[go: up one dir, main page]

JP4103959B2 - Production method of Al-Si alloy - Google Patents

Production method of Al-Si alloy Download PDF

Info

Publication number
JP4103959B2
JP4103959B2 JP2003378043A JP2003378043A JP4103959B2 JP 4103959 B2 JP4103959 B2 JP 4103959B2 JP 2003378043 A JP2003378043 A JP 2003378043A JP 2003378043 A JP2003378043 A JP 2003378043A JP 4103959 B2 JP4103959 B2 JP 4103959B2
Authority
JP
Japan
Prior art keywords
alloy
cold
processing
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003378043A
Other languages
Japanese (ja)
Other versions
JP2005139520A (en
Inventor
修 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama TLO Co Ltd
Original Assignee
Yokohama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama TLO Co Ltd filed Critical Yokohama TLO Co Ltd
Priority to JP2003378043A priority Critical patent/JP4103959B2/en
Publication of JP2005139520A publication Critical patent/JP2005139520A/en
Application granted granted Critical
Publication of JP4103959B2 publication Critical patent/JP4103959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

この発明は、耐熱性、耐磨耗性及び加工性に優れるアルミニウム−ケイ素系合金に関する。   The present invention relates to an aluminum-silicon alloy having excellent heat resistance, wear resistance, and workability.

従来、使用温度が180℃程度の製品にはAl−Cu−Mg系の耐熱アルミニウム合金(JlS A2618)が多く用いられている。
しかし、一般の耐熱アルミニウム合金は、時効熱処理(たとえば190℃×15時間程度)により強度を確保するタイプの合金であり、従って、この熱処理温度を越える温度領域で長時間加熱されると強度が低下するという問題がある。
また、耐磨耗性や低熱膨張率を必要とする製品にはAl−Si系アルミニウム合金(JlS A4032)が多く用いられているが、耐熱性が十分ではない。
そこで、耐磨耗性、低熱膨張率、耐熱性を要する用途には、Al−Si−Fe系アルミニウム合金が用いられるが、この合金はスプレーフォーミングと熱間押出し加工法との組み合わせ(非特許文献1)、あるいは、本発明者による新たな加工熱処理方法(特許文献1〜3)等により微細で均一な組織を得ることが必要である。しかしながら、使用温度は150℃程度の製品の場合に限られる。
より高温の用途については、Al−Fe−X系(X:Mn、Ce、Mo、Co、Ni、V、Zr)アルミニウム合金を急冷凝固させ、急冷凝固粉末と焼結固化法とを組み合わせ、又はスプレーフォーミングと熱間押出し加工法とを組み合わせて、より微細で均一な組織を得て、アルミニウム合金の特性を向上させる方法が提案されている(例えば、非特許文献2、特許文献4、5参照。)。これらの製造方法では、ガスアトマイズ法により所定の組成の急冷凝固粉末を作製し、これを焼結固化あるいはビレットにして押出し加工するため、複雑で技術的に条件設定の難しい工程が必要であり、製造コストが必然的に高くなるという問題がある。
Conventionally, Al-Cu-Mg heat-resistant aluminum alloy (JlS A2618) is often used for products whose operating temperature is about 180 ° C.
However, a general heat-resistant aluminum alloy is a type of alloy that ensures strength by an aging heat treatment (for example, about 190 ° C. × 15 hours). Therefore, the strength decreases when heated for a long time in a temperature range exceeding the heat treatment temperature. There is a problem of doing.
Moreover, although Al-Si type aluminum alloy (JlS A4032) is often used for the product which requires abrasion resistance and a low thermal expansion coefficient, heat resistance is not enough.
Therefore, Al-Si-Fe-based aluminum alloys are used for applications that require wear resistance, a low coefficient of thermal expansion, and heat resistance. This alloy is a combination of spray forming and hot extrusion (non-patent literature). It is necessary to obtain a fine and uniform structure by 1) or a new thermomechanical processing method (Patent Documents 1 to 3) by the present inventors. However, the use temperature is limited to a product of about 150 ° C.
For higher temperature applications, Al—Fe—X (X: Mn, Ce, Mo, Co, Ni, V, Zr) aluminum alloys are rapidly solidified and combined with rapidly solidified powder and sintered solidification method, or A method for improving the properties of an aluminum alloy by combining spray forming and a hot extrusion method to obtain a finer and more uniform structure has been proposed (see, for example, Non-Patent Document 2, Patent Documents 4 and 5). .) In these manufacturing methods, a rapidly solidified powder having a predetermined composition is prepared by a gas atomization method, and this is sintered and solidified or extruded into a billet, which requires complicated and technically difficult process conditions. There is a problem that the cost is inevitably high.

特許第3005673号Patent No. 3005673 特許第3005672号Patent No. 3005672 特許第3111214号Patent No. 3111214 特開2000-161071JP2000-161071 特開平10-26002JP-A-10-26002 まてりあ 34 (1995) 736-740Materia 34 (1995) 736-740 軽金属 39 (1989) 147-166Light metal 39 (1989) 147-166

高温においても安定な化合物を晶出する遷移金属を含有するAl−Fe−X系合金は、硬質で脆性的な化合物を含有することから、鋳造法や粉末焼結法で得られるものは共に延性が乏しく、鍛造加工が困難である。そのためスプレーフォーミング(急冷凝固粉末)と熱間押出し加工法とを組み合わせて強度・延性バランスを改善しているが、均一微細分散した粒子間距離が小さく、二次加工に際して割れが発生することから、予備加工を行うことなどの対策が必要である(特許文献4)。
さらに、このAl−Fe−X系合金をエンジンピストンなどへ適用する場合は、耐摩耗性に優れることや低熱膨張が要求される。このような要求を満たす場合には、Si晶を分散させることが有効であり、高Si濃度のアルミニウム合金が用いられるが、Si晶は非常に脆く、Al−Si合金は加工性に乏しくて機械的性質も十分でない。そのため、上記と同様に粉末焼結法あるいはスプレーフォーミング(急冷凝固粉末)と熱間押出し加工法との組み合わせの適用によりSi粒子を均一微細分散して強度・延性バランスを改善しているが、耐磨耗性を維持するために高密度分散を図ることが必要なため粒子間距離が小さく、二次加工に際して端部に割れが発生する。
それゆえ、耐熱性と耐摩耗性の両方の特性を高めるためSiと遷移金属の両方を高濃度に含有するアルミニウム合金は典型的な難加工素材であり、スプレーフォーミング(急冷凝固粉末)と熱間押出し加工法との組み合わせが一部に適用されているが、コスト大である。
さらに、環境負荷低減及びエネルギー効率向上のために、部材の軽量・薄肉化が求められており、高強度化とニアネットシェイプ成形を満たす加工性付与が課題である。
Since Al-Fe-X alloys containing transition metals that crystallize stable compounds even at high temperatures contain hard and brittle compounds, both those obtained by casting and powder sintering are ductile. The forging process is difficult. For this reason, the balance between strength and ductility is improved by combining spray forming (rapidly solidified powder) and hot extrusion, but the distance between uniformly dispersed particles is small and cracks occur during secondary processing. It is necessary to take measures such as pre-processing (Patent Document 4).
Furthermore, when this Al—Fe—X alloy is applied to an engine piston or the like, excellent wear resistance and low thermal expansion are required. When satisfying such requirements, it is effective to disperse Si crystals, and high Si concentration aluminum alloys are used. However, Si crystals are very brittle, and Al-Si alloys have poor workability and mechanical properties. The physical properties are not sufficient. For this reason, as described above, the powder sintering method or the combination of spray forming (rapidly solidified powder) and hot extrusion method is used to improve the balance of strength and ductility by uniformly and finely dispersing Si particles. Since it is necessary to achieve high-density dispersion in order to maintain wearability, the interparticle distance is small, and cracks occur at the ends during secondary processing.
Therefore, aluminum alloys containing high concentrations of both Si and transition metals to improve both heat resistance and wear resistance are typical difficult-to-process materials, such as spray forming (quickly solidified powder) and hot A combination with the extrusion method is applied in part, but the cost is high.
Furthermore, in order to reduce environmental burden and improve energy efficiency, there is a demand for lighter and thinner members, and there is a problem of imparting workability that satisfies high strength and near net shape molding.

本発明者は、かかる問題を解決し、Al−Si−Fe−Mn系の通常凝固アルミニウム合金を鍛造部品に適用すべく鋭意研究を進めてきた。
本発明者らは、既にAl−Si系やAl−Si−Fe系の鋳造合金展伸材に適用する新たな加工熱処理方法を提案している(特許文献1〜3)。
即ち、アルミニウム母相と変形困難な複数種の第二相(AlSiFe系金属間化合物、Si晶等)を含有する複相合金バルク材料に対し、軽圧下多パス低温加工を与え、微小クラックを金属間化合物やSi晶に積極的に導入してそれぞれを破砕・分断し、回復熱処理と組み合わせて繰り返すことにより、第二相を微細化・球状化させてアルミニウム母相中に均一・高密度に微細分散させることを特徴とするアルミニウム合金の製造方法である。また、第二相を破砕・分断するにあたり、極低温加工の有効性を示している。これらの方法により硬質第二相の微細分散組織を有するアルミニウム合金は、90%以上の冷間加工率を示すとともに、強度・延性バランスに優れている。
しかし、Al−Si−Fe−Mn系合金では、Fe及びMnが適度に加えられたことによってアルミニウム母相の再結晶温度が高まり、強度上昇とともに延性の低下が生じる。したがって、室温加工においてもアルミニウム母相の変形抵抗が高まり、上記の方法で示される低温加工と同様な効果が生じる一方で、低温加工における加工性の確保が困難であった。
The present inventor has intensively studied to solve such problems and apply an Al—Si—Fe—Mn based normally solidified aluminum alloy to a forged part.
The present inventors have already proposed a new heat treatment method applied to Al-Si-based and Al-Si-Fe-based cast alloy wrought materials (Patent Documents 1 to 3).
That is, multi-pass low-temperature processing is applied to a multiphase bulk material containing an aluminum matrix and multiple second phases (AlSiFe-based intermetallic compounds, Si crystals, etc.) that are difficult to deform, and microcracks are formed into metal. By actively introducing it into intermetallic compounds and Si crystals, crushing and dividing each, and repeating in combination with recovery heat treatment, the second phase is refined and spheroidized to make it uniform and dense in the aluminum matrix It is a manufacturing method of the aluminum alloy characterized by dispersing. In addition, it demonstrates the effectiveness of cryogenic processing when crushing and dividing the second phase. An aluminum alloy having a hard second phase finely dispersed structure by these methods exhibits a cold work rate of 90% or more and an excellent balance between strength and ductility.
However, in the Al—Si—Fe—Mn based alloy, the recrystallization temperature of the aluminum parent phase increases due to the appropriate addition of Fe and Mn, and the ductility decreases with increasing strength. Accordingly, the deformation resistance of the aluminum matrix is increased even at room temperature processing, and the same effect as the low temperature processing shown by the above method is produced, but it is difficult to ensure the workability in the low temperature processing.

本発明者は、このような問題を解決するために、冷間加工と熱処理とを組み合わせることにより、硬質第二相を破砕・分断して、耐磨耗性、耐熱性、加工性(塑性加工、鍛造等)に優れたAl−Si系合金を得ることができることを見出し、本発明を完成させるに至った。
このようにして得られる硬質第二相の微細分散組織では、冷間加工によりアルミニウム母相においてサブミクロン単位の動的回復組織が得られる(特許文献3)。
通常のSi晶の微細分散を有するAl−Si二元系合金の場合、99%冷間強加工においても動的回復組織のままであり、これを180℃以下の温度で熱処理を施しても再結晶組織を得ることはできない。一方、180℃以上では固溶Siの析出が生じるとともに、母相結晶粒の粗大化が始まる。200℃以上では短時間急速加熱であっても母相結晶粒は粗大化により数μm以上となる。
しかし、Fe、Mn、Cu等の置換型固溶元素、特にFeあるいはMnを総量1%以上含有すると、冷間加工において動的再結晶組織を得ることができる。また、180℃以上の温度でもSi晶の析出が抑制されるとともに、連続再結晶粒の成長が抑制される。
そのため、本発明の方法により製造される合金では、その冷間又は温間鍛造により製造される製品は微細な結晶組織を有し、強度特性に優れる。
In order to solve such a problem, the present inventor combines the cold working and the heat treatment to crush and divide the hard second phase, thereby to provide wear resistance, heat resistance, workability (plastic working). The present inventors have found that an Al—Si based alloy excellent in forging, etc.) can be obtained and completed the present invention.
In the hard second phase finely dispersed structure thus obtained, a dynamic recovery structure in submicron units is obtained in the aluminum matrix by cold working (Patent Document 3).
In the case of an Al—Si binary alloy having a fine dispersion of ordinary Si crystals, the dynamic recovery structure remains even in the 99% cold hard working, and this is re-applied even if heat treatment is performed at a temperature of 180 ° C. or less. A crystal structure cannot be obtained. On the other hand, at 180 ° C. or higher, solute Si precipitates and the parent phase crystal grains begin to coarsen. Above 200 ° C., even if rapid heating is performed for a short time, the mother phase crystal grains become several μm or more due to coarsening.
However, when a substitutional solid solution element such as Fe, Mn, or Cu, particularly Fe or Mn, is contained in a total amount of 1% or more, a dynamic recrystallization structure can be obtained in cold working. Moreover, precipitation of Si crystals is suppressed even at a temperature of 180 ° C. or higher, and the growth of continuous recrystallized grains is suppressed.
Therefore, in an alloy manufactured by the method of the present invention, a product manufactured by cold or warm forging has a fine crystal structure and is excellent in strength characteristics.

即ち、本発明は、鋳造材に400〜550℃における熱間加工を少なくとも1回行い、その後、低温域で冷間加工を行う段階及びその後高温域で熱処理する段階から成る2段階を少なくとも2回繰り返すことから成るAl−Si系合金の製法であって、該鋳造材及び該Al−Si系合金の組成がSiを2〜24重量%、Feを1〜5重量%、Mnを1〜4重量%、Ce、Mo、Co、V、Zr及びTiのうち少なくとも一種を0〜2重量%、Cu及びMgのうち少なくとも一種を0〜5重量%、並びに残余Alから成り、該低温域が室温〜100℃、該高温域が400〜550℃であり、該冷間加工の累積減面積が60%以上であるAl−Si系合金の製法である。

In other words, the present invention performs at least two steps including a step of performing hot working at 400 to 550 ° C. on a cast material at least once, then performing a cold working in a low temperature region, and then performing a heat treatment in a high temperature region. A process for producing an Al-Si based alloy consisting of repetition, wherein the composition of the cast material and the Al-Si based alloy is 2 to 24% by weight of Si, 1 to 5% by weight of Fe, and 1 to 4% by weight of Mn. %, Ce, Mo, Co, V, Zr and Ti at least one of 0 to 2 wt%, Cu and Mg of at least one of 0 to 5 wt%, and the remaining Al, the low temperature range from room temperature to 100 ° C., the high temperature range is 400 to 550 ° C., Ru preparation der of Al-Si based alloy cumulative area reduction of cold rolling is 60% or more.

本発明のAl−Si系合金の組成は、Si2〜24重量%、Fe及びNiのうち少なくとも一種、好ましくはFeを1〜5重量%、Mn及びCrのうち少なくとも一種、好ましくはMnを1〜4重量%、並びに残余のAlから成る。更に、任意に、Ce、Mo、Co、V、Zr及びTiのうち少なくとも一種を0〜2重量%、Cu及びMgのうち少なくとも一種を0〜5重量%、好ましくは0〜3重量%含んでもよい。これらの成分のほかに不可避不純物が含まれていてもよい。   The composition of the Al—Si based alloy of the present invention is 2-24 wt% Si, at least one of Fe and Ni, preferably 1-5 wt% of Fe, at least one of Mn and Cr, preferably 1 to Mn. 4% by weight, as well as the balance Al. Furthermore, optionally, at least one of Ce, Mo, Co, V, Zr and Ti may be contained in an amount of 0 to 2 wt%, and at least one of Cu and Mg may be contained in an amount of 0 to 5 wt%, preferably 0 to 3 wt%. Good. In addition to these components, inevitable impurities may be contained.

Al−Si系合金におけるSi濃度は、共晶Siの晶出を得るために少なくとも2重量%以上を必要とする。さらに耐磨耗性に有効な初晶Siの晶出を得るには12重量%以上の含有量を必要とする。しかし、一般的な合金製造方法である連続鋳造や金型鋳造による凝固過程では、Si量の増大に伴い、初晶Siの粗大化と体積量の増大が生じ、熱間加工性も低下する。そのため、24重量%がSi濃度の上限となる。   The Si concentration in the Al—Si alloy needs to be at least 2% by weight in order to obtain eutectic Si crystallization. Furthermore, in order to obtain crystallization of primary Si effective for wear resistance, a content of 12% by weight or more is required. However, in the solidification process by continuous casting or die casting, which is a general alloy manufacturing method, as the Si amount increases, the primary Si becomes coarse and the volume increases, and the hot workability also decreases. Therefore, 24% by weight is the upper limit of the Si concentration.

Fe又はNiの適度な添加により常温強度及び高温強度が改善される。Feの添加は、凝固時の初晶金属間化合物として晶出する。また、Fe添加は金属間化合物の分散によって、アルミニウム母相の再結晶温度を上昇させる効果を有する。Feの添加量が1%未満の場合、共晶化合物となり、十分な晶出物の体積量を得られない。一方、Al−Si合金中へのFe添加量が5%以上である場合には、通常の鋳造材では加工性が悪く、急冷凝固や半凝固攪拌(超音波振動を含む)による凝固組織の微細化なしに加工を付与することが困難である。   Room temperature strength and high temperature strength are improved by moderate addition of Fe or Ni. Addition of Fe crystallizes out as a primary intermetallic compound during solidification. Further, the addition of Fe has the effect of increasing the recrystallization temperature of the aluminum matrix by the dispersion of the intermetallic compound. When the added amount of Fe is less than 1%, a eutectic compound is formed, and a sufficient volume of crystallized material cannot be obtained. On the other hand, when the amount of Fe added to the Al-Si alloy is 5% or more, the workability is poor with a normal cast material, and the solidification structure becomes fine due to rapid solidification or semi-solidification (including ultrasonic vibration). It is difficult to impart processing without making it.

Mn又はCr、好ましくはMnを添加すると、アルミニウム母相の再結晶温度が高まり、常温強度及び高温強度を改善できる。また、クリープ強度や疲労強度を向上させることができる。Mnは、上記金属間化合物中に固溶するとともに、アルミニウム母相にも固溶して、加工組織の回復や再結晶を生じにくくし、合金のクリープ強度、疲労強度を向上させるのに寄与する。そのため、Fe添加とともに、冷間加工におけるアルミニウム母相の変形抵抗を高め、粗大晶出物の破砕に対して有効に作用する。しかし、Mnの添加は延性や靱性の劣化を促進することにもなるので、好ましくは4%以下とする必要がある。
適当量のMn(又はCr)の添加により、数10μmから数100μm長さの針状AlSiFe系化合物を数10μm径の塊状AlSiFeMn系化合物に形態制御することができる。粗大針状化合物の場合、熱間及びその後の室温加工工程においてそれが分断・配列する際に加工方向に配向してしまうため、デラミネーション特性に劣り、成形加工を施す際にき裂を生じる問題を有する。塊状化合物の場合、加工方向への配向は顕著でなく、鍛造加工等の成形時における品質改善を確実に行うことができる。
本発明では、Fe(又はNi)+Mn(又はCr)量は好ましくは2〜8重量%、重量比Mn(又はCr)/Fe(又はNi)は好ましくは0.2〜2である。
When Mn or Cr, preferably Mn is added, the recrystallization temperature of the aluminum matrix is increased, and the normal temperature strength and high temperature strength can be improved. Moreover, creep strength and fatigue strength can be improved. Mn forms a solid solution in the intermetallic compound and also forms a solid solution in the aluminum matrix, making it difficult to recover the work structure and recrystallize, and contribute to improving the creep strength and fatigue strength of the alloy. . Therefore, together with the addition of Fe, the deformation resistance of the aluminum matrix during cold working is increased, which effectively acts on the crushing of coarse crystals. However, the addition of Mn also promotes the deterioration of ductility and toughness, so it is necessary to make it preferably 4% or less.
By adding an appropriate amount of Mn (or Cr), the shape of a needle-like AlSiFe-based compound having a length of several tens of μm to several hundreds of μm can be controlled into a massive AlSiFeMn-based compound having a diameter of several tens of μm. In the case of coarse needle-shaped compounds, it is oriented in the processing direction when it is divided and arranged in the hot and subsequent room temperature processing steps, so the problem of inferior delamination properties and cracking during molding processing Have In the case of a massive compound, the orientation in the processing direction is not remarkable, and quality improvement during molding such as forging can be reliably performed.
In the present invention, the amount of Fe (or Ni) + Mn (or Cr) is preferably 2 to 8% by weight, and the weight ratio Mn (or Cr) / Fe (or Ni) is preferably 0.2 to 2.

Ce、Co、Vの添加は、金属間化合物の分散を微細化し、高温強度の上昇に効果を有する。また、Mo、Zr、Tiの添加は、金属間化合物の分散状態を均一化し、併せてアルミニウム母相の微細化を促進する。しかし、多量に添加量しても、高温強度上昇等の効果は飽和することから、添加の総量は2重量%以下である。
Cu又はMgの添加は、時効析出による常温強度及び150℃以下における強度上昇に寄与する。また、180℃以上の高温においては、析出物の固溶により析出強化の機構を失うが、固溶強化による若干の高温強度の向上と再結晶温度の上昇が得られる。このような時効析出に有効なCu/Mg単独添加量は5重量%以下である。しかし、Si、Fe及びMn等のアルミニウム母相への一部固溶によるCu/Mg固溶限の低下と、Cu/Mg化合物の微細析出によるアルミニウム母相の不均一変形の顕在化によって冷間加工性の低下が生じることから、Cu/Mg添加量の上限は好ましくは3重量%である。
The addition of Ce, Co, and V refines the dispersion of the intermetallic compound and has an effect of increasing the high temperature strength. Further, the addition of Mo, Zr, and Ti makes the dispersion state of the intermetallic compound uniform, and at the same time promotes the refinement of the aluminum matrix. However, even if added in a large amount, effects such as an increase in high-temperature strength are saturated, so the total amount added is 2% by weight or less.
Addition of Cu or Mg contributes to normal temperature strength due to aging precipitation and strength increase at 150 ° C. or lower. At a high temperature of 180 ° C. or higher, the precipitation strengthening mechanism is lost due to the solid solution of the precipitate, but a slight improvement in the high temperature strength and an increase in the recrystallization temperature are obtained by the solid solution strengthening. The effective addition amount of Cu / Mg alone for such aging precipitation is 5% by weight or less. However, it is cold due to the reduction of the Cu / Mg solid solubility limit due to partial dissolution in the aluminum matrix such as Si, Fe and Mn, and the manifestation of non-uniform deformation of the aluminum matrix due to fine precipitation of the Cu / Mg compound. Since the workability is lowered, the upper limit of the Cu / Mg addition amount is preferably 3% by weight.

本発明の加工を施すためには、このAl−Si系合金の破断伸びが1%以上であることを要し、好ましくは4%以上である。破断伸びはSi含量が大きいほど小さくなる。破断伸びが1〜4%のものは、1回の冷間加工における減面積をあまり大きく取れないため、加工の繰り返し回数を多く取る必要がある。この破断伸びは、例えば、平行部径φ3.5mm、平行部長さ25mmの丸棒試験片を、室温にてクロスヘッド変位速度0.05〜500mm/minで測定したものをいう。
Al−Si系合金の破断伸びが1%以上のものは、例えば、連続鋳造材または金型鋳造材に熱間押出し、熱間圧延、熱間鍛造等の熱間加工を少なくとも1回施すことにより得ることができる。
この熱間加工は400〜550℃で行うことが好ましい。400℃以下では、材料の再結晶が十分に起こらず、延性も小さい。材料の均質化と室温加工のための加工性を付与し、変形抵抗を小さくするためには、400℃以上に加熱することが好ましい。一方、550℃以上では、共晶温度までの温度差が50℃以下であり、加工発熱による材料表面の部分溶融が生じる危険があり、熱間押出し加工では焼き付きを生じる危険がある。
一般的に押出し材あるいは圧延材と呼称されているもの、または鋳造材に同様な処理を施したものを用いることができる。
In order to perform the processing of the present invention, it is necessary that the elongation at break of the Al—Si alloy is 1% or more, and preferably 4% or more. The elongation at break decreases as the Si content increases. When the elongation at break is 1 to 4%, it is necessary to increase the number of repetitions of processing because the area of reduction in one cold processing cannot be made so large. This breaking elongation refers to, for example, a round bar test piece having a parallel part diameter of φ3.5 mm and a parallel part length of 25 mm measured at room temperature at a crosshead displacement speed of 0.05 to 500 mm / min.
An Al-Si alloy having an elongation at break of 1% or more is obtained by, for example, subjecting a continuous casting material or a die casting material to hot extrusion, hot rolling, hot forging or the like at least once. Obtainable.
This hot working is preferably performed at 400 to 550 ° C. Below 400 ° C., recrystallization of the material does not occur sufficiently and the ductility is small. In order to impart workability for homogenizing the material and processing at room temperature, and to reduce deformation resistance, it is preferable to heat to 400 ° C. or higher. On the other hand, at 550 ° C. or higher, the temperature difference to the eutectic temperature is 50 ° C. or lower, and there is a risk of partial melting of the material surface due to processing heat generation, and there is a risk of seizure in hot extrusion.
A material generally called an extruded material or a rolled material, or a material obtained by performing a similar treatment on a cast material can be used.

本発明の方法においては、このようなAl−Si系合金に、室温〜100℃の低温域で冷間加工を行う段階及びその後この合金を400〜550℃の高温域に保持する段階から成る2段階を少なくとも2回繰り返す。
冷間加工とは、例えば、押出し、圧延、鍛造(鍛伸、スエージングなど)、圧造等の加工をいう。冷間加工は室温〜100℃、好ましくは室温で行う。
この冷間加工の全段階の加工後の累積減面積は60%以上、又はこれと同等の効果を生じるものである必要がある。
このような冷間加工を行った合金を400〜550℃に保持して熱処理を行う。保持時間は10分〜1時間程度が適当である。
この繰り返し工程は、冷間加工又は熱処理のいずれで終わってもよい。冷間加工仕上がりのものを加工材、一方、熱処理仕上がりのものを溶体化処理材あるいは焼鈍し材という。後者は軟質で、その後の鍛造加工などに際しては好ましいといえる。
このような冷間加工と熱処理を繰り返すことにより、微小クラックを金属間化合物やSi晶に積極的に導入してそれぞれを破砕・分断し、アルミニウム母相を熱処理により回復するとともに、微細化した粒子を球状化させてアルミニウム母相中に均一・高密度に分散させる効果がある。このようなアルミニウム合金においては、晶出物が破砕・分散により適当な大きさとなり、鍛造加工に必要な延性が改善されるので、冷間あるいは温間鍛造加工が可能となり、強度と延性のバランスが優れる。
In the method of the present invention, the Al-Si alloy is subjected to cold working in a low temperature range of room temperature to 100 ° C, and then maintained in a high temperature range of 400 to 550 ° C. Repeat the steps at least twice.
Cold working refers to processes such as extrusion, rolling, forging (forging, swaging, etc.), forging, and the like. Cold working is performed at room temperature to 100 ° C., preferably at room temperature.
The cumulative area reduction after processing in all stages of this cold processing must be 60% or more, or an effect equivalent to this.
The alloy subjected to such cold working is heat-treated while being kept at 400 to 550 ° C. The holding time is suitably about 10 minutes to 1 hour.
This repeating process may be completed by either cold working or heat treatment. Cold-finished materials are called processed materials, while heat-treated materials are called solution-treated materials or annealed materials. The latter is soft and preferable for subsequent forging.
By repeating such cold working and heat treatment, micro cracks are actively introduced into intermetallic compounds and Si crystals, each is crushed and divided, and the aluminum matrix is recovered by heat treatment and refined particles Spheroidized and dispersed uniformly and densely in the aluminum matrix. In such an aluminum alloy, the crystallized material becomes an appropriate size by crushing and dispersing, and the ductility necessary for forging is improved, so that cold or warm forging can be performed, and the balance between strength and ductility is achieved. Is excellent.

このようにして得られたAl−Si系合金は、AlSiFeMn、AlSiFeMnCu、初晶Siのような晶出物が微細化し(数μm〜数10μm)、ほぼ均一に分散する。そのため、耐磨耗性がよく、塑性加工に耐えることができる。このことは破断伸びが優れていることから理解される。この破断伸びは、後述の実施例で示すように、Si含量が大きいほど小さくなるが、例えば、4%以上である。この破断伸びは、例えば、平行部径φ3.5mm、平行部長さ25mmの丸棒試験片を、室温にてクロスヘッド変位速度0.05〜500mm/minで測定したものをいう。   In the Al—Si based alloy thus obtained, crystallized substances such as AlSiFeMn, AlSiFeMnCu, and primary crystal Si are refined (several μm to several tens μm) and dispersed almost uniformly. Therefore, it has good wear resistance and can withstand plastic working. This is understood from the excellent elongation at break. This breaking elongation becomes smaller as the Si content increases, as shown in the examples described later, but is, for example, 4% or more. This breaking elongation refers to, for example, a round bar test piece having a parallel part diameter of φ3.5 mm and a parallel part length of 25 mm measured at room temperature at a crosshead displacement speed of 0.05 to 500 mm / min.

また、本発明の方法により得られたAl−Si系合金における晶出物の形状は、同様な目的で行われるスプレーフォーミング(特許文献4等)により得られたAl−Si系合金と顕著に異なる。即ち、スプレーフォーミングによれば、その晶出物は概ね径が1〜3μm程度の球状であり、その径もほぼそろっている(時實,佐野,渋江,大久保:スプレーフォーミングにより製造したAl-Si系合金の組織と機械的性質,粉末および粉末冶金,41 (1994), 927-932)のに対し、本発明の方法によれば、晶出物の形状は、棒状、塊状、球状と多様であり、一定範囲(例えば、合金表面の50〜200μm四方)でこれら晶出物を観察すれば、晶出物の円相当直径(例えば、球状の場合には粒径、棒状の場合には長軸長さをいう。)の最も小さなものと最も大きなものとの差が5倍以上であるといった特徴を示す。

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
In addition, the shape of the crystallized product in the Al—Si based alloy obtained by the method of the present invention is significantly different from the Al—Si based alloy obtained by spray forming (for example, Patent Document 4) performed for the same purpose. . That is, according to spray forming, the crystallized substance is generally spherical with a diameter of about 1 to 3 μm, and the diameters are almost uniform (Tokiso, Sano, Shibue, Okubo: Al-Si manufactured by spray forming. According to the method of the present invention, the crystallized material has a variety of shapes such as rods, lumps and spheres, in contrast to the structure and mechanical properties of alloys, powder and powder metallurgy, 41 (1994), 927-932). Yes, if these crystals are observed within a certain range (for example, 50 to 200 μm square of the alloy surface), the equivalent circle diameter of the crystals (for example, the particle diameter in the case of a sphere, the long axis in the case of a rod) The difference between the smallest one and the largest one is 5 times or more.

The following examples illustrate the invention but are not intended to limit the invention.

Si:7重量%、Fe:2重量%、Mn:2重量%含むAl合金(以下「7Si」という。)を銅金型(φ40)に鋳造し鋳造材を得た(以下、本実施例中でこの鋳造材を「AC」という。)。
このACを520℃に加熱後、熱間スエージング加工(約5%減面率/回、8パス)と再加熱(520℃-600s/回)を繰り返して行い、約φ21mmに成形した(以下、本実施例中でこの熱間加工材を「HW」という。)。スエージング加工は、丸棒をスエージング加工機に挿入し、ダイスの打撃によって減面加工し、更にダイス間隔の調整あるいはダイスの交換を行い、より小径の棒材に加工する。累積減面率は約70%であった。
続いて、このHWを冷間スエージング加工(約10%減面率/回)と中間熱処理(500℃−1.8ks、水冷)を7回繰り返して約φ11mmに成形した(以下、本実施例中でこの加工熱処理材を「RTMT」という。)。冷間加工の累積減面率は約70%であった。
An Al alloy (hereinafter referred to as “7Si”) containing 7% by weight of Si, 2% by weight of Fe, and 2% by weight of Mn was cast into a copper mold (φ40) to obtain a cast material (hereinafter, in this example) This casting is called “AC”).
After this AC was heated to 520 ° C., hot swaging (about 5% reduction in area / time, 8 passes) and reheating (520 ° C.-600 s / time) were repeated to form about 21 mm (hereinafter referred to as “φ21 mm”). In this example, this hot-worked material is referred to as “HW”). In the swaging process, a round bar is inserted into a swaging machine, the surface is reduced by striking a die, and further, the die interval is adjusted or the die is changed, and the bar is processed into a smaller diameter bar. The cumulative area reduction was about 70%.
Subsequently, this HW was formed into about φ11 mm by repeating the cold swaging process (about 10% reduction in area / time) and the intermediate heat treatment (500 ° C.-1.8 ks, water cooling) 7 times (hereinafter, this example) This thermomechanical material is called “RTMT”.) The cumulative reduction in cold work was about 70%.

図1に7Si合金AC材の光学顕微鏡組織写真を示す。X線回折及び示差熱分析、SEM−EDS解析による相同定と組織形態の解析を行った結果、7Si合金には共晶Si(eutectic Si)と初晶AlSiFeMn系化合物が存在し、共晶Siは針状、化合物は粗大塊状(数10μm〜100μm)であることがわかった。
スエージング加工を施した7Si合金HW材の破砕・分断は顕著であり、分散粒子の大きさは数μmから10数μm径となっている。
このSi濃度が11%以下のアルミニウム合金は初晶Siを含有しないため、熱間加工性が比較的良好であるので、静水圧的加工である押出し法に限らず、鍛造あるいは圧延法などにより、晶出物の積極的な破砕・分断を行なうことができる。
Fig. 1 shows an optical micrograph of a 7Si alloy AC material. X-ray diffraction, differential thermal analysis, and SEM-EDS analysis of phase identification and structural morphology revealed that eutectic Si (eutectic Si) and primary AlSiFeMn-based compounds exist in the 7Si alloy. The needle shape and the compound were found to be in a large lump shape (several tens of μm to 100 μm).
The 7Si alloy HW material subjected to the swaging process is significantly crushed and divided, and the size of the dispersed particles is several μm to several tens of μm.
Since the aluminum alloy having an Si concentration of 11% or less does not contain primary crystal Si, the hot workability is relatively good. Therefore, it is not limited to the extrusion method that is hydrostatic processing, but by forging or rolling, The crystallized material can be actively crushed and divided.

図2及び図3に7Si合金RTMT材の走査電子顕微鏡による組織写真(2次電子像)を示す。
冷間スエージング加工と中間熱処理を繰り返したことによってSi晶及び化合物に割れが生じ、さらに基地の塑性流動によってそれらが分断することにより、化合物が数10μm径以下の大きさに微細分散されている。
特に表面近傍では数μm径以下の大きさであり(図2)、これはRTMT材の鍛造加工等への適用において優れた成形性をもたらす。
中心部は、鋳造材の冷却速度が小さいこと、熱間加工及び室温加工ともスエージング加工法を適用したことにより加工ひずみが小さいことから、約10μm径の初晶化合物が残留している(図3)。
2 and 3 show structural photographs (secondary electron images) of the 7Si alloy RTMT material by a scanning electron microscope.
By repeating the cold swaging process and the intermediate heat treatment, the Si crystal and the compound are cracked and further divided by the plastic flow of the base, so that the compound is finely dispersed to a size of several tens of micrometers or less. .
Particularly in the vicinity of the surface, the diameter is several μm or less (FIG. 2), and this provides excellent formability in application to forging of RTMT material.
In the central part, since the cooling rate of the cast material is low and the working strain is small by applying the swaging method for both hot processing and room temperature processing, the primary crystal compound having a diameter of about 10 μm remains (see FIG. 3).

7Si合金の各素材について、クロスヘッド変位制御引張試験を室温(大気中)と180℃(オイルバス中)で行った。
引張試験は、平行部径φ3.5mm、平行部長さ25mmの丸棒試験片を用い、インストロン型引張試験機によって、クロスヘッド変位速度一定のもと、0.05から500mm/minの範囲で異なる変位速度で実験を行った。
表1に7Si合金の引張特性を示す。
For each material of 7Si alloy, a crosshead displacement control tensile test was performed at room temperature (in the atmosphere) and 180 ° C. (in an oil bath).
In the tensile test, a round bar test piece having a parallel part diameter of φ3.5 mm and a parallel part length of 25 mm was used, and the crosshead displacement speed was constant within a range of 0.05 to 500 mm / min with an Instron type tensile tester. Experiments were performed at different displacement rates.
Table 1 shows the tensile properties of the 7Si alloy.

RTMT材では延性の改善が顕著である。20℃で18%、180℃で36%の破断伸びを示し、AC材のそれと比較して10倍以上である。
AC材は、第2相に容易に割れが生じて伝播することから、早期破断を呈し、延性が乏しい。そのため、冷間(0℃〜100℃)及び温間(100℃〜400℃)での加工性をほとんど有しない。一方、RTMT材の破面にはディンプルが観察され、延性破壊様相を呈する。
In the RTMT material, the improvement in ductility is remarkable. The elongation at break is 18% at 20 ° C. and 36% at 180 ° C., which is more than 10 times that of the AC material.
The AC material easily cracks and propagates in the second phase, and thus exhibits an early fracture and poor ductility. Therefore, it has almost no workability in cold (0 degreeC-100 degreeC) and warm (100 degreeC-400 degreeC). On the other hand, dimples are observed on the fracture surface of the RTMT material, exhibiting a ductile fracture appearance.

図4及び図5に7Si合金RTMT材の20℃及び180℃における真応力−真ひずみ曲線を示す。これは、二次加工における変形抵抗の指標を与える。
20℃(293K、図4)では変形応力に対する高ひずみ速度の影響(加工硬化率の増加)はほとんどなく、高ひずみ速度による鍛造加工などにおいても十分な塑性変形能と低い変形抵抗を有する。即ち、冷間成形性が高いことを示す。
180℃(453K、図5)では、温度上昇による強度低下が起こるが、ひずみ速度が大であると加工硬化率が高まり、変形抵抗の上昇をもたらす。しかし、均一伸びに変化は無く、十分な塑性変形能を有している。加工硬化による変形抵抗の上昇は、温度上昇による変形抵抗の低下よりも小さく、十分に低い変形抵抗である。したがって、温間成形性も高く、二次加工後の加工硬化組織を維持して、強度が上昇している。
4 and 5 show the true stress-true strain curves at 20 ° C. and 180 ° C. of the 7Si alloy RTMT material. This gives an indication of deformation resistance in secondary processing.
At 20 ° C. (293 K, FIG. 4), there is almost no influence of the high strain rate on the deformation stress (increase in work hardening rate), and sufficient plastic deformability and low deformation resistance are obtained even in forging processing at a high strain rate. That is, the cold formability is high.
At 180 ° C. (453 K, FIG. 5), the strength decreases due to the temperature increase, but if the strain rate is large, the work hardening rate increases and the deformation resistance increases. However, there is no change in uniform elongation and it has sufficient plastic deformability. The increase in deformation resistance due to work hardening is smaller than the decrease in deformation resistance due to temperature rise, and is sufficiently low. Accordingly, the warm formability is also high, the work hardening structure after the secondary processing is maintained, and the strength is increased.

Si:14重量%、Fe:2重量%、Mn:2重量%、Cu:2重量%、Zr:0.5重量%含むAl合金(以下「14Si」という。)及びSi:17重量%、Fe:2重量%、Mn:2重量%、Cu:2重量%、Zr:0.5重量%含むAl合金(以下「17Si」という。)を銅金型(φ40)に鋳造し鋳造材を得た(以下、本実施例中でこの鋳造材を「AC」という。)。
この12%Si以上のアルミニウム合金は初晶Siを含有するため、冷間加工性が非常に乏しく、通常の鋳造材には熱間温度域においても自由鍛造加工等の適用が困難であるため、熱間押出し加工を施した。
14Si合金及び17Si合金AC材を500℃に加熱した状態でφ20mmに押出し加工を施した(押出し比3.45)。その押出加工比は大きくとるほどよく、少なくとも2.0以上確保することが望ましい。2以下の押出加工比では、その後の冷間加工時に割れを生じることがあり、好ましくないからである。
次に、実施例1と同様の工程で、冷間スエージング加工(約10%減面率/回)と中間熱処理(500℃−1.8ks、水冷)を7回繰り返して約φ11mmに成形した(以下、本実施例中でこの加工熱処理材を「RTMT」という。)。目視できる傷の生成無しに加工を施すことができた。冷間加工の累積減面率は約70%であった。
Si: 14 wt%, Fe: 2 wt%, Mn: 2 wt%, Cu: 2 wt%, Zr: 0.5 wt% Al alloy (hereinafter referred to as "14Si") and Si: 17 wt%, Fe : 2 wt%, Mn: 2 wt%, Cu: 2 wt%, Zr: 0.5 wt% Al alloy (hereinafter referred to as “17Si”) was cast into a copper mold (φ40) to obtain a cast material (Hereinafter, this cast material is referred to as “AC” in this example).
Since this aluminum alloy of 12% Si or more contains primary Si, the cold workability is very poor, and it is difficult to apply free forging or the like to a normal casting material even in a hot temperature range. Hot extrusion was applied.
The 14Si alloy and the 17Si alloy AC material were extruded to φ20 mm while being heated to 500 ° C. (extrusion ratio 3.45). The larger the extrusion ratio, the better. It is desirable to ensure at least 2.0 or more. This is because an extrusion ratio of 2 or less may cause cracking during subsequent cold working, which is not preferable.
Next, in the same process as in Example 1, cold swaging (about 10% area reduction / time) and intermediate heat treatment (500 ° C.-1.8 ks, water cooling) were repeated 7 times to form about φ11 mm. (Hereinafter, this heat-treated material is referred to as “RTMT” in this example.) Processing could be performed without visible scratches. The cumulative reduction in cold work was about 70%.

図6にAC材の光学顕微鏡組織写真を示す。X線回折及び示差熱分析、SEM−EDS解析を行った結果、14Si及び17Siには共晶Si(eutectic Si)、初晶Si(primary Si)、AlSiFeMnCu系化合物が観察された。共晶Siは針状であり、初晶Si及び金属間化合物は粗大塊状(数10μm〜数100μm)であった。
図7及び図8にRTMT材の走査電子顕微鏡による組織写真(2次電子像)を示す。
冷間スエージング加工と中間熱処理を繰り返したことによって、Si晶及び化合物に割れが生じ、さらに基地の塑性流動によってそれらが分断されている。約10μm径の大きさのSi晶及び化合物が、表面及び中心部ともに分散している。
FIG. 6 shows an optical micrograph of the AC material. As a result of X-ray diffraction, differential thermal analysis, and SEM-EDS analysis, eutectic Si (eutectic Si), primary Si (primary Si), and AlSiFeMnCu based compounds were observed in 14Si and 17Si. The eutectic Si was acicular, and the primary crystal Si and the intermetallic compound were coarse lumps (several tens μm to several hundreds μm).
FIG. 7 and FIG. 8 show structural photographs (secondary electron images) of the RTMT material by a scanning electron microscope.
By repeating the cold swaging process and the intermediate heat treatment, the Si crystal and the compound are cracked, and further, they are divided by the plastic flow of the base. Si crystals and compounds having a diameter of about 10 μm are dispersed on both the surface and the center.

表2に14Si合金及び17Si合金の引張特性をまとめる。試験温度は20℃であり、クロスヘッド速度は0.5mm/minである。
Table 2 summarizes the tensile properties of 14Si alloy and 17Si alloy. The test temperature is 20 ° C. and the crosshead speed is 0.5 mm / min.

HW材の引張特性は改善され、RTMT法の適用が可能であることがわかる。AC材組織と比較すると、粗大な初晶Si及びAlSiFeMnCu系化合物が加工方向に対して垂直に分断されている。
高Si濃度の14Si及び17Si合金RTMT材の伸びは約5%の値であり、鍛造成形が可能である。
It can be seen that the tensile properties of the HW material are improved and the RTMT method can be applied. Compared with the AC material structure, coarse primary crystal Si and AlSiFeMnCu-based compounds are divided perpendicular to the processing direction.
The elongation of high Si concentration 14Si and 17Si alloy RTMT materials is about 5%, and can be forged.

本発明のAl−Si系合金は、晶出物が微細化・分散され、鍛造品の開発に必要な加工性を付与することが可能となった。更に本発明のAl−Si系合金は、軽量で、耐摩耗性に優れ、低熱膨張であり、さらに、耐熱性と成形性とが付与され、高付加価値化素材として安価に提供されうる。
本発明のAl−Si系合金は、鋳造素材から鍛造品を低コストで製造し、各種機械部品の性能を向上させることを可能にする。二次地金の利用が可能なことから、アルミニウム合金のリサイクル過程において問題となるSi、Fe、Mn(除去困難な元素)の有効利用と二次合金の展伸材への適用をもたらす高付加価値付与カスケード型リサイクルが可能になる。
本発明のAl−Si系合金の製法は、鋳造材及び二次地金に適用可能であり、現在の工業設備における製造ラインを用いて製造及び量産が可能である。
また、本発明のAl−Si系合金は、遷移金属からなる化合物及びSi晶による分散強化合金であるので、従来の時効析出強化型の合金のような、熱処理により強度を確保するような合金とは異なり、200℃を超える温度領域でも急激な強度低下はなく、高温強度特性が向上する。
In the Al—Si based alloy of the present invention, the crystallized material is refined and dispersed, and the workability necessary for the development of a forged product can be imparted. Furthermore, the Al—Si based alloy of the present invention is lightweight, excellent in wear resistance, has low thermal expansion, is further provided with heat resistance and formability, and can be provided at low cost as a high value-added material.
The Al—Si based alloy of the present invention makes it possible to produce a forged product from a cast material at a low cost and improve the performance of various machine parts. Because secondary metal can be used, high addition that brings about effective use of Si, Fe and Mn (elements that are difficult to remove), which is a problem in the recycling process of aluminum alloys, and application of secondary alloys to wrought materials Value-added cascade recycling becomes possible.
The method for producing an Al—Si alloy of the present invention can be applied to a cast material and a secondary metal, and can be produced and mass-produced using a production line in a current industrial facility.
In addition, since the Al—Si based alloy of the present invention is a dispersion strengthened alloy composed of a transition metal compound and Si crystal, an alloy that ensures strength by heat treatment, such as a conventional aging precipitation strengthened alloy, In contrast, even in a temperature region exceeding 200 ° C., there is no rapid decrease in strength, and high temperature strength characteristics are improved.

7Si合金AC材の横断面組織の光学顕微鏡写真を示す図である。It is a figure which shows the optical microscope photograph of the cross-sectional structure | tissue of 7Si alloy AC material. 7Si合金RTMT材の縦断面組織(表面から1/4深さの位置)の光学顕微鏡写真を示す図である。RDは加工方向を示す。It is a figure which shows the optical microscope photograph of the longitudinal cross-section structure | tissue (position of 1/4 depth from the surface) of 7Si alloy RTMT material. RD indicates the processing direction. 7Si合金RTMT材の横断面組織(中心部位置)の光学顕微鏡写真を示す図である。It is a figure which shows the optical microscope photograph of the cross-sectional structure | tissue (center part position) of 7Si alloy RTMT material. 7Si合金RTMT材の293Kにおける引張り変形挙動に及ぼすひずみ速度の影響を示す図である。It is a figure which shows the influence of the strain rate which acts on the tensile deformation behavior in 293K of 7Si alloy RTMT material. 7Si合金RTMT材の453Kにおける引張り変形挙動に及ぼすひずみ速度の影響を示す図である。It is a figure which shows the influence of the strain rate which acts on the tensile deformation behavior in 453K of 7Si alloy RTMT material. 14Si合金AC材の横断面組織(光学顕微鏡)を示す図である。It is a figure which shows the cross-sectional structure | tissue (optical microscope) of 14Si alloy AC material. 14Si合金RTMT材の縦断面組織(表面近傍位置)を示す図である。It is a figure which shows the longitudinal cross-section structure | tissue (surface vicinity position) of 14Si alloy RTMT material. 14Si合金RTMT材の縦断面組織(中心部位置)を示す図である。It is a figure which shows the longitudinal cross-section structure | tissue (center part position) of 14Si alloy RTMT material.

Claims (2)

鋳造材に400〜550℃における熱間加工を少なくとも1回行い、その後、低温域で冷間加工を行う段階及びその後高温域で熱処理する段階から成る2段階を少なくとも2回繰り返すことから成るAl−Si系合金の製法であって、該鋳造材及び該Al−Si系合金の組成がSiを2〜24重量%、Feを1〜5重量%、Mnを1〜4重量%、Ce、Mo、Co、V、Zr及びTiのうち少なくとも一種を0〜2重量%、Cu及びMgのうち少なくとも一種を0〜5重量%、並びに残余Alから成り、該低温域が室温〜100℃、該高温域が400〜550℃であり、該冷間加工の累積減面積が60%以上であるAl−Si系合金の製法。 Al- consisting of performing at least one hot working at 400 to 550 ° C. on a cast material, and then repeating at least two steps comprising a step of cold working in a low temperature region and a step of heat treatment in a high temperature region thereafter. A process for producing a Si-based alloy, wherein the composition of the cast material and the Al-Si based alloy is 2 to 24 wt% Si, 1 to 5 wt% Fe, 1 to 4 wt% Mn, Ce, Mo, At least one of Co, V, Zr, and Ti is 0 to 2% by weight, at least one of Cu and Mg is 0 to 5% by weight, and the remaining Al, and the low temperature range is room temperature to 100 ° C., the high temperature range Is 400-550 degreeC, and the manufacturing method of the Al-Si type alloy whose cumulative reduction area of this cold working is 60% or more. 前記冷間加工が押出し、圧延、鍛造又は圧造である請求項1に記載の製法。 The manufacturing method according to claim 1, wherein the cold working is extrusion, rolling, forging, or forging.
JP2003378043A 2003-11-07 2003-11-07 Production method of Al-Si alloy Expired - Fee Related JP4103959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378043A JP4103959B2 (en) 2003-11-07 2003-11-07 Production method of Al-Si alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378043A JP4103959B2 (en) 2003-11-07 2003-11-07 Production method of Al-Si alloy

Publications (2)

Publication Number Publication Date
JP2005139520A JP2005139520A (en) 2005-06-02
JP4103959B2 true JP4103959B2 (en) 2008-06-18

Family

ID=34688558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378043A Expired - Fee Related JP4103959B2 (en) 2003-11-07 2003-11-07 Production method of Al-Si alloy

Country Status (1)

Country Link
JP (1) JP4103959B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168069B2 (en) * 2008-10-07 2013-03-21 日本軽金属株式会社 Method for producing aluminum alloy
JP6446785B2 (en) * 2014-01-22 2019-01-09 日産自動車株式会社 Aluminum alloy casting and manufacturing method thereof
KR101606525B1 (en) 2014-10-29 2016-03-25 주식회사 케이엠더블유 Aluminum alloy for die casting having excellent corrosion resistance
CN111471882A (en) * 2019-12-18 2020-07-31 安徽嘀通网络科技有限公司 Preparation process of rapid solidification/sintering type high-silicon aluminum alloy for automobile

Also Published As

Publication number Publication date
JP2005139520A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
AU2017202054B2 (en) Thermo-mechanical processing of nickel-titanium alloys
JP4467637B2 (en) Alloy based on titanium aluminum
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP6823827B2 (en) Heat-resistant Ti alloy and its manufacturing method
WO2016129485A1 (en) METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
JP6990527B2 (en) Aluminum alloy material
JP5463795B2 (en) Aluminum alloy and heat-resistant aluminum alloy material and method for producing the same
EP3456853B1 (en) Manufacturing of high strength and heat resistant aluminium alloys strengthened by dual precipitates
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP6126235B2 (en) Semi-finished product obtained by deforming heat-resistant aluminum base alloy and method for producing the same
JP2016505713A5 (en)
JP2007092117A (en) High strength and low specific gravity aluminum alloy
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
JP7193796B2 (en) Zirconium alloy and its manufacturing method
JP4103959B2 (en) Production method of Al-Si alloy
JP4764094B2 (en) Heat-resistant Al-based alloy
JP2022044919A (en) Aluminum alloy-made forged member and method for producing the same
JP3475236B2 (en) Manufacturing method of wrought aluminum alloy
JP5929251B2 (en) Iron alloy
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP2010126740A (en) Aluminum alloy and method for manufacturing the same
JPS60149751A (en) Metal composition
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
Fang et al. The effect of artificial aging treatment on microstructure and tensile properties of Al-12.7 Si-0.7 Mg alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees