[go: up one dir, main page]

JP4107553B2 - Brazing composite material and brazing product using the same - Google Patents

Brazing composite material and brazing product using the same Download PDF

Info

Publication number
JP4107553B2
JP4107553B2 JP2001172471A JP2001172471A JP4107553B2 JP 4107553 B2 JP4107553 B2 JP 4107553B2 JP 2001172471 A JP2001172471 A JP 2001172471A JP 2001172471 A JP2001172471 A JP 2001172471A JP 4107553 B2 JP4107553 B2 JP 4107553B2
Authority
JP
Japan
Prior art keywords
brazing
layer
mass
composite material
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001172471A
Other languages
Japanese (ja)
Other versions
JP2002363707A (en
Inventor
洋光 黒田
元 佐々木
枢覚 白井
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Toyota Motor Corp
Original Assignee
Hitachi Cable Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Toyota Motor Corp filed Critical Hitachi Cable Ltd
Priority to JP2001172471A priority Critical patent/JP4107553B2/en
Publication of JP2002363707A publication Critical patent/JP2002363707A/en
Application granted granted Critical
Publication of JP4107553B2 publication Critical patent/JP4107553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ろう付け用複合材及びそれを用いたろう付け製品に係り、特に、熱交換器、及び燃料電池部材のろう付けに用いられる複合材及びそれを用いたろう付け製品に関するものである。
【0002】
【従来の技術】
自動車用オイルクーラの接合材としてステンレス基クラッド材が使用されている。これは、基材であるステンレス鋼板の片面又は両面に、ろう材としての機能を有するCu材がクラッドされている。
【0003】
また、ステンレス鋼や、Ni基又はCo基合金などからなる部材のろう付け材として、接合部の耐酸化性や耐食性に優れる各種Niろう材が、JIS規格により規定されている。
【0004】
さらに、熱交換器の接合に用いられるNiろう材として、粉末状のNiろう材に、Ni、Cr、又はNi−Cr合金の中から選択される金属粉末を4〜22重量%添加してなる粉末Niろう材が提案されている(特開2000−107883号公報参照)。
【0005】
また、基材であるステンレス鋼の表面にNi及びTiからなるろう付け層を有する、即ちNi/Ti/ステンレス鋼というろう付け層構造を有する自己ろう付け性複合材がある(特開平7−299592号公報参照)。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のろう材又はろう付け用複合材を、高温・高腐食性のガス又は液体に晒される熱交換器(排ガス再循環装置(以下、EGR(Exhaust Gas Recirculation)と示す)用クーラ)の接合用ろう材として使用する場合、以下に示すような問題があった。
【0007】
▲1▼ 前述したステンレス基クラッド材を自動車用オイルクーラの接合材として使用する場合、耐熱性、耐酸化性、及び耐食性について問題が全くないが、このステンレス基クラッド材をEGR用クーラの接合材として使用する場合、EGR用クーラ内は高温で、かつ、腐食性の高い排気ガスが循環されることから、ステンレス基クラッド材のろう材(Cu材)では、耐熱性、耐酸化性、及び耐食性が十分でないという問題があった。
【0008】
▲2▼ 前述した各種Niろう材は粉末状であることから、各接合部に粉末Niろう材をそれぞれ塗布するという作業が必要になる。つまり、ろう付け作業に多大な労力を要するため、ろう付け製品の生産性が著しく低く、その結果、製造コストの上昇を招くという問題があった。
【0009】
▲3▼ 前述した自己ろう付け性複合材は、耐熱性及び耐食性については十分な効果を発揮するものの、ろう付けする際に、基材のステンレス鋼が溶融ろう付け層により激しく侵食され、ろう付け後の製品の性能(強度、疲労特性)が大きく低下するという問題があった。具体的には、Ni層及びTi層はろう付けする際の熱処理によって溶融するが、Tiの反応性が著しく高いことから、Tiと基材であるステンレス鋼の反応が過大となる。これは、基材であるステンレス鋼のFe成分とTiが反応し、Feリッチな固溶体相及びFe2Ti、FeTiなどの金属間化合物が生じやすいためである。その結果、基材のFe成分がろう付け層中へ溶出(溶融・分散)することから、基材において著しい侵食が生じ、ろう付け前の基材の厚さ・体積を確保することができず、接合部の接合強度の低下、即ちろう付け製品の信頼性の低下が生じる。
【0010】
以上の事情を考慮して創案された本発明の一の目的は、耐熱性、耐酸化性、及び耐食性が良好で、ろう付け時における基材の被侵食の割合が低く、かつ、ろう付け作業性が良好なろう付け用複合材を提供することにある。
【0011】
また、本発明の他の目的は、接合部の信頼性が良好で、製造コストが安価なろう付け製品を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成すべく本発明に係るろう付け用複合材は、ステンレス鋼で形成した基材表面にろう付け層を有するろう付け用複合材において、
(1)上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にFe又はFe−42mass%Ni合金層、Ti層、及びNi層を配置した構成、
(2)上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にNi層、Ti層、及びFe又はFe−42mass%Ni合金層を配置した構成、
(3)上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にFe又はFe−42mass%Ni合金層、Ti層、及びNi−8mass%P合金層を配置した構成、
(4)上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にNi−8mass%P合金層、Ti層、及びFe又はFe−42mass%Ni合金層を配置した構成、
(5)上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にFe−25mass%Cr合金層、Ti層、及びNi層を配置した構成、
(6)上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にNi層、Ti層、及びFe−25mass%Cr合金層を配置した構成、
のうち(1)〜(6)の構成のいずれかからなり、
上記ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))が20〜60mass%からなり、
上記ろう付け層全体に占めるFeの割合(Feの質量/ろう付け層全体の質量)が、10〜50mass%からなるものである。
【0013】
以上の構成によれば、基材の表面に、Fe、Ti又はFe、Ti、Niを含むろう材で構成されるろう付け層を設けているため、従来のろう付け用複合材と比較して、同等又は同等以上の耐熱性、耐酸化性、及び耐食性を有し、かつ、ろう付け時における基材の被侵食の割合が低いろう付け用複合材が得られる。
【0014】
一方、本発明に係るろう付け用複合材を用いたろう付け製品は、上述したろう付け用複合材を用いて接合したものである。
【0015】
上述した構成のろう付け用複合材を用いてろう付け(接合)を行うことで、ろう付け製品の接合部の信頼性が良好となる。
【0016】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0017】
本発明者らは、従来の自己ろう付け性複合材(Ni−Ti系ろう材)と同等の耐熱性及び耐食性を有し、かつ、ろう付け時に、基材であるステンレス鋼のTiによる侵食(ろう付け層中へ溶融・分散)が少なく、かつ、ろう付け加工が容易なろう付け用複合材の構成について種々検討した結果、ろう付け層をFe、Ti、及びNiを含むろう材で構成することで、上記の特性を満足するろう付け用複合材を得ることができた。
【0018】
本発明に係るろう付け用複合材の第1の形態の断面図を図1に、図1の第1変形例を示す断面図を図2に、本発明に係るろう付け用複合材の第2の形態の断面図を図3に示す。尚、図2及び図3において、図1と同様の部材には同じ符号を付している。
【0019】
図1に示すように、本実施の形態に係るろう付け用複合材10は、ステンレス鋼の板材からなる基材11の片面(図1中では上面)に、ろう付け層(基材11側から順に、Fe又はFe−42mass%Ni、Fe−25mass%Cr合金層12、Ti層13、及びNi又はNi−8mass%P合金層14)を設けてなるクラッド材である。ここで、ろう付け層は、基材11の片面のみではなく、両面(図1中では上・下面)に設けてもよい。
【0020】
Fe又はFe−Ni、Fe−Cr合金層12としては、Ti層13のTiと反応してTiCが生成するのを極力防ぐべく、C含有量の低いものが好ましい。また、Fe合金としては、Fe−42mass%Ni合金、Fe−8mass%Cr合金(フェライト系ステンレス鋼)好ましい。これは、NiやCrは、ろう付け部(接合部)の耐食性や耐酸化性を向上させる効果があるからである。
【0021】
また、Ni又はNi合金層14を構成するNi合金としては、Ni−8mass%P合金が好ましい。この合金は、ろう付け時の湯流れ性や濡れ性の改善、及びステンレス鋼中のFe成分の溶解度の低減を図ることができるためである。
【0022】
さらに、基材11の表面にろう付け層を設けてなるクラッド材の形成方法は、特に限定するものではなく、クラッド材形成のための慣用の方法が全て適用可能であり、例えば、板材を積層した後、圧延により一体化する方法が挙げられる。
【0023】
また、図1においては、基材11の表面に、基材11側から順に、Fe又はFe−42mass%Ni、Fe−25mass%Cr合金層12,12、Ti層13,13、及びNi又はNi−8mass%P合金層14,14を設けた場合について説明を行ったが、各層12,13,14の形成順序はこれに限定するものではない。例えば、図2に示すように、基材11の表面に、基材11側から順に、Ni−8mass%P合金層14,14、Ti層13,13、及びFe又はFe−42mass%Ni合金層、或いはFe−25mass%Cr合金層12,12を設けた複合材20であっても良い。ここで、Fe合金層12としてFe−25mass%Cr合金層を用いることが好ましく、このFe−25mass%Cr合金層を基材11とTi層13の間に配置し、ステンレス鋼中のFe成分とTiが反応するのを防ぐバリア層とすることが特に好ましい。
【0024】
さらに、ろう付け層の最外層(図1中ではNi又はNi−8mass%P合金層14、図2中ではFe又はFe−42mass%Ni合金層、或いはFe−25mass%Cr合金層12)を構成する金属又は合金に、B又はSiの少なくとも一種を添加してもよい。これによって、ろう材の融点、濡れ性、靭性、及び接合強度を調整することができる。
【0025】
次に、基材11の表面に設けたろう付け層全体におけるFe、Ti、及びNiの最適な割合について説明する。
【0026】
ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))は、20〜60mass%が好ましく、特に30〜50mass%が好ましい。これは、Tiの割合が20mass%未満では、ろう付け層全体の溶融温度を低下させる効果が十分に得られず、ろう付け時にろう付け層が溶融しなくなるためである。また、Tiの割合が60mass%を越えると、NiとTiの反応により金属間化合物が多く生成してろう付け層が著しく脆化してしまい、ろう付け製品の信頼性が期待できなくなるためである。
【0027】
ろう付け層全体(ろう材)に占めるFeの割合(Feの質量/ろう付け層全体の質量)は、10〜50mass%が好ましく、特に20〜40mass%が好ましい。これは、Feの割合が10mass%未満では、ステンレス鋼のFe成分の溶出を抑制することができないためである。また、Feの割合が50mass%を越えると、湯流れ性が著しく低下し、正常なろう付けが困難となるためである。
【0028】
次に、本実施の形態の作用を説明する。
【0029】
ステンレス鋼からなる基材11とろう材中のTiの反応を極力抑制するためには、ステンレス鋼中のFe成分がろう付け層に溶出するのを制限することが必要である。
【0030】
このため、本実施の形態における複合材10、20においては、基材11とTi層13の間に別の層(図1中ではFe又はFe−Ni、Fe−Cr合金層12、図2中ではNi−P合金14)を配置し、基材11とTi層13を直接接触させないようにしている。これによって、基材11のFe成分とTi層13のTiが反応するのを極力抑制することができ、延いては基材11とTi層13の間に、金属間化合物が生成するのを防ぐことができる。
【0031】
また、本実施の形態における複合材10、20においては、ろう付け層の内、基材11と直接接触する層をFeを含むろう材(図1中ではFe又はFe−Ni、Fe−Cr合金層12、図2中ではNi−P合金層14)で構成している。これによって、ろう付け時における溶融ろう層のFeの溶解度が低下し、その結果、基材11のFe成分が溶融ろう層中に溶出するのを制限することができる。
【0032】
以上、本実施の形態のろう付け用複合材10、20によれば、ステンレス鋼からなる基材11の表面に、Fe、Ti、及びNiを含むろう材で構成されるろう付け層を設けることで、従来の自己ろう付け性複合材(Ni−Ti系ろう材)と同等の耐熱性及び耐食性を有し、かつ、ろう付け時における基材11とろう材中のTiの反応を抑制することができる(即ち、ろう付け時における基材11の被侵食の割合が低くなる)。
【0033】
また、このろう付け用複合材10、20はクラッド材であるため、接合を行うろう付け部材の内の一方の部材を基材として複合材10、20を形成(又は接合を行うろう付け部材の接合部間に複合材10、20を配置)し、この複合材10、20を用いてろう付け部材同士を接合し、ろう付け製品を製造することで、従来の各種Niろう材のように、各接合部に粉末Niろう材をそれぞれ塗布するという作業を必要とせず、ろう付け作業に多大な労力を要することはない(ろう付け作業性が良好となる)。その結果、ろう付け製品の歩留まり・生産性が良好となり、延いては製造コストの低減を図ることができる。
【0034】
さらに、このろう付け用複合材10、20のろう付け層を構成するろう材は、ろう付け時において基材11を殆ど侵食しないことから、ろう付け後においても、基材11の厚さ・体積はろう付け前と殆ど変わることがない。その結果、ろう付け部材同士の接合部の接合強度の低下が生じることはなく、延いてはろう付け製品の接合部の信頼性が高まる。
【0035】
本実施の形態のろう付け用複合材10、20は、EGR用クーラなどの高温・高腐食性のガス又は液体に晒される熱交換器のみに、その用途を限定するものではなく、その他にも、例えば、燃料電池の改質器用クーラや、燃料電池部材などの各種用途にも適用可能である。
【0036】
次に、本発明の他の実施の形態を添付図面に基いて説明する。
【0037】
本発明に係るろう付け用複合材の第形態の断面図を図、図の第1変形例を示す断面図を図4に示す。
【0038】
前実施の形態のろう付け用複合材10は、板材からなる基材11の表面にろう付け層を設けてなるクラッド材であった。
【0039】
これに対して、図に示すように、本実施の形態に係るろう付け用複合材40は、棒状又はワイヤ状の基材41の外周に、ろう付け層(基材41側から順に、Fe又はFe−Ni、Fe−Cr合金層42、Ti層43、及びNi又はNi−P合金層44を設けてなるものである。
【0040】
ろう付け層の形成はメッキ法、押出法、造管法などによって行う。
【0041】
また、図においては、基材41の外周に、基材41側から順に、Fe又はFe−Ni、Fe−Cr合金層42、Ti層43、及びNi又はNi−P合金層44を設けた場合について説明を行ったが、各層42,43,44の形成順序はこれに限定するものではない。例えば、図に示すように、基材41の外周に、基材41側から順に、Ni−P合金層44、Ti層43、及びFe又はFe−Ni、Fe−Cr合金層42を設けた複合材50であっても良い。ここで、Fe合金層42としてFe−Cr系合金層を用いることが好ましく、このFe−Cr系合金層を基材41とTi層43の間に配置し、ステンレス鋼中のFe成分とTiが反応するのを防ぐバリア層とすることが特に好ましい。
【0042】
本実施の形態に係るろう付け用複合材40、50においても、前実施の形態に係る複合材10、20と同様の作用効果が得られることは言うまでもない。
【0043】
本実施の形態のろう付け用複合材40、50は、EGR用クーラや、燃料電池の改質器用クーラ等の熱交換器、燃料電池部材などの他にも、オイルクーラ、ラジエータ、二次電池部材などにも適用可能である。
【0044】
【実施例】
(実施例1)
SUS304(JIS規格)からなり、厚さ2.5mm、幅150mmのステンレス鋼条材の表面に、ステンレス鋼条材側から順に厚さ0.12mmのFe条材、厚さ0.2mmのTi条材、及び厚さ0.15mmのNi条材を積層すると共に圧延を行い、ろう付け層全体に占めるFeの割合が30mass%のクラッド材を形成した。その後、クラッド材に対して圧延を繰り返し行い、ろう付け層全体の厚さが70μmのろう付け用複合材を作製した。
【0045】
(実施例2)
Fe条材の代わりに、厚さ0.12mmのFe−42mass%Ni合金条材を用い、クラッド材のろう付け層全体に占めるFeの割合が14mass%である以外は、実施例1と同様にしてろう付け用複合材を作製した。
【0046】
(実施例3)
Fe条材の代わりに、厚さ0.12mmのFe−25mass%Cr合金条材を用い、クラッド材のろう付け層全体に占めるFeの割合が22.5mass%である以外は、実施例1と同様にしてろう付け用複合材を作製した。
【0047】
(実施例4)
Ni条材の代わりに、Ni−8mass%P合金を用い、クラッド材のろう付け層全体に占めるFeの割合が30mass%である以外は、実施例1と同様にしてろう付け用複合材を作製した。
【0048】
(比較例1)
クラッド材のろう付け層全体に占めるFeの割合が5mass%である以外は、実施例1と同様にしてろう付け用複合材を作製した。
【0049】
(比較例2)
クラッド材のろう付け層全体に占めるFeの割合が55mass%である以外は、実施例1と同様にしてろう付け用複合材を作製した。
【0050】
(比較例3)
実施例1と同じステンレス鋼条材の表面に、ステンレス鋼条材側から順に、厚さ0.2mmのTi条材及び厚さ0.15mmのNi条材を積層すると共に圧延を行い、クラッド材を形成した。その後、クラッド材に対して圧延を繰り返し行い、ろう付け層全体の厚さが50μmのろう付け用複合材を作製した。
【0051】
(比較例4)
実施例1と同じステンレス鋼条材の表面に、ステンレス鋼条材側から順に、厚さ0.08mmのNi条材、厚さ0.2mmのTi条材、及び厚さ0.08mmのNi条材を積層すると共に圧延を行い、クラッド材を形成した。その後、クラッド材に対して圧延を繰り返し行い、ろう付け層全体の厚さが50μmのろう付け用複合材を作製した。
【0052】
(従来例1)
実施例1と同じステンレス鋼条材の表面に、厚さ0.5mmのCu条材を積層すると共に圧延を行い、クラッド材を形成した。その後、クラッド材に対して圧延を繰り返し行い、Cu層の厚さが50μmのろう付け用複合材を作製した。
【0053】
(従来例2)
実施例1と同じステンレス鋼条材の表面に、市販の粉末Niろう材(平均粒径35μm)を合成樹脂(ポリマー系樹脂)のバインダで溶いた混練物を塗布し、ろう付け用複合材を作製した。
【0054】
実施例1〜4、比較例1〜4、及び従来例1,2の各ろう付け用複合材の諸元を表1に示す。
【0055】
【表1】

Figure 0004107553
【0056】
次に、各複合材について、基材であるステンレス鋼条材の被侵食の割合(侵食された割合)、耐腐食性、ろう材の濡れ性、及びろう付け生産性(作業性)について評価を行った。各種の評価結果を表2に示す。
【0057】
ここで、被侵食の割合の評価は、各複合材を真空炉中で最高で1150℃に加熱して、ろう付け層を溶融させた後、各複合材の断面を観察し、基材であるステンレス鋼条材の板厚残存率(熱処理後の板厚×100/熱処理前の板厚(%))を測定することによって行った。耐腐食性の評価は、塩素イオン、硝酸イオン、及び硫酸イオンを含んだ腐食性溶液中に、各複合材を1000時間浸漬して腐食試験を行い、その後、各複合材を溶液中から取出してろう付け部の組織観察を行い、腐食発生の有無を調べることによって行った。濡れ性の評価は、各複合材のろう付け層の表面にSUS304からなるステンレス鋼パイプを乗せ、真空炉中で最高で1150℃に加熱してろう付けを行った後の、ろう付け部のフィレット(面取り)形状によって評価を行った。
【0058】
【表2】
Figure 0004107553
【0059】
表2に示すように、本発明に係るろう付け用複合材である実施例1〜4の複合材は、ろう付け層を、Fe、Ti、及びNiを含むろう材で形成し、かつ、ろう付け層全体に占めるFeの割合が規定範囲(10〜50mass%)内であるため、基材の板厚残存率がそれぞれ97,93,96,97(%)といずれも高かった。また、耐腐食性、濡れ性、及びろう付け生産性についても、いずれも良好であった。
【0060】
これに対して、比較例1の複合材は、耐腐食性、濡れ性、及びろう付け生産性はいずれも良好であったものの、ろう付け層全体に占めるFeの割合が規定範囲外の5mass%であるため、基材の板厚残存率は80%であり、被侵食の割合がやや高かった。
【0061】
比較例2の複合材は、基材の板厚残存率が98%と高く、かつ、耐食性及びろう付け生産性はいずれも良好であったものの、ろう付け層全体に占めるFeの割合が規定範囲外の55mass%と高く、即ちNi及びTiの割合が低いため、濡れ性が不良であった。
【0062】
比較例3,4の複合材は、耐腐食性、濡れ性、及びろう付け生産性はいずれも良好であった。しかし、比較例4の複合材は、ろう付け層がNi及びTiろう材で形成され、Feろう材を含んでいないため、基材の板厚残存率は78%であり、被侵食の割合が高かった。また、比較例3の複合材は、ろう付け層がNi及びTiろう材で形成され、即ちFeろう材を含んでいないと共に、ステンレス鋼条材とTi条材が直接接触するろう付け層構造であるため、基材の板厚残存率は65%であり、被侵食の割合が非常に高かった。
【0063】
従来例1の複合材は、基材の板厚残存率が96%と高く、かつ、濡れ性及びろう付け生産性はいずれも良好であったものの、ろう付け層がCuろう材のみで形成されるため、耐腐食性が良好でなく、ろう付け部に腐食が観察された。
【0064】
従来例2の複合材は、基材の板厚残存率が95%と高く、かつ、耐腐食性及び濡れ性はいずれも良好であったものの、ろう付け層のろう材が粉末Niろう材であるため、ろう付け生産性が良好でなかった。
【0065】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0066】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を発揮する。
(1) 基材の表面に、Fe、Ti、及びNiを含むろう材で構成されるろう付け層を設けることで、従来のろう付け用複合材と比較して、同等又は同等以上の耐熱性、耐酸化性、及び耐食性を有し、かつ、ろう付け時における基材の被侵食の割合が低いろう付け用複合材が得られる。
(2) (1)のろう付け用複合材を用いてろう付けを行うことで、ろう付け製品の接合部の信頼性が良好となる。
【図面の簡単な説明】
【図1】 本発明に係るろう付け用複合材の第1の形態の断面図である。
【図2】 図1の第1変形例を示す断面図である。
【図3】 本発明に係るろう付け用複合材の第の形態の断面図である。
【図4】 図3の第1変形例を示す断面図である。
【符号の説明】
10,2040,50 ろう付け用複合材
11,41 基材
12,42 Fe又はFe−Ni、Fe−Cr合金層
13,43 Ti層
14,44 Ni又はNi−P合金層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brazing composite material and a brazing product using the same, and more particularly to a composite material used for brazing a heat exchanger and a fuel cell member and a brazing product using the same.
[0002]
[Prior art]
Stainless steel-based clad materials are used as joining materials for automobile oil coolers. In this case, a Cu material having a function as a brazing material is clad on one side or both sides of a stainless steel plate as a base material.
[0003]
Further, as a brazing material for members made of stainless steel, Ni-base or Co-base alloy, various Ni brazing materials having excellent oxidation resistance and corrosion resistance at the joint are defined by JIS standards.
[0004]
Furthermore, as a Ni brazing material used for joining heat exchangers, 4 to 22% by weight of a metal powder selected from Ni, Cr, or Ni—Cr alloy is added to a powdered Ni brazing material. A powder Ni brazing material has been proposed (see JP 2000-107883 A).
[0005]
Further, there is a self-brazing composite material having a brazing layer made of Ni and Ti on the surface of stainless steel as a base material, that is, having a brazing layer structure of Ni / Ti / stainless steel (Japanese Patent Laid-Open No. 7-259992). Issue gazette).
[0006]
[Problems to be solved by the invention]
However, conventional brazing materials or brazing composite materials are used in heat exchangers (exhaust gas recirculation (hereinafter referred to as EGR (Exhaust Gas Recirculation)) coolers) that are exposed to high temperature, highly corrosive gases or liquids. When used as a brazing filler metal, there are the following problems.
[0007]
(1) When the above-mentioned stainless steel-based clad material is used as a joining material for an oil cooler for automobiles, there is no problem with respect to heat resistance, oxidation resistance, and corrosion resistance. When used as an EGR cooler, high temperature and highly corrosive exhaust gas is circulated. Therefore, in the brazing material (Cu material) of stainless steel clad material, heat resistance, oxidation resistance, and corrosion resistance There was a problem that was not enough.
[0008]
{Circle around (2)} Since the various Ni brazing materials described above are powdery, it is necessary to apply a powder Ni brazing material to each joint. That is, since much work is required for the brazing operation, the productivity of the brazed product is remarkably low, and as a result, there is a problem in that the manufacturing cost increases.
[0009]
(3) Although the above-mentioned self-brazing composite material exhibits a sufficient effect on heat resistance and corrosion resistance, the stainless steel of the base material is severely eroded by the brazing layer during brazing, and brazing is performed. There was a problem that the performance (strength, fatigue characteristics) of the later product was greatly reduced. Specifically, the Ni layer and the Ti layer are melted by heat treatment during brazing, but the reactivity between Ti and the stainless steel as the base material becomes excessive because the reactivity of Ti is extremely high. This is because the Fe component of the stainless steel substrate and Ti react with each other to easily produce an Fe-rich solid solution phase and intermetallic compounds such as Fe 2 Ti and FeTi. As a result, since the Fe component of the base material is eluted (melted / dispersed) into the brazing layer, significant erosion occurs in the base material, and the thickness and volume of the base material before brazing cannot be secured. As a result, the joint strength of the joint is lowered, that is, the reliability of the brazed product is lowered.
[0010]
One object of the present invention created in view of the above circumstances is that heat resistance, oxidation resistance, and corrosion resistance are good, the rate of erosion of the base material during brazing is low, and brazing work It is to provide a brazing composite material having good properties.
[0011]
Another object of the present invention is to provide a brazed product having a good joint reliability and low manufacturing cost.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a brazing composite material according to the present invention is a brazing composite material having a brazing layer on a substrate surface formed of stainless steel.
(1) The structure in which the layer structure of the brazing layer laminated on the surface of the base material has an Fe or Fe- 42 mass% Ni alloy layer, a Ti layer, and a Ni layer arranged in order from the base material side.
(2) The structure in which the layer structure of the brazing layer laminated on the surface of the base material has a Ni layer, a Ti layer, and an Fe or Fe- 42 mass% Ni alloy layer arranged in order from the base material side,
(3) The layer structure of the brazing layer laminated on the surface of the base material has an Fe or Fe- 42 mass% Ni alloy layer, a Ti layer, and a Ni-8 mass% P alloy layer in order from the base material side. Constitution,
(4) The layer structure of the brazing layer laminated on the surface of the base material has a Ni-8 mass% P alloy layer, a Ti layer, and an Fe or Fe- 42 mass% Ni alloy layer arranged in this order from the base material side. Constitution,
(5) The structure in which the layer structure of the brazing layer laminated on the surface of the base material has an Fe-25 mass% Cr alloy layer, a Ti layer, and a Ni layer arranged in this order from the base material side.
(6) The structure in which the layer structure of the brazing layer laminated on the surface of the base material has a Ni layer, a Ti layer, and an Fe-25 mass% Cr alloy layer arranged in this order from the base material side.
Of any one of (1) to (6),
The ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (Ti + Ni mass )) is 20 to 60 mass% ,
The ratio of Fe in the entire brazing layer (the mass of Fe / the mass of the entire brazing layer) is 10 to 50 mass% .
[0013]
According to the above configuration, since a brazing layer composed of a brazing material containing Fe, Ti or Fe, Ti, Ni is provided on the surface of the base material, compared with a conventional brazing composite material. Thus, a brazing composite material having heat resistance, oxidation resistance, and corrosion resistance equal to or higher than that and having a low rate of erosion of the base material during brazing can be obtained.
[0014]
On the other hand, a brazed product using the brazing composite material according to the present invention is joined using the brazing composite material described above.
[0015]
By performing brazing (joining) using the brazing composite material having the above-described configuration, the reliability of the joint portion of the brazed product is improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
[0017]
The present inventors have the same heat resistance and corrosion resistance as a conventional self-brazing composite material (Ni-Ti brazing material), and at the time of brazing, corrosion of stainless steel as a base material by Ti ( As a result of various investigations on the structure of a brazing composite material that is less melted and dispersed in the brazing layer and is easy to braze, the brazing layer is composed of a brazing material containing Fe, Ti, and Ni. As a result, a brazing composite material satisfying the above characteristics could be obtained.
[0018]
FIG. 1 is a sectional view of a first embodiment of a brazing composite material according to the present invention, FIG. 2 is a sectional view showing a first modification of FIG. 1, and FIG. 2 is a second sectional view of a brazing composite material according to the present invention. A cross-sectional view of this embodiment is shown in FIG. In FIGS. 2 and 3, the same members as those in FIG. 1 are denoted by the same reference numerals.
[0019]
As shown in FIG. 1, the brazing composite material 10 according to the present embodiment has a brazing layer (from the base material 11 side) on one side (upper surface in FIG. 1) of a base material 11 made of a stainless steel plate material. A clad material in which Fe or Fe-42 mass% Ni, Fe-25 mass% Cr alloy layer 12, Ti layer 13, and Ni or Ni-8 mass% P alloy layer 14) are provided in this order. Here, the brazing layer may be provided not only on one surface of the substrate 11 but also on both surfaces (upper and lower surfaces in FIG. 1).
[0020]
Fe or Fe-Ni, as a Fe-Cr alloy layer 12, in order prevent the TiC reacts with Ti of the Ti layer 13 is generated as much as possible, having a low C content is preferred. As the Fe alloy , an Fe-42 mass% Ni alloy and an Fe-8 mass% Cr alloy (ferritic stainless steel) are preferable. This is because Ni and Cr have the effect of improving the corrosion resistance and oxidation resistance of the brazed part (joint part).
[0021]
Moreover, as a Ni alloy which comprises Ni or Ni alloy layer 14, a Ni-8 mass% P alloy is preferable. This is because this alloy can improve the hot-water flow and wettability during brazing and reduce the solubility of the Fe component in stainless steel.
[0022]
Furthermore, the formation method of the clad material in which the brazing layer is provided on the surface of the base material 11 is not particularly limited, and all conventional methods for forming the clad material can be applied. Then, the method of integrating by rolling is mentioned.
[0023]
Further, in FIG. 1, Fe or Fe −42 mass% Ni, Fe-25 mass% Cr alloy layers 12 and 12, Ti layers 13 and 13, and Ni or Ni are sequentially formed on the surface of the substrate 11 from the substrate 11 side. Although the case where the −8 mass% P alloy layers 14 and 14 are provided has been described, the order of forming the layers 12, 13 and 14 is not limited thereto. For example, as shown in FIG. 2, on the surface of the base material 11, in order from the base material 11 side, Ni-8 mass% P alloy layers 14, 14, Ti layers 13, 13, and Fe or Fe- 42 mass% Ni alloy layer. Or the composite material 20 which provided the Fe-25mass% Cr alloy layers 12 and 12 may be sufficient . Here, it is preferable to use Fe -25mass% Cr alloy layer as Fe alloy layer 12, to place the Fe-25 mass% Cr alloy layer between the substrate 11 and the Ti layer 13, and the Fe component of stainless steel A barrier layer that prevents Ti from reacting is particularly preferable.
[0024]
Further, the outermost layer of the brazing layer (Ni or Ni-8 mass% P alloy layer 14 in FIG. 1, Fe or Fe-42 mass% Ni alloy layer or Fe-25 mass% Cr alloy layer 12 in FIG. 2 ) is formed. You may add at least 1 type of B or Si to the metal or alloy to perform. As a result, the melting point, wettability, toughness, and bonding strength of the brazing material can be adjusted.
[0025]
Next, the optimal ratio of Fe, Ti, and Ni in the entire brazing layer provided on the surface of the substrate 11 will be described.
[0026]
Ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (mass of Ti + Ni)) is preferably from 20 to 60 mass%, particularly 30 to 50 mass% is preferable. This is because if the Ti ratio is less than 20 mass% , the effect of lowering the melting temperature of the entire brazing layer cannot be sufficiently obtained, and the brazing layer does not melt during brazing. Further, if the Ti ratio exceeds 60 mass% , a large amount of intermetallic compounds are formed by the reaction between Ni and Ti, and the brazing layer becomes extremely brittle, so that the reliability of the brazed product cannot be expected. .
[0027]
The ratio of Fe in the entire brazing layer (brazing material) (the mass of Fe / the mass of the entire brazing layer) is preferably 10 to 50 mass% , particularly preferably 20 to 40 mass% . This is because the elution of the Fe component of the stainless steel cannot be suppressed if the Fe ratio is less than 10 mass% . Moreover, when the ratio of Fe exceeds 50 mass% , the hot water flow property is remarkably lowered, and normal brazing becomes difficult.
[0028]
Next, the operation of the present embodiment will be described.
[0029]
In order to suppress the reaction between the base material 11 made of stainless steel and Ti in the brazing material as much as possible, it is necessary to limit the Fe component in the stainless steel from eluting into the brazing layer.
[0030]
Therefore, in the composite material 10, 20 in the present embodiment, another layer (in in Figure 1 Fe or Fe-Ni, Fe-Cr alloy layer 12 between the substrate 11 and the Ti layer 13, in FIG. 2 Then, the Ni-P alloy 14) is arranged so that the base material 11 and the Ti layer 13 are not in direct contact with each other. Thereby, it is possible to suppress the reaction between the Fe component of the base material 11 and Ti of the Ti layer 13 as much as possible, thereby preventing the formation of an intermetallic compound between the base material 11 and the Ti layer 13. be able to.
[0031]
Further, in the composite materials 10 and 20 in the present embodiment, the brazing layer includes a brazing material (in FIG. 1 , Fe or Fe—Ni, Fe—Cr alloy) that is in direct contact with the base material 11 . The layer 12 is composed of a Ni-P alloy layer 14) in FIG. Thereby, the solubility of Fe in the molten brazing layer at the time of brazing decreases, and as a result, it is possible to limit elution of the Fe component of the base material 11 into the molten brazing layer.
[0032]
As described above, according to the brazing composite materials 10 and 20 of the present embodiment, the brazing layer composed of the brazing material containing Fe, Ti, and Ni is provided on the surface of the base material 11 made of stainless steel. Thus, it has the same heat resistance and corrosion resistance as a conventional self-brazing composite material (Ni-Ti brazing material) and suppresses the reaction between the base material 11 and Ti in the brazing material during brazing. (That is, the rate of erosion of the substrate 11 during brazing is reduced).
[0033]
Since the brazing composite materials 10 and 20 are clad materials, the composite materials 10 and 20 are formed using one member of the brazing members to be joined as a base material (or the brazing member to be joined). The composite materials 10 and 20 are disposed between the joint portions, and brazing members are joined together using the composite materials 10 and 20 to produce a brazed product. Thus, like various conventional Ni brazing materials, There is no need to apply a powder Ni brazing material to each joint, and no great effort is required for the brazing work (the brazing workability is improved). As a result, the yield and productivity of the brazed product are improved, and the manufacturing cost can be reduced.
[0034]
Further, since the brazing material constituting the brazing layer of the brazing composite materials 10 and 20 hardly erodes the base material 11 at the time of brazing, the thickness and volume of the base material 11 even after brazing. There is almost no change from before brazing. As a result, the bonding strength of the joint between the brazing members does not decrease, and as a result, the reliability of the joint of the brazed product increases.
[0035]
The brazing composites 10 and 20 according to the present embodiment are not limited to heat exchangers that are exposed to high-temperature, highly corrosive gases or liquids such as EGR coolers. For example, the present invention can be applied to various uses such as a fuel cell reformer cooler and a fuel cell member.
[0036]
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.
[0037]
The cross-sectional view of a second embodiment of the brazing composite material according to the present invention shown in FIGS. 3 and 4 is a sectional view showing a first modification of FIG.
[0038]
The brazing composite material 10 of the previous embodiment was a clad material in which a brazing layer was provided on the surface of a base material 11 made of a plate material.
[0039]
On the other hand, as shown in FIG. 3 , the brazing composite material 40 according to the present embodiment has a brazing layer (in order from the base material 41 side) on the outer periphery of the rod-like or wire-like base material 41. Alternatively, an Fe—Ni, Fe—Cr alloy layer 42, a Ti layer 43, and an Ni or Ni—P alloy layer 44 are provided.
[0040]
The brazing layer is formed by a plating method, an extrusion method, a pipe making method, or the like.
[0041]
In FIG. 3 , Fe or Fe—Ni, Fe—Cr alloy layer 42, Ti layer 43, and Ni or Ni—P alloy layer 44 are provided on the outer periphery of the substrate 41 in this order from the substrate 41 side. Although the case has been described, the formation order of the layers 42, 43, 44 is not limited to this. For example, as shown in FIG. 4 , a Ni—P alloy layer 44, a Ti layer 43, and Fe or Fe—Ni, Fe—Cr alloy layer 42 are provided on the outer periphery of the base material 41 in this order from the base material 41 side. The composite material 50 may be used . Here, it is preferable to use an Fe—Cr based alloy layer as the Fe alloy layer 42, and this Fe—Cr based alloy layer is disposed between the base material 41 and the Ti layer 43, and the Fe component and Ti in the stainless steel are A barrier layer that prevents reaction is particularly preferable.
[0042]
Needless to say, in the brazing composite materials 40 and 50 according to the present embodiment, the same effects as those of the composite materials 10 and 20 according to the previous embodiment can be obtained.
[0043]
The brazing composite materials 40 and 50 of the present embodiment include an oil cooler, a radiator, a secondary battery, in addition to a heat exchanger such as an EGR cooler, a fuel cell reformer cooler, and a fuel cell member. It can also be applied to members.
[0044]
【Example】
(Example 1)
Made of SUS304 (JIS standard), on the surface of a stainless steel strip with a thickness of 2.5 mm and a width of 150 mm, an Fe strip with a thickness of 0.12 mm and a Ti strip with a thickness of 0.2 mm in this order from the stainless steel strip side. A material and a 0.15 mm-thick Ni strip were laminated and rolled to form a clad material in which the proportion of Fe in the entire brazing layer was 30 mass% . Thereafter, the clad material was repeatedly rolled to produce a brazing composite material having a total brazing layer thickness of 70 μm.
[0045]
(Example 2)
Example 1 except that a Fe-42 mass% Ni alloy strip having a thickness of 0.12 mm was used instead of the Fe strip, and the proportion of Fe in the entire brazing layer of the clad was 14 mass%. Similarly, a brazing composite material was produced.
[0046]
(Example 3)
An example is used except that a Fe-25 mass% Cr alloy strip having a thickness of 0.12 mm is used instead of the Fe strip, and the ratio of Fe in the entire brazing layer of the clad material is 22.5 mass%. In the same manner as in No. 1, a brazing composite material was produced.
[0047]
Example 4
A brazing composite material in the same manner as in Example 1 except that a Ni-8 mass% P alloy was used instead of the Ni strip and the proportion of Fe in the entire brazing layer of the clad material was 30 mass%. Was made.
[0048]
(Comparative Example 1)
A brazing composite material was produced in the same manner as in Example 1 except that the proportion of Fe in the entire brazing layer of the clad material was 5 mass% .
[0049]
(Comparative Example 2)
A brazing composite material was produced in the same manner as in Example 1 except that the ratio of Fe in the entire brazing layer of the clad material was 55 mass% .
[0050]
(Comparative Example 3)
On the surface of the same stainless steel strip as in Example 1, a 0.2 mm thick Ti strip and a 0.15 mm thick Ni strip are laminated in order from the stainless steel strip side and rolled, and then clad material. Formed. Thereafter, the clad material was repeatedly rolled to produce a brazing composite material having a total brazing layer thickness of 50 μm.
[0051]
(Comparative Example 4)
On the surface of the same stainless steel strip as in Example 1, in order from the stainless steel strip side, a Ni strip having a thickness of 0.08 mm, a Ti strip having a thickness of 0.2 mm, and a Ni strip having a thickness of 0.08 mm. The materials were laminated and rolled to form a clad material. Thereafter, the clad material was repeatedly rolled to produce a brazing composite material having a total brazing layer thickness of 50 μm.
[0052]
(Conventional example 1)
On the surface of the same stainless steel strip as in Example 1, a Cu strip having a thickness of 0.5 mm was laminated and rolled to form a clad material. Thereafter, rolling was repeatedly performed on the clad material to produce a brazing composite material having a Cu layer thickness of 50 μm.
[0053]
(Conventional example 2)
On the surface of the same stainless steel strip as in Example 1, a kneaded material obtained by dissolving a commercially available powdered Ni brazing material (average particle size 35 μm) with a binder of a synthetic resin (polymer resin) was applied to form a brazing composite material. Produced.
[0054]
Table 1 shows the specifications of the brazing composite materials of Examples 1 to 4, Comparative Examples 1 to 4, and Conventional Examples 1 and 2.
[0055]
[Table 1]
Figure 0004107553
[0056]
Next, for each composite material, the corrosion rate (corrosion rate), corrosion resistance, brazing material wettability, and brazing productivity (workability) of the stainless steel strip that is the base material are evaluated. went. Various evaluation results are shown in Table 2.
[0057]
Here, the evaluation of the rate of erosion is the base material after each composite material is heated to 1150 ° C. in a vacuum furnace at a maximum to melt the brazing layer, and then the cross section of each composite material is observed. The measurement was performed by measuring the remaining thickness ratio of the stainless steel strip (plate thickness after heat treatment × 100 / plate thickness before heat treatment (%)). The corrosion resistance is evaluated by immersing each composite material in a corrosive solution containing chlorine ion, nitrate ion, and sulfate ion for 1000 hours, and then performing a corrosion test, and then removing each composite material from the solution. This was done by observing the structure of the brazed part and examining the occurrence of corrosion. The wettability was evaluated by placing a stainless steel pipe made of SUS304 on the surface of the brazing layer of each composite material, and brazing by heating to a maximum of 1150 ° C. in a vacuum furnace. (Chamfering) Evaluation was performed according to the shape.
[0058]
[Table 2]
Figure 0004107553
[0059]
As shown in Table 2, in the composite materials of Examples 1 to 4 which are the composite materials for brazing according to the present invention, the brazing layer is formed of a brazing material containing Fe, Ti, and Ni, and brazing Since the ratio of Fe in the entire adhesive layer is within the specified range (10 to 50 mass% ), the remaining thickness ratio of the base material was 97, 93, 96 and 97 (%), respectively. Moreover, corrosion resistance, wettability, and brazing productivity were all good.
[0060]
In contrast, the composite material of Comparative Example 1 had good corrosion resistance, wettability, and brazing productivity, but the proportion of Fe in the entire brazing layer was 5 mass outside the specified range. % , The base plate thickness remaining rate was 80%, and the rate of erosion was slightly high.
[0061]
Although the composite material of Comparative Example 2 had a high base plate residual rate of 98% and both corrosion resistance and brazing productivity were good, the proportion of Fe in the entire brazing layer was within the specified range. Since the other 55 mass% was high, that is, the ratio of Ni and Ti was low, the wettability was poor.
[0062]
The composite materials of Comparative Examples 3 and 4 were all good in corrosion resistance, wettability, and brazing productivity. However, in the composite material of Comparative Example 4, since the brazing layer is formed of Ni and Ti brazing material and does not contain Fe brazing material, the residual thickness of the base material is 78%, and the erosion ratio is it was high. Further, the composite material of Comparative Example 3 has a brazing layer structure in which the brazing layer is formed of Ni and Ti brazing material, that is, does not contain Fe brazing material, and the stainless steel strip and Ti strip are in direct contact. Therefore, the residual thickness ratio of the base material was 65%, and the rate of erosion was very high.
[0063]
Although the composite material of Conventional Example 1 has a high base plate residual rate of 96% and good wettability and brazing productivity, the brazing layer is formed only of the Cu brazing material. Therefore, the corrosion resistance was not good, and corrosion was observed in the brazed part.
[0064]
The composite material of Conventional Example 2 has a high sheet thickness residual ratio of 95% and good corrosion resistance and wettability, but the brazing material of the brazing layer is a powder Ni brazing material. Therefore, brazing productivity was not good.
[0065]
As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.
[0066]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
(1) By providing a brazing layer composed of a brazing material containing Fe, Ti, and Ni on the surface of the base material, the heat resistance is equivalent or equivalent to that of a conventional brazing composite material. Thus, a brazing composite material having oxidation resistance and corrosion resistance and having a low rate of erosion of the base material during brazing can be obtained.
(2) By performing brazing using the brazing composite material of (1), the reliability of the joint of the brazed product is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of a brazing composite material according to the present invention.
FIG. 2 is a cross-sectional view showing a first modification of FIG.
FIG. 3 is a sectional view of a second embodiment of the brazing composite material according to the present invention.
4 is a cross-sectional view showing a first modification of FIG . 3;
[Explanation of symbols]
10 , 20 , 40, 50 Brazing composite 11, 41 Base 12, 42 Fe or Fe-Ni, Fe-Cr alloy layer 13, 43 Ti layer 14, 44 Ni or Ni-P alloy layer

Claims (7)

ステンレス鋼で形成した基材表面にろう付け層を有するろう付け用複合材において、
上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にFe又はFe−42mass%Ni合金層、Ti層、及びNi層を配置した構成からなり、
上記ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))が20〜60mass%からなり、
上記ろう付け層全体に占めるFeの割合(Feの質量/ろう付け層全体の質量)が、10〜50mass%からなることを特徴とするろう付け用複合材。
In a brazing composite material having a brazing layer on a substrate surface formed of stainless steel,
The layer structure of the brazing layer laminated on the surface of the base material has a configuration in which Fe or Fe- 42 mass% Ni alloy layer, Ti layer, and Ni layer are arranged in order from the base material side.
The ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (Ti + Ni mass )) is 20 to 60 mass% ,
The brazing composite material, wherein a ratio of Fe in the entire brazing layer (Fe mass / mass of the entire brazing layer) is 10 to 50 mass% .
ステンレス鋼で形成した基材表面にろう付け層を有するろう付け用複合材において、
上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にNi層、Ti層、及びFe又はFe−42mass%Ni合金層を配置した構成からなり、
上記ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))が20〜60mass%からなり、
上記ろう付け層全体に占めるFeの割合(Feの質量/ろう付け層全体の質量)が、10〜50mass%からなることを特徴とするろう付け用複合材。
In a brazing composite material having a brazing layer on a substrate surface formed of stainless steel,
The layer structure of the brazing layer laminated on the surface of the base material has a configuration in which an Ni layer, a Ti layer, and an Fe or Fe- 42 mass% Ni alloy layer are arranged in this order from the base material side.
The ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (Ti + Ni mass )) is 20 to 60 mass% ,
The brazing composite material, wherein a ratio of Fe in the entire brazing layer (Fe mass / mass of the entire brazing layer) is 10 to 50 mass% .
ステンレス鋼で形成した基材表面にろう付け層を有するろう付け用複合材において、
上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にFe又はFe−42mass%Ni合金層、Ti層、及びNi−8mass%P合金層を配置した構成からなり、
上記ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))が20〜60mass%からなり、
上記ろう付け層全体に占めるFeの割合(Feの質量/ろう付け層全体の質量)が、10〜50mass%からなることを特徴とするろう付け用複合材。
In a brazing composite material having a brazing layer on a substrate surface formed of stainless steel,
The layer structure of the brazing layer laminated on the surface of the base material has a configuration in which an Fe or Fe- 42 mass% Ni alloy layer, a Ti layer, and a Ni-8 mass% P alloy layer are arranged in this order from the base material side. ,
The ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (Ti + Ni mass )) is 20 to 60 mass% ,
The brazing composite material, wherein a ratio of Fe in the entire brazing layer (Fe mass / mass of the entire brazing layer) is 10 to 50 mass% .
ステンレス鋼で形成した基材表面にろう付け層を有するろう付け用複合材において、
上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にNi−8mass%P合金層、Ti層、及びFe又はFe−42mass%Ni合金層を配置した構成からなり、
上記ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))が20〜60mass%からなり、
上記ろう付け層全体に占めるFeの割合(Feの質量/ろう付け層全体の質量)が、10〜50mass%からなることを特徴とするろう付け用複合材。
In a brazing composite material having a brazing layer on a substrate surface formed of stainless steel,
The layer structure of the brazing layer laminated on the surface of the base material is composed of a Ni-8 mass% P alloy layer, a Ti layer, and an Fe or Fe- 42 mass% Ni alloy layer arranged in this order from the base material side. ,
The ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (Ti + Ni mass )) is 20 to 60 mass% ,
The brazing composite material, wherein a ratio of Fe in the entire brazing layer (Fe mass / mass of the entire brazing layer) is 10 to 50 mass% .
ステンレス鋼で形成した基材表面にろう付け層を有するろう付け用複合材において、
上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にFe−25mass%Cr合金層、Ti層、及びNi層を配置した構成からなり、
上記ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))が20〜60mass%からなり、
上記ろう付け層全体に占めるFeの割合(Feの質量/ろう付け層全体の質量)が、10〜50mass%からなることを特徴とするろう付け用複合材。
In a brazing composite material having a brazing layer on a substrate surface formed of stainless steel,
The layer structure of the brazing layer laminated on the surface of the base material has a configuration in which an Fe-25 mass% Cr alloy layer, a Ti layer, and an Ni layer are arranged in order from the base material side.
The ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (Ti + Ni mass )) is 20 to 60 mass% ,
The brazing composite material, wherein a ratio of Fe in the entire brazing layer (Fe mass / mass of the entire brazing layer) is 10 to 50 mass% .
ステンレス鋼で形成した基材表面にろう付け層を有するろう付け用複合材において、
上記基材の表面に積層したろう付け層の層構造が、上記基材側から順にNi層、Ti層、及びFe−25mass%Cr合金層を配置した構成からなり、
上記ろう付け層全体におけるTiとNiの合計質量に占めるTiの割合(Tiの質量/(Ti+Niの質量))が20〜60mass%からなり、
上記ろう付け層全体に占めるFeの割合(Feの質量/ろう付け層全体の質量)が、10〜50mass%からなることを特徴とするろう付け用複合材。
In a brazing composite material having a brazing layer on a substrate surface formed of stainless steel,
The layer structure of the brazing layer laminated on the surface of the base material has a configuration in which a Ni layer, a Ti layer, and an Fe-25 mass% Cr alloy layer are arranged in this order from the base material side.
The ratio of Ti to the total mass of Ti and Ni in the entire brazing layer (Ti mass / (Ti + Ni mass )) is 20 to 60 mass% ,
The brazing composite material, wherein a ratio of Fe in the entire brazing layer (Fe mass / mass of the entire brazing layer) is 10 to 50 mass% .
請求項1から6いずれかに記載のろう付け用複合材を用いて接合したことを特徴とするろう付け製品。  A brazed product, which is joined using the brazing composite material according to claim 1.
JP2001172471A 2001-06-07 2001-06-07 Brazing composite material and brazing product using the same Expired - Fee Related JP4107553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172471A JP4107553B2 (en) 2001-06-07 2001-06-07 Brazing composite material and brazing product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172471A JP4107553B2 (en) 2001-06-07 2001-06-07 Brazing composite material and brazing product using the same

Publications (2)

Publication Number Publication Date
JP2002363707A JP2002363707A (en) 2002-12-18
JP4107553B2 true JP4107553B2 (en) 2008-06-25

Family

ID=19014087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172471A Expired - Fee Related JP4107553B2 (en) 2001-06-07 2001-06-07 Brazing composite material and brazing product using the same

Country Status (1)

Country Link
JP (1) JP4107553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100834A (en) * 2013-01-28 2013-05-15 哈尔滨工业大学 Manufacturing method for hard alloy steel compound tool
CN105397302A (en) * 2015-12-23 2016-03-16 江苏启澜激光科技有限公司 Laser film engraving machine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492342B2 (en) 2004-12-24 2010-06-30 日立電線株式会社 Brazing clad material, brazing method using the same, and brazed product
JP2006334602A (en) * 2005-05-31 2006-12-14 Hitachi Cable Ltd Brazing composite material and brazing product using the same
JP2006334606A (en) * 2005-05-31 2006-12-14 Hitachi Cable Ltd Brazing material, brazing composite material, and brazing product using them
JP2006334603A (en) * 2005-05-31 2006-12-14 Hitachi Cable Ltd Brazing composite material and brazing product using the same
JP4821503B2 (en) * 2006-08-24 2011-11-24 日立電線株式会社 Brazing composite material and brazing product using the same
JP4821520B2 (en) * 2006-08-31 2011-11-24 日立電線株式会社 Brazing composite material and brazing product using the same
JP2008055471A (en) * 2006-08-31 2008-03-13 Hitachi Cable Ltd Brazing composite material and brazing product using the same
JP4835863B2 (en) * 2007-03-26 2011-12-14 日立電線株式会社 Brazing composite material and brazing product using the same
JP4893542B2 (en) * 2007-09-05 2012-03-07 日立電線株式会社 Brazing composite material and brazing product using the same
JP5194895B2 (en) * 2008-03-07 2013-05-08 日立電線株式会社 Brazing composites and brazing products
CN103551826A (en) * 2013-10-29 2014-02-05 哈尔滨工业大学 Production method of aluminum oxide ceramic/stainless steel compound tool
CN114656988B (en) * 2022-04-02 2023-05-05 重庆大学 Iron-titanium composite coke for low-carbon iron making and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100834A (en) * 2013-01-28 2013-05-15 哈尔滨工业大学 Manufacturing method for hard alloy steel compound tool
CN105397302A (en) * 2015-12-23 2016-03-16 江苏启澜激光科技有限公司 Laser film engraving machine

Also Published As

Publication number Publication date
JP2002363707A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
EP1864749B1 (en) Brazing filler material, composite material for brazing and brazed structure joined by using those
JP4107553B2 (en) Brazing composite material and brazing product using the same
JP3765533B2 (en) Brazing composite material and brazing product using the same
US6605371B1 (en) Brazing alloy for stainless steel, structure braze-assembled with the brazing alloy, and brazing material for stainless steel
JP3915726B2 (en) Brazing composite material and brazing product using the same
JP3814179B2 (en) Brazing composite material and brazing product using the same
JP2006334602A (en) Brazing composite material and brazing product using the same
JP3670235B2 (en) Brazing composite material and brazing structure
JP2009214119A (en) Composite material for brazing, and brazed product
JP4234918B2 (en) Brazing composite material for heat exchanger and heat exchanger using the same
JP2003117679A (en) Composite brazing material, composite material for brazing and brazing method
JP4880219B2 (en) Brazing composite material and brazed structure brazed and bonded using the same
JP4244112B2 (en) Brazing composite material and brazing product using the same
JP3909015B2 (en) Brazing composite material, brazing method and brazing product using the same
JP2006334603A (en) Brazing composite material and brazing product using the same
JP4507942B2 (en) Brazing clad material and brazing product using the same
JP2003117685A (en) Composite brazing filler metal, composite material for brazing, and brazed product
JP4939158B2 (en) Brazing material, brazing composite material and brazing structure brazed and bonded using the same
JP4239853B2 (en) Brazing composite material, method for producing the same, and brazed product
JP2005088071A (en) Brazing composite material and brazing product using the same
JP4835862B2 (en) Brazing composite material and brazing product using the same
JP4507943B2 (en) Brazing clad material and brazing product using the same
JP2003117683A (en) Composite brazing materials and composites for brazing and brazing products
JP2005103610A (en) Brazing composite material and brazing product using the same
JP2004291075A (en) Brazing composite material and brazing product using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees