヤモンド電子エミッタからなる電子線発生機構と、放出される電子線によってX線を発生させるためのタングステンの金属ターゲットとから構成される。
【0015】
これにより、電子線源を照射源として用いるので、50keV以下の電子線が使え、軽元素中心のエアロゾルに対して感度が大きくなり、1 . 0ミクロンの微小エアロゾルの分 析が可能となる。また、ダイヤモンド薄膜により電子線源の内部を真空に保つこともできる。更に、成分分析の照射源としてX線源を用いるので、微粒子の成分をX線分析法に基づいて正確に計測できる。
【0020】
【発明の実施の形態】
以下に本発明の実施形態を説明する。図1は本発明のトータルエアロゾル分析装置の構成図である。図において、1は巻取式エアロゾル捕集フィルタ、2はエアロゾル吸引管、3は電子線源、4はダイヤモンド電子エミッタ、5は電子線透過型のダイヤモンド薄膜、6は電子線検出器、7はX線源、8はダイヤモンド電子エミッタ、9はX線検出器、10はエアロゾル試料である。
【0021】
本発明のトータルエアロゾル分析装置は、巻取式エアロゾル捕集フィルタ1の上流から下流へとエアロゾル吸引管2、電子線源3、X線源7が順次に配置されている。該電子線源3には該巻取式エアロゾル捕集フィルタ1の反対側に電子線検出器6を対向配置して質量測定装置を構成する。また、該X線源7には該巻取式エアロゾル捕集フィルタ1と同じ側にX線検出器9を配置して成分分析装置を構成する。
【0022】
電子線源3は、電界放出方式によって電子を放出させるためのダイヤモンド電子エミッタ4と、高品質の電子線透過型のダイヤモンド薄膜5から構成されている。このダイヤモンド薄膜5は電子線源3の内部を真空に保つ役割も果たしている。
【0023】
X線源7には、電子線源3と同様の電子線発生機構を構成し、電界放出方式によって電子を放出させるダイヤモンド電子エミッタ8を有している。放出される電子線によってX線を発生させるために、タングステン等の金属ターゲットが設けられている。
【0024】
本発明のトータルエアロゾル分析装置は、夫々の装置を効率良く配置して構成しても良いし、また、これらの個々の装置を一体化して単体の装置として構成して、小型化と省エネルギー化を図ることができる。
【0025】
本発明の実施形態は、巻取式エアロゾル捕集フィルタとエアロゾル吸引管を装備した連続的にエアロゾルを収集できる構成であり、所定の時間間隔で大気中のエアロゾルを捕集する。
【0026】
大気中のエアロゾルは巻取式エアロゾル捕集フィルタ1に付着して移送され、エアロゾル吸引管2により捕集されてエアロゾル試料10を形成する。エアロゾル試料10は電子線源3の直下に移動し、電子線源3からの電子線に曝される。電子線は50keV以下の強度で十分であり、電子線の線量を最適化する。
【0027】
そして、入射電子線の強度I0 と、エアロゾル試料10を透過した出射電子線の強度Iを、巻取式エアロゾル捕集フィルタ1の反対側に対向して配置されている電子線検出器6で測定して、β線吸収方式で次式(1)によりエアロゾル試料10の重量x(μg/cm2 )を求める。
【0028】
【数1】
I=I0 ×exp(−μx) (1)
【0029】
この電子線源3においては、電界放出方式によってダイヤモンド電子エミッタ4から電子が放出される。適当な電圧で加速された電子は、高品質の電子線透過型のダイヤモンド薄膜5を透過して大気中に取り出される。ここで、捕集されたエアロゾル試料10の量や粒径によって、最も感度が良くなるように、電子のエネルギーを調整する。
【0030】
重量分析が終わったエアロゾル試料10はX線源7の下に移動する。X線源7によって発生した励起X線はエアロゾル試料10に照射され、そのとき発生した特性X線を巻取式エアロゾル捕集フィルタ1と同じ側にエアロゾル試料10を見込むように配置されているX線検出器9によって、蛍光X線元素分析法を利用してエアロゾル試料10の成分分析を行う。分析が終了したエアロゾル試料10は巻取式エアロゾル捕集フィルタ1の移送により廃棄される。そして、同様な計測プロセスを所定時間毎に連続して繰り返す。
【0031】
このように、本発明のトータルエアロゾル分析装置は、放射線源から放射されるβ線の照射源(放射性同位元素)を用いないでエアロゾル分析装置を実現できるので、放射線同位元素の利用に関する制限がないので利用範囲が拡大する。また、50keV以下の電子線が使えるので、軽元素中心のエアロゾルに対して感度が大きくなり、1.0ミクロンの微小エアロゾルの分析が可能となる。
【0032】
【発明の効果】
以上のように、本発明のトータルエアロゾル分析装置は、個々の装置を一体化して単体の装置として構成して、小型化と省エネルギー化を図ることができる。また、放射線源から放射される照射源(放射性同位元素)を使用しないで、強度と照射エネルギーが制御可能な電子線源を用いて、補集量の少ない、粒径の細かい微粒子計測を可能としたので、軽元素中心のエアロゾルに対して感度が大きくなり、1.0ミクロンの微小エアロゾルの分析が可能となる。
【図面の簡単な説明】
【図1】本発明のトータルエアロゾル分析装置の構成図。
【符号の説明】
1 巻取式エアロゾル捕集フィルタ
2 エアロゾル吸引管
3 電子線源
4,8 ダイヤモンド電子エミッタ
5 電子線透過型のダイヤモンド薄膜
6 電子線検出器
7 X線源
9 X線検出器
10 エアロゾル試料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a total aerosol analyzer for measuring the concentration and components of airborne fine particles (aerosol).
[0002]
[Prior art]
Airborne particulate matter includes substances that affect the human body, such as environmental pollutants or pollen, and analysis of particulate matter in the atmosphere has become particularly important in recent years. Airborne particulates are particles ranging from several tens of microns to 1 / 100th of a micron, and are considered to contain a wide variety of substances. In particular, it is known that airborne particles having a size of about 10 to 1/10 microns are deposited in the nose, throat and respiratory organs.
[0003]
Epidemiologic studies to date have pointed out that airborne particulates (PM2.5) of 2.5 microns or less have a significant health impact on humans. According to a recent report from the United States, microparticles with a particle size of 2.5 microns are deposited in the lung, but it has been known that microparticles with a particle size of 1 micron are taken up by lung cells and have a significant effect on the human body. It was.
[0004]
If harmful chemical substances are attached around the airborne fine particles that enter the respiratory organs, there may be health effects mainly due to respiratory diseases. For example, diesel exhaust has been shown to contain large amounts of particulate matter, causing lung cancer, allergic rhinitis and bronchial asthma.
[0005]
Furthermore, inhalation of diesel exhaust has been shown to cause a decrease in the number of sperm in laboratory animals and to cause inflammation of the endocardium of the heart. From this, it is surmised that airborne particulates have an adverse effect on health.
[0006]
Therefore, analyzing the concentration and components of airborne particles below 2.5 microns is an important issue in atmospheric observation. As such an analysis apparatus, fine particles floating in the air atmosphere are charged and classified according to the electric mobility, and classified for each particle size, and the components and amounts for each particle size are determined by a high frequency inductively coupled plasma mass spectrometer and a Faraday. There exists what measures a cup ammeter (for example, refer to patent documents 1).
[0007]
As a device that is often used at present, there is a β-ray absorption method that measures the amount of β-ray absorption depending on the concentration of suspended particles by irradiating particles obtained by classifying the particle size with an inertial impactor and the like. It is used for suspended particulate measurement, and such products are also manufactured and sold (for example, β-ray suspended dust meter SPM-612 (for particles of 10 microns or less) from Kimoto Electronics Industry Co., Ltd.) -612D (for particles less than 2.5 microns).
[0008]
[Patent Document 1]
JP-A-10-288601 [0009]
[Problems to be solved by the invention]
In conventional suspended particle measurement, β rays emitted from a radiation source are used as an irradiation source. Since the conventional measurement object by the Air Pollution Control Law was particles of 10 microns or less, the amount of particles that can be measured even with a radiation source that can be used in an open system is collected under the current laws and regulations concerning radioactive materials. did it. However, when particles of 2.5 microns or less are targeted, it is known that the amount of collected source is small, so that the intensity of the source necessary for analyzing the particles is not sufficient and there is a problem in accuracy.
[0010]
Therefore, if you try to use a strong β-ray source, there will be a problem that at least in Japan, you will not be able to make a practical device because it conflicts with the laws and regulations. Furthermore, there is a problem that only the weight is measured and the component of the floating fine particles cannot be analyzed.
[0011]
Therefore, the present invention has been proposed in view of the above, and an electron beam source whose intensity and irradiation energy can be controlled instead of a radioactive substance (for example, promethium 147) has a small collection amount and a small particle size. An object of the present invention is to provide a total aerosol analyzer that enables fine particle measurement and component analysis using an X-ray source.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a total aerosol analyzer according to claim 1 of the present invention is provided with an aerosol suction tube, an electron beam source, and an X-ray source sequentially from upstream to downstream of the take-up type aerosol collecting filter. An aerosol sample collected by the aerosol suction tube is formed on the take-up aerosol collection filter.
The electron beam source can be controlled in intensity and energy, and has an energy of 50 keV or less. The electron beam source is opposed to the take-up aerosol collection filter, and an electron beam detector is disposed opposite to the electron beam source for mass measurement. The mass measuring device is composed of a weight x (μg / cm 2) of the aerosol sample moved immediately below the electron beam source. ) With the electron beam detector disposed so that the intensity I 0 of the incident electron beam and the intensity I of the outgoing electron beam transmitted through the aerosol sample are opposed to the opposite side of the take-up type aerosol collecting filter 1. measured and is intended to seek more formula I = I 0 × exp (-μx ), X -ray detector as in the X-ray source expects to aerosol samples on the same side as the winding-roll aerosol collection filter The X-ray detector is generated when gravimetric analysis is completed and the aerosol sample moved under the X-ray source is irradiated with excitation X-rays generated by the X-ray source. A total aerosol analyzer for analyzing the components of the aerosol sample using the characteristic X-rays using the fluorescent X-ray elemental analysis method was constructed.
[0013]
Thus, it is possible to configure without using illumination sources β rays emitted aerosol analyzer from the radiation source (radioisotope), can expand the use range because there is no restriction on the use of radioisotope, the analyzer Miniaturization and energy saving can be achieved.
[0014]
A total aerosol analyzer according to a second aspect of the present invention is the total aerosol analyzer according to the first aspect, wherein the electron beam source includes a diamond electron emitter for emitting electrons by a field emission method, and an electron beam. The X-ray source is composed of a transmissive diamond thin film, and the X-ray source includes an electron beam generating mechanism including a diamond electron emitter that emits electrons by a field emission method, and a tungsten metal for generating X-rays by the emitted electron beam. It consists of a target.
[0015]
Thus, the use of the electron beam source as the irradiation source, can use the following electron beam 50 keV, the sensitivity is increased with respect to the aerosol of light elements centered, 1. Min 0 micron fine aerosol Analysis is possible. Further, the inside of the electron beam source can be kept in a vacuum by the diamond thin film. Furthermore, since an X-ray source is used as an irradiation source for component analysis, the components of fine particles can be accurately measured based on the X-ray analysis method.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a total aerosol analyzer of the present invention. In the figure, 1 is a take-up type aerosol collecting filter, 2 is an aerosol suction tube, 3 is an electron beam source, 4 is a diamond electron emitter, 5 is an electron beam transmissive diamond thin film, 6 is an electron beam detector, and 7 is an electron beam detector. An X-ray source, 8 is a diamond electron emitter, 9 is an X-ray detector, and 10 is an aerosol sample.
[0021]
In the total aerosol analyzer of the present invention, an aerosol suction tube 2, an electron beam source 3, and an X-ray source 7 are sequentially arranged from the upstream side to the downstream side of the take-up type aerosol collecting filter 1. An electron beam detector 6 is disposed opposite to the electron beam source 3 on the opposite side of the take-up type aerosol collecting filter 1 to constitute a mass measuring device. The X-ray source 7 is provided with an X-ray detector 9 on the same side as the take-up aerosol collecting filter 1 to constitute a component analyzer.
[0022]
The electron beam source 3 includes a diamond electron emitter 4 for emitting electrons by a field emission method, and a high-quality electron beam transmission diamond thin film 5. The diamond thin film 5 also serves to keep the inside of the electron beam source 3 in a vacuum.
[0023]
The X-ray source 7 has an electron beam generation mechanism similar to that of the electron beam source 3, and has a diamond electron emitter 8 that emits electrons by a field emission method. In order to generate X-rays by the emitted electron beam, a metal target such as tungsten is provided.
[0024]
The total aerosol analyzer of the present invention may be configured by arranging each device efficiently, or these individual devices may be integrated into a single device for miniaturization and energy saving. Can be planned.
[0025]
The embodiment of the present invention is configured to continuously collect aerosol equipped with a wind-up type aerosol collecting filter and an aerosol suction tube, and collects aerosol in the atmosphere at predetermined time intervals.
[0026]
Aerosol in the atmosphere adheres to the take-up type aerosol collection filter 1 and is transferred, and is collected by the aerosol suction tube 2 to form an aerosol sample 10. The aerosol sample 10 moves immediately below the electron beam source 3 and is exposed to the electron beam from the electron beam source 3. For the electron beam, an intensity of 50 keV or less is sufficient, and the dose of the electron beam is optimized.
[0027]
The intensity I 0 of the incident electron beam and the intensity I of the emitted electron beam that has passed through the aerosol sample 10 are detected by the electron beam detector 6 that is arranged opposite to the opposite side of the take-up type aerosol collecting filter 1. The weight x (μg / cm 2 ) of the aerosol sample 10 is obtained by the following equation (1) by the β-ray absorption method.
[0028]
[Expression 1]
I = I 0 × exp (−μx) (1)
[0029]
In the electron beam source 3, electrons are emitted from the diamond electron emitter 4 by a field emission method. The electrons accelerated by an appropriate voltage are taken out into the atmosphere through the high-quality electron beam transmission diamond thin film 5. Here, the energy of the electrons is adjusted so as to obtain the best sensitivity according to the amount and particle size of the collected aerosol sample 10.
[0030]
The aerosol sample 10 after the gravimetric analysis is moved below the X-ray source 7. Excitation X-rays generated by the X-ray source 7 are applied to the aerosol sample 10, and the characteristic X-rays generated at that time are arranged so as to look at the aerosol sample 10 on the same side as the take-up type aerosol collecting filter 1. The component analysis of the aerosol sample 10 is performed by the X-ray detector 9 using the X-ray fluorescence elemental analysis method. The aerosol sample 10 that has been analyzed is discarded by the transfer of the take-up type aerosol collecting filter 1. And the same measurement process is repeated continuously for every predetermined time.
[0031]
As described above, the total aerosol analyzer of the present invention can realize the aerosol analyzer without using the β-ray irradiation source (radioisotope) emitted from the radiation source, so there is no restriction on the use of the radioisotope. So the range of use is expanded. In addition, since an electron beam of 50 keV or less can be used, sensitivity to light element-centered aerosol is increased, and analysis of 1.0-micron minute aerosol becomes possible.
[0032]
【The invention's effect】
As described above, the total aerosol analyzer of the present invention can be made compact and energy-saving by integrating individual devices into a single device. In addition, by using an electron beam source that can control the intensity and irradiation energy without using an irradiation source (radioisotope) emitted from a radiation source, it is possible to measure fine particles with small collection amount and small particle size. As a result, the sensitivity to aerosols centered on light elements is increased, and analysis of micro aerosols of 1.0 microns becomes possible.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a total aerosol analyzer of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rewind-type aerosol collection filter 2 Aerosol suction tube 3 Electron beam source 4, 8 Diamond electron emitter 5 Electron beam transmission type diamond thin film 6 Electron beam detector 7 X-ray source 9 X-ray detector 10 Aerosol sample

Claims (2)

巻取式エアロゾル捕集フィルタの上流から下流に沿ってエアロゾル吸引管、電子線源、X線源が順次に配置された構成であって、該巻取式エアロゾル捕集フィルタには該エアロゾル吸引管により捕集されたエアロゾル試料を形成してなり、
該電子線源は強度とエネルギーが制御可能で、かつ50keV以下のエネルギーであり、
該電子線源には該巻取式エアロゾル捕集フィルタの反対側に電子線検出器を対向配置して質量測定装置を構成し、該質量測定装置は該電子線源の直下に移動した該エアロゾル試料の重量x(μg/cm を、入射電子線の強度I と、エアロゾル試料を透過した出射電子線の強度Iを、巻取式エアロゾル捕集フィルタ1の反対側に対向して配置されている該電子線検出器で測定して、式I=I ×exp(−μx)により求めるものであり、
該X線源には該巻取式エアロゾル捕集フィルタと同じ側にエアロゾル試料を見込むようにX線検出器を配置して成分分析装置を構成し、該X線検出器は重量分析が終わって該X線源の下に移動されたエアロゾル試料に該X線源によって発生した励起X線を照射したとき発生した特性X線を蛍光X線元素分析法を利用してエアロゾル試料の成分分析を行うものであることを特徴とするトータルエアロゾル分析装置。
An aerosol suction tube, an electron beam source, and an X-ray source are sequentially arranged from the upstream side to the downstream side of the wind-up type aerosol collection filter, and the wind-up type aerosol collection filter includes the aerosol suction tube. Forming an aerosol sample collected by
The electron beam source has controllable intensity and energy, and energy of 50 keV or less,
The electron beam source has an electron beam detector oppositely disposed on the opposite side of the take-up type aerosol collecting filter to constitute a mass measuring device, and the mass measuring device is moved directly below the electron beam source. Sample weight x (μg / cm 2 ) With the electron beam detector disposed so that the intensity I 0 of the incident electron beam and the intensity I of the outgoing electron beam transmitted through the aerosol sample are opposed to the opposite side of the take-up type aerosol collecting filter 1. measured and is intended to seek more formula I = I 0 × exp (-μx ),
An X-ray detector is arranged in the X-ray source so as to look at the aerosol sample on the same side as the take-up type aerosol collecting filter, and a component analyzer is configured. The X-ray detector has been subjected to gravimetric analysis. The aerosol sample moved under the X-ray source is subjected to component analysis of the aerosol sample using the X-ray fluorescence elemental analysis of the characteristic X-ray generated when the excited X-ray generated by the X-ray source is irradiated. Total aerosol analyzer characterized by being a thing.
前記電子線源は、電界放出方式によって電子を放出させるためのダイヤモンド電子エミッタと、電子線透過型のダイヤモンド薄膜から構成され、前記X線源は、電界放出方式によって電子を放出させるダイヤモンド電子エミッタからなる電子線発生機構と、放出される電子線によってX線を発生させるためのタングステンの金属ターゲットとから構成されることを特徴とする請求項1記載のトータルエアロゾル分析装置。  The electron beam source includes a diamond electron emitter for emitting electrons by a field emission method and an electron beam transmission type diamond thin film, and the X-ray source includes a diamond electron emitter for emitting electrons by a field emission method. The total aerosol analyzer according to claim 1, comprising: an electron beam generating mechanism, and a tungsten metal target for generating X-rays by the emitted electron beam.
JP2002310958A 2002-10-25 2002-10-25 Total aerosol analyzer Expired - Fee Related JP4108441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310958A JP4108441B2 (en) 2002-10-25 2002-10-25 Total aerosol analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310958A JP4108441B2 (en) 2002-10-25 2002-10-25 Total aerosol analyzer

Publications (2)

Publication Number Publication Date
JP2004144647A JP2004144647A (en) 2004-05-20
JP4108441B2 true JP4108441B2 (en) 2008-06-25

Family

ID=32456327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310958A Expired - Fee Related JP4108441B2 (en) 2002-10-25 2002-10-25 Total aerosol analyzer

Country Status (1)

Country Link
JP (1) JP4108441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642398U (en) * 1992-11-16 1994-06-03 株式会社北村製作所 Truck platform tilting device
CN103245682A (en) * 2012-02-06 2013-08-14 江苏天瑞仪器股份有限公司 Method and apparatus for on-line testing heavy metal content of particulate materials in gas
KR101523658B1 (en) * 2014-12-04 2015-05-29 국방과학연구소 Particles Transmitting Capacity Evaluation Method and Apparatus for Filter using Fluorescent Aerosol

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032827B2 (en) 2006-04-11 2012-09-26 高砂熱学工業株式会社 Static eliminator
JP2008261712A (en) * 2007-04-11 2008-10-30 Kimoto Denshi Kogyo Kk System for measuring suspended particular substance
CN103091344A (en) * 2012-12-29 2013-05-08 聚光科技(杭州)股份有限公司 Device and method for detecting particulate matters and elements
WO2014141994A1 (en) * 2013-03-15 2014-09-18 国立大学法人 東京大学 Particle analyzing method and particle analyzing device
JP6325338B2 (en) * 2014-05-20 2018-05-16 株式会社堀場製作所 Analysis apparatus and calibration method
CN110988962A (en) * 2019-11-06 2020-04-10 中国辐射防护研究院 Method for rapidly analyzing polonium-210 in aerosol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642398U (en) * 1992-11-16 1994-06-03 株式会社北村製作所 Truck platform tilting device
CN103245682A (en) * 2012-02-06 2013-08-14 江苏天瑞仪器股份有限公司 Method and apparatus for on-line testing heavy metal content of particulate materials in gas
KR101523658B1 (en) * 2014-12-04 2015-05-29 국방과학연구소 Particles Transmitting Capacity Evaluation Method and Apparatus for Filter using Fluorescent Aerosol

Also Published As

Publication number Publication date
JP2004144647A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
CN100523779C (en) System for detecting harmful nanoparticles in the air
JP2008261712A (en) System for measuring suspended particular substance
JP2003315244A (en) How to measure suspended particulate matter in the atmosphere
JP4108441B2 (en) Total aerosol analyzer
Macias et al. Atmospheric particulate mass measurement with beta attenuation mass monitor
Chueinta et al. Beta gauge for aerosol mass measurement
JPH08500440A (en) Passive dust sampler
CN113670888B (en) Method for detecting microorganisms, gas components and particulate matters in indoor air
Macias et al. Proton induced. gamma.-ray analysis of atmospheric aerosols for carbon, nitrogen, and sulfur composition
Cirelli et al. Assessment of calibration methods for Pb-loaded aerosol filters analysed with X-ray fluorescence under grazing incidence
JP3758577B2 (en) Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
Asbach Exposure measurement at workplaces
Jaklevic Photon induced X-ray fluorescence analysis using energy dispersive detector and dichotomous sampler
JP2023162750A (en) Radioactive aerosol characteristic measurement device
Mark Occupational exposure to nanoparticles and nanotubes
Crazzolara et al. Development of a cascade impactor optimised for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)
JP2002357532A (en) Suspended particulate matter measurement device
Blackford et al. The reduction of dust losses within the cassette of the SIMPEDS personal dust sampler
CN105717010A (en) Method and device for detecting acidic ultrafine micro-particles in atmosphere
Roggli et al. New techniques for imaging and analyzing lung tissue.
JP2004219250A (en) Method for measuring chemical components in particles
CN204789242U (en) High altitude machine carries X fluorescence real -time analysis appearance
JP3758603B2 (en) Device for collecting suspended particulate matter in the atmosphere
Asbach et al. Measurement methods for nanoparticles in indoor and outdoor air
SA’ADEH et al. Towards Detection and Identification of Lead in Aerosol Samples Collected in an Urban Area in Amman, Jordan

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350